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Existence of multidimensional phase transitions in a steady

Van Der Waals flow
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Communicated by Yuxi Zheng, received June 12, 2011.

Abstract. The purpose of this paper is to prove the existence of multi-

dimensional subsonic phase transitions in a steady supersonic flow with the

van der Waals type state function. The viscosity capillarity criterion [23] is

applied to seek physical admissible planar waves in stead of the Lax entropy

inequality [15], which is invalid under the subsonic condition. With the uni-

form stability result in [26], we shall proceed to establish the existence by

performing the iteration scheme [19].
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1. Introduction

In a fluid with non-monotonic state functions, say van der Waals fluid, nonlinear

waves with different characteristic feature usually appear, such as shock waves, rar-

efaction waves, contact discontinuities and subsonic phase transitions, among which

we shall be concerned with the subsonic phase transition in this paper. Roughly

speaking, the subsonic phase transition is a piecewise smooth solution to the Euler
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equations with a single discontinuity, on both sides of which the sound speed is less

than the fluid velocity in the normal direction to the discontinuity.

Due to the subsonic property, the well-known Lax entropy inequality for classi-

cal shock waves is violated. Hence, other admissible criterion is needed to assure the

physical admissibility of subsonic phase transitions. There are several candidates

available, among which the viscosity capillarity criterion is an important one. The

viscosity capillarity criterion was first introduced by Slemrod [23] to study phase

transitions in an unsteady van der Waals fluid. Ever since, the study of unsteady

van der Waals fluid, especially on problems in one dimensional spaces have be car-

ried out in many works. See [10], [16], [22], [23] and references therein. There

are also works concerning multidimensional problems in an unsteady van der Waals

fluid. See [3], [4], [5], [25], [27] and references therein.

However, in contrast with the unsteady flow, the knowledge on steady van der

Waals fluid is much less. In [26], the author proved the uniform stability of subsonic

phase boundaries in multi-dimensional spaces by showing the validity of Lopatinski

condition [13, 18]. The purpose of this paper is to proceed to establish the existence

of steady subsonic phase transitions. Since the stability result [26] indicates an L2

energy estimate for the linearized problem, we can expect to establish the existence

result by iteration as in [19]. To complete the work, we will show the validity of

compatibility conditions and fulfill the detail of the iteration.

The content of this paper is arranged as follows. The rest part of this section is

a brief introduction to the concept of subsonic phase transition in a steady flow. In

section 2, we will explain the viscosity-capillarity criterion and formulate the main

problem for multi-dimensional phase transitions. In section 3, the result of linear

estimates in [26] will be presented. Section 4 and 5 mainly deal with the existence

problem and the calculations of related compatibility conditions.

Let us briefly recall the equation of a steady van der Waals fluid and the concept

of subsonic phase transitions.

The motion of an isothermal (or isentropic) 3-dimensional steady flow is gov-

erned by the following well-known Euler equations

(1.1)





∂x(ρu) + ∂y(ρv) + ∂y(ρw) = 0

∂x(ρu2 + p(ρ)) + ∂y(ρuv) + ∂y(ρuw) = 0

∂x(ρuv) + ∂y(ρv2 + p(ρ)) + ∂y(ρvw) = 0

∂x(ρuw) + ∂y(ρvw) + ∂y(ρw2 + p(ρ)) = 0

where ρ is the density of the flow, (u, v, w)T is the velocity of the flow and p is the

pressure which is a function of ρ. Denote U = (ρ, u, v, w)T ,

F0(U) =




ρu

ρu2 + p

ρuv

ρuw


 , F1(U) =




ρv

ρuv

ρv2 + p

ρvw


 , F2(U) =




ρw

ρuw

ρvw

ρw2 + p



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and

A1(U) = (∇UF0(U))−1∇UF1(U)

=
1

ρu(u2 − c2)




ρu2v −ρ2uv ρ2u2 0

−uvc2 ρu2v −ρuc2 0

(u2 − c2)c2 0 ρv(u2 − c2) 0

0 0 0 ρv(u2 − c2)


 ,

A2(U) = (∇UF0(U))−1∇UF2(U)

=
1

ρu(u2 − c2)




ρu2w −ρ2uw 0 ρ2u2

−uwc2 ρu2w 0 −ρuc2
0 0 ρw(u2 − c2) 0

(u2 − c2)c2 0 0 ρw(u2 − c2)


 ,

where c2 = dρp(ρ) is the sound speed and the Euler equations (1.1) can be rewritten

as

(1.2) ∂xF0(U) + ∂yF1(U) + ∂zF2(U) = 0

or

(1.3) ∂xU +A1(U)∂yU + +A2(U)∂zU = 0.

When the flow is supersonic, namely

(1.4) u2 + v2 + w2 > c2,

the system (1.1) is a hyperbolic conservation law, which is the case we are concerned

with in this paper. In such case, nonlinear waves such as shock waves, rarefaction

waves and contact discontinuities usually appear in a γ-pressure law flow. Rich

literatures have been devoted to such topics and there still remain interesting open

problems. See [6], [7], [17], [21], [28] and references therein.

However, in a van der Waals type flow, the above nonlinear waves are not all

the cases, subsonic phase transitions usually appear due to the non-monotonicity

of the state equation, which reads

(1.5) p(τ) =
Rθ

τ − b
− a

τ2

where τ ≡ ρ−1 is the specific volume of the fluid, θ is the temperature of the fluid

which is assumed to be a constant in an isothermal fluid, R is the perfect gas

constant and a, b are positive constants. For θ ∈ (a/(4bR), 8a/(27bR)), the state

equation (1.5) is not monotonic with respect to τ . Precisely speaking, we can find

τ∗, τ
∗ ∈ (b,+∞) such that

(1.6)

{
dτp(τ) < 0 τ ∈ (b, τ∗) ∪ (τ∗,+∞)

dτp(τ) > 0 τ ∈ (τ∗, τ
∗).

From the physical point of view, the fluid is in liquid phase for τ ∈ (b, τ∗), while

it is in vapor phase for τ ∈ (τ∗,+∞). The state in the region (τ∗, τ
∗) is highly

unstable, which doesn’t actually exist in the real world [10].

A subsonic phase transition is a discontinuous solution to the Euler equation

(1.1) with a single discontinuity, which changes phases across the discontinuity and

satisfies certain subsonic condition on both sides of the discontinuity. To explain
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the concept with more detail, let us consider the following planar subsonic phase

transition

(1.7) U(x, y, z) =

{
U− = (ρ−, u−, v−, w0) y < σx

U+ = (ρ+, u+, v+, w0) y > σx
,

where ρ±, u±, v±, w0 are constant states of the flow, σ is the constant speed of

the discontinuity {y = σx} and ρ± belong to different phases. The solution (1.7)

satisfies the Rankine-Hugoniot condition

(1.8) σ[F0(U)] − [F1(U)] = 0,

and the subsonic condition

(1.9) M± =

∣∣∣∣
σu± − v±

c±
√

1 + σ2

∣∣∣∣ < 1,

where [·] denotes the difference of a function across the discontinuity {y = σx}, M±
and c2± = dρp(ρ±) are the Mach numbers and the sound speeds on each side of the

discontinuity {y = σx} respectively. Denote by un± = (σu± − v±)/
√

1 + σ2 and

uτ = (u± + σv±)/
√

1 + σ2 the normal velocity and the tangential velocity on each

side of the discontinuity {y = σx} respectively, j = ρ±un± the mass transfer flux,

and π = p± + j2τ±. Then, the Rankine-Hugoniot condition (1.8) and the subsonic

condition (1.9) can be simplified as

(1.10) [j] = 0, [π] = 0, [uτ ] = 0,

and

(1.11)

∣∣∣∣
un±
c±

∣∣∣∣ < 1 or

∣∣∣∣
j2

dτp(τ±)

∣∣∣∣ < 1,

respectively. Like subsonic phase transitions in an unsteady fluid, those in a steady

flow do not satisfy the Lax entropy inequality either. Considering the planar wave

(1.7), we assume that the following supersonic condition is always valid in the

coming arguments

(1.12) u2
± − c2± > 0.

Denote by

λ±1 =
1

u2
± − c2±

(u±v± − c±
√
△±),

λ±2 =
v±
u±

,

λ±3 =
1

u2
± − c2±

(u±v± + c±
√
△±),

the eigenvalues of A1(U±) respectively with △± = u2
± + v2

± − c2±, which satisfy

(1.13) λ±1 < λ±2 < λ±3 .

Obviously, the subsonic condition (1.9) yields the inequality

(1.14) λ±1 < σ < λ±3 ,

which violates the Lax inequality for 1st-shocks (3rd-shocks),

λ+
1 < σ < λ−1 (λ+

3 < σ < λ−3 ).
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2. Admissible Criterion and the Main Problem

In order to seek physical admissible solution, Slemrod [23] proposed the vis-

cosity capillarity criterion for one dimensional unsteady fluids under Lagrange co-

ordinates. Motivated by the study of multidimensional problems, Benzoni-Gavage

[3, 4] applied this criterion to unsteady fluids under Euclid coordinates. In this sec-

tion, let’s recall the viscosity capillarity criterion to seek physical admissible phase

transitions in a steady flow.

2.1. Viscosity capillarity criterion. Analogue to the traveling wave method

for viscous shocks, the viscosity capillarity criterion picks the planar wave (1.7)

which admits the existence of the following traveling wave

(2.1) U(ξ) = U(
y − σx

ǫ
)

satisfying U(±∞) = U± and the Navier-Stokes equations

(2.2)






∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0

∂x(ρu2 + p(ρ)) + ∂y(ρuv) + ∂y(ρuw) = ǫν△u− ǫ2∂x△(ρ−1)

∂x(ρuv) + ∂y(ρv2 + p(ρ)) + ∂y(ρvw) = ǫν△v − ǫ2∂y△(ρ−1)

∂x(ρuw) + ∂y(ρvw) + ∂z(w
2 + p(ρ)) = ǫν△w − ǫ2∂z△(ρ−1)

,

where △ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator, ǫν is the viscosity coefficient

and ǫ2 is the capillarity coefficient with ǫ ≥ 0, ν > 0. Substituting (2.1) into

(2.2) and employing the Rankine-Hugoniot condition (1.10), we get the following

hecteroclinic problem for the unknown function τ(ξ) ≡ 1/ρ(ξ)

(2.3)

{
τ ′′ = νjτ ′ + π − p(τ) − j2τ

τ(±∞) = τ±
,

where the prime ′ denotes the derivative of a function with respect to ξ. As in [4],

the admissibility of subsonic phase transitions can be defined by

Definition 2.1. The planar subsonic phase transition (1.7) is admissible if and

only if the problem (2.3) has a solution. The solution τ(ξ) is called the viscosity

capillarity profile or ν-profile for simplicity. The pair (τ−, τ+) is called ν-admissible.

One can find that the hecteroclinic problem (2.3) is exactly the same one for

unsteady fluids [4]. Thus, the advantage of the known results in [4] is for us to take

and let us have a brief recall. Denote by {τm, τM} the Maxwell equilibrium defined

by the equal area rule ∫ τM

τm

(p(τm) − p(τ))dτ = 0.

Then, there exists τ1 ∈ (τM ,+∞) such that the chord connecting (τ1, p(τ1)) and

(τm, p(τm)) is tangent to the graph of p = p(τ) at (τ1, p(τ1)). With τ1 and τm, we

define

j21 =
p(τ1) − p(τm)

τm − τ1
.

When ν = 0, the 0-profile satisfies

(2.4)

{
τ ′′ = π − p(τ) − j2τ

τ(±∞) = τ±
.
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As in [4], a 0-profile τ̄ (ξ; j) satisfying the first equation of (2.4) can be found by

the generalized equal area rule, which means
∫ τ+

τ−

(π − p(τ) − j2τ)dτ = 0.

Moreover, for every j̄ (0 < j̄2 ≤ j21), a unique pair (τ̄−(j̄),τ̄+(j̄)) can be found such

that τ̄− and τ̄+ can be connected by the 0-profile with the parameters j. With the

above results, Benzoni-Gavage [4] proved the structural stability and the existence

of traveling waves for small ν by the center manifold method.

Theorem 2.1. For 0 < j̄2 ≤ j21 , there exist ν0 > 0 and neighborhoods J0, V0

of j̄, (τ̄−(j̄), τ̄+(j̄)) respectively, such that, for (j, ν) ∈ J0× [0, ν0], there are unique

pair (τ−, τ+) ∈ V0, for which τ− and τ+ are ν admissible with the parameters j.

Moreover, an additional jump condition can be derived from the above result

for the subsonic phase transition (1.7). As we can see from the subsonic condition

(1.9), a subsonic phase transition has one more characteristic going out of the

free boundary than a shock wave. Hence, the Rankine-Hugoniot condition is not

sufficient to guarantee the well-posedness of the corresponding initial boundary

value problem. Nevertheless, the viscosity capillarity criterion can provide the

following additional jump condition. By multiplying the equation in (2.3) with

τ ′(ξ) and integrating from −∞ to +∞ with respect to ξ, it follows

(2.5)

[
f + πτ − j2

2
τ2

]
= −νa(j, ν)

where f = − a
τ −Rθ ln(τ − b) is the free energy of the fluid and

a(j, ν) = j

∫ +∞

−∞
(τ ′(ξ; j, ν))2dξ

with τ(ξ; j, ν) being the ν-profile. Noticing a(j, ν) being a nonlocal term, the fol-

lowing lemma in [3] will be needed for linear estimate.

Lemma 2.2. For all ν ∈ [0, ν0], the functions a(j, ν) is continuously differen-

tiable. Moreover, its derivatives are continuous with respect to ν at ν = 0 and are

bounded depending on the bounds of U± given in (1.7). There exists α > 0 such

that for all j ∈ J

(2.6) lim
ν→0

∂

∂j
a(j, ν) ≥ α > 0.

2.2. Problems, assumptions and main results. Compared with the un-

steady fluid, in a steady supersonic flow, the variable x can be regarded as the time

variable [7]. Thus, endow the Euler equations with the initial data

(2.7) U(0, y, z) =

{
U0
−(y, z) y < ϕ0(z)

U0
+(y, z) y > ϕ0(z)

,

which changes phases across the discontinuity {y = ϕ0(z)} and satisfies certain

compatibility conditions. We expect to construct the multidimensional subsonic

phase transition

(2.8) U(x, y, z) =

{
U−(x, y, z) y < ϕ(x, z)

U+(x, y, z) y > ϕ(x, z)
,
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which satisfies the following nonlinear initial boundary value problem

(2.9)





∂xU± +A1(U±)∂yU± +A2(U±)∂zU± = 0, x > 0,±(y − ϕ(x, z)) > 0

ϕx[F0(U)] − [F1(U)] + ϕz [F2(U)] = 0, y = ϕ(x, z)
[
I(ρ) +

(ϕxu− v + ϕzw)2

2(1 + ϕ2
x + ϕ2

z)

]
= −νa(j, ν), y = ϕ(x, z)

U±(0, y, z) = U0
±(y, z), ϕ(0, z) = ϕ0(z),

where the second equation is the Rankine-Hugoniot condition, the third equation

is a reformulation of the jump condition (2.5) with I(ρ) = f + pτ and a(j, ν) =

j
∫ +∞
−∞ (τ ′(ξ; j, ν))2dξ with j = ρ±(ϕxu± − v± + ϕzw±)/

√
1 + ϕ2

x + ϕ2
z |y=ϕ(x,z) and

τ(ξ; j, ν) satisfying {
τ ′′ = νjτ ′ + π − p(τ) − j2τ

τ(±∞) = τ±|y=ϕ(x,z)
.

Following Majda’s approach [18], the following transformation

(2.10)





x̃ = x

ỹ = ±(y − ϕ(x, z)), ±(y − ϕ(x, z)) > 0,

z̃ = z

Ũ(x̃, ỹ, z̃) = U(x, y, z)

maps the free boundary {y = ϕ(x, z)} to the fixed one {ỹ = 0}. Then the problem

(2.9) becomes

(2.11)



∂xU± ± (A1(U±) − ϕxI − ϕzA2(U±))∂yU± +A2(U±)∂zU± = 0, x, y > 0

ϕx[F0(U)] − [F1(U)] + ϕz [F2(U)] = 0, y = 0
[
I(ρ) +

(ϕxu− v + ϕzw)2

2(1 + ϕ2
x + ϕ2

z)

]
= −νa(j, ν), y = 0

U±(0, y, z) = U0
±(y, z), ϕ(0, z) = ϕ0(z),

where the tildes has been dropped for simplicity. We shall mainly deal with the

above problem in the coming arguments.

For convenience, let’s introduce several notations. Denote by ω the part of a

neighborhood of the origin in {x = 0, y > 0}, I = ω̄ ∩ {y = 0}, Ω ⊂ {x, y > 0} a

determinacy domain of ω with respect to the problem (2.11) with ΩT = Ω∩{x < T }
ωτ = Ω ∩ {x = τ} and ∂ΩT = Ω̄T ∩ {y = 0}.

To solve the problem (2.11), we propose the following assumptions:

(A1) For any fixed (y0, z0) ∈ Σ0 = {y = ϕ0(z)}, there exists σ(z0) ∈ R such that

the problem (2.11) with the initial data frozen at (y0, z0), admits a planar subsonic

phase transition:

U(x, y, z) =

{
U0

+(ϕ0(z0), z0), x > ϕ0(z0) + σ(z0)x

U0
−(ϕ0(z0), z0), x < ϕ0(z0) + σ(z0)x

satisfying the viscosity-capillarity criterion.

(A2) For any fixed s ≥ 9, U0
± ∈ Hs+1(ω), ϕ0 ∈ Hs+3/2(I) satisfy the higher order

compatibility condition, which will be given in section 4.1, for 0 ≤ k ≤ s− 1.

The main result of this paper is
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Theorem 2.3. Suppose that the initial data (U0
±, ϕ0) satisfies the assumptions

(A1) and (A2), the problem (2.11) has a solution locally in time.

3. Linear Estimates

In this section we briefly recall the linear stability result of subsonic phase

transitions in [26] and establish the energy estimate for the linear problem. First,

let us derive the linearized problem of (2.11) and introduce the weighted Sobolev

space.

3.1. Linearized problem. Consider the perturbation, (U ǫ
+, U

ǫ
−, ϕ

ǫ), of the

planar phase transition (1.7), which satisfies the problem (2.11) and

(U ǫ
+, U

ǫ
−, ϕ

ǫ)|ǫ=0 = (U+, U−, σx).

Denote

(V+, V−, ψ) =
d

dǫ
(U ǫ

+, U
ǫ
−, ϕ

ǫ)|ǫ=0.

Then, the following linearized problem for the unknowns (V+, V−, ψ) can be derived

from (2.11),

(3.1)





∂xV± ± (A1(U±) − σI)∂yV± +A2(U±)∂zV± = f±, x, y > 0

b0ψx + b1ψz + M+V+ + M−V− = g, y = 0

(V+, V−, ψ)|x<0 vanish,

where

b0 =

(
[F0(U)]

uτ

1+σ2 ([un] + ν̃ρ+)

)
,b1 =

(
[F2(U)]

w0√
1+σ2

([un] + ν̃ρ+)

)
,

M+ =

(
σF ′

0(U+) − F ′
1(U+)

l+

)
,M− =

(
−σF ′

0(U−) + F ′
1(U−)

l−

)
,

where

l+ =

(
c2+ + ν̃j

ρ+
,
σ(un+ + ν̃ρ+)√

1 + σ2
,−un+ + ν̃ρ+√

1 + σ2
, 0

)
,

l− =

(
− c2−
ρ−

,− σun−√
1 + σ2

,
un−√
1 + σ2

, 0

)
.

with un± = (σu± − v±)/
√

1 + σ2, uτ = (u± + σv±)/
√

1 + σ2, j = ρ±un± and

ν̃ = ν∂ja(j, ν).

To establish the energy estimate for the problem (3.1), let us introduce the

following weighted norms. For any λ > 0 and integer s ≥ 0, we denote

〈g〉2s,λ,T =
∑

α+β+γ=s

∫ T

0

∫ +∞

−∞
λ2αe−2λx|∂β

z ∂
γ
xg|2dzdx,

|f |2s,λ,T =
s∑

k=0

∫ ∞

0

〈
∂k

yf
〉2

s−k,λ,T
dy,
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and

‖(V+, V−, ψ)‖2
s,λ,T = 〈ψ〉2s+1,λ,T +

s∑

k=0

(〈
∂jV+

∂xj

〉2

s−j,λ,T

+

〈
∂jV−
∂xj

〉2

s−j,λ,T

)

+λ(|V+|2s,λ,T + |V−|2s,λ,T ).

We will simply denote 〈·〉s,T , | · |s,T , ‖ · ‖s,T the cases when the above norms are

independent of λ and 〈·〉s, | · |s, ‖ · ‖s the case T = +∞.

3.2. Linear estimates. Let us recall the first main result of [26]. For the

problem (3.1), we have

Theorem 3.1. There exists ν1 > 0 depending on the bounds of U± and σ, such

that for 0 < ν < ν1, the subsonic phase transition (1.7) is stable with respect to

perturbations in the y-direction, which means the problem (3.1) without the variable

z being well-posed.

Denote by V = (V+, V−)T and

V̂ (s, ω, y) =
1

(2π)2

∫ ∞

0

∫ ∞

−∞
e−(sx+iωz)V (x, y, z)dzdx

the Laplace-Fourier transform of V in (x, z) with Res > 0. Then from (3.1), we

know that V̂ satisfies

(3.2)
∂V̂

∂y
= B(s, ω)V̂ + f̂

where

B(s, ω) =(
−(A1(U+) − σI)−1(sI + iωA2(U+)) 0

0 (A1(U−) − σI)−1(sI + iωA2(U−))

)

and f̂ = ((A1(U+) − σI)−1f̂+,−(A1(U−) − σI)−1f̂−)T .

Denote by {λj}l
j=1 all distinct eigenvalues of B(s, ω) with multiplicity being

mj. Obviously, we have

C
8 =

l⊕

j=1

Ker[(λjI −B(s, ω))mj ].

Introduce

E+(s, ω) = {wj ∈ Ker[(λjI −B(s, ω))mj ]|Reλj < 0, 1 ≤ j ≤ l}
the space of boundary values of all bounded solutions of the special form

V̂ (s, ω, y) =
∑

Reλj<0

eλjy

mj−1∑

p=0

yp

p!
(λjI −B(s, ω))pwj

to (3.2) with f̂ ≡ 0. The second main result of [26] is
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Theorem 3.2. There exists ν1 > 0 depending on the bounds of U± and σ given

in (1.7) such that for 0 < ν < ν1, the ν-admissible subsonic phase transition (1.7)

is uniformly stable, i.e. there exists η > 0 such that the estimate

(3.3) inf
ℜs≥0

|s|2+ω2=1

|(b0s+ ib1ω)µ+ M+V+ + M−V−|2 ≥ η2(|V+|2 + |V−|2 + µ2)

holds for all V = (V+, V−) ∈ E+(s, ω) and µ ∈ R.

Therefore, for the linear problem with variable coefficients (3.1), we can prove

the following result by the same way as in [18]. Under assumption (A1) given at

section 2.2 on the initial data (U0
+(y, z), U0

−(y, z), ϕ0(z)), there is δ > 0 such that

for any smooth function (U+(x, y, z), U−(x, y, z), ϕ(t, y)) satisfying

(3.4) sup
Ω̄T0

(
|U± − U0

±| + |ϕ− ϕ0| + |ϕx − σ(z)| + |∂z(ϕ− ϕ0)|
)
< δ

the problem (3.1) is well-posed for (V+, V−, ψ), which means

Theorem 3.3. Suppose that the assumption (A1) is satisfied and (3.4) holds

for (U+, U−, ϕ). If we have

(3.5)

{
(f+, f−, g) vanishes for x < 0 and x > T0

|f+|20 + |f−|20 + 〈g〉20 is finite,

then there is a unique strong solution (V+, V−, ψ) to (3.1), and the estimate

(3.6)

‖(V+, V−, ψ)‖2
0,λ,T ≤ C1

(
1

λ
(|f+|20,λ,T + |f−|20,λ,T ) + 〈g〉20,λ,T

)
, 0 ≤ T ≤ T0

holds for λ ≥ C2, where C1, C2 > 0 depend only upon the quantities

(δ, |U+, U−, ϕ|s,T0
)

for any fixed s ≥ 9.

Additionally, if |f+|2s + |f−|2s + 〈g〉2s is finite for s ≥ 9, and

(3.7) ∂j
xf±|y=0 = ∂j

xg|x=0 = 0

for any 0 ≤ j ≤ s− 1, then the solution (V+, V−, ψ) belongs to

Hs ×Hs ×Hs+1

and satisfies

(3.8)

‖(V+, V−, ψ)‖2
s,λ,T ≤ C1

(
1

λ
(|f+|2s,λ,T + |f−|2s,λ,T ) + 〈g〉2s,λ,T

)
, 0 ≤ T ≤ T0.

4. Compatibility conditions

Before proving the existence, we have to derive the compatibility conditions for

the initial data with which an approximate solution to the problem (2.11) can be

constructed.
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4.1. Compatibility conditions. In order to derive the compatibility condi-

tion up to order s − 1 with s being a given positive integer, let us perform the

formal Cauchy-Kowaleski computations. Assume that there is a smooth solution

(U+, U−, ϕ) to (2.11). Then, from (A1) and (2.9), the zero-th order compatibility

condition is that at x = 0, the initial data satisfy

(4.1)

{
σ[F0(U

0)] − [F1(U
0)] + ϕ′

0[F2(U
0)] = 0[

I(ρ0) +
(σu0−v0+ϕ′

0w0)
2

2(1+σ2+ϕ′2
0

)

]
= −νa(j0, ν)

where

j = ρ0
±(σ(z)u0

± − v0
± + ϕ′

0w
0
±)/
√

1 + σ(z)2 + ϕ′2
0 |y=0

and a(j0, ν) is defined similarly as in (2.5) with the parameter j0.

Next, let us derive relations among ∂k+1
x ϕ|x=0 and ∂k

yU
0
±|y=0. Differentiating

the second and third equations of (2.9) with respect to x at x = y = 0, it follows

(4.2) [F0(U
0)]∂k+1

x ϕ+ F ′
0(U

0
+)A+∂

k
xU+ + F ′

0(U
0
−)A−∂

k
xU− = gk

1

(4.3) a0∂
k+1
x ϕ+ l0+∂

k
xU+ + l0−∂

k
xU− = gk

2

where A± = ±(σI −A1(U
0
±) + ϕ′

0A2(U
0
±)), gk

1 and gk
2 smoothly depend on

{
∂l

z∂
j
xϕ|x=0 : 0 ≤ j ≤ k, l + j ≤ k + 1

}
,

and {
∂l

z∂
j
xU

0
±|y=0 : 0 ≤ j ≤ k − 1, l+ j ≤ k} ,

and

a0 =
uτ

1 + σ2 + ϕ′2
0

([un] + ν̃ρ+),

l0+ =

(
c2+ + ν̃j

ρ+
,
σ(un+ + ν̃ρ+)√

1 + σ2 + ϕ′2
0

,− un+ + ν̃ρ+√
1 + σ2 + ϕ′2

0

, 0

)
,

l0− =

(
− c2−
ρ−

,− σun−√
1 + σ2 + ϕ′2

0

,
un−√

1 + σ2 + ϕ′2
0

, 0

)

with un± = (σu± − v± + ϕ′
0w±)/

√
1 + σ2 + ϕ′2

0 , uτ = (u± + σv±)/
√

1 + σ2 + ϕ′2
0 ,

j = ρ±un± and ν̃ = ν∂ja(j, ν). On the other hand, from the equations of U± in

(2.9) it follows

(4.4) ∂k
xU±|x=0 = A±

k∂yU
0
± + hk

±,

where hk
± smoothly depend on

{
∂l

z∂
j
xϕ|x=0 : 0 ≤ j ≤ k, l+ j ≤ k + 1

}

and {
∂l

z∂
j
xU

0
±|y=0 : 0 ≤ j ≤ k − 1, l+ j ≤ k} .

Substituting (4.4) into (4.2) and (4.3), we obtain the following k − th order

compatibility conditions for the problem (2.9) at x = y = 0

(4.5)

{
[F0(U

0)]∂k+1
x ϕ+ F ′

0(U
0
+)A+

k+1∂k
yU

0
+ + F ′

0(U
0
−)A−

k+1∂k
yU

0
− = fk

1

a0∂
k+1
x ϕ+ l0+A+

k∂k
yU

0
+ + l0−A−

k∂k
yU

0
− = fk

2 ,
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where fk
1 and fk

2 smoothly depend on
{
∂l

z∂
j
xϕ|x=0 : 0 ≤ j ≤ k, l+ j ≤ k + 1

}
and{

∂l
z∂

j
xU

0
±|y=0 : 0 ≤ j ≤ k − 1, l+ j ≤ k}.

4.2. Initial data satisfying the compatibility conditions. As in [19],

here we show that there exist large classes of initial data satisfying the compat-

ibility conditions. By simple calculation, we get the eigenvalues of (A1(U
0
±) −

ϕ′
0(z)A2(U

0
±) − σ(z)I)|x=0 as the following

(4.6)





λ±1 (z) =
u0
± ṽ0

±−c0
±

√
△±

u2
±−c0

±
− σ(z)

λ±2 (z) =
ṽ0
±

u0
±
− σ(z)

λ±3 (z) =
u0
± ṽ0

±+c0
±

√
△±

u2
±−c0

±
− σ(z)

where c0± = (dρp(ρ
0
±))

1
2 , ṽ0

± = v0
±−ϕ′

0w
0
±, △± = (ṽ0

±)2+((u0
±)2−(c0±)2)(1+(ϕ′

0)
2).

Noting that λ±1 and λ±3 are of multiplicity 1, λ±2 is of multiplicity 2, we denote by

r±1 , r±3 and r±2 , r̄±2 the eigenvectors correspondingly.

Without loss of generality, we assume that the initial mass transfer flux

j0 = ρ0
±(σ(z)u0

± − v0
± + ϕ′

0w
0
±)/
√

1 + σ(z)2 + ϕ′2
0 |y=0

is positive, then from the subsonic condition (1.9) we have

(4.7) λ±1 (z) < 0 < λ±2 (z) < λ±3 (z).

Denote by P+(z) and P−(z) the smoothly varying projections onto the subspaces

spanned by the eigenvectors associated with eigenvalues λ+
2 (z), λ+

3 (z) and λ−1 (z)

respectively. Similar to the Lemma 2.1 of Majda in [19], we have the following

result:

Lemma 4.1. There exists ν0 depending on the bounds of U0
± and M, such that

for 0 < ν ≤ ν0, if (v+, v−) ∈ R4 × R4 satisfies

(4.8) P+v+ = v+, P−v− = v−

and β is constant, then from the identity

(4.9)

G(β, v+, v−) = β

(
[F0(U

0]

a0(y)

)
+

(
F ′

0(U
0
+)A k+1

+

l+0 (y)A k
+

)
v++

(
F ′

0(U
0
−)A k+1

−
l−0 (y)A k−

−

)
v− = 0

we should have (β, v+, v−) = 0.

Proof. The basis of the set
{
(β, v+, v−)|P+v+ = v+, P−v− = v−

}

is given by

(1, 0, 0) ∪ (0, r+2 , 0) ∪ (0, r̄+2 , 0) ∪ (0, r+3 , 0) ∪ (0, r−1 , 0).
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Obviously, we have

G(1, 0, 0) =

(
[F0(U

0)]

a0

)
,

G(0, r+2 , 0) =

(
(−λ+

2 )k+1F ′
0(U

0
+)r+2

(−λ+
2 )kl0+r

+
2

)
,

G(0, r̄+2 , 0) =

(
(−λ+

2 )k+1F ′
0(U

0
+)r̄+2

(−λ+
2 )kl0+r̄

+
2

)
,

G(0, r+3 , 0) =

(
(−λ+

3 )k+1F ′
0(U

0
+)r+3

(−λ+
3 )kl0+r

+
3

)
,

G(0, 0, r−1 ) =

(
(λ−1 )k+1F ′

0(U
0
−)r−1

(λ−1 )kl0+r
−
1

)
.

Therefore, we get that the following determinant

det
(
G(1, 0, 0), G(0, r+2 , 0), G(0, r̄+2 , 0), G(0, r+3 , 0), G(0, 0, r−1 )

)

=
(
(λ+

2 )2λ+
3 λ

−
1

)k+1

∣∣∣∣∣
[F0(U

0)] F ′
0(U

0
+)r+2 F ′

0(U
0
+)r̄+2 F ′

0(U
0
+)r+3 F ′

0(U
0
−)r−1

a0 − l0+r+

2

λ+

2

− l0+r̄+

2

λ+

2

− l0+r+

3

λ+

3

l0−r−
1

λ−
1

∣∣∣∣∣
does not vanish for sufficiently small ν and K according to Theorem 3.1.2

From the Lemma 4.1, now we can show that there exist large classes of initial

data satisfying the compatibility conditions. As in [19], we have the following

proposition

Proposition 4.2. Assume that (V 0
+, V

0
−, σ) ∈ Hs+ 1

2 (I) and ϕ0 ∈ H2+ 3
2 (I) sat-

isfy the zero-th order compatibility condition (4.1), and g±k ∈ Hs+1−k(I) (k ≤ s−1)

are arbitrary functions satisfying P±g±k = 0. Then there are (U0
±(y, z), ϕ0(x, z)) ∈

Hs+1(ω) ×Hs+2((−∞,∞) × I) so that

(1)

U0
±(0, z) = V 0

±(z), ϕ0(0, z) = ϕ0(z), ∂xϕ
0(0, z) = σ(z)

and

(I − P±))∂k
xU

0
±|x=0 = g±k (z)

for 1 ≤ k ≤ s− 1;

(2)(U0
±(y, z), ϕ0(x, z)) satisfies the compatibility condition (4.5) for any 0 ≤

k ≤ s− 1.

5. Existence of the solution

In this section, we prove the existence of the solution to the problem (2.11).

For simplicity, let us denote the problem in the following abstract form

(5.1)






L±(U±, ϕ)U± = 0, x, y > 0

B(U+, U−, ϕx, ϕz) = 0, on y = 0

U±|x=0 = U0
±, ϕ|x=0 = ϕ0

where

L±(U±, ϕ) = ∂x ± (A1(U±) − ϕzA2(U±) − ϕxI)∂y +A2(U±)∂z

andB(·) = 0 represents the Rankine-Hugoniot condition and the viscosity-capillarity

admissibility criterion given in (2.11).
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First let us construct a approximate solution to (5.1).

5.1. Approximate solutions. We are going to construct the following func-

tions

(5.2) Ũ0
± ∈

s+1⋂

j=0

Cj([0, T0], H
s+1−j(ωt)) and ϕ0 ∈ Hs+2(ΩT0

)

such that

(5.3)





L±(Ũ0
±, ϕ

0)Ũ0
± = f0

±, x, y > 0

B(Ũ0
+, Ũ

0
−, ϕ

0
x, ϕ

0
z) = g0

1 , on y = 0

Ũ0
±|x=0 = U0

±, ϕ0|x=0 = ϕ0

and

(5.4) ∂j
xf

0
±|x=0 = 0, ∂j

xg
0
1|x=0 = ∂j

xg
0
2 |x=0 = 0

for 0 ≤ j ≤ s− 1.

Denoting

mj
± =

∂jŨ0
±

∂xj

∣∣∣∣∣
x=0

, (0 ≤ j ≤ s)

then from (5.3) and (5.4), we obtain

mj
± ∈ Hs+1−j (0 ≤ j ≤ s).

Let P (∂t, ∂x, ∂y) be a scalar linear hyperbolic operator of order s + 1, m̃j
± ∈

Hs+1−j(R2) be an appropriate extension of mj
± to {y < 0}, and

W 0
± ∈

s+1⋂

j=1

Cj([0, T0], H
s+1−j)

be the unique solution to the following Cauchy problem:

(5.5)

{
PW 0

± = 0, x > 0

∂j
xW

0
±|x=0 = m̃j

±, 1 ≤ j ≤ s.

Then the restriction

(5.6) Ũ0
± = W 0

±|x>0

together with ϕ0 ∈ Hs+2(ΩT0
) given in Proposition 4.1 are the approximate so-

lutions satisfying (5.3) (5.4). Indeed, since the initial data (U0
±, ϕ0) satisfy the

compatibility conditions up to s− 1, and from (4.5) we conclude (5.4).

5.2. The iteration scheme. Let us prove the existence of the solution to

(5.1).

Denote by ET the extension operator given in the Lemma 3.1 of [19]. More

precisely, for any fixed 0 ≤ T ≤ T0

2 , (v+, v−, ϕ) satisfies ‖(v+, v−, ϕ)‖s,λ,T <∞ and
{
∂j

xv±|x=0 = 0 0 ≤ j ≤ s− 1

∂j
xϕ|x=0 = 0 0 ≤ j ≤ s
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the extended function ET (v+, v−, ϕ) satisfies

(5.7)





ET (v+, v−, ϕ) = (v+, v−, ϕ) for 0 ≤ x ≤ T

ET (v+, v−, ϕ) = 0 for x < 0 and x > T0

‖ET (v+, v−, ϕ)‖s1,λ,T0
≤ Cs‖(v+, v−, ϕ)‖s1,λ,T for any 0 ≤ s1 ≤ s

with a constant C2 depending only on s.

As in [19], we introduce the iteration scheme for the problem (5.1). Let us

define the functions inductively as the following:

(5.8)

((Un
+, U

n
−, ϕ

n) = (Ũ0
+, Ũ

0
−, ϕ

0) + ETn
(Wn

+ ,W
n
−, ψ

n) with (W 0
+,W

0
−, ψ

0) = (0, 0, 0)

where (Ũ0
+, Ũ

0
−, ϕ

0) is the approximate solution constructed in section 5.1 and

(Wn
+,W

n
−, ψ

n) is the unique solution for 0 ≤ t ≤ Tn to the following problem

provided (Wn−1
+ ,Wn−1

− , ψn−1) being known already for 0 ≤ x ≤ Tn−1:

(5.9)





L±(Un−1
± , ϕn−1)Wn

± = fn
±

B′
(Un−1

+
,Un−1

− ,ϕn−1
x ,ϕn−1

z )
(Wn

+,W
n
−, ψ

n
x , ψ

n
z ) = gn

(Wn
+,W

n
−, ψ

n) vanish for x < 0

where B′
(U+,U−,ϕx,ϕz)(W+,W−, ψx, ψz) denotes the Fréchet derivatives of Bk with

respect to their arguments at (U+, U−, ϕx, ϕz), i.e.

B′
(U+,U−,ϕx,ϕz)(W+,W−, ψx, ψz) =

d

dǫ
B(U+ + ǫW+, U− + ǫW−, ϕx + ǫψx, ϕz + ǫψz)

∣∣∣∣
ǫ=0

,

and

fn
± =

{
−L±(Un−1

± , ϕn−1)Ũ0
±, x > 0

0, x < 0
,

gn = G(Un−1

+
,Un−1

− ,ϕn−1
x ,ϕn−1

z )

(ETn−1
Wn+1

+ , ETn−1
Wn+1

− , (ETn−1
ϕn+1)x, (ETn−1

ϕn+1)z)

−G(Un−1
+ , Un−1

− , ϕn−1
x , ϕn−1

z ).

As in [19], we expect to obtain the existence result by using the uniform stability

result, namely Theorem 3.3.

For any fixed s ≥ 9, we denote by Cs the Sobolev embedding constant satisfying

‖v+‖L∞(ΩT ) + ‖v−‖L∞(ΩT ) + ‖ϕ‖W 1,∞(∂ΩT ) ≤ Cs‖(v+, v−, ϕ)‖s,T

for any (v+, v−, ϕ) ∈ Hs × Hs × Hs+1, and ǫ0 > 0 a small quantity such that

(U+, U−, ϕ) satisfies

(5.10) ‖(U+ − U0
+, U− − U0

−, ϕ− ϕ′
0(y) − xσ(y))‖2

s,T0
< ǫ0

we have the estimate (3.4) valid.

For the iteration scheme (5.8), let us define

T ′
n = min

{
T | ‖(Wn

+,W
n
−, ψ

n)‖2
s,T ≥ ǫ0

}

and

(5.11) Tn = min

(
T0

2
, T ′

n

)
.
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We have the following two propositions to prove Theorem 2.3:

Proposition 5.1. (Boundness) For any fixed s ≥ 9, and ǫ0 > 0 being given in

(5.10), there are β ∈ (0, 1) and T∗ > 0 such that the solution sequence (V n
+ ,W

n
−, ψ

n)

defined by (5.8) satisfies

(5.12) ‖(Wn
+,W

n
−, ψ

n)‖s,λ(T∗),T∗
< ǫ0 (∀n ∈ N)

where λ(T ) = C0T
−β.

Proof. Let briefly recall the proof of Proposition 4.1 in [19]. We shall prove the

estimate (5.12) by induction on n. Obviously, it is true for n = 0. Assuming that

(5.12) holds for the case n− 1, we study the problem (5.9).

Employing Theorem 3.3 for (5.9), it follows

(5.13)

‖(Wn
+,W

n
−, ψ

n)‖2
s,λ(T ),T ≤ C1

(
1

λ(T )
(|fn

+|2s,λ(T ),T + |fn
−|2s,λ(T ),T ) + 〈gn〉2s,λ(T ),T

)
.

Without loss of generality, we consider the case 0 < T0 ≤ 1, which yields

e−2C0 ≤ e−2C0xT−β ≤ 1

for any 0 ≤ β ≤ 1 and 0 ≤ x ≤ T ≤ T0 ≤ 1.

From the definition, we can easily deduce




|fn
±|2s,λ(T ),T ≤ C2

s∑
k=0

T−2β(s−k)|fn
±|2k,T

〈gn〉2s,λ(T ),T ≤ C2

s∑
k=0

T−2β(s−k) 〈gn〉2k,T

‖(Wn
+,W

n
−, ψ

n)‖2
s,T ≤ C2‖(Wn

+,W
n
−, ψ

n)‖2
s,λ(T ),T

with an absolute constant C2 > 0 when λ(T ) = C0T
−β.

Therefore, from (5.13) we get

‖(Wn
+,W

n
−, ψ

n)‖2
s,T ≤

C2

(
T β

s∑

k=0

T−2β(s−k)(|fn
+|2k,T + |fn

−|2k,T ) +

s∑

k=0

T−2β(s−k) 〈gn〉2k,T

)
.(5.14)

On the other hand, we have the following interpolation inequality:

(5.15)

{
|fn

±|2k,T ≤ C̃s|fn
±|

2k/s
k,T |fn

±|
2−2k/s
0,T

〈g〉2k,T ≤ C̃s 〈g〉2k/s
s,T 〈g〉2−2k/s

0,T

for any 0 ≤ T ≤ T0/2, 0 ≤ k ≤ s with C̃s depending only upon s.

From the assumption (A2), and the induction assumption on (Wn
+ ,W

n
−, ψ

n),

we have a constant C(ǫ0) depending only upon ǫ0 > 0 such that

(5.16) |fn
±|s,T0

≤ C(ǫ0)

for fn
± given in (5.9).

Furthermore, by using fn
±|x<0 = 0 and ‖fn

±‖C1(ΩT0
) ≤ C, we have

(5.17) |fn
±|20,T ≤ CT 3.

Substituting (5.16) and (5.17) into (5.15), it follows

(5.18) |fn
±|2k,T ≤ CT 3−3k/s (0 ≤ k ≤ s)
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which implies

(5.19)

s∑

k=0

T−2β(s−k)(|fn
+|2k,T + |fn

−|2k,T ) ≤ C(1 + T 3/s−2β)

when 0 ≤ β ≤ 3
2(s+1) .

From the property of Newton iteration scheme, we get

gn = −B(Ũ0
+, Ũ

0
−, ∂xϕ

0, ∂yϕ
0) +O(|ETn−1

(Wn−1
+ ,Wn−1

− , ∂xψ
n−1, ∂zψ

n−1)|2)
which implies

(5.20) 〈gn〉2s,T ≤ C(
〈
B(Ũ0

+, Ũ
0
−, ∂xϕ

0, ∂zϕ
0)
〉2

s,T
+ ‖(Wn−1

+ ,Wn−1
− , ψn−1)‖4

s,T ).

Similar to (5.18), we obtain

(5.21) 〈gn〉20,T ≤ CT 3

by using gn|x=0 = 0 and ‖gn‖C1(∂ΩT ) ≤ C.

Substituting (5.20) and (5.21) into (5.15), it follows

〈g〉2k,T ≤ CT 3−3k/s

(〈
B(Ũ0

+, Ũ
0
−, ∂xϕ

0, ∂zϕ
0)
〉2

s,T
+ ‖(Wn−1

+ ,Wn−1
− , ψn−1)‖4

s,T

)k/s

which implies
s∑

k=0

T−2β(s−k) 〈gn〉2k,T ≤

C

(
T 3−2βs +

〈
B(Ũ0

+, Ũ
0
−, ∂xϕ

0, ∂zϕ
0)
〉2

s,T
+ ‖(Wn−1

+ ,Wn−1
− , ψn−1)‖4

s,T

)
.(5.22)

Substituting (5.19) and (5.22) into (5.14), we conclude

‖(Wn
+,W

n
−, ψ

n)‖2
s,T ≤ C

(
T 3−2βs + T β + T 3/s−β +

〈
B(Ũ0

+, Ũ
0
−, ∂xϕ

0, ∂zϕ
0)
〉2

s,T

+‖(Wn−1
+ ,Wn−1

− , ψn−1)‖4
s,T

)
.

which implies that there exist T∗ > 0, ǫ0 > 0 such that if ‖(Wn−1
+ ,Wn−1

− , ψn−1‖2
s,T∗

<

ǫ0, we have

(5.23) ‖(Wn
+,W

n
−, ψ

n‖2
s,T∗

< ǫ0

2

Proposition 5.2. (Convergence) Under the same assumption as in Proposi-

tion 5.1, there are constants C1, C2 > 0 depending only on δ, such that for any

λ > C2 and T ≤ T∗, we have

‖(Wn+1
+ ,Wn+1

− , ψn+1) − (Wn
+,W

n
−, ψ

n)‖2
0,λ,T ≤

C1(
1

λ
+ T 2)‖(Wn

+,W
n
−, ψ

n) − (Wn−1
+ ,Wn−1

− , ψn−1)‖2
0,λ,T .(5.24)
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Proof. When T ≤ T∗, we can omit ETn−1
in the problem (5.9), from which we know

that (Wn+1
+ −Wn

+ ,W
n+1
− −Wn

−, ψ
n+1 − ψn) satisfies the following problem

(5.25)




L±(Un
±, ϕ

n)(Wn+1
± −Wn

±) = f̃n+1
± , t, x > 0

B′
(Un

+
,Un

−,ϕn
x ,ϕn

z )(W
n+1
+ −Wn

+,W
n+1
− −Wn

−, ψ
n+1
x − ψn

x , ψ
n+1
z − ψn

z ) = g̃n+1

(Wn+1
+ −Wn

+ ,W
n+1
− −Wn

−, ψ
n+1 − ψn) vanishes for x < 0

where

(5.26)






f̃n+1
± = −L±(Un

±, ϕ
n)Ũ0

± + L±(Un−1
± , ϕn−1)Ũ0

±
+(L±(Un−1

± , ϕn−1) − L±(Un
±, ϕ

n))Wn
±

g̃n+1 = gn+1 − gn + (B′
(Un−1

+
,Un−1

− ,ϕn−1
x ,ϕn−1

z )

−B′
(Un

+
,Un

−,ϕn
x ,ϕn

z ))(W
n
+,W

n
−, ψ

n
x , ψ

n
z )

.

Employing Theorem 3.3 for the problem (5.25), it yields

‖(Wn+1
+ −Wn

+,W
n+1
− −Wn

−, ψ
n+1 − ψn)‖2

0,λ,T

≤ C1

(
1

λ
(|f̃n+1

+ |20,λ,T + |f̃n+1
− |20,λ,T ) +

〈
g̃n+1

〉2
0,λ,T

)
.(5.27)

On the other hand, from (5.26) we easily deduce

(5.28)

{
|f̃n+1

± |20,λ,T ≤ C2‖(Wn
+ −Wn−1

+ ,Wn
− −Wn−1

− , ψn − ψn−1)‖2
0,λ,T〈

g̃n+1
〉2
0,λ,T

≤ C2T
2
〈
(Wn

+ −Wn−1
+ ,Wn

− −Wn−1
− , ψn − ψn−1)

〉2
0,λ,T

when T ≤ T∗ be using Proposition 5.1. Thus, we immediately conclude (5.24) from

(5.27) and (5.28).2

With the above two propositions, we can prove Theorem 2.3.

The proof of Theorem 2.3: From Proposition 5.2 we know that there are T∗∗ ∈
(0, T∗], α ∈ (0, 1) and λ0 > 0 such that

‖(Wn+1
+ −Wn

+,W
n+1
− −Wn

−, ψ
n+1 − ψn)‖2

0,λ0,T∗∗
(5.29)

≤ α‖(Wn
+ −Wn−1

+ ,Wn
− −Wn−1

− , ψn − ψn−1)‖2
0,λ0,T∗∗

(5.30)

From Proposition 5.1 we know that (Wn
+ ,W

n
−, ψ

n) is bounded in Hs × Hs ×
Hs+1 for 0 ≤ x ≤ T∗. Thus we obtain (W+,W−, ψ) ∈ Hs(ΩT∗∗) × Hs(ΩT∗∗) ×
Hs+1(∂ΩT∗∗) such that

{
Wn

± →W± in Hr(ΩT∗∗)

ψn → ψ in Hr+1(∂ΩT∗∗)
as n→ +∞

for any 0 ≤ r < s, and

U± = Ũ0
± +W±, ϕ = ϕ0 + ψ

are the solutions to (5.1).2
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