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Abstract. The Leray-Hopf solutions to the Navier-Stokes equation are known
to be unique on R

2. We show the uniqueness of the Leray-Hopf solutions

breaks down on H
2(−a2), the two dimensional hyperbolic space with constant

sectional curvature −a2. We also obtain a corresponding result on a more
general negatively curved manifold for a modified geometric version of the
Navier-Stokes equation. Finally, as a corollary we also show a lack of the
Liouville theorem in the hyperbolic setting both in two and three dimensions.
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1. Introduction

We investigate the impact of geometry on the Leray-Hopf solutions to the
Navier-Stokes equation. More precisely, we consider the Navier-Stokes equation on
negatively curved manifolds and present how the negative scalar curvature causes
the break down of the uniqueness of the Leray-Hopf solutions.

Before we state the main results, we survey some historical background from
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both geometric analysis, and the regularity theory for the Navier-Stokes equation
in the usual Euclidean setting.

1.1. Regularity theory for the Navier-Stokes equation on R
n. The

Navier-Stokes equation on the Euclidean space R
n is given by

∂tu− ∆u+ u · ∇u+ ∇P = 0,

div u = 0.
(N-SRn)

Long time ago, for the dimensions n = 2 and n = 3, Leray [20] and Hopf [8]
established the existence of global weak solutions

u ∈ L∞(0,∞;L2(Rn)) ∩ L2(0,∞; Ḣ1(Rn))

. Due to their work, we now have the following general existence result,

Theorem 1.1 (Leray-Hopf weak solutions [20, 8]). Let n = 2 or 3. Given
any initial datum u0 ∈ L2(Rn), there exists at least one R

n-valued function u ∈
L∞(0,∞;L2(Rn)) ∩ L2(0,∞;H1(Rn)) which satisfies the following properties

• For any φ = (φ1, ..., φn) ∈ C∞
c ((0,∞) × R

n) with div φ = 0, we have
∫ ∞

0

∫

Rn

−u · ∂tφ+
∑

i,j

(∂jφi)(∂jui) −
∑

i,j

(∂jφi)(uiuj)dxdt = 0.

• For every t ≥ 0, u satisfies the following global energy inequality
∫

Rn

|u(t, x)|2dx+ 2

∫ t

0

∫

Rn

|∇u|2dxds ≤

∫

Rn

|u0|
2dx.

• u(0, ·) coincides with the initial datum u0 in the sense that

limt→0+‖u(t, ·) − u0‖L2(Rn) = 0.

Solutions u ∈ L∞(0,∞;L2(Rn))∩L2(0,∞; Ḣ1(Rn)) satisfying the global energy
inequality are hence referred to as the Leray-Hopf solutions, and have historically
served as a foundation for further work in the regularity theory for N-SRn .

The regularity of the Leray-Hopf solutions on R
2 greatly differs from the corre-

sponding regularity problem on R
3. Indeed, the smoothness and uniqueness of the

Leray-Hopf solutions for N-SR2 is known and can be found in the work of Ladyzhen-
skaya [18]. As a sharp contrast, the regularity and uniqueness of solutions to the
N-SR3 equation is a long standing open problem although due to the concentrated
efforts by generations of PDE specialists, there has been a significant progress in
this area.

Because of the limitation of space, we only mention some typical regularity
criteria for the Leray-Hopf solutions to N-SR3 . We also note that one of the goals of
this discussion is to illustrate why there is more focus on the question of regularity
than that of the uniqueness.

Now, the first significant effort to break the silence since the fundamental work
of Leray and Hopf, was made in 1960’s through the efforts of Prodi [25], Serrin [28],
and Ladyzhenskaya [17] leading to the following regularity and uniqueness result
(for more historical remarks see for instance [12]).

Theorem 1.2. [Prodi, Serrin, Ladyzhenskaya] Let u ∈ L∞(0, T ;L2(R3)) ∩

L2(0, T ; Ḣ1(R3)) be a Leray-Hopf weak solution to N-SR3 , which satisfies the ad-
ditional condition that u ∈ Lp(0, T ;Lq(R3)), for some p, q satisfying 2

p + 3
q = 1,
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with q > 3. Then, u is smooth on (0, T ]× R
3, and u is uniquely determined in the

following sense

• suppose v ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)) is another Leray-Hopf
weak solution such that u(0, ·) = v(0, ·). Then, it follows that u = v on
(0, T ]× R

3.

Here, let us briefly mention why the case of q = 3 was not included in Theorem
1.2. First, it is well known that a solution θ : [0, T )× R

3 → R to the heat equation
arising from any initial datum θ0 ∈ L3(R3) satisfies the following estimate for any
pair of indices p, q with 2

p + 3
q = 1 and q > 3 (see [12, Appendix])

(1.1) ‖θ‖Lp(0,T ;Lq(R3)) ≤ C(q)‖u0‖L3(R3),

where Cq depends only on q. So, in some sense, the extra condition as imposed on
the Leray-Hopf solution u in Theorem 1.2 ensures that the qualitative behavior of
the Leray-Hopf solution u would be a slight perturbation of solutions of the heat
equation. Second reason is that the Lp

tL
q
x norm of the solution u under the integral

condition as promised in Theorem 1.2 shrinks to zero under the natural scaling
uǫ(t, x) = ǫu(ǫ2t, ǫx) as ǫ → 0. However, this is no longer valid in the borderline
case of L∞(0, T ;L3(R3)). This partially explains the long delay in the settlement
of this exceptional case of u ∈ L∞(0, T ;L3(R3)), which was finally established in
the recent work of Escauriaza, Seregin, and Šverák [12].

Before we close our discussion let us mention that one of the working principles
in the regularity theory of Navier-Stokes equation on R

3 is (more or less) to reduce
the situation under consideration (say u ∈ L∞(L3) in the case of [12]) to the
regime which is covered by Theorem 1.2. Once this can be achieved, then the
uniqueness of the solution would come for free, due to the uniqueness claim in
Theorem 1.2. This explains to some extent the fact that regularity issue is more of
a focus than the uniqueness issue in the regularity theory for Navier-Stokes equation
in the R

3 setting. However, as is well-known, the weak formulation for Leray-Hopf
weak solutions to the Navier-Stokes equation on R

3 only gives the natural bound
u ∈ Lp(0,∞;Lq(R3)), with indices p, q satisfying 2

p + 3
q = 3

2 . One readily sees that

there is a significant gap between the natural bound offered by the weak formulation
and the condition required by Theorem 1.2, and it is unclear how to make a link
between them. See again the introduction of [12] for a discussion about this point,
and for further developments, we refer our readers to a piece of recent work by
Vasseur [33].

1.2. Navier Stokes equation on a Riemannian manifold. Historically
speaking, the correct form of the Navier-Stokes equation in the Riemannian man-
ifold setting was first obtained by Ebin and Marsden [5]. They consider compact
Riemannian, oriented, n-dimensional manifolds both with and without boundary.
Moreover, they remark that the derivation of the correct equations assumes that
the manifold in question is Einstein: Ric = λg, for some constant λ where Ric is
the Ricci tensor, and g is the Riemannian metric. We note, this is in particular
true of space forms, where Ric = (n− 1)KMg (see Section 2.1 below).

According to [5] the ordinary Laplacian should be replaced by the following
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operator in the formulation of the Navier-Stokes equation on a Riemannian mani-
fold

(1.2) L = 2 Def∗ Def = ∇
∗
∇ + dd∗ − Ric = (dd∗ + d∗d) + dd∗ − 2 Ric,

where Def and Def∗ are the deformation tensor and its adjoint respectively, ∇

stands for the induced Levi-Civita connection on the cotangent bundle T ∗M , ∇
∗
∇ is

the Bochner Laplacian, with ∇
∗

the adjoint operator associated to ∇, (dd∗+d∗d) =
−∆ stands for the Hodge Laplacian with d∗ the formal adjoint of the exterior
differential operator d, and Ric is the Ricci operator (see Sections 2.1 and 2.6 for
definitions and [4, 30] for a further discussion of the deformation tensor).

We first remark that the operator L, as given in expression (1.2), sends sections
of T ∗M into sections of T ∗M . Hence, it is more convenient to formulate the Navier-
Stokes equation on a Riemannian manifold M in terms of sections of T ∗M instead
of vector fields on M . As a result, the usual convection term ∇uu in terms of vector
fields also has to be rewritten. There is a natural correspondence between vector
fields and 1-forms (see Section 2.1), which produces the term ∇UU

∗, where U is
the unique vector field corresponding to a 1-form U∗.

In summary, the solutions that we consider in this article will be differential
1-forms U∗ ∈ C∞(M ;T ∗M) satisfying the following differential equation

∂tU
∗ + L(U∗) + ∇UU

∗ + dP = 0,

d∗U∗ = 0.

where P is a scalar function on M . Using the fact that U∗ is divergence free we
can further rewrite the equations as follows

∂tU
∗ − ∆U∗ + ∇UU

∗ − 2 Ric(U∗) + dP = 0,

d∗U∗ = 0.
(N-SM )

which is the main equation that we study.
Arguably a less natural equation to consider is the one without the Ricci op-

erator. We refer to it as the modified Navier-Stokes equation on M and record it
here

∂tU
∗ − ∆U∗ + ∇UU

∗ + dP = 0.

d∗U∗ = 0
(1.3)

It might be considered less natural from the point of view of the derivation of the
Navier-Stokes equation performed in [5]. Nevertheless, it has been studied for ex-
ample in [3, 11, 10, 31]. Moreover, we consider it in this paper as well, because
we would like to present how a more general manifold than just a space form can
influence the behavior of solutions (we explain this more below). At the same time,
in the context of this paper, the definition of the dissipation appears to be more
natural using the deformation tensor than without it, and hence this seems to con-
firm that the equation N-SM is indeed more natural than (1.3) (also see remark
1.8).

Since 2 Def∗ Def U∗ plays now the role of the viscosity, the global energy in-
equality becomes

(1.4)

∫

M

|U∗|2 (t, x) + 4

∫ t

0

∫

M

g(Def U∗,Def U∗)ds ≤

∫

M

|U∗(0)|2,
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where g(·, ·) stands for the inner product structure on the bundle T ∗M ⊗ T ∗M
induced by the Riemannian metric g(·, ·) on M (see Section 2.1). From now on,
when we refer to energy we mean the first term in (1.4)

(1.5)

∫

M

|U∗|2 (t, x),

and by dissipation we mean

(1.6) 4

∫ t

0

∫

M

g(Def U∗,Def U∗).

We now mention some of the previous results on a Riemannian manifold (for
more see [4] and references therein). Priebe [24] appears to be the first one to
follow [5] and use the correct version of the equations N-SM instead of (1.3). [24]
also assumes compactness of M and works on manifolds with boundary. Mazzucato
considers Besov-Morrey spaces on compact, smooth, Riemannian manifolds without
boundary [21]. Mitrea and Taylor study the Stokes and Navier-Stokes equations
on bounded Lipschitz domains in Riemannian manifolds [22]. Dindoš and Mitrea
[4] address the linearized version of the stationary Navier-Stokes equation on a
subdomain of a compact Riemannian manifold. In fact, we have not been able to
find any results for non-compact manifolds except for the result of Q.S. Zhang [35].
In [35] the author shows the ill-posedness of the weak solution with finite L2 norm
on a connected sum of two copies of R

3. Hence the topology of the underlying
manifold seems to play a role. In this paper, we take a geometric point of view,
and also consider the dissipation term.

We are now ready to state our main results.

1.3. Statements of the results and discussion of the proofs.

Theorem 1.3 (Non-uniqueness of N-SH2(−a2)). Let a > 0. Then, N-SH2(−a2)

is ill-posed in the following sense: we can find smooth divergence free initial data
u0 ∈ L2(H2(−a2)) such that there exist infinitely many smooth time dependent
solutions, which have finite energy (1.5), finite dissipation (1.6), and satisfy the
global energy inequality (1.4).

Remark 1.4. We emphasize this is contrary to what is known about the solu-
tions on R

2. In addition, one consequence of Theorem 1.3 is that the conventional
notion of the Leray-Hopf solutions might not be the proper foundation for the study
of solutions on H

2(−a2). The question of what happens on H
3(−a2) is open. The

lack of a definite answer at this point is mainly due to the specific form of the
techniques we use in this paper (see remarks below). It is an interesting question to
see if perhaps the techniques could eventually be extended/modified to give some
insight into the corresponding question in 3 dimensions.1

Corollary 1.5 (Lack of the Liouville theorem for space forms). Let n ≥ 2, and
a > 0, then there exist global in time, nontrivial bounded solutions of N-SHn(−a2).

1Since the completion of this work in 2010, Khesin and Misio lek have shown in their recent
and elegant paper [15] that the form of the solutions we choose could not lead to non-uniqueness
in 3D.



48 CHI HIN CHAN AND MAGDALENA CZUBAK

Remark 1.6. The proof of Corollary 1.5 and Corollary 1.9 below follows triv-
ially from the proofs of their theorems. Moreover, it does not require any of the
delicate estimates developed in this paper. As such it is just a by-product of the
main results, and we only include it here for completeness, and because of the
general importance the Liouville theorems play in the subject of the Navier-Stokes
equation. See Section 6.3 for motivation and some background.

If one decides to omit the Ricci term from N-SM , and consider (1.3) instead,
we can also have a non-uniqueness result on a more general negatively curved
Riemannian manifold than just H

2(−a2).

Theorem 1.7. Let a, b > 0 be such that 1
2 b < a ≤ b, and let M be a simply

connected, complete 2-dimensional Riemannian manifold with sectional curvature
satisfying −b2 ≤ KM ≤ −a2. Then, (1.3) is ill-posed in the following sense: we
can find smooth divergence free initial data u0 ∈ L2(M) such that there exist infin-
itely many smooth time dependent solutions, which have finite energy (1.5), finite
dissipation (1.6), and satisfy the global energy inequality (1.4).

Remark 1.8. Note that using (1.6) for dissipation and (1.4) for the global
energy inequality may not be the natural choice since the deformation tensor does
not make an appearance in equation (1.3). On the other hand it might be even
less natural to redefine these concepts and the global energy inequality. However, if
one insists on redefining, then the only natural candidate to replace the dissipation
would be:

∫ t

0

∫

M

g(dU∗, dU∗),

which in our context would be trivial (see below). After that, the possible candidate
would be

∫ t

0

∫

M

g(∇U∗,∇U∗),

which is not natural since it leads to the Bochner Laplacian and not the Hodge
Laplacian. Hence we believe it is best to still use (1.6) for dissipation even in this
context.

Corollary 1.9 (Lack of the Liouville theorem in the hyperbolic setting). Let
n ≥ 2, and b ≥ a > 0, and let M be a simply connected, complete n-dimensional
Riemannian manifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2. Then
there exist global in time, nontrivial bounded solutions of (1.3).

Remark 1.10. Note, the lower bound 1
2b < a is no longer required in the

corollary. See the discussion below for why the lower bound is present in Theorem
1.7, which also explains why we do not need it in Corollary 1.9.

Remark 1.11. [Non-uniqueness of the Euler equation on M ]. We end the
statements of the results by including the following remark about the Euler equation
on a Riemannian manifold M . Let b ≥ a > 0. Let M be a simply connected,
complete 2-dimensional Riemannian manifold with sectional curvature satisfying
−b2 ≤ KM ≤ −a2. Then the non-unique solutions we construct for the N-SM

could also provide non-unique finite energy solutions to the Euler equation

∂tU
∗ + ∇UU

∗ + dP = 0,

d∗U∗ = 0.
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However due to the construction, as one can check, the solutions would not be
conserving the energy.

The above results are based on the abundance of the nontrival bounded har-
monic functions in the hyperbolic setting. Such abundance is ensured by the works
of Anderson [1] and Sullivan [29]. Our idea of trying to benefit from them was
inspired by a remark of Tsai [32, Remark 5.4]. [32] eliminates a possibility of
self-similar solutions to N-SR3 (which merely would satisfy the local energy in-
equality) by showing that existence of the self-similar solutions is equivalent to
solving a certain stationary system. Without assuming enough decay, one could
construct nontrival solutions of the system in question in the form of U = ∇F , and
P = − 1

2 |U |2 − cy ·U, where F is a harmonic function on R
3 and c > 0. In our case,

due to [1] and [29] we have a plethora of nontrival bounded harmonic functions,
which gives us a basis for this article.

The solution pairs (U∗, P ) we consider have the following form

U∗ = ψ(t)dF,

P = −∂tψ(t)F −
1

2
ψ2(t)|dF |2 − 2a2ψ(t)F,

(1.7)

where ψ(t) = exp(−At
2 ) for any A ≥ 4a2, and F is a nontrival bounded harmonic

function on H
2(−a2). Verifying that (U∗, P ) solves N-SH2(−a2) is simple when we

use Hodge theory (see Sections 2.6 and 6). In fact, taking solutions of the form
ψ(t)∇F seems to be a well known convention, and we just happened to learn about
it from [32] (but also see [35]). Hence the heart of the matter and the main con-
tribution is in proving that the solutions in that form have a finite energy and a
finite dissipation.

Before we proceed any further, we remark here that the differential geometric
work in [1, 29, 2] ensures the existence of nontrival bounded harmonic functions
on a more general negatively curved Riemannian manifold with suitable lower and
upper bounds imposed on the sectional curvature. On the other hand, the exis-
tence of nontrival bounded harmonic function on H

n(−1) is an old classical result
obtained through an integral representation formula with an explicit Poisson kernel
on the Poincare ball model for the space form H

n(−1) (for more details see the
work of Hua [9]). However, such classical approach relies heavily on the explicit
formula of the Poisson kernel derived from the group of isometries of the space form
H

n(−1). It seems that, as compared with the differential geometric approach of
[1, 29, 2], such classical approach does not reveal the role played by the negative
sectional curvature of the hyperbolic manifold in the existence of nontrival bounded
harmonic functions on H

n(−1).
The last remark may explain why the proper generalization of the above men-

tioned classical result to the more general setting of the negatively curved Riemann-
ian manifolds was only established in the more recent works [1, 29, 2]. Since we
intend to show not only the break down of the uniqueness of Leray-Hopf solutions
in the hyperbolic space setting, but more importantly the decisive role played by the
negative sectional curvature of a hyperbolic manifold in causing such a breakdown,
we will unconditionally choose the differential geometric framework as established
in [1, 29, 2] as the basic ground in this paper.

Moreover, since the differential geometric machinery as demonstrated in [1, 29,

2] is designed to establish the existence of bounded nonconstant harmonic function
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on a general negatively curved Riemannian manifold which lacks the homogeneity
property enjoyed by the space form H

2(−a2), the only best way to justify the use
of such differential geometric machinery is to cast our theorems, lemmas, propo-
sitions in the most general setting of a negatively curved Riemannian manifold at
the starting point of the paper. However, we slowly narrow down our setting by
imposing further restrictions on our results whenever such restrictions are needed
in proving the finite integral of a certain function or in handling the extra Ric term
in the formulation of the Navier-Stokes equation. The reason is that in the case of
the space form Ric is just an idenity times a constant (see (2.12) as opposed to the
general expression in (2.10)). Thus when we define the pressure P in (1.7), we can
introduce −2a2ψ(t)F , so when we take the exterior derivative d in the equation, it
will cancel exactly with the 2 Ric term. It is not obvious how to do this for a more
general manifold.

As stated in Theorem 1.7, our non-uniqueness result also holds for a more
general negatively curved Riemannian manifold with the lower bound −b2 and the
upper bound −a2 of the sectional curvature satisfying 0 < b

2 < a ≤ b, provided
if the extra Ric term in the Navier-Stokes equation is dropped. Indeed, the final
restriction to the space form H

2(−a2) is required only because of the presence of
−2 Ric in the formulation of the Navier-Stokes equation N-SM .

Now, we explain our strategy in establishing the finite energy and the finite
dissipation of the time dependent velocity field U∗ = ψ(t)dF as given in equation
(1.7). We start our discussion by saying that our exposition is based on the material
in the second chapter of the book [27] by R. Schoen and S.-T. Yau. In the first
section of the second chapter of [27], one sees that, with the prescribed function
φ ∈ C1(S(∞)) given on the geometric boundary S(∞) (see Section 2.4) attached to
the n-dimensional complete, simply connected Riemannian manifold M with sec-
tional curvature satisfying −b2 ≤ KM ≤ −a2 < 0, the bounded harmonic function
F on M which satisfies the Dirichlet boundary condition F |S(∞) = φ is sought after

by means of creating two barrier functions φ−αe−δρ and φ+αe−δρ, where ρ stands
for the distance function on M from a selected base point O in M , and φ is given
by (2.31). These two functions serve as the lower bound and upper bound for F
(also see Section 2.5 and 2.2). This is done in the spirit of the classical Perron’s
method. However, such an application requires the subharmonicity of φ − αe−δρ

and the superharmonicity of φ + αe−δρ, whose validity critically depends on the
following two facts (for details, see [27])

• Laplace comparison theorem: If KM ≤ −a2, then, the Laplacian of the
distance function ρ (from a selected base point O in M) satisfies ∆ρ ≥
(n− 1)a coth(aρ) ≥ (n− 1)a.

• the smooth function φ is constructed in a specific way so that we have
φ|S(∞) = φ and that the oscillation of φ over any geodesic ball Bx(1) in

M has exponential decay of order e−aρ(x), for any x ∈M .

Due to the above two facts, it can be deduced that the choice of the δ > 0, which
ensures ∆[φ − αe−δρ] ≥ 0 and ∆[φ + αe−δρ] ≤ 0 (and hence the success of the
Perron’s method), has to satisfy the constraint δ < a (see Section 2.5.1).

Based on what we learn from the above construction of the bounded nontrival
harmonic function F on M we employ, in Section 3, the gradient estimate for
harmonic functions due to S.-T. Yau [34] to show that the decay rate for |∇F |(x)
as ρ(x) approaches infinity is at least of the order e−δρ(x), for any δ < a. That is
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we have

(1.8) |∇F | ≤ Ce−δρ.

This result has nothing to do with the Navier-Stokes equation, and it might be of
independent interest. Nevertheless, we want to mention that with the hindsight
from one of the two Harnack’s inequalities as established in the second chapter of
[27], one can argue that the exponential decay is more or less expected and may
not be surprising. We believe that it is possible that such an exponential decay
could be known to the researchers working in geometric analysis. But in any case,
we give a simple proof of it in Section 3.

Next we note that the exponential decay (1.8) not only gives, in the special
case of the two dimensional space form H

2(−a2), the L2 -finite property of |∇F | on
H

2(−a2) (and hence the finite energy property of the velocity field U∗ = ψ(t)dF
as given in (1.7)), but also demonstrates the limitation which prevents us to draw
the same L2-finite property of |∇F | in the setting of the 3-dimensional space form

H
3(−a2). This limitation mainly comes from the fact that oscBx(1) φ only has ex-

ponential decay of order e−aρ(x), which prevents us from choosing δ > 0 larger than
a in the Perron’s method; yet the growth rate of the volume form on H

3(−a2) is ex-
actly of the order 1

a2 sinh2(aρ). For the first time, we encounter an obstacle which
forces us to restrict our theory only to the case of the 2-dimensional negatively
curved Riemannian manifold M with −b2 ≤ KM ≤ −a2 < 0.

We observe that, up to this point, the lower bound condition KM ≥ −b2 has
not been involved in the big picture yet. However one does eventually have to pay
a special attention to the relative largeness of b when compared with a since the
lower bound KM ≥ −b2 of the sectional curvature determines the growth rate of
the volume form of M via the comparison theorem for Jacobi fields in differential
geometry. More precisely, with the condition KM ≥ −b2 imposed, the growth rate
of the volume form of the 2-dimensional negatively curved manifold M is at most
1
b sinh(bρ). Yet, again, the decay rate of |∇F | is of the order e−δρ, with any δ < a.
As a result, the survival of the property ‖∇F‖L2(M) <∞ critically depends on the

competition between the decay rate e−δρ of |∇F | and the (possible) worst growth
rate 1

b sinh(bρ) of the volume form of M . This fully explains the need to further

restrict our setting by imposing the condition 0 < b
2 < a ≤ b, so that the parameter

δ can fit within the range of b
2 < δ < a, which is enough to ensure the survival of

the L2-finite property of |∇F | on the 2-dimensional negatively curved manifold M .
Once the L2-finite property of |∇F | is established for the 2-dimensional Rie-

mannian manifold satisfying −b2 ≤ KM ≤ −a2 and 0 < b
2 < a ≤ b, we proceed to

show the finite dissipation of U∗ = ψ(t)dF under the same setting in Sections 4 and
5. In regard to this, our basic idea lies in the structure of the following important
formula in differential geometry [27]
(1.9)

∆(|∇F |2)(x) = 2g(∇(∇F ),∇(∇F ))(x)+2
∑

∂iF (x)∂i(∆F )(x)+2Ric(∇F,∇F )(x).

The formula is obtained by performing a calculation with respect to the normal
geodesic coordinates about the selected point x, and it holds for a general Rie-
mannian manifold M . Since ∆(|∇F |2) = div{∇(|∇F |2)}, if we can show that the
L1-norm of |∇|∇F |2| is finite, then we immediately have

∫

M ∆(|∇F |2) = 0. Hence,
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it follows from (1.9) that (see Proposition 5.3 for the technical details)

(1.10)

∫

M

g(∇(∇F ),∇(∇F )) = −

∫

M

Ric(∇F,∇F ) ≤ b2
∫

M

|∇F |2,

which with Corollary 5.2 gives the finiteness of the dissipation
∫

M

g(Def U,Def U) =

∫

M

g(∇U,∇U) = [ψ(t)]2
∫

M

g(∇(∇F ),∇(∇F )),

as required in the Leray-Hopf formulation.
Next, the L1-finite property of

∣

∣∇|∇F |2
∣

∣ is established with the assistance

of a covering Lemma 4.1. Due to the fact that Ric(∇F,∇F ) ≥ −b2|∇F |2 and
that ∆F = 0, formula (1.9) ensures the subharmonicity of |∇F |2 + Ae−2δρ on

{x ∈ M : ρ(x) > R(δ)
b } (with b

2 < δ < a), for some sufficiently large A > 0 and
R(δ) > 0, both dependent on δ, which in turns allows us to obtain (see the proof
of Proposition 4.3 for the technical details)

• the integral of |∇{|∇F |2 + Ae−2δρ}| over any geodesic ball Bx(3(1 + 1
b ))

lying within the outer region {x ∈M : ρ(x) > R(δ)
b } is bounded above by

C(a, b; ‖φ‖∞) e−2δρ(x).

Next, since |∇{|∇F |2 +Ae−2δρ}| is continuous on M , to see the extent to which the
above fact can ensure the finiteness of the integral

∫

M |∇{|∇F |2 +Ae−2δρ}|, we just

have to further decompose the outer region {x ∈M : ρ(x) > R(δ)
b } into a countable

number of rings {x ∈ M : k − 1 ≤ ρ(x) ≤ k + 1}, indexed by sufficiently large
positive integers k; and argue, as in our covering Lemma 4.1 that, due to the lower
bound −b2 on the sectional curvature KM , it is sufficient to use a total of [πebk]+1
geodesic balls with radius 3(1+ 1

b ) to cover the ring {x ∈M : k−1 ≤ ρ(x) ≤ k+1},
which in turns ensures that (see the proof of Proposition 4.3 for more details)

• the inequality
∫

Bx(3(1+ 1
b
))
|∇{|∇F |2 + Ae−2δρ}| ≤ C(a, b; ‖φ‖∞) e−2δρ(x)

for any geodesic ball Bx(3(1 + 1
b )) ⊂ {x ∈ M : ρ(x) > R(δ)

b } is strong

enough to deduce that the integral of |∇{|∇F |2 +Ae−2δρ}| over the outer

region {x ∈M : ρ(x) > R(δ)
b } is finite (thanks to the condition 0 < b

2 < a,

which allows δ to be within the range b
2 < δ < a).

The above observation gives
∫

M |∇{|∇F | + Ae−2δρ}| < ∞. Due to the fact that
∫

M e−2δρ < ∞, which is ensured by the condition 2δ > b (see inequality (4.18)),

we finally conclude that
∫

M
|∇{|∇F |2}| < ∞, which is a backbone ensuring the

correctness of equation (1.10) .
From the above discussion, one can see that the main difficulty is to show

that our solutions have finite energy and finite dissipation. We really would like
to emphasize this point. For simplicity we restrict our attention to the space form
H

2(−a2), but the same discussion applies to the more general manifolds we consider.
The argument above gives

∫

H2(−a2)
g(∇(dF ),∇(dF )) = a2

∫

M
|∇F |2. But on

the other hand, we can easily show that (see Corollary 5.2)
∫

H2(−a2)

g(∇(dF ),∇(dF )) =

∫

H2(−a2)

g(Def(dF ),Def(dF )).

Hence, we have
∫

H2(−a2) g(Def(dF ),Def(dF )), which plays the role of the dissipation

term, equals a2
∫

M |∇F |2.
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At this time, it seems that it is very tempting to try to arrive at the equality
∫

H2(−a2)

g(∇(dF ),∇(dF )) = a2

∫

H2(−a2)

|∇F |2

by a more direct (but incorrect ) way as follows.

• Since we have ∇
∗
∇ = (dd∗+d∗d)−Ric for smooth divergence free 1-forms

on H
2(−a2), we have

∇
∗
∇(dF ) = (dd∗ + d∗d)(dF ) + a2dF = a2dF.

If we were able to integrate by parts, then, we would immediately yield
∫

H2(−a2)

g(∇(dF ),∇(dF )) =

∫

H2(−a2)

g(dF,∇
∗
∇(dF )) = a2

∫

H2(−a2)

g(dF, dF ).

The above way to arrive at
∫

H2(−a2) g(∇(dF ),∇(dF )) = a2
∫

H2(−a2) g(dF, dF ) can-

not be justified, since it is well known that, in the case of noncompact Riemannian
mainfold, the validity of the integration by parts formula

∫

H2(−a2)
g(∇(dF ),∇(dF )) =

∫

H2(−a2)
g(dF,∇

∗
∇(dF )) is not known in general (see for instance a remark by Joyce

[14]). Roughly speaking, the survival of the above integration by parts formula crit-
ically depends on the decay property of the term ∇(dF ), due to the fact that the
decay rate of dF (which is at most e−δρ with δ to be as close to a as possible) is not
enough to beat down the growth rate of the circumfrence of the circle with radius
ρ (which is exactly eaρ). So, ideally, if one really insisted in saving the validity of
the integration by parts formula, one would need to have some exponential dacay
of ∇(dF ) as the radius ρ tends to infinity to ensure that the exponential decay of
∇(dF ) and that of dF all together could beat the growth rate of the circumference
of the circle with radius ρ in H

2(−a2). But, such an exponential decay rate of
∇(dF ) is by no means easy to come by, since we cannot apply the gradient esti-
mate of S.T. Yau, because dF is not a harmonic function. So, the point is that,
demonstrating the validity of the integration by parts formula is not easier or faster
than our way of justifying (1.10) by using formula (1.9) in a clever way.

Finally, (1.10) has nothing to do with the Navier-Stokes equation, and it could
also be of independent interest since it gives a nice relationship between the L2

norm of ∇(dF ) and the L2 norm of the gradient of the bounded harmonic function
F .

1.4. Organization of the article. In order to make the paper as self-contained
as possible in Section 2 we collect some facts from the differential geometry and in
particular some background specific to the negatively curved manifolds.

Once that is done, we are ready to establish fundamental statements needed
for the proof of Theorems 1.3, 1.7, and their corollaries. They are:

1) Exponential decay of the gradient of bounded harmonic functions on neg-
atively curved manifold–Section 3.

2) Finiteness of ‖∇ |∇F |
2
‖L1(H2(−a2))–Section 4.

3) Global energy inequality tools–Section 5.

Section 6 contains the proofs of the main results.
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2. Preliminaries

In this section we gather all the necessary tools from the literature needed in
our proof. A lot of it relies on [27], and we list it here for the convenience of the
reader. We also develop some precise statements regarding the volume forms on
the negatively curved manifolds.

2.1. The Levi-Civita connection, deformation tensor and Ricci cur-

vature. Here we recall some general background from Riemannian geometry (see
for example [13], [23], [19]). In particular, we take a closer look at the deformation
tensor mentioned in the introduction.

Let M be an n-dimensional complete Riemannian manifold, and TM and T ∗M
tangent and cotangent bundles on M respectively. Let g be a Riemannian metric,
g(·, ·) ∈ C∞(M,S2T ∗M), where S2T ∗M denotes symmetric bilinear forms on TM ,
and ∇ the Levi-Civita connection on (M, g),

∇ : C∞(M,TM) → C∞(M,T ∗M ⊗ TM).

Let 〈·, ·〉TM⊗T∗M be the natural pairing between vector fields and 1-forms on M .
Given a vector field X ∈ C∞(M ;TM), using the metric g we can define X∗ ∈
C∞(M ;T ∗M) (lower the index) by

(2.1) 〈Y,X∗〉TM⊗T∗M = g(X,Y ), Y ∈ C∞(M ;TM).

Similarly, given a 1-form ω ∈ C∞(M ;T ∗M) we can define vω ∈ C∞(M ;TM) (raise
the index) by

g(vω, Y ) = 〈Y, ω〉TM⊗T∗M .

Therefore, the Riemannian metric g gives rise to the natural identification

C∞(M ;TM) ∼= C∞(M ;T ∗M)

. In particular, if F is a smooth function on M , and d is the exterior derivative we
have

(2.2) (∇F )∗ = dF,

which is often taken as the definition of the gradient ∇F . Next g also induces its
dual metric g∗(·, ·) ∈ C∞(M,S2TM) by

g∗(ω, γ) = g(vω, vγ), ω, γ ∈ T ∗M.

Then note

(2.3) |dF |2 = g∗(dF, dF ) = g(∇F,∇F ) = |∇F |2 .

Now by using g again, we can also induce the corresponding positive definite inner
product g(·, ·) on the bundle T ∗M ⊗ T ∗M , which is precisely characterized by the
following condition

• Let e1, e2, ..., en be a local orthonormal moving frame for TM , and let
θ1, θ2, ...θn be the corresponding dual frame for T ∗M , then, the list {θi ⊗
θj : 1 ≤ j, k ≤ n} is orthonormal with respect to g(·, ·).
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Next, the Levi-Civita connection ∇ on the tangent bundle TM induces the associ-
ated Levi-Civita connection ∇ on T ∗M by

∇ : C∞(M,T ∗M) → C∞(M,T ∗M ⊗ T ∗M),(2.4)

(∇Xω)(Y ) = (∇Xvω)∗(Y ), ω ∈ T ∗M,X, Y ∈ TM.(2.5)

Notice, for the sake of convenience and keeping with the conventions, we use the
same abbreviation ∇ to denote both the Levi-Civita connection on TM and the
induced connection on T ∗M . No possible confusion should arise since the meaning
of the symbol ∇ will be clear from the context. In particular, we have, by the
definition of the induced connection ∇ on T ∗M , the property that

(2.6) ∇XY
∗ = (∇XY )∗,

for any smooth vector fields X , Y on M .
We now turn our attention to the deformation tensor

Def : C∞(M,TM) → C∞(M,S2T ∗M),

defined by (see for example [4])

(2.7) (Def X)(Y, Z) =
1

2

{

g(∇YX,Z) + g(∇ZX,Y )
}

, Y, Z ∈ C∞(M,TM).

Using the natural identification of the space of vector fields with the space of 1-
forms on M discussed above, the operator Def can be regarded as the operator from
C∞(M,T ∗M) to C∞(M,S2T ∗M), and can be defined alternatively as follows:

Definition 2.1. For any 1-form ω ∈ C∞(M,T ∗M), the deformation tensor
Def ω ∈ C∞(M,S2T ∗M) is given by

(2.8) (Def ω)(Y, Z) =
1

2
{〈Z,∇Y ω〉TM⊗T∗M + 〈Y,∇Zω〉TM⊗T∗M},

for any Y, Z ∈ C∞(M,TM).

In the sequel we also need the following. If we express ω ∈ C∞(M,T ∗M)
locally as ω =

∑

a ωadx
a, then Def ω can locally be expressed as

(2.9) Def ω =
∑

j,k

1

2
(ωj;k + ωk;j)dx

j ⊗ dxk,

where ωj;k = ∂kωj − Γl
jkωl, where Γl

jk are the Christoffel symbols.
Next we discuss the Ricci curvature on a complete n-dimensional Riemannian

manifoldM . Recall, the Ricci curvature is a symmetric tensor Ric ∈ C∞(M,S2T ∗M)
defined as follows

Ricp(X,X) =
∑

1≤i≤n−1

KM (X, ei), p ∈M,

where e1, e2, ... en−1 are some unit vectors in TpM such that {X, e1, ...en−1} forms
an orthonormal basis for TpM . In many occasions, we use the symbol Ric(M) for
Ric. Moreover, if we write Ric(M) ≥ −b2, it means that Ric(X,X) ≥ −b2|X |2,
for all X ∈ C∞(M,TM). Moreover, it is clear that, for 2-dimensional Riemannian
manifoldM , the notion of Ricci curvature Ric coincides with the sectional curvature
KM .

Besides the Ricci curvature tensor Ric ∈ C∞(M,T ∗M ⊗ T ∗M), we also need
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to consider the Ricci operator Ric : C∞(M,T ∗M) → C∞(M,T ∗M) sending the
space of 1-forms into itself. It is defined by

(2.10) Ric(u∗) =
∑

a,b

ηag(R(ea, eb)(eb), u),

where R(·, ·) is the Riemannian curvature tensor, e1, e2, ...en is a local orthonormal
moving frame for TM , and η1, η2,...ηn stand for the associated dual frame for T ∗M
with respect to e1, e2, ...en.

In the case of the space form H
n(−a2) with sectional curvature −a2, we have

R(ea, eb)(eb) = −a2ea, for any local orthonormal frame e1, e2, ...en of TH
n(−a2).

Hence, in particular we have the following fact

Ric(u∗) =
∑

a,b

ηag(R(ea, eb)(eb), u)

= −a2(n− 1)
∑

a

ηag(ea, u)

= −a2(n− 1)
∑

a

uaηa

= −a2(n− 1)u∗.

We end this section with a quick summary of the facts we use in sequel:

Ricp(X,X) = KM (p) |X |
2
, p ∈M,X ∈ C∞(M,TM), dim M = 2,

(2.11)

Ric(ω) = −(n− 1)a2ω, ω ∈ C∞(Hn(−a2), T ∗Hn(−a2)), a > 0, n ≥ 2.(2.12)

2.2. Estimates and identities used. As usual, we start with a complete n-
dimensional Riemannian manifoldM , and consider the geodesic normal coordinates
on M about a selected base point O. One of the fundamental properties of the
normal coordinates, which we use in computations, is that the Christoffel symbols
all vanish at O:

(2.13) Γi
jk = 0,

(see for example [19]).
In the case of a complete, simply connected, n-dimensional Riemannian man-

ifold M with sectional curvature −b2 ≤ KM ≤ a2 < 0, the Cartan-Hadamard
theorem ensures that the geodesic normal coordinates on M about any selected
base point O ∈ M must be globally defined, which also implies in particular that
M is diffeomorphic to R

n. Moreover, in this case, between any two points p, q the
geodesic joining p and q is unique, and hence we just use the symbols pq, |pq| to
denote the geodesic joining p and q, and its length respectively.

Define the distance function from a point p ∈M to a point x by

ρp(x) ≡ |px| .

We usually omit the subscript p and simply write ρ(x) since the base point is clear
from the context.
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Lemma 2.2 (Properties of the distance function [27, Ch. 1]). The distance
function ρ(x) defined as above is smooth2 on all of M, where M is any Riemannian
n-manifold such that the exponential map defines the diffeomorphism between M

and R
n. In addition,

|∇ρ|
2

= 1,(2.14)

∆ρ = (n− 1)k coth kρ if M has constant sectional curvature = −k2,(2.15)

∆ρ ≥ (n− 1)a · coth(aρ) ≥ (n− 1)a if Ric(M) ≤ −a2,(2.16)

∆ρ ≤ (n− 1)b · coth(bρ) ≤ (n− 1)
1 + bρ

ρ
if Ric(M) ≥ −(n− 1)b2.(2.17)

Lemma 2.3. [27, p.35] Let M be a simply connected, n-dimensional, complete
Riemannian manifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2. Let
O ∈ M be a selected base point, and let x1, x2 be two points in M for which
|Ox1| = |Ox2| = R. Moreover, let θ = ∠(Ox1, Ox2). Then there exist universal

constants R̃0 (depending only on a, b, and n), and θ0 ∈ (0, π
2 ), such that whenever

|Ox1| = |Ox2| = R ≥ R̃0, and θ ≤ θ0, we have the following

(2.18) 2R+
2

a
(log θ − 1) ≤ |x1x2| ≤ 2R+

2

b
(log θ + 1).

Lemma 2.4. With M as above, let O ∈ M be a selected base point, and let
x1, x2 be two points in M for which |Ox1| = |Ox2| = R. In addition require
|x1x2| ≤ 1. Then there exist R1 (depending only on a) such that if R ≥ R1, then
θ = ∠(Ox1, Ox2) ≤ θ0 from Lemma 2.3.

Proof. Using the intuition from the Euclidean geometry it is very easy to see
what this lemma means: if we go far enough from the origin and the points x and
y are close to one another, the polar angle between them has to be small enough.
To prove this for negatively curved manifolds we use the following inequality from
[27, (1.9) p.34]

cos θ ≥ coth2(aR) −
cosh(a|x1x2|)

sinh2(aR)
,

where x1, x2 ∈ M , R = |Ox1| = |Ox2|, and θ = ∠(Ox1, Ox2). Now, if |x1x2| ≤ 1,
then

(2.19) cos θ ≥ coth2(aR) −
cosh(a)

sinh2(aR)
.

Since the right hand side goes to 1 as R → ∞, there must exist R1 such that if
R ≥ R1, then

coth2(aR) −
cosh(a)

sinh2(aR)
> cos θ0.

This means that if R ≥ R1, we must have θ ≤ θ0. Otherwise the monotonicity of
cos θ on (0, π

2 ) and (2.19) would imply

cos θ0 > cos θ ≥ coth2(aR) −
cosh(a)

sinh2(aR)
> cos θ0.

�

2For more general manifolds M , ρ(x) is smooth on M \Cut(p). See [27] for precise definitions
and statements.
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Lemma 2.5. [27, p.78] Let M be a general n-dimensional complete Riemannian
manifold. Suppose that f : B((1 + τ)R) → [0,∞) is a non-negative subharmonic
function on B((1 + τ)R) (i.e., f ≥ 0 and ∆f ≥ 0 on B((1 + τ)R)). Then

(2.20)

∫

B(R)

|∇f |2 ≤
C

τ2R2

∫

B((1+τ)R)

f2,

where C is some universal constant.

We now give the statement of the gradient estimate of Yau.

Theorem 2.6 (Gradient Estimate [34, 27]). Let M be an n-dimensional com-
plete Riemannian manifold with Ric(M) ≥ −(n− 1)K, for some constant K ≥ 0.
If u is a positive harmonic function on M and Br(x) is a geodesic ball in M , then

|∇u| ≤ Cn

(

1+r
√

K
r

)

u on B r
2
(x),(2.21)

where Cn is a constant depending only on n.

We finish the section by stating the important formula mentioned in the intro-
duction.

Lemma 2.7. [27, p. 15] Let M be a Riemannian manifold. Then the following
holds in normal coordinates at x
(2.22)

∆[|∇F |2](x) = 2
∑

[∂i∂jF ]2(x) + 2
∑

∂iF (x)∂i(∆F )(x) + 2 Ric(∇F,∇F )(x).

2.3. The volume form and the comparison theorem for Jacobi fields.

In this section we derive the geodesic (normal) polar coordinates. The reader
can choose to skip to equation (2.26) and to the Theorem 2.8 and the remarks
afterwards.

We consider a complete, simply connected, 2-dimensional Riemannian manifold
M with sectional curvature satisfying −b2 ≤ KM ≤ −a2 < 0. To begin, let O be
a selected point in M , and let expO : TOM → M be the global exponential map
at O, whose existence is ensured as before by the Cartan-Hadamard theorem. We
remark that the tangent space TOM is identified with the Euclidean space R

2.
Let (r, θ) be the ordinary polar coordinates on R

2 in the Euclidean sense. That
is, the respective induced vectors ∂

∂r and ∂
∂θ

are given by

∂

∂r

∣

∣

∣

∣

(x,y)

=
(x, y)

(x2 + y2)
1
2

,

∂

∂θ

∣

∣

∣

∣

(x,y)

= (−y, x).

(2.23)

Then, the geodesic normal polar coordinates (r, θ) on M (as induced by expO :
TOM →M) is given by the composite function (r, θ) = (r, θ) ◦ {expO}

−1.

Let v ∈ TOM = R
2 be any unit vector, and consider the geodesic c : [0,∞) →

M with c(0) = O and c′(0) = v. Then, we notice that ∂
∂r c(r)

= c′(r). Next, in order

to compute ∂
∂θ c(r)

, we first observe that the ordinary Euclidean ∂
∂θ rv

is given by

• ∂
∂θ rv

= rw, in which w is the unique unit vector in R
2 such that the pair

{v, w} forms a positively oriented orthonormal basis for R
2. (Recall that
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we have the identification TOM = R
2, so, we may just regard v ∈ TOM

to be a vector in R
2.)

Now, let Y (r) be the Jacobi field along the geodesic c : [0,∞) → M with
Y (0) = 0, and ∇ ∂

∂r
Y (0) = w. (Recall that Y (r) is a Jacobi field means that the

equation ∇c′∇c′Y + R(Y, c′)c′ = 0 holds along the geodesic ray c(t).) Then, it is
well known that [13]

(2.24) Y (r) = (D expO)rv(rw) = (D expO)rv(
∂

∂θ rv
),

which implies that ∂
∂θ rv

= (D exp−1
O )c(r)(Y (r)). Hence, we have for any f ∈ C∞(M)

∂

∂θ c(r)
f =

∂

∂θ rv
(f ◦ expO)

= [(D exp−1
O )c(r)(Y (r))](f ◦ expO) = d(f ◦ expO)rv

(

(D exp−1
O )c(r)(Y (r))

)

= (df)c(r)(Y (r)) = Y (r)(f).

(2.25)

∂

∂θ c(r)
= Y (r).

With the above preparation, we can now discuss the growth rate of the volume
form on a complete, simply connected, 2-dimensional Riemannian manifold with
−b2 ≤ KM ≤ −a2 < 0. Under the geodesic normal coordinates (r, θ), the volume
form is given by

(2.26)

∣

∣

∣

∣

∂

∂θ

∣

∣

∣

∣

drdθ,

but sometimes we write
∣

∣

∂
∂θ

∣

∣ dρdθ in the case when the distance function ρ from
O is used to replace the symbol r. Then, the following comparison theorem in
differential geometry is used to give us the growth rate of the volume form.

Theorem 2.8. [Comparison theorem for Jacobi fields [13, Corollary 4.6.1,
p.209]] Let M be a simply connected, complete, n-dim Riemannian manifold M

with −b2 ≤ KM ≤ −a2 < 0. Let c : [0,∞) → M be a geodesic ray in M , and we
consider a given Jacobi field Y (r) along the geodesic ray c which is orthogonal to c

and satisfies Y (0) = 0 and |Ẏ (0)| = 1. Then

(2.27)
1

a
sinh(ar) ≤ |Y (r)| ≤

1

b
sinh(br).

Now, by the above comparison theorem together with the identity ∂
∂θ c(r)

=

Y (r), we immediately deduce that, for a complete, simply connected Riemannian
manifold M of dimension 2 with −b2 ≤ KM ≤ −a2 < 0, the weight G(r, θ) =

∣

∣

∂
∂θ

∣

∣

of the volume form
∣

∣

∂
∂θ

∣

∣ drdθ on M is at most of the order 1
b sinh(br). This is used

in Sections 3 and 4 to estimate the integrals of a certain non-negative function on
M . Finally, we also remark that, in the special case of a space form H

2(−a2), we
have exactly

(2.28)

∣

∣

∣

∣

∂

∂θ

∣

∣

∣

∣

= |Y (r)| =
1

a
sinh(ar).
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2.4. Geodesic balls, cones and the geometric boundary S(∞). We
again only consider simply connected, complete, n-dimensional Riemannian mani-
fold M with sectional curvature −b2 ≤ KM ≤ −a2 < 0.

Using the distance function from the Section 2.2, define a geodesic ball in M

with radius R and centered at x by

BR(x) = {y ∈M : ρx(y) ≤ R}.

Next, let O ∈M and v ∈ TOM . Define the cone about v with angle θ by

CO(v, θ) = {y ∈M : ∠(v,Oy) ≤ θ}.

Finally the geometric boundary, the sphere at infinity S(∞) is

S(∞) = the set of all geodesic rays from O,

which can be canonically identified with the unit sphere in TOM : SO(1) = {v ∈
TOM : |v| = 1}, so that every unit vector v ∈ TOM can then be regarded as a point
in S(∞), and we can simply write v ∈ S(∞) (See [27, p.36], [1, 2]).

From now on

M = M ∪ S(∞).

2.5. Bounded harmonic functions on negatively curved manifolds.

Anderson [1] and Sullivan [29] independently, and using different methods, proved
the following theorem.

Theorem 2.9. [1, 29] Let M be a simply connected, n-dimensional, complete
Riemannian manifold with sectional curvature KM satisfying −b2 ≤ KM ≤ −a2 <

0. Then there exists a unique solution u ∈ C∞(M)∩C0(M̄) to the Dirichlet problem

∆u = 0 in M,

u
∣

∣

S(∞)
= φ ∈ C0(S(∞)).

A simpler proof is also presented in the comprehensive work of Anderson and
Schoen [2], and it is also exposed in [27]. The main idea there is to construct two
barrier functions and use the Perron’s method3. This in turn is accomplished in
three steps, whose conclusions we use in the proof of Proposition 3.1, which is a
crucial tool for our result. Therefore, we give an outline of the proof in [27, p. 37],
and list the needed conclusions:

Step 0) Due to the classical elliptic theory, the proof can assume φ ∈ C∞(S(∞)),
but we emphasize that for the existence of F it is enough to assume φ is
only continuous. On the other hand, when we use the steps below, we will
require φ ∈ C1(S(∞)).

Step 1) Extend the function φ to all of M and show for x ∈M

(2.29) osc
Bx(1)

φ ≡ sup
y∈Bx(1)

|φ(y) − φ(x)| ≤ C0e
−aρ(x),

where C0 can be shown to be given by

(2.30) C0 = max{e
a
2 +1 ‖φ′‖L∞(S(∞)) , 2e

aR1 ‖φ‖L∞(S(∞))},

and R1 is obtained using Lemma 2.4.

3We note that the proof in [1] also relies on the Perron’s method.
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To extend φ to all of M , pick a base point O ∈M and use the geodesic
normal polar coordinates (r, θ) at O to define

φ(r, θ) = φ(θ), for all r > 0.

Step 2) The Laplacian of the average of φ has an exponential decay. More pre-
cisely, let

(2.31) φ̄(x) =

∫

χ(ρ2
x(y))φ(y)dy

∫

χ(ρ2
x(y))dy

,

where χ is a standard cut off function. Then it can be shown

osc
Bx(1)

φ̄ ≤ Ce−aρ(x),(2.32)

∣

∣∆φ̄(x)
∣

∣ ≤ Ce−aρ(x),(2.33)

where ρ(x) is the distance function defined in Section 2.2. We note the
above constant is a generic constant C depending on C0 given by (2.30)
and the manifold M .

Step 3) Show there exists α > 0 and δ small enough such that

∆[φ− αe−δρ] ≥ 0 and ∆[φ + αe−δρ] ≤ 0.(2.34)

Then by Perron’s4 method there exists a harmonic function F such that

(2.35) φ− αe−δρ ≤ F ≤ φ+ αe−δρ.

The boundary conditions are easily checked.

2.5.1. Constants α and δ. Constants α and δ from Step 3 play a very important
role in our proofs. Therefore we take some time now to discuss α and δ, and how
they relate to the function φ and the curvature −b2 ≤ KM ≤ −a2. We emphasize
that this exposition is completely based on [27, p. 40] although the details of (2.37)
and (2.38) below were not exposed there.

First start with some δ > 0 to be specified later. Using (2.14) we then observe

(2.36) ∆(e−δρ(x)) = δe−δρ(x)(δ − ∆ρ(x)).

Also, by (2.16)
∆ρ ≥ (n− 1)a · coth(aρ) ≥ (n− 1)a.

Next, one has to choose sufficiently small δ and sufficiently large α so that (2.34)
does indeed hold. Let δ < a, then the first equation (2.34) is obtained as follows.
By (2.33) and (2.36)

∆[φ− αe−δρ] = ∆φ− αδe−δρ(δ − ∆ρ)

≥ −Ce−aρ + αδ[(n− 1)a− δ]e−δρ

≥ {αδ[(n− 1)a− δ] − C}e−δρ,

(2.37)

where δ < a is used to obtain the last line. Similarly

∆[φ+ αe−δρ] ≤ Ce−aρ − αδ[(n− 1)a− δ]e−δρ

≤ {C − αδ[(n− 1)a− δ]}e−δρ.
(2.38)

So, for any δ < a, we choose α = 2C
δ[(n−1)a−δ] . Note, in order to guarantee α > 0 for

n = 2, we need δ < a and not just δ ≤ a. Then (2.34) follows as needed.

4See [1] for the application in this context or [7].
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In addition, besides δ not being too large, we eventually need δ not to be too
small. More precisely, when we want to obtain that ∇F is in L2(H2(−a2)), we
impose additional condition a

2 < δ. Then the exponential decay of ∇F obtained in
Proposition 3.1 below will be sufficient to give ‖∇F‖L2(H2(−a2)) <∞.

Similarly, when we want to obtain that ∇F is in L2(M), whereM is a complete,
simply connected 2-dimensional manifold with sectional curvature satisfying −b2 ≤
KM ≤ −a2, where a, b > 0 and b

2 < a, then there we require δ > b
2 .

2.6. Hodge Star operator and Hodge Laplacian. Let d denote the exte-
rior differentiation operator, which sends k forms to k+ 1 forms. As is well-known,
d satisfies

(2.39) ddω = 0 for any k − form ω.

Its dual operator, d∗, is given by

(2.40) d∗ = (−1)k ∗ ∗ ∗ d∗,

where ∗ is the Hodge ∗ operator and k comes from d∗ acting on some given k-form
(see for example [26]). We note d∗ sends k forms to k−1 forms. However, the only
main facts that we need to know from Hodge theory besides (2.39), is the definition
of the Hodge Laplacian and equation (2.42) below. The Hodge Laplacian is given
by

−∆ω = (dd∗ + d∗d)ω.

When ∆ acts on a function F , then the expression simplifies to

(2.41) − ∆F = d∗dF.

So for example if we have a function F that is harmonic, and if we define a 1-form
U by

U = dF,

then it is very easy to see that U is a harmonic 1-form since

(dd∗ + d∗d)U = dd∗dF + d∗ddF

= dd∗dF by (2.39)

= d(d∗dF )

= 0,

(2.42)

where in the last line we used the fact that F is harmonic and (2.41). The con-
struction of our non-unique solution relies on this simple observation.

3. Exponential decay of the gradient of bounded harmonic functions

The main result of this section is the following proposition.

Proposition 3.1. Let M be an n-dimensional complete, simply connected Rie-
mannian manifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2. Let
φ ∈ C1(S(∞)) be any boundary data, and F ∈ C∞(M) ∩ C0(M) be the unique
bounded harmonic function on M with F |S(∞) = φ. Let δ < a. Then, the following
inequality holds

(3.1) |∇F |(x) ≤ C{1 +
1

δ[(n− 1)a− δ]
}e−δρ(x) ∀x ∈M,

where C depends only on a, b, and n and C0 given by (2.30).
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Proof. Given φ ∈ C1(S(∞)) by Theorem 2.9 there exists a unique harmonic
function F ∈ C∞(M) ∩ C0(M) with F |S(∞) = φ. By (2.35) we also have

(3.2) φ− αe−δρ ≤ F ≤ φ+ αe−δρ,

where φ̄ is as in (2.33) and δ < a and α = 2C
δ[(n−1)a−δ] as discussed in Section 2.5.1.

Let x ∈M and consider two cases.
Case 1: ρ(x) > 1.

Consider a ball Bx(1). By (3.2)

osc
Bx(1)

F := sup
Bx(1)

F − inf
Bx(1)

F

≤ sup
Bx(1)

(φ+ αe−δρ) − inf
Bx(1)

(φ− αe−δρ).

Next since infBx(1)[φ− αe−δρ] ≥ infBx(1) φ− α · supBx(1) e
−δρ and supBx(1) e

−δρ =

e−δ(ρ(x)−1), it follows that

osc
Bx(1)

F ≤ osc
Bx(1)

φ+ 2αe−δ(ρ(x)−1),

and it implies

0 ≤ F − inf
Bx(1)

F ≤ osc
Bx(1)

F ≤ osc
Bx(1)

φ+ 2αe−δ(ρ(x)−1).

Now, notice that since F − infBx(1) F is a positive harmonic function on Bx(1) we
can apply the gradient estimate, Theorem 2.6, and (2.32) to deduce the following
inequality for any y ∈ Bx(1

2 )

|∇F |(y) = |∇[F (y) − inf
Bx(1)

F ]| ≤ C(1 + a)[F (y) − inf
Bx(1)

F ]

≤ C{ osc
Bx(1)

φ+ 2αe−δ(ρ(x)−1)}

≤ C[C + 2αeδ]e−δρ(x)

= C{C +
4C

δ[(n− 1)a− δ]
eδ}e−δρ(x).

(3.3)

So, in particular, if we choose y = x in the above inequality, we have

(3.4) |∇F |(x) ≤ C{C +
4C

δ[(n− 1)a− δ]
eδ}e−δρ(x) ∀x ∈M − Bo(1).

We now consider the case of x ∈ B0(1).
Case 2: ρ(x) ≤ 1.

Here we have e−a ≤ e−aρ(x), and supBx(1) e
−δρ = 1. Hence

osc
Bx(1)

F ≤ osc
Bx(1)

φ+ 2α sup
Bx(1)

e−δρ

≤ Ce−aρ + 2α

= Ce−aρ + 2αeae−a

≤ [C + 2αea]e−aρ

≤ [C + 2αea]e−δρ

= {C +
4C

δ[(n− 1)a− δ]
ea}e−δρ.
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Next, as in Case 1 we can apply the gradient estimate, Theorem 2.6, to F −
infBx(1) F to obtain for any y ∈ Bx(1

2 )

|∇F |(y) = |∇[F (y) − inf
Bx(1)

F ]| ≤ C(1 + a)[F (y) − inf
Bx(1)

F ]

≤ C osc
Bx(1)

F

≤ C{C +
4C

δ[(n− 1)a− δ]
ea}e−δρ.

(3.5)

By taking y = x in the above inequality, we deduce

(3.6) |∇F |(x) ≤ C{C‖φ′‖∞ +
4C

δ[(n− 1)a− δ]
ea}e−δρ(x) ∀x ∈ BO(1).

By combining (3.4) and (3.6) we have that (3.1) holds for all x ∈M as needed. �

By (3.1) and the discussion in Section 2.3, together with (2.27) and (2.28), we
immediately have the following corollaries

Corollary 3.2. In addition if δ > a
2 , then

‖∇F‖L2(H2(−a2)) <∞.

Proof. There is nothing to prove. From (2.26) and (2.28) we have

‖∇F‖
2
L2(H2(−a2)) ≤ C

∫ ∞

0

|∇F |
2
sinh (aρ)dρ ≤ C

∫ ∞

0

eaρ−2δρdρ <∞.

�

Corollary 3.3. Let M be a complete, simply connected 2-dimensional man-
ifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2, where a, b > 0 and
b
2 < a, if b

2 < δ < a, then

‖∇F‖L2(M) <∞.

Proof. Similarly by (2.26) and (2.27)

‖∇F‖
2
L2(M) ≤ C

∫ ∞

0

|∇F |
2
sinh (bρ)dρ ≤ C

∫ ∞

0

ebρ−2δρdρ <∞.

�

4. The proof that ‖∇ |∇F |
2
‖L1(H2(−a2)) is finite

In the proof of ‖∇ |∇F |2 ‖L1(H2(−a2)) < ∞, we need the assistance of the fol-
lowing geometric lemma, which is itself a consequence of Lemma 2.3 and Lemma
2.4.

Lemma 4.1. [Covering Lemma] Consider M to be a simply connected, complete
2-dimensional Riemannian manifold with sectional curvature −b2 ≤ KM ≤ −a2.

Let O be a selected base point in M , and let ρ be the distance function from O.
Then, there exists some sufficiently large universal constant R0 > 0 such that the
following assertion holds:

For any given R ≥ R0, if we take the positive integer N(R) = [ 2π
2e−bR ] + 1 =

[πebR] + 1 (here, the symbol [λ] means the largest integer N ∈ Z with N ≤ λ),
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then, we can pick a list of vectors v1, v2, v3, ....vN(R) ∈ S(∞), which are evenly
distributed on the circle S(∞) in such a way that we have the following inclusion

(4.1) {x ∈M : R− 1 ≤ ρ(x) ≤ R+ 1} ⊂ ∪
N(R)
i=1 Bcvi

(R)

(

3(1 + 1
b )

)

,

where for each 1 ≤ N(R), cvi
: [0,∞) → M is the geodesic ray of unit speed with

cvi
(0) = O, and c′vi

(0) = vi.

Remark 4.2. In words, the lemma is saying is that if we consider an annulus in
M with inner radius R− 1 and outer radius R+ 1, where R is big enough, then we
can cover it by N(R) geodesic balls centered at cvi

(R) and with radius
(

3(1+ 1
b )

)

.

Proof. To begin, let us select a base point O in M , and let ρ be the distance
function from O. By Lemma 2.3 and Lemma 2.4, there exists a sufficiently large
universal constant R0 > 1 such that for any two points x1, x2 in M with R =
|Ox1| = |Ox2| satisfying R ≥ R0, we have the following

(4.2) 2R+
2

a
(log θ − 1) ≤ |x1x2| ≤ 2R+

2

b
(log θ + 1),

where θ = ∠(Ox1, Ox2).
From now on, we use the universal constant R0 = R0+1. Now, choose any R ≥ R0,
and let v ∈ S(∞). We then consider the geodesic ray

cv : [0,∞) →M,

cv(0) = O, and c′v(0) = v.

Now, we consider the universal angle θ(R) = e−bR, and the sector TO(v, θ(R);R −
1, R+ 1) defined by

TO(v, θ(R);R− 1, R+ 1) = {x ∈ CO(v, θ(R)) : R− 1 ≤ ρ(x) ≤ R+ 1},

where the cone CO(v, θ(R)) was defined in Section 2.4. Our goal is to prove that
TO(v, θ(R);R − 1, R + 1) ⊂ Bcv(R)(3(1 + 1

b )). To this end, let x ∈ TO(v, θ(R);R −
1, R+ 1). Then, ρ(x) = R+ λ, for some λ ∈ [−1, 1]. By the triangle inequality, we
have

(4.3) |cv(R)x| ≤ |cv(R)cv(R+ λ)| + |cv(R + λ)x| ≤ |λ| + |cv(R+ λ)x|.

But from (4.2) with x1 = cv(R+ λ) and x2 = x, it follows

|cv(R+ λ)x| ≤ 2(R+ |λ|) +
2

b
{log[∠(Ocv(R+ λ), Ox)] + 1}

≤ 2R+ 2 +
2

b
[log(θ(R)) + 1]

= 2R+ 2 +
2

b
{log(e−bR) + 1}

= 2R+ 2 +
2

b
(−bR+ 1)

= 2 +
2

b
.

(4.4)

Hence

(4.5) |cv(R)x| ≤ |λ| + |cv(R + λ)x| ≤ |λ| + 2(1 +
1

b
) < 3(1 +

1

b
).
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This shows that every x ∈ TO(v, θ(R);R − 1, R + 1) must lie in the geodesic ball
Bcv(R)(3(1+ 1

b )). To conclude the proof, we just take the integerN(R) = [ 2π
2e−bR ]+1.

Then, we can select some evenly distributed vectors v1, v2, ..., vN(R) ∈ S(∞) such
that

(4.6) {x ∈M : R− 1 ≤ ρ(x) ≤ R+ 1} = ∪
N(R)
i=1 TO(vi, θ

(R);R− 1, R+ 1).

Since we already know that, for each 1 ≤ i ≤ N(R), we have TO(vi, θ
(R);R−1, R+

1) ⊂ Bcvi
(R)(3(1 + 1

b )), in which cvi
: [0,∞) → M is the geodesic with cvi

(0) = O

and c′vi
(0) = vi, it follows at once from relation (4.6) that

{x ∈M : R− 1 ≤ ρ(x) ≤ R+ 1} = ∪
N(R)
i=1 TO(vi, θ

(R);R− 1, R+ 1)

⊂ ∪
N(R)
i=1 Bcvi

(R)(3(1 +
1

b
)),

(4.7)

as desired.
�

With the help of the Covering Lemma 4.1 and Lemma 2.5, we can now prove
the following fact.

Proposition 4.3. Let a, b > 0 satisfy 1
2b < a ≤ b, and let M be a simply

connected, complete 2-dimensional Riemannian manifold with sectional curvature
−b2 ≤ KM ≤ −a2. Then, for any bounded harmonic function F ∈ C∞(M) ∩
C0(M), which arises from C1- boundary data φ, it follows that

∫

M
|∇|∇F |2| <∞.

Remark 4.4. We note that in the proof of Proposition 4.3, it is not necessary
for us to obtain a uniform bound of

∫

M |∇|∇F |2| <∞ in terms of, say, ‖φ′‖∞. All

we need is just to confirm that the integral
∫

M
|∇|∇F |2| is finite, because this is

already enough to ensure that
∫

M
div{∇|∇F |2} = 0.

Proof. As usual, we begin with a bounded harmonic function F ∈ C∞(M)∩
C0(M) such that F

∣

∣

S(∞)
= φ. Let R0 be the sufficiently large universal constant

as determined in Lemma 4.1.
Since F is smooth onM , in order to prove that

∫

M |∇|∇F |2| <∞, it is sufficient

to see that
∫

M−BO(R)
|∇|∇F |2| <∞, for some large R > R0, where O is a selected

base point in M .
Using (2.14) we first write

|∇|∇F |2| ≤ |∇{|∇F |2 +Ae−2δρ}| + A|∇e−2δρ|

= |∇{|∇F |2 +Ae−2δρ}| + A(2δ)e−2δρ.
(4.8)

We estimate the first term on the right. First, by (2.22)

∆[|∇F |2](x) = 2[∂i∂jF ]2(x) + 2∂iF (x)∂i(∆F )(x) + 2Ric(∇F,∇F )(x).

Since ∆F = 0 it follows from the above formula that

(4.9) ∆[|∇F |2] ≥ 2 Ric(∇F,∇F ) ≥ −2b2|∇F |2.

To proceed further, we choose δ, once and for all, to be any fixed positive
number within the range b

2 < δ < a. Then by Proposition 3.1 we have
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(4.10) |∇F | ≤ Ce−δρ.

Notice that our fixed choice of δ ∈ ( b
2 , a) automatically satisfies the condition δ > a

2 ,

due to the fact that b ≥ a. Next, since δ > b
2 , we can choose some sufficiently large

positive number depending on δ, R(δ) > 2, such that

(4.11)
b

2
<
b

2
(1 +

1

R(δ)
) < δ < a ≤ b.

Next, we have to find some A > 0 large enough, and some sufficiently large
radius R such that the function |∇F |2+Ae−2δρ will be subharmonic on H

2−BO(R).
To achieve this we use (2.17) and observe
(4.12)

∆ρχ{ρ≥ R(δ)
b

} ≤ b · coth(bρ)χ{ρ≥ R(δ)
b

} ≤ (b+
1

ρ
)χ{ρ≥R(δ)

b
} ≤ b(1 +

1

R(δ)
)χ{ρ≥R(δ)

b
}.

Hence from (4.9), (4.10) and (2.36)

∆{|∇F |2 +Ae−2δρ}χ{ρ≥R(δ)
b

} ≥ {−2b2C2e−2δρ +A(2δ)e−2δρ[2δ − ∆ρ]}χ{ρ≥R(δ)
b

}

≥ 2{Aδ[2δ − b(1 +
1

R(δ)
)] − b2C2}e−2δρχ{ρ≥R(δ)

b
}.

(4.13)

Notice 2δ− b(1+ 1
R(δ) ) > 0, thanks to our choice of R(δ) which ensures the survival

of the second inequality sign in (4.11). Next, we just take

(4.14) A =
2b2C2

δ[2δ − b(1 + 1
R(δ) )]

.

With this choice of A, it follows from (4.13) that

(4.15) ∆{|∇F |2 +Ae−2δρ}χ{ρ≥R(δ)
b

} ≥ 0.

That is, the function |∇F |2 + Ae−2δρ is subharmonic on M − BO(R(δ)
b ). So,

we may apply Lemma 2.5 to |∇F |2 +Ae−2δρ and deduce that for any geodesic ball

Bx(6(1 + 1
b )) ⊂M −BO(R(δ)

b ), we have

∫

Bx(3(1+
1
b ))

|∇{|∇F |2 +Ae−2δρ}|

≤
∣

∣Bx

(

3(1 + 1
b )

)
∣

∣

1
2

{

∫

Bx(3(1+
1
b ))

|∇{|∇F |2 +Ae−2δρ}|2

}
1
2

≤ Cb

{

∫

Bx(6(1+ 1
b
))

[|∇F |2 +Ae−2δρ]2

}
1
2

≤ Ce−2δρ(x),

(4.16)

where we again used (4.10) to go to the last line. We also employed the volume
comparison theorem, which says that KM ≥ −b2 implies that the volume of any
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geodesic ball Bx(6(1 + 1
b )) in M is bounded above by a universal constant Cb .

Indeed, Cb is the constant volume of any geodesic ball with radius 6(1 + 1
b ) in the

space form H
2(−b2).

Now, let us take K0 to be a sufficiently large positive integer for which K0 ≥

max{R0,
R(δ)

b + 6(1 + 1
b )}, where R0 is the sufficiently large universal constant

determined in Lemma 4.1. Then, by Lemma 4.1, for any positive integer k ≥ K0,
if we take the positive integer N(k) = [πebk] + 1 then, we can pick a list of vectors
vk,1, vk,2, vk,3, ....vk,N(k) ∈ S(∞) in such a way that we have the following inclusion

{x ∈M : k − 1 ≤ ρ(x) ≤ k + 1} ⊂ ∪
N(k)
i=1 Bcvk,i

(k)(3(1 +
1

b
)).

By combining inequality (4.16) and the above inclusion, it follows that

∫

{ρ(x)≥K0}
|∇{|∇F |2 + Ae−2δρ}| ≤

∞
∑

k=K0

∫

{k−1≤ρ(x)≤k+1}
|∇{|∇F |2 +Ae−2δρ}|

≤

∞
∑

k=K0

N(k)
∑

i=1

∫

Bcvk,i
(k)(3(1+

1
b
))

|∇{|∇F |2 +Ae−2δρ}|

≤

∞
∑

k=K0

N(k)
∑

i=1

Ce−2δk

≤
∞
∑

k=K0

C{[πebk] + 1}e−2δk

<∞.

(4.17)

We note that to obtain the last inequality
∑∞

k=K0
C{[πebk] + 1}e−2δk < ∞, we

use the fact that our fixed choice of δ lies within the range 1
2b < δ < a , so that

(2δ − b) > 0 is automatic, and hence
∑∞

k=K0
ebke−2δk =

∑∞
k=K0

e−(2δ−b)k <∞.
Next, we notice that the volume form onM (with respect to the geodesic normal

polar coordinates (r, θ) about O) is in the form of G(r, θ)drdθ, where G(r, θ) ≤
1
b sinh(br) thanks to the comparison theorem 2.8 for Jacobi fields (with KM ≥ −b2).
Hence, it follows again from 2δ > b that

∫

M

e−2δρ =

∫ 2π

0

∫ ∞

0

e−2δrG(r, θ)drdθ

≤

∫ 2π

0

∫ ∞

0

e−2δr 1

b
sinh(br)drdθ <∞.

(4.18)

Hence by (4.8), (4.17) and (4.18)
∫

{ρ(x)≥K0}
|∇|∇F |2| ≤

∫

{ρ(x)≥K0}
|∇{|∇F |2 +Ae−2δρ}|

+A(2δ)

∫

{ρ(x)≥K0}
e−2δρ <∞.(4.19)

Since |∇|∇F |2| is continuous in M , by(4.19) we must have
∫

M |∇|∇F |2| < ∞ as
needed. �
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5. Finite Dissipation

We begin with two propositions, which help us establish the energy inequality
(1.4). First, using g(·, ·) on T ∗M ⊗ T ∗M defined in Section 2, we can consider for
each 1-form θ, two non-negative valued functions g(Def θ,Def θ) ∈ C∞(M), and
g(∇θ,∇θ) ∈ C∞(M). We have the following relationship between them.

Lemma 5.1. For any given n-dimensional complete Riemannian manifold M ,
we have

(5.1) g(Def θ,Def θ) ≤ g(∇θ,∇θ).

Proof. Let p ∈M , and consider the geodesic normal coordinates (x1, x2, ..., xn)
about the point p, so that the natural frame ∂1|p, ∂2|p, ..., ∂n|p (induced by the ge-
odesic normal coordinates) at the point p is orthonormal, and that the Christoffel
symbols Γl

jk (induced by the geodesic normal coordinate) vanish at the point p.

Hence, for any 1-form θ =
∑

j θjdx
j we have θj;k(p) = ∂kθj(p). So, by (2.9) it

follows

g(Def θ,Def θ)|p

=
1

4
g(

∑

i,j

(∂iθj + ∂jθi)(p)dx
i ⊗ dxj |p,

∑

k,l

(∂kθl + ∂lθk)(p)dxk ⊗ dxl|p)

=
1

4

∑

i,j

∑

k,l

(∂iθj + ∂jθi)(p)(∂kθl + ∂lθk)(p)δikδjl

=
1

4

∑

i,j

(∂iθj + ∂jθi)(p)(∂iθj + ∂jθi)(p)

≤
1

2

∑

i,j

(∂iθj(p))
2 + (∂jθi(p))

2

=
∑

i,j

(∂iθj(p))
2.

On the other hand, by (2.13) the Christoffel symbols Γl
jk vanish at p, so it

follows that θ|p =
∑

i,j ∂iθj(p)dx
i ⊗ dxj |p. Hence

g(∇θ,∇θ)|p =
∑

i,j

(∂iθj(p))
2,

and
g(Def θ,Def θ)|p ≤

∑

i,j

(∂iθj(p))
2 = g(∇θ,∇θ)|p.

Since p ∈M is arbitrary in the above argument, it follows that the above inequality
is valid for all points in M as needed.

�

Corollary 5.2. For any given n-dimensional complete Riemannian manifold
M , if θ = dF , where F is any C2(M) function, we have

(5.2) g(Def θ,Def θ) = g(∇θ,∇θ).

Proof. The inspection of the above proof shows that in the only place where
we had inequality we could actually just do a direct computation to obtain equality
with the next line, and not use Cauchy’s inequality. �
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Proposition 5.3. Let a, b > 0 such that 1
2b < a ≤ b. Let M be a simply

connected, complete 2-dimensional Riemannian manifold with sectional curvature
−b2 ≤ KM ≤ −a2. Let φ ∈ C1(S(∞)) be any given boundary data, and let F ∈
C∞(M)∩C0(M) be the unique bounded harmonic function on M with F |S(∞) = φ.
Then the following holds

(5.3)

∫

M

g(∇(dF ),∇(dF )) = −

∫

M

Ric(∇F,∇F ) ≤ b2
∫

M

|∇F |2.

Proof. Let F ∈ C∞(M) ∩C0(M) be the unique bounded harmonic function
on M with F |S(∞) = φ, where φ ∈ C1(S(∞)) is some given boundary data.

Then again by (2.22)
(5.4)

∆(|∇F |2)(x) = 2
∑

1≤i,j≤2

[∂i∂jF ]2(x)+2
∑

1≤i,j≤2

∂iF (x)∂i(∆F )(x)+2 Ric(∇F,∇F )(x),

where ∂1, ∂2 is the natural coordinate frame induced by the geodesic normal coor-
dinates about the point x. So again by (2.13) Christoffel symbols Γl

jk vanish at x,
and we have

∑

1≤i,j≤2

[∂i∂jF ]2(x) = g(∇(dF ),∇(dF ))|x.

Also, as before we use ∆F = 0 in (5.4) to obtain

1

2
∆(|∇F |2)(x) = g(∇(dF ),∇(dF ))(x) + Ric(∇F,∇F )(x) ∀x ∈M.

Now, for each positive integer k ≥ 1, consider a smooth function ψk : [0,∞) →
R, which satisfies χ[0,2k] ≤ ψk ≤ χ[0,2k+1], and |ψ′

k| ≤
2
2k . Now, let O be a selected

base point in M , and let ρ be the distance function from O. Then, by multiplying
the above equality by the cut off function ψk(ρ) and integrating over M , we yield
the following equality
(5.5)
∫

M

1

2
div(∇|∇F |2)ψk(ρ) =

∫

M

ψk(ρ)g(∇(dF ),∇(dF )) +

∫

M

ψk(ρ)Ric(∇F,∇F ).

But since ψk(ρ) is compactly supported in BO(2k+1), it is plain to see that, for
every k ≥ 1, we have

|

∫

M

1

2
div(∇|∇F |2)ψk(ρ)| =

1

2
|

∫

M

2ψ′
k(ρ)∇ρ · ∇(|∇F |2)|

≤
2

2k

∫

M

|∇(|∇F |2)|.

(5.6)

Since, according to Proposition 4.3, we have
∫

M |∇(|∇F |2)| < ∞, it follows from
the above inequality that

(5.7) lim
k→∞

∫

M

1

2
div(∇|∇F |2)ψk(ρ) = 0.

On the other hand, by the monotone convergence theorem, we have

(5.8) lim
k→∞

∫

M

ψk(ρ)g(∇(dF ),∇(dF )) =

∫

M

g(∇(dF ),∇(dF )),

and that
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(5.9) lim
k→∞

∫

M

ψk(ρ) · (−Ric(∇F,∇F )) =

∫

M

(−Ric(∇F,∇F ))

As a result, by taking the limit of each side in equality (5.5), we get

(5.10) 0 =

∫

M

g(∇(dF ),∇(dF )) +

∫

M

Ric(∇F,∇F ).

That is, we have

∫

M

g(∇(dF ),∇(dF )) = −

∫

M

Ric(∇F,∇F ) ≤ b2
∫

M

|∇F |2,

in which the last inequality follows from the fact (2.11) that Ric(∇F,∇F ) =
KM |∇F |2 ≥ −b2|∇F |2. �

Corollary 5.4. Let a > 0 and let φ ∈ C1(S(∞)) be any given boundary data,

and let F ∈ C∞(H2(−a2))∩C0(H2(−a2)) be the unique bounded harmonic function

on H2(−a2) with F |S(∞) = φ. Then the following holds

(5.11)

∫

H2(−a2)

g(∇(dF ),∇(dF )) = a2

∫

H2(−a2)

|∇F |
2
.

Proof. This is immediate from equation (5.3) since Ric(∇F,∇F ) = −a2 |∇F |
2
.

�

6. Proofs of the main results

First we establish the following lemma. A simpler computation in normal co-
ordinates could also be done in the same spirit as the computation in the Euclidean
space. However, we present a different proof below due to its intrinsic nature.

Lemma 6.1. The following identity is valid for any smooth function f on any
given n-dimensional Riemannian manifold M .

(6.1) ∇∇fdf =
1

2
d |df |

2
.

Proof. First, for any smooth vector field X on a Riemannian manifold M ,
and for any smooth function f on M , we write

X(f) = 〈X, df〉TM⊗T∗M .

Next, recall that the Lie bracket [X,Y ] between two vector fields X and Y , is itself
another vector field, and is characterized by [X,Y ](f) = X(Y (f)) − Y (X(f)), for
any f ∈ C∞(M).

Now, for a given smooth function f on a Riemannian manifold M , we consider
the gradient field W = ∇f , which means that W ∗ = df . Then, by (2.1) it is plain
to see that

(6.2) W (f) = 〈W,df〉TM⊗T∗M = g(W,W ) = |W |2.

Next, we have the following identity for any smooth vector field X on M , due to the
fact that the Levi-Civita connection ∇ on TM is compatible with the Riemannian
metric g(·, ·) on M we have

(6.3)
1

2
X(|W |2) =

1

2
〈X, d(|W |2)〉TM⊗T∗M = g(∇XW,W ),
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and

〈X,∇WW ∗〉TM⊗T∗M = 〈X, (∇WW )∗〉TM⊗T∗M by (2.6)

= g(X,∇WW ) by (2.1)

= W (g(X,W )) − g(∇WX,W ) by compatibility

= W (〈X, df〉TM⊗T∗M ) − g(∇WX,W )

= W (X(f)) − g(∇WX,W ).(6.4)

But due to the torsion free property of the Levi-Civita connection ∇ on TM , which
says that −∇WX = [X,W ] −∇XW , we have

−g(∇WX,W ) = g([X,W ],W ) − g(∇XW,W ).

Hence by (6.4)

〈X,∇WW ∗〉TM⊗T∗M = W (X(f)) + g([X,W ],W ) − g(∇XW,W )

= W (X(f)) + [X,W ](f) −
1

2
X(|W |2) by (2.1) and (6.3)

= W (X(f)) +X(W (f)) −W (X(f)) −
1

2
X(|W |2)

=
1

2
X(|W |2),

where the last equality follows since X(W (f)) = X(|W |2) by (6.2). In conclusion,
by using (6.3) again, the following equality holds for any smooth vector field X on
M

< X,∇WW ∗ −
1

2
d(|W |2) >TM⊗T∗M= 0,

which means the same as saying that ∇∇fdf − 1
2d(|df |

2) = 0 as needed. �

6.1. Proof of Theorem 1.3. First we show existence and the lack of unique-
ness.
Existence and Non-uniqueness: For convenience we recall the Navier-Stokes
equation on H

2(−a2).

∂tU
∗ − ∆U∗ + ∇UU

∗ − 2 Ric(U∗) + dP = 0.

d∗U∗ = 0
(N-SH2(−a2))

Now, let φ ∈ C0(S(∞)), then by Theorem 2.9 there exists a (unique) harmonic

function F ∈ C∞(H2(−a2)) ∩ C0(H2(−a2)) satisfying F
∣

∣

S(∞)
= φ. We let our

initial data u0 = dF , and define a solution (U∗, P ) to be

(6.5) U∗ = ψ(t)dF, P = −∂tψ(t)F −
1

2
ψ2(t) |dF |

2
− 2a2ψ(t)F,

where ψ is any function satisfying

(6.6) ψ2(t) + 4a2

∫ t

0

ψ2(s)ds ≤ ψ2(0).

For example, we could let ψ(t) = exp(−At
2 ) for any A ≥ 4a2.

First we show (U∗, P ) solves N-SH2(−a2). This is very easy by the preparations
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we have done in Section 2.6. Indeed, by (2.42) ∆U∗ = 0, and we observe that by
Lemma 6.1 and (2.12),

∂tU
∗ + ∇UU

∗ − 2 Ric(U∗) = −dP.

It is also very easy to see that U∗ is divergence free since by definition of U∗

and (2.41) this is equivalent to F being harmonic.
Global energy inequality: Recall we want to show

∫

H2(−a2)

|U∗(t, x)|2 + 4

∫ t

0

∫

H2(−a2)

g(Def U∗,Def U∗)(s, x)ds ≤

∫

H2(−a2)

|u0|
2
.

Thanks to Corollary 5.2 we have
∫

H2(−a2)

|U∗(t, x)|2 + 4

∫ t

0

∫

H2(−a2)

g(Def U∗,Def U∗)(s, x)ds

=

∫

H2(−a2)

|U∗(t, x)|2 + 4

∫ t

0

∫

H2(−a2)

g(∇U∗,∇U∗)(s, x)ds.

By Corollary 5.4
∫

H2(−a2)

g(∇(dF ),∇(dF )) = a2

∫

H2(−a2)

|∇F (t, x)|
2
,

so
∫

H2(−a2)

g(∇U∗,∇U∗) = a2

∫

H2(−a2)

ψ2(t) |∇F (t, x)|
2
.

Hence by (2.3) and (6.6)
∫

H2(−a2)

|U∗(t, x)|2 + 4

∫ t

0

∫

H2(−a2)

g(∇U∗,∇U∗)ds

=

∫

H2(−a2)

ψ2(t) |∇F (x)|
2
+ 4a2

∫ t

0

∫

H2(−a2)

ψ2(s) |∇F (x)|
2
ds

=

(

ψ2(t) + 4a2

∫ t

0

ψ2(s)ds

)
∫

H2(−a2)

|∇F (x)|
2

≤ ψ2(0)

∫

H2(−a2)

|∇F (x)|
2

=

∫

H2(−a2)

|u0|
2
,

as needed.

Remark 6.2. We make a brief remark that in fact, the energy inequality could
be derived directly from the equation as follows. By starting with the equation for
(U∗, P ) as above and using that ∆U∗ = 0 we have

∂tU
∗ + ∇UU

∗ − 2 RicU∗ + dP = 0.

We further cancel out ∇UU
∗ with a part of the dP leaving

(6.7) ∂tU
∗ − 2 RicU∗ − ∂tU

∗ − 2a2U∗ = 0.
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Let 〈·, ·〉 denote ḡ(·, ·), then by (6.7)

0 = 〈∂tU
∗, U∗〉 − 〈2 RicU∗, U∗〉 + 〈∂tU

∗ − 2a2U∗, U∗〉(6.8)

=
1

2
∂t |U

∗|2 + 2a2ψ2〈dF, dF 〉 + (
A

2
− 2a2)ψ2〈dF, dF 〉(6.9)

≥
1

2
∂t |U

∗|2 + 2a2ψ2〈dF, dF 〉,(6.10)

if A ≥ 4a2, which is what we assume. We now integrate both in time and space.
To obtain the dissipation we use Corollary 5.4 and Lemma 5.1.

6.2. Proof of Theorem 1.7. The proof is very similar. Therefore we just
give a brief sketch.
Existence and Non-uniqueness: Again, for convenience, we recall the modified
Navier-Stokes equation on M .

∂tU
∗ − ∆U∗ + ∇UU

∗ + dP = 0,

d∗U∗ = 0.
(N-SM )

Let u0 = dF , and

(6.11) U∗ = ψ(t)dF, P = −∂tψ(t)F −
1

2
ψ2(t) |dF |

2
,

with ψ(t) = exp(−At
2 ) for any A > 4b2.. Then as before we can see the equation is

satisfied.
Global energy inequality: By Corollary 5.2 we need to establish

∫

M

|U∗(t, x)|2 + 4

∫ t

0

∫

M

g(∇U∗,∇U∗)ds ≤

∫

M

|u0|
2
.

By Proposition 5.3
∫

M

g(∇(dF ),∇(dF )) ≤ b2
∫

M

|∇F |
2
,

so
∫

M

g(∇U∗,∇U∗) ≤ b2
∫

M

ψ2(t) |∇F (t, x)|
2
.

Hence
∫

M

|U∗(t, x)|2 + 4

∫ t

0

∫

M

g(∇U∗,∇U∗)ds

≤

∫

M

ψ2(t) |∇F (x)|
2

+ 4b2
∫ t

0

∫

M

|ψ(s)∇F (x)|
2
ds

=

(

ψ2(t) + 4b2
∫ t

0

ψ2(s)ds

)
∫

M

|∇F (x)|
2

≤ ψ2(0)

∫

M

|∇F (x)|
2

=

∫

M

|u0|
2
,

as needed.
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6.3. Proof of Corollary 1.5 and 1.9. In the recent paper [16], Koch, Nadi-
rashvili, Seregin and Šverák studied Liouville thorems and their consequences for
the Navier-Stokes equation. One of the results is

Theorem. [16] Let u be a bounded weak solution of the Navier-Stokes equation
on R

2 × (−∞, 0). Then u(x, t) = b(t) for a suitable bounded measurable function
b : (∞, 0) → R

2.

The three dimensional problem is more difficult. Nevertheless Koch, Nadi-
rashvili, Seregin and Šverák are able to obtain corresponding results for the axi-
symmetric equations with no swirl. What Corollaries 1.5 and 1.9 show that in the
hyperbolic setting we can have bounded solutions in both two and three dimensions
(in fact, for any n ≥ 2) that are not functions of time only. The nontrivial bounded
solutions we choose are in the form of (6.5)

(6.12) U∗ = ψ(t)dF, P = −∂tψ(t)F −
1

2
ψ2(t) |dF |2 − 2a2(n− 1)ψ(t)F,

for N-SHn(−a2), and of the form (6.11) for (1.3). However, now we do not need the

special form of ψ. All we require of ψ is that it is C1 and bounded.
It would be interesting to find out whether or not these are the only bounded

solutions of N-SHn(−a2) and (1.3) .
Here we also mention the result of Galdi [6], which states

Theorem. [6] For the steady Navier-Stokes equation on R
3 whenever the so-

lution satisfies the finite dissipation property and u ∈ L
9/2
x , then u must be a trivial

solution, i.e. u is constant.

We note that in our case, we have a nontrivial solution, which belongs to L
9/2
x ,

but at this time we cannot say whether or not there exist nontrivial solutions in
three dimensions that also satisfy the finite dissipation property.
Proof of Corollary 1.5 and 1.9 Let n ≥ 2. Let ψ be bounded, and C1 in (6.12)
and in (6.11) and without the condition (6.6). It is obvious from the proof of The-
orems 1.3 and 1.7 that (6.12) and (6.11) are the solutions of N-SHn(−a2) and (1.3)
respectively since this is independent of the dimension of the underlying manifold.
Hence, we only need to verify that U∗ is L∞ bounded. That can be checked in
more than one way as follows, we could use the gradient estimate, Theorem 2.6 and
bound |dF | by F , which is bounded by definition or we could use the exponential
decay of the gradient, estimate (3.1).
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