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Existence and nonexistence of solutions for quasilinear

elliptic systems
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Abstract. In this paper, we are concerned with positive solutions of quasi-
linear elliptic systems with the homogeneous Dirichlet boundary condition. In
the case of αβ > (p − 1)(q − 1), under certain conditions we show that there
exists λ∗ > 0 such that for any λ ∈ (0, λ∗) the boundary value problem has at
least two positive solutions. In the case of αβ < (p − 1)(q − 1), we establish a
priori estimates and the existence of positive solutions.
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1. Introduction

Elliptic equations or systems, any of a class of partial differential equations
describes phenomena that do not change from moment to moment, as when a flow
of heat or fluid takes place within a medium with no accumulations. In addition
to satisfying a differential equation within the region, the elliptic equation is also
determined by its values (boundary values) along the boundary of the region, which
represent the effect from outside the region. These condition can be either those of
a fixed temperature distribution at points of the boundary (Dirichlet problem) or
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those in which heat is being supplied or removed across the boundary in such a way
as to maintain a constant temperature distribution throughout (Neumann problem)
[3, 17]. Nowadays, elliptic partial differential equations have applications in almost
all areas of mathematics, from harmonic analysis to geometry to Lie theory, as well
as numerous applications in physics and engineering with a well-developed theory
[2, 4, 5, 7, 9, 13, 19, 20, 21].

Consider the quasilinear elliptic system























−∆pu = λ(a + uδ + vα), x ∈ Ω,

−∆qv = λ(b + uβ + vγ), x ∈ Ω,

u > 0, v > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where a and b are two positive constants, and Ω is a bounded smooth domain. One
can see that system (1.1) has no variational structure. So it is difficult to study the
existence of the solution of system (1.1) by using variational methods. For certain
non-variational quasilinear elliptic systems, the existence of nontrivial solutions has
been studied extensively [2, 5, 19, 20].

Let us briefly review some related studies on the topic. In [5], Clément et al
considered positive radial solutions of the quasilinear elliptic system























−∆pu = uαvβ , x ∈ BR,

−∆qv = uγvδ, x ∈ BR,

u > 0, v > 0, x ∈ BR,

u = v = 0, x ∈ ∂BR,

(1.2)

and assumed the so-called globally superhomogeneous structure

βγ > (p − 1 − α)(q − 1 − δ).

System (1.2) is unstable in the sense that possible solutions of (1.2) cannot be
obtained by iterative methods or the upper-lower solutions technique. A sufficient
condition was obtained for the existence of a positive radial solution of system (1.2)
in the nonvariational case.

In [2], Azizieh et al used continuation and moving hyperplane methods to prove
existence and a priori estimates for p-Laplace systems of the form











−∆p1u = f(|v|), x ∈ Ω,

−∆p2v = g(|u|), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.3)

where 1 < p1, p2 < N , Ω ⊂ R
N is bounded and convex, and f, g : R → R

+ are
nondecreasing, locally Lipschitz continuous functions satisfying

C1|s|
q1 ≤ f(s) ≤ C2|s|

q1 , D1|s|
q2 ≤ g(s) ≤ D2|s|

q2 , ∀s ∈ R
+

for some positive constants C1, C2, D1 and D2, and q1q2 > (p1 − 1)(p2 − 1).
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In [19], Wang dealt with the existence and nonexistence of positive radial so-
lutions for the weakly coupled quasilinear system











−∆pu = λf(v), x ∈ B1(0),

−∆pv = λg(u), x ∈ B1(0),

u = v = 0, x ∈ ∂B1(0).

It is shown that there is a positive radial solution of the problem for various intervals
of λ in sublinear cases by the topological degree theory and fixed point theorems
in a cone.

We denote

W = W 1,p
0 (Ω) × W 1,q

0 (Ω), E = C1
0 (Ω̄) × C1

0 (Ω̄).

BR is the ball in RN (N > 1) with center zero and radius R. A connected and closed
set S+ ⊂ [0,∞) × E is said to be a continuum of solutions of system (1.1) if S+

consists of solutions (λ, u, v) of system (1.1). Generally, (u, v) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω)

is said to be a weak solution of system (1.1) if for any (φ1, φ2) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω)
we have

∫

Ω

|∇u|p−1∇u∇φ1 = λ

∫

Ω

(a + uδ + vα)φ1,
∫

Ω

|∇v|q−1∇v∇φ2 = λ

∫

Ω

(b + uβ + vγ)φ2.

Note that if 1 < p and q < N , then it has

W 1,p
0 (Ω) × W 1,q

0 (Ω) →֒ L∞(Ω) × L∞(Ω).

Since

(−∆p)
−1 : L∞(Ω) → C1+η

0 (Ω̄), (−∆q)
−1 : L∞(Ω) → C1+η

0 (Ω̄)

are completely continuous (0 < η < 1) [18], any weak solution (u, v) of system (1.1)

is a solution belonging to C1+η
0 (Ω̄) × C1+η

0 (Ω̄), namely, (u, v) ∈ E. But in general
when p, q > 1, the weak solution of system (1.1) may not necessarily belong to E.
Throughout this paper, if there is no special statement, a solution of system (1.1)

is considered to belong to E or C1+η
0 (Ω̄) × C1+η

0 (Ω̄).
In [20], the regularity (or partial regularity) of weak solutions to a quasilinear

elliptic system with lower-order terms was studied. The main aim of this paper is
to use topological methods to study the existence and nonexistence of solutions of
system (1.1) in the cases of αβ > (p−1)(q−1) and αβ < (p−1)(q−1), respectively.
Under the conditions that αβ > (p − 1)(q − 1) and Ω is a ball, we will establish
a priori estimates of solutions by means of the blow-up method. Furthermore, we
obtain the following Theorem 1 by using the topological degree theory. For a single
equation, the similar problems have been studied in [10, 14]. For example, in [10],
Fleckinger and Reichel were concerned with global continua of positive solutions
for the equation

{

−∆pu = λ(1 + uq), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where q > p − 1 and 1 < p ≤ 2. By using a topological degree argument and a
weighted Poincaré inequality, they obtained that there exists an unbounded con-
tinuum of solutions for subcritical values of q. For supercritical exponents q it is
shown that the problem has a unique solution for the small values of λ > 0.
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Motivated by these results, we obtain the following Theorem on an unbounded
continuum of solutions of system (1.1):

Theorem 1. Suppose that Ω = BR. Let

αβ > (p − 1)(q − 1), 1 < p, q < N,

max

{

N1 −
N − p

p − 1
, N2 −

N − q

q − 1

}

≥ 0

and

p − 1 ≤ δ < (p − 1) + p/N1, q − 1 ≤ γ < (q − 1) + q/N2,(1.4)

where

N1 =
qα + p(q − 1)

αβ − (p − 1)(q − 1)
, N2 =

pβ + q(p − 1)

αβ − (p − 1)(q − 1)
.

Then, the following assertions hold.
(a) There exists an unbounded continuum S+ ⊂ [0,∞)×C1

0 (Ω̄)×C1
0 (Ω̄) of solutions

of system (1.1), which is bounded in the λ-direction.
(b) There exists a positive value λ∗ > 0 such that

(i) for any 0 < λ < λ∗, system (1.1) has at least two solutions on S+;
(ii) for λ = λ∗, system (1.1) has at least one solution on S+;
(iii) for any λ > λ∗, system (1.1) has no solution.

When αβ < (p−1)(q−1) and Ω is a bounded smooth domain, we do not make
use of the blow-up method, since it is unclear whether there exists the corresponding
Liouville-type theorem in this case.

Let
p∗ =

np

n − p
, q∗ =

nq

n − q
.

Assume that
(H1) 0 < δ < p − 1 and 0 < γ < q − 1;

(H2)
p
p∗

+ α
q∗

< 1 and q
q∗

+ β
p∗

< 1.

Under conditions (H1) and (H2), we consider a priori estimates of weak solutions of
system (1.1) by the regularity arguments. Moreover, we have the following result:

Theorem 2. Suppose that αβ < (p− 1)(q − 1), and conditions (H1) and (H2)
hold. Then for any λ > 0, system (1.1) has at least one solution.

When δ = p− 1 and γ = q − 1 in system (1.1), we have the following theorem:

Theorem 3. Let δ = p − 1 and γ = q − 1 in system (1.1). Suppose that
αβ < (p − 1)(q − 1) and (H2) holds. Then there exists λ∗ > 0 such that

(i) system (1.1) has no solution for any λ > λ∗;
(ii) system (1.1) has at least one solution for any 0 < λ < λ∗.

Furthermore, there exist a sequence {λn} and a sequence solutions {(uλn
, vλn

)} of
system (1.1) satisfying λn → λ∗ and |uλn

|∞ + |vλn
|∞ → ∞ (as n → ∞).

It is remarkable that under the assumption either δ = p− 1 and 0 < γ < q − 1
or γ = q−1 and 0 < δ < p−1 in system (1.1), when (H2) holds, we can also derive
the same result as described in Theorem 3.

The rest of this paper is organized as follows. In Section 2 we present some
preliminary results which will be used in the proofs of our main results. In Section
3 we prove Theorem 1, and in Section 4 we prove Theorems 2 and 3, respectively.
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2. Preliminaries

In order to present proofs of our main results in a straightforward way, in this
section we recall some basic lemmas, which include the maximum principle for the
p-Laplacian operator [11]:

Lemma 1. Assume that Ω ⊂ RN is a bounded domain of class C1+η, 0 < η < 1,
and suppose that a ∈ L∞(Ω). Then the following assertions are equivalent:

(i) L = −∆p + aϕp satisfies the maximum principle, where ϕp(s) = |s|p−2s;
(ii) L = −∆p + aϕp satisfies the strong maximum principle;
(iii) λ1,p(a) > 0, where λ1,p(a) denotes the first eigenvalue of L with the ho-

mogeneous Dirichlet boundary condition;
(iv) there exists a positive and strict supersolution φ ∈ W 1,p(Ω) ∩ L∞(Ω) of

L u = 0 in Ω and u = 0 on ∂Ω, such that −∆pφ + a(x)ϕp(φ) ∈ L∞(Ω) and
φ|∂Ω ∈ C1+η(∂Ω).

Suppose that P is a cone of the real Banach space X and ‘≤’ denotes the order
produced by P . We say that P is normal if and only if each order interval in X is
bounded. Let X ′ ⊂ X . An operator N is said to be an increasing operator in X ′

if any x1, x2 ∈ X ′ satisfying x1 ≤ x2 implies Nx1 ≤ Nx2.
The following is a lemma regarding a fixed point for the increasing operator

[1].

Lemma 2. Suppose that x0, y0 ∈ X with x0 ≤ y0, and N : [x0, y0] → X is an
increasing operator satisfying

x0 ≤ Nx0, Ny0 ≤ y0.

If P is normal and N is a completely continuous operator, then N has a minimal
fixed point x∗ and a maximal fixed point y∗ in the interval [x0, y0] such that

x∗ = lim
n→∞

xn, y∗ = lim
n→∞

yn,

where xn = Nxn−1 and yn = Nyn−1 satisfy

x0 ≤ x1 ≤ ... ≤ xn ≤ ... ≤ x∗ ≤ y∗ ≤ ... ≤ yn ≤ ... ≤ y1 ≤ y0.

Consider a parameter-dependent problem of the form

x − F (λ, x) = 0(2.5)

in a Banach space X, where x ∈ X and λ ∈ R. Solutions of equation (2.5) can be
described by the following global continuation theorem, which is actually a global
version of the implicit function theorem [3, 8].

Lemma 3. Let F : R × X → X be completely continuous and (λ0, x0) be a
solution of equation (2.5). Suppose that U is a bounded and open set such that
x0 ∈ U and

(i) for fixed λ0 there is no other solution in U ;
(ii) the Leray-Schauder degree deg(I − F (λ0, ·), U , 0) 6= 0.

Then there exists a closed and connected (=continuum) S+ ⊂ [λ0,∞) × X of so-
lutions of system (2.5) with (λ0, x0) ∈ S+ and one of the following two alternative
holds:

(a) S+ is unbounded,
(b) S+ ∩ ({λ0} × X \ U) 6= ∅.
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To find a priori estimates for solutions of system (1.1), we need the lemma [16]:

Lemma 4. Let 1 < p, q < N and αβ > (p − 1)(q − 1). Suppose that

max

{

N1 −
N − p

p − 1
, N2 −

N − q

q − 1

}

≥ 0.

Then the system










−∆pu ≥ c1v
α, x ∈ R

N ,

−∆qv ≥ c2u
β , x ∈ R

N ,

u, v > 0,

has no solution (u, v) ∈ C1(RN )×C1(RN ) satisfying |u|∞ ≤ 1 and |v|∞ ≤ 1, where
c1 and c2 are two positive constants.

3. Proof of Theorem 1

In this section, our objective is to investigate the existence and nonexistence of
solutions of system (1.1) with Ω = BR. It follows from the moving plane method
that any solutions of system (1.1) are all radially symmetric (see [15]). Denote

L(I, R) = {u ∈ C(I, R) : u(R) = 0}, D = L(I, R) × L(I, R),

where I = [0, R]. Apparently, D is a real Banach space induced by the maximum
norm and

P = {(u, v) ∈ D : (u, v) ≥ (0, 0)}

is a normal cone in D. In order to show the branch of solutions of system (1.1), we
need to define the following solution-operator N associated with system (1.1) by

N (λ, u, v) = (ū, v̄),

where ht(s) = |s|tsign(s), and

ū(r) =

∫ R

r

h1/(p−1)

(

s1−N

∫ s

0

tN−1λ(a + |u(t)|δ + |v(t)|α)dt

)

ds,(3.6)

v̄(r) =

∫ R

r

h1/(q−1)

(

s1−N

∫ s

0

tN−1λ(b + |u(t)|β + |v(t)|γ)dt

)

ds.(3.7)

We denote the norm of the Banach space D by

|(u, v)|∞ = |u|∞ + |v|∞.

By the Arzela-Ascoli Theorem, we know that N : [0,∞)×D → D is completely con-
tinuous. It is easy to see that (u, v) ∈ D solves system (1.1), namely, (u(|x|), v(|x|))
is a solution of system (1.1) if and only if (u, v) is a fixed point of N (λ, ·, ·).

Proposition 1. Assume that δ ≥ p − 1 or γ ≥ q − 1. Then system (1.1) has
no solution for sufficiently large λ > 0.

Proof of Proposition 1. The assumption δ ≥ p−1 implies λ(a+sδ +tα) >
λ(a + sδ) > λ1,p(0)sp−1 for any s, t > 0 and large λ > 0, where λ1,p(0) denotes
the first eigenvalue of −∆p with the homogeneous Dirichlet boundary condition.
Suppose that (u, v) is a solution of system (1.1), then we have

{

−∆pu − λ1,p(0)up−1 > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.
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By the regularity argument, we have (u, v) ∈ C1+η
0 (Ω̄)×C1+η

0 (Ω̄), where 0 < η < 1.
It follows from Lemma 1 that λ1,p(−λ1,p(0)) > 0. This yields a contradiction to
λ1,p(−λ1,p(0)) = 0. For the case of γ ≥ q − 1, the proof is closely similar, so we
omit it. �

Since (0, 0) is only one fixed point of N at λ = 0 and N (0, ·, ·) = 0, by the
normal property of the Leray-Schauder degree, it follows that

Proposition 2. For a bounded and open subset U ⊂ D and (0, 0) ∈ U , we
have

deg(I −N (0, ·, ·), U , 0) = 1.

Now, we give a priori estimates for solutions of system (1.1) by using the scaling
argument, which plays a critical role in the proof of Theorem 1.

Proposition 3. Let 1 < p and q < N . Suppose that

αβ > (p − 1)(q − 1),

max

{

N1 −
N − p

p − 1
, N2 −

N − q

q − 1

}

≥ 0,

and

0 < δ < (p − 1) + p/N1, 0 < γ < (q − 1) + q/N2.

Then for any λ̄ > λ > 0, there exists M > 0 such that

|uλ|∞ + |vλ|∞ ≤ M

holds for λ ∈ [λ, λ̄] and any fixed point (uλ, vλ) ∈ D of N (λ, ·, ·).

Proof of Proposition 3. Suppose that there exists a sequence λn ∈ [λ, λ̄]
such that the corresponding N (λn, ·, ·) has a fixed point (un, vn) ∈ D satisfying

|un|∞ + |vn|∞ → ∞ (n → ∞).

From (3.6) and (3.7), it follows that un and vn attain the maximum values at 0
and u′

n(r), v′n(r) ≤ 0. Let (σ, l) be the solution of the following linear system:
{

σ(1 − p) − p + αl = 0,

l(1 − q) − q + βσ = 0,
(3.8)

that is,

l =
pq − q + βp

αβ − (p − 1)(q − 1)
> 0, σ =

pq − p + αq

αβ − (p − 1)(q − 1)
> 0.

Denote

un(0) = µn, vn(0) = τn, Cn = µ1/σ
n + τ1/l

n .

It is clear that Cn → ∞ as n → ∞. Assume µ
1/σ
n ≥ τ

1/l
n and denote

ũn(r̃) =
un(C−1

n r̃)

An
, ṽn(r̃) =

vn(C−1
n r̃)

Bn
,
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where An = Cσ
n and Bn = Cl

n. Thus, we have

−[r̃N−1hp−1(ũ
′
n(r̃))]′

= −[r̃N−1hp−1(
u′

n(r̃C−1
n )

AnCn
)]′

= −A1−p
n C1−p

n [r̃N−1hp−1(u
′
n(r̃C−1

n ))]′

= −A1−p
n CN−p−1

n [rN−1hp−1(u
′
n(r))]′

= rN−1CN−p−1
n A1−p

n [λn(a + |un(r)|δ + |vn(r)|α)]

= r̃N−1(aλnC−p
n A1−p

n + λnC−p
n Aδ−p+1

n ũδ + λnC−p
n A1−p

n Bα
n ṽα

n).

Similarly, we have

−[r̃N−1hq−1(ṽ
′
n(r̃))]′ = r̃N−1(bλnC−q

n B1−q
n +λnC−q

n Bγ−q+1
n ṽγ

n+λnB1−q
n C−q

n Aβ
nũβ

n).

Without loss of generality, we assume λn → λ0 ∈ [λ, λ̄] as n → ∞. It is clear
that

aλnC−p
n A1−p

n → 0 (n → ∞),

bλnC−q
n B1−q

n → 0 (n → ∞).

Since
0 < δ < (p − 1) + p/N1, 0 < γ < (q − 1) + q/N2,

we have
σδ − p + (1 − p)σ < 0, l(1 − q) − q + lγ < 0,

and
λnC−p

n Aδ−p+1
n → 0 (n → ∞),

λnC−q
n Bγ−q+1

n → 0 (n → ∞).

For the sake of conciseness, we denote

wn(x) = ũn(|x|), zn(x) = ṽn(|x|)

for each x ∈ BCnR(0), then we have that
{

−∆pwn = aλnC−p
n A1−p

n + λnC−p
n Aδ−p+1

n wδ
n + λnC−p

n A1−p
n Bα

nzα
n ,

−∆qzn = bλnC−q
n B1−q

n + λnC−q
n Bγ−q+1

n zγ
n + λnC−q

n B1−q
n Aβ

nwβ
n .

(3.9)

Since 0 ≤ wn and zn ≤ 1, by regularity arguments for quasilinear elliptic equa-
tions [18], it follows that {(wn, zn)} has a convergent subsequence in C1

loc(R
N ) ×

C1
loc(R

N ). Without loss of generality, we assume that

wn → w, zn → z (as n → ∞)

in C1
loc(R

N ). Since

ũn(0) = µn/(µ1/σ
n + τ1/l

n )
σ
,

we have
1

2σ
≤ w(0) ≤ 1.

Using the maximum principle, we can deduce that
{

−∆pw = λ0z
α, x ∈ R

N ,

−∆qz = λ0w
β , x ∈ R

N ,
(3.10)

where |w|∞ ≤ 1, |z|∞ ≤ 1, w > 0 and z > 0, which gives a contradiction with
Lemma 4.

When τ
1/l
n ≥ µ

1/σ
n , the argument is almost the same. �
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Remark 1. Proposition 3 gives a priori bounds of maximum norm for so-
lutions. Indeed, for any λ̄ > λ > 0, by combining with regularity arguments for
quasilinear elliptic equations, there exists M ′ > 0 such that

|(uλ, vλ)|∞ + |(u′
λ, v′λ)|∞ ≤ M ′

for each λ ∈ [λ, λ̄] and any fixed point (uλ, vλ) ∈ D of N (λ, ·, ·).

Proof of Theorem 1. When λ = 0, N (0, ·, ·) has a unique fixed point (0, 0).
By Lemma 3 and Proposition 2, there exists an unbounded continuum S+ ⊂
[0,∞) × D of solutions of (u, v) = N (λ, u, v). It follows from Proposition 1 that
the continuum S+ is bounded in the λ-direction, so it has to become unbounded in
the direction of the Banach space D. In virtue of Proposition 3, S+ bends back to
λ = 0 and becomes unbounded near λ = 0. Let S ⊂ [0,∞)×D be the set containing
all solutions of (u, v) = N (λ, u, v). In order to make S+ maximally connected we
replace S+ by the connected components of S containing S+. For our convenience,
we still denote it by S+. Let [0, λ∗] be the projection of S+ onto the λ-direction.
We still denote u(|x|) by u(x), and the other radially symmetric functions are also
denoted in this way.

Step 1 For any λ > λ∗, system (1.1) has no radially symmetric solution.
Otherwise, there exists µ > λ∗ such that system (1.1) with λ = µ has a radially
symmetric solution, and we denote it by (uµ, vµ). Since N (µ, 0, 0) ≥ (0, 0) and
N (µ, uµ, vµ) = (uµ, vµ), in virtue of Lemma 2, N (µ, ·, ·) has a minimal fixed point
(uµ, vµ). Denote

V = [0, µ] ×
{

(u, v) ∈ D1 : 0 < u(x) < uµ(x), 0 < v(x) < vµ(x), ∀x ∈ Ω,

and 0 >
∂u(x)

∂ν
>

∂uµ(x)

∂ν
, 0 >

∂v(x)

∂ν
>

∂vµ(x)

∂ν
, ∀x ∈ ∂Ω

}

,

where D1 consists of all radially symmetric functions in C1
0 (Ω̄) × C1

0 (Ω̄). Since
(0, 0, 0) ∈ S+, for sufficiently small λ > 0, there exists the corresponding (λ, uλ, vλ) ∈
S+ such that

λmax{(a + uδ
λ + vα

λ ), (b + uβ
λ + vγ

λ)} < µ min{a, b}.

So, the strong comparison principle implies S+ ∩ V 6= ∅. If there exist λ ∈ (0, µ)
and the corresponding solution (λ, uλ, vλ) ∈ S+ satisfying (λ, uλ, vλ) ∈ V̄ , then
by the strong comparison principle [6], we have (λ, uλ, vλ) ∈ V . Hence, S+ stays
inside V, which is a contradiction to the unboundedness of S+.

Step 2 For any λ ∈ (0, λ∗), it holds that (λ, uλ, vλ) ∈ S+, where (uλ, vλ) is a
minimal fixed point of N (λ, ·, ·). Suppose that there exists λ′ ∈ (0, λ∗) such that
(λ′, uλ′ , vλ′) 6∈ S+, where (uλ′ , vλ′) is a minimal fixed point of N (λ′, ·, ·). Denote

V = [0, λ′] ×
{

(u, v) ∈ D1 : 0 < u(x) < uλ′(x), 0 < v(x) < vλ′(x), ∀x ∈ Ω,

and 0 >
∂u(x)

∂ν
>

∂uλ′(x)

∂ν
, 0 >

∂v(x)

∂ν
>

∂vλ′(x)

∂ν
, ∀x ∈ ∂Ω

}

.

Using a similar argument as that given in Step 1, we can obtain a contradiction to
the unboundedness of S+ too.

Step 3 For any λ ∈ (0, λ∗), there exists (λ, ūλ, v̄λ) ∈ S+ such that

(ūλ, v̄λ) 6≤ (uλ∗ , vλ∗),
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where (uλ∗ , vλ∗) is a minimal fixed point of N (λ∗, ·, ·). Otherwise, there exists

λ̃ ∈ (0, λ∗) such that for any (λ̃, ũ, ṽ) ∈ S+ we have

(ũ, ṽ) ≤ (uλ∗ , vλ∗).(3.11)

Let

U = [0, λ̃)×{(u, v) ∈ D1 : ∃x ∈ Ω such that u(x) > uλ∗(x) or v(x) > vλ∗(x)}.

U is a relatively open set for [0,∞)×D1. Since S+ becomes unbounded near λ = 0,
we have S+ ∩U 6= ∅. It is easy to see S+ ∩ Ū c 6= ∅ and connectedness of S+ implies
S+ ∩ ∂U 6= ∅. So we have

∂U = ({λ̃} × Z̄) ∪ ([0, λ̃] × ∂Z),

where

Z = {(u, v) ∈ D1 : ∃x ∈ Ω such that u(x) > uλ∗(x) or v(x) > vλ∗(x)}.

Let

Z̄1 =

{

(u, v) ∈ D1 : ∃x ∈ ∂Ω such that
∂u(x)

∂ν
≤

∂uλ∗(x)

∂ν

or
∂v(x)

∂ν
≤

∂vλ∗(x)

∂ν

}

,

Z̄2 = {(u, v) ∈ D1 : ∃x ∈ Ω such that u(x) ≥ uλ∗(x) or v(x) ≥ vλ∗(x)}.

So we see that Z̄ = Z̄1 ∪ Z̄2.
By (3.11) and the strong comparison principle, we have

S+ ∩ ({λ̃} × Z̄) = ∅,

which implies

([0, λ̃] × ∂Z) ∩ S+ 6= ∅.

Clearly, it holds that Z̄c = Y1 ∩ Y2, where

Y1 = {(u, v) ∈ D1 : u(x) < uλ∗(x), v(x) < vλ∗(x), ∀x ∈ Ω},

Y2 =

{

(u, v) ∈ D1 :
∂u(x)

∂ν
>

∂uλ∗(x)

∂ν
,
∂v(x)

∂ν
>

∂vλ∗(x)

∂ν
, ∀x ∈ ∂Ω

}

.

Hence, we see ∂Z = ∂(Z̄c). Using the strong comparison principle again gives

([0, λ̃] × ∂Z) ∩ S+ = ∅, which is a contradiction.
By Lemma 2, for any λ ∈ (0, λ∗), we have (uλ, vλ) ≤ (uλ∗ , vλ∗). Consequently,

for any λ ∈ (0, λ∗), system (1.1) has at least two solutions. When λ = λ∗, by virtue
of compact arguments, system (1.1) has a solution. Since solutions of system (1.1)
are all radially symmetric, From the discussion in Step 1 it indicates that system
(1.1) has no solution for any λ > λ∗. �

Remark 2. From the above proof, one can see that the condition (1.4) can
actually be weakened. Theorem 1 still holds if (1.4) is replaced by the following
condition:

0 < δ < (p − 1) + p/N1, 0 < γ < (q − 1) + q/N2,

and

δ ≥ p − 1 or γ ≥ q − 1.
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Remark 3. We can also apply the same idea to consider a more general prob-
lem























−∆pu = λ(a1 + f1(u) + g1(v)), x ∈ Ω,

−∆qv = λ(a2 + f2(u) + g2(v)), x ∈ Ω,

u > 0, v > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(3.12)

where a1 and a2 are positive constants. If f1, f2, g1 and g2 are nondecreasing and
continuous functions, and there are c1, c2 > 0 such that for any s > 0,

c1s
δ ≤ f1(s) ≤ c2s

δ, c1s
β ≤ f2(s) ≤ c2s

β ,

c1s
α ≤ g1(s) ≤ c2s

α, c1s
γ ≤ g2(s) ≤ c2s

γ ,

hold, then Theorem 1 is true for system (3.12).

4. Proofs of Theorems 2 and 3

In this section, we assume that αβ < (p− 1)(q− 1) and Ω is a bounded and

smooth domain. We denote the norm of W 1,p
0 (Ω) and W 1,q

0 (Ω) by ‖ · ‖p and ‖ · ‖q

as follows, respectively

‖u‖p =

(
∫

Ω

|∇u|pdx

)
1
p

, ‖v‖q =

(
∫

Ω

|∇v|qdx

)
1
q

.

Let

E0 = C0(Ω̄) × C0(Ω̄),

where C0(Ω̄) = {u ∈ C(Ω̄) : u|∂Ω = 0}.
For any weak solution belonging to E0, the regularity arguments imply that

the weak solution belongs to C1+η
0 (Ω̄) × C1+η

0 (Ω̄), where 0 < η < 1. So, using a
similar argument to the proof of Proposition 1, we obtain

Proposition 4. Suppose that δ = p−1 or γ = q−1. Then there exists λ0 > 0
such that for any λ > λ0 system (1.1) has no weak solution belonging to E0.

Let

λ0 = sup{λ > 0 : syetem (1.1) has a solution}.

Remark 4. Suppose that δ = p − 1 and γ = q − 1. According to Proposition
4, if there exists some λ > 0 such that the corresponding system (1.1) has a weak
solution belonging to E0, then λ0 < ∞. Moreover, it follows from Lemma 1 that
λ0 ≤ min{λ1,p(0), λ1,q(0)}.

Proposition 5. Suppose that (H1) and (H2) hold. Then for any λ̄ > 0, there
exists M > 0 such that

‖uλ‖p ≤ M, ‖vλ‖q ≤ M(4.1)

hold for λ ∈ [0, λ̄] and each weak solution (uλ, vλ) of system (1.1).
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Proof of Proposition 5. Suppose that λ ∈ [0, λ̄] and (uλ, vλ) is an arbi-
trary weak solution of system (1.1). Then, we have

∫

Ω

|∇uλ|
p = λ

∫

Ω

(a + uδ
λ + vα

λ )uλ ≤ λ̄

∫

Ω

(a + uδ
λ + vα

λ )uλ,(4.2)

∫

Ω

|∇vλ|
q = λ

∫

Ω

(b + uβ
λ + vγ

λ)vλ ≤ λ̄

∫

Ω

(b + uβ
λ + vγ

λ)vλ.(4.3)

Denote by C(λ̄) and c(λ̄) the constants only depending on λ̄, Ω and the best Sobolev
constants for the embedding, but they may vary from lines to lines. Due to (4.2),
one can see

‖uλ‖
p
p ≤ C(λ̄) +

1

2

∫

Ω

|∇uλ|
p + λ̄

∫

Ω

(uδ+1
λ + uλvα

λ ),

that is,

‖uλ‖
p
p ≤ C(λ̄) + 2λ̄

∫

Ω

(uδ+1
λ + uλvα

λ ).

Since δ + 1 < p, it follows Young’s inequality that

‖uλ‖
p
p ≤ C(λ̄) + c(λ̄)

∫

Ω

uλvα
λ .(4.4)

By p
p∗

+ α
q∗

< 1 (implies 1
p∗

+ α
q∗

< 1) and Hölder’s inequality, inequality (4.4)

implies that

‖uλ‖
p
p ≤ C(λ̄) + c(λ̄)

(
∫

Ω

|uλ|
p∗

)
1

p∗
(

∫

Ω

|vλ|
q∗

)
α
q∗

≤ C(λ̄) + c(λ̄)‖uλ‖p‖vλ‖
α
q .(4.5)

Similarly, we have

‖vλ‖
q
q ≤ C(λ̄) + c(λ̄)‖uλ‖

β
p‖vλ‖q.(4.6)

Suppose that (4.1) is not true, then there exist a sequence λn ∈ [0, λ̄] and the
corresponding (uλn

, vλn
) such that

‖uλn
‖p → ∞ or ‖vλn

‖q → ∞.

For our convenience, let un = uλn
and vn = vλn

. If ‖un‖p → ∞, by (4.5) it implies
‖vn‖q → ∞. If ‖vn‖q → ∞, by (4.6) it implies ‖un‖p → ∞. So, we have

‖un‖p → ∞ and ‖vn‖q → ∞.(4.7)

From (4.5)–(4.6), it follows that

1 ≤ o(1) + c(λ̄)
‖vn‖α

q

‖un‖p−1
p

,(4.8)

1 ≤ o(1) + c(λ̄)
‖un‖β

p

‖vn‖q−1
q

.(4.9)

In virtue of (4.8) and (4.9) and letting n be large enough, we have

‖vn‖
α
q ≥

1

2c(λ̄)
‖un‖

p−1
p , ‖un‖

β
p ≥

1

2c(λ̄)
‖vn‖

q−1
q .(4.10)

It follows from (4.10) that

‖vn‖
α
q ≥

(

1

2c(λ̄)

)(p−1+β)/β

‖vn‖
(q−1)(p−1)/β
q .(4.11)
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Since (p − 1)(q − 1) > αβ, it becomes impossible for (4.11) as ‖vn‖q → ∞. Conse-
quently, the proof is completed. �

Proposition 6. If δ = p − 1, γ = q − 1 and (H2) holds, then for any given
0 < λ̄ < λ0, there exists M > 0 such that

‖uλ‖p ≤ M, ‖vλ‖q ≤ M

hold for λ ∈ [0, λ̄] and each weak solution (uλ, vλ) of system (1.1).

Proof of Proposition 6. By (H2) and the regularity arguments, any weak
solution of system (1.1) belongs to E0. From Remark 4, it follows that λ0 ≤
min{λ1,p(0), λ1,q(0)}. So we have

∫

Ω

|∇uλ|
p = λ

∫

Ω

(a + uδ
λ + vα

λ )uλ ≤ λ̄

∫

Ω

(a + up−1
λ + vα

λ )uλ,(4.12)

∫

Ω

|∇vλ|
q = λ

∫

Ω

(b + uβ
λ + vγ

λ)vλ ≤ λ̄

∫

Ω

(b + uq−1
λ + vγ

λ)vλ.(4.13)

By (4.12) and (4.13), we get
(

1 −
λ̄

λ1,p(0)
− ǫ

)
∫

Ω

|∇uλ|
p ≤ C(λ̄) + λ̄

∫

Ω

uλvα
λ ,(4.14)

(

1 −
λ̄

λ1,q(0)
− ǫ

)
∫

Ω

|∇vλ|
p ≤ C(λ̄) + λ̄

∫

Ω

vλuβ
λ,(4.15)

where

0 < ǫ < min{1 −
λ̄

λ1,p(0)
, 1 −

λ̄

λ1,q(0)
}.

By (4.14) and (4.15), a straightforward calculation leads to (4.5) and (4.6). The
rest proof is similar to that of Proposition 5, so we omit it. �

The following proposition is a regularity result, which also gives a priori esti-
mates of the solution of system (1.1).

Proposition 7. Suppose that δ = p − 1, γ = q − 1, and (H2) holds. Then for
any given λ̄ < λ0, there exists M such that

|uλ|∞ ≤ M, |vλ|∞ ≤ M

hold for λ ∈ [0, λ̄] and any weak solution (uλ, vλ) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) of system
(1.1).

Proof of Proposition 7. We will use the standard method of regularity
arguments. Due to (H2), it follows that

µ =
(q∗ − α)p∗

pq∗
> 1,

pµ

p∗
+

α

q∗
= 1.

Let

ZL = uλu
p(µ−1)
L , WL = uλuµ−1

L ,

and

uL =

{

L, uλ > L,

uλ, 0 ≤ uλ ≤ L.
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Since
∫

Ω

|ZL|
p ≤

∫

Ω

up
λu

p2(µ−1)
L < +∞,

∫

Ω

|DZL|
p ≤ c

∫

Ω

|Duλ|
p + C

∫

Ω

|uλ|
pu

p2(µ−1)−p
L |DuL|

p

≤ C1 + C

∫

|uλ|≤L

up
λ|DuL|

p

≤ C1 + C

∫

Ω

|Duλ|
p

< +∞,

by the first equation of (1.1) we have
∫

Ω

|Duλ|
pu

p(µ−1)
L = −p(µ − 1)

∫

Ω

uλu
p(µ−1)−1
L |Duλ|

p−2DuλDuL

+λa

∫

Ω

ZL + λ

∫

Ω

up
λu

p(µ−1)
L + λ

∫

Ω

vα
λuλu

p(µ−1)
L .(4.16)

From (4.16), it follows that
∫

Ω

|Duλ|
pu

p(µ−1)
L ≤ λ̄a

∫

Ω

ZL + λ̄

∫

Ω

up
λu

p(µ−1)
L + λ̄

∫

Ω

uλu
p(µ−1)
L vα

λ .(4.17)

Since
∫

Ω

|DWL|
p =

∫

Ω

|D(uλuµ−1
L )|p

=

∫

Ω

|Duλuµ−1
L + (µ − 1)uλuµ−2

L DuL|
p

≤ C

∫

Ω

|Duλ|
pu

p(µ−1)
L + C(µ − 1)p

∫

Ω

u
p(µ−1)
L |Duλ|

p

≤ Cµp

∫

Ω

|Duλ|
pu

p(µ−1)
L ,

by the Sobolev inequality and (4.17), we have

(
∫

Ω

|WL|
p∗

)

p

p∗

≤ C

∫

Ω

|DWL|
p ≤ Cµp

∫

Ω

|Duλ|
pu

p(µ−1)
L

≤ Cλ̄µp

∫

Ω

(

ZL + up
λu

p(µ−1)
L + uλu

p(µ−1)
L vα

λ

)

= Cµp

∫

Ω

(

WLu
(p−1)(µ−1)
L + W p

L + WLu
(p−1)(µ−1)
L vα

λ

)

≤ Cµp

∫

Ω

(

u
µ+(p−1)(µ−1)
λ + uµp

λ + u
µ+(p−1)(µ−1)
λ vα

λ

)

.(4.18)

Using µp
p∗

+ α
q∗

= 1 gives

α

q∗
+

µ + (p − 1)(µ − 1)

p∗
< 1.
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In virtue of Hölder’s inequality and Proposition 6, from (4.18) we have
(

∫

Ω

|WL|
p∗

)

p

p∗

≤

Cµp







(
∫

Ω

up∗

λ

)

µ+(p−1)(µ−1)
p∗

+

(
∫

Ω

up∗

λ

)

µp

p∗

+

(
∫

Ω

up∗

λ

)

µ+(p−1)(µ−1)
p∗







.(4.19)

By making use of µp > µ + (p − 1)(µ − 1), inequality (4.19) becomes
(

∫

Ω

|WL|
p∗

)

p

p∗

≤ Cµp max

{

1,

(
∫

Ω

up∗

λ

)

µp

p∗

}

,

where C is independent on L and C is only dependent on Ω and ‖vλ‖q. By the
Fatou Lemma we have

|uλ|µp∗ ≤ C
1

pµ µ
1
µ max{|uλ|p∗ , 1} ≤ C

1
µ µ

1
µ max{1, |uλ|p∗}.(4.20)

Similarly, let

WL = uλu
(µ2−1)
L , ZL = uλu

p(µ2−1)
L ,

then we obtain
(

∫

Ω

|WL|
p∗

)

p

p∗

≤

Cµ2p

∫

Ω

(

u
µ2+(p−1)(µ2−1)
λ + uµ2p

λ + u
µ2+(p−1)(µ2−1)
λ vα

λ

)

.(4.21)

Using pµ
p∗

+ α
q∗

= 1 again gives

µ2 + (p − 1)(µ2 − 1)

p∗µ
+

α

q∗
< 1.

From (4.21) and Hölder’s inequality, it follows that
(

∫

Ω

|WL|
p∗

)

p

p∗

≤ Cµ2p







(
∫

Ω

uµp∗

λ

)

µ2+(p−1)(µ2
−1)

µp∗

+

(
∫

Ω

uµp∗

λ

)

µp

p∗

+

(
∫

Ω

uµp∗

λ

)

µ2+(p−1)(µ2
−1)

µp∗







.

Due to the fact that

µ2 + (p − 1)(µ2 − 1)

µp∗
≤

µp

p∗
,

we have
(

∫

Ω

|WL|
p∗

)

p

p∗

≤ Cµ2p max

{

1,

(
∫

Ω

uµp∗

λ

)

µp

p∗

}

.

By virtue of the Fatou Lemma, we get

|uλ|µ2p∗ ≤ C
1

µ2 µ
2

µ2 max{1, |uλ|µp∗}.(4.22)

Combining (4.20) and (4.22) yields

|uλ|µ2p∗ ≤ C
1

µ2 µ
2

µ2 max{|uλ|µp∗ , 1} ≤ C
1
µ

+ 1
µ2 µ

1
µ

+ 2
µ2 max{|uλ|p∗ , 1}.
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Repeating the above procedure, we have

|uλ|µkp∗ ≤ C

k
P

i=1

µ−i

µ

k
P

i=1

iµ−i

max{|uλ|p∗ , 1}.(4.23)

By Proposition 6 and (4.23), we obtain a priori estimates of maximum norm of {uλ}.
Similarly, we can also derive a priori estimates for maximum norm of {vλ}. �

Using a similar argument as well as Young’s inequality, we have

Proposition 8. Suppose that (H1) and (H2) hold. Then for any λ̄ > 0, there
exists M > 0 such that

|uλ|∞ ≤ M, |vλ|∞ ≤ M

hold for λ ∈ [0, λ̄] and each weak solution (uλ, vλ) of system (1.1).

To prove the existence of the solution of system (1.1), we define the operator
M such that if M(λ, w, z) = (u, v) if and only if











−∆pu = λ(a + |w|δ + |z|α), x ∈ Ω,

−∆qv = λ(b + |w|β + |z|γ), x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

It is clear that any nontrivial fixed point of M is the solution of system (1.1).
Obviously, M is a completely continuous in R+ × E0, so we can apply the Leray-
Schauder degree to study the existence of the solution of system (1.1).

Proof of Theorem 2. For any bounded and open U with inner point (0, 0)
in E0, by the normal property of the Leray-Schauder degree we have

deg(I −M(0, ·, ·), U, 0) = 1.

Clearly, M(0, ·, ·) has a unique fixed point (0, 0). By Lemma 3, it follows that
I −M(λ, ·, ·) = 0 has a continuum S+ ⊂ [0,∞) × E0 of solutions of system (1.1),
and S+ is unbounded. Suppose that the projection of S+ in the positive direction of
λ is bounded, then the projection of S+ on the Banach space E0 is unbounded. By
Proposition 8, it follows that when λ lies on a bounded interval, and the correspond-
ing solution-set must be bounded, which induces a contradiction. Consequently, S+

is unbounded in the positive direction of λ. In virtue of connection of S+, it follows
that for any λ > 0, the operator M(λ, ·, ·) has at least a fixed point. �

Proof of Theorem 3. For any bounded and open U with inner point (0, 0)
in E0, it follows that

deg(I −M(0, ·, ·), U, 0) = 1.

Apparently, M(0, ·, ·) has a unique fixed point (0, 0). By Lemma 3 it follows that
I −M(λ, ·, ·) = 0 has a continuum S+ ⊂ [0,∞) × E0 of solutions of system (1.1),
and S+ is unbounded. By Proposition 4, one can see that S+ is bounded in the
positive λ-direction, so S+ has to become unbounded in the direction of the Banach
space E0. Let S ⊂ [0,∞) × E0 be the set containing all solutions of (u, v) =
M(λ, u, v). In order to make S+ maximally connected, we replace S+ by the
connected components of S containing S+. Without loss of generality, we still
denote it by S+. Let [0, λ∗] be the projection of S+ onto the λ-direction. By the
definition of λ0, we have λ∗ ≤ λ0. Since the prejection of S+ on the Banach space
E0 is unbounded, by Proposition 7 we see that it is impossible for λ∗ < λ0. Hence,
we have λ0 = λ∗. Using Proposition 7 again, we deduce that there exist a sequence
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{λn} and a corresponding sequence solutions {(uλn
, vλn

)} of system (1.1) such that
λn → λ∗ and |uλn

|∞ + |vλn
|∞ → ∞ (as n → ∞). �
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[11] J. Garćıa-Melián and J. Sabina de Lis, Maximum and comparison principles for operators

involving the p-Laplacian, J. Math. Anal. Appl. 218 (1998), 49–65.
[12] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,

Comm. Partial Differential Equations, 6 (1981), 883–901.
[13] D.D. Hai and H.Y. Wang, Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl.

330 (2007), 186–197.
[14] L. Iturriaga, S. Lorca and J. Sánchez, Existence and multiplicity results for the p-Laplacian

with a p-gradient term, Nonlinear Differ. Equ. Appl. 15 (2008), 729–743.
[15] L. Montoro, B. Sciunzi and M. Squassina, Symmetry results for nonvariational quasi-linear

elliptic systems, Advanced Nonlinear Studies, 10 (2010), 939-955.
[16] E. Mitidieri and S.I. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic

problems on RN , Proc. Steklov Inst. Math. 227 (1999), 186–216.
[17] A.D. Polyanin and V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, 2nd

Edition, Chapman and Hall/CRC, Florida, 2011.
[18] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential

Equations, 51 (1984), 126–150.
[19] H.Y. Wang, Existence and nonexistence of positive radial solutions for quasilinear systems,

Suppliment of Discrete Contin. Dyn. Syst. 810–817, 2009.
[20] S.Z. Zheng and Z. Feng, Regularity for quasilinear elliptic systems with discontinuous coeffi-

cients, Dyn. Partial Differ. Equ. 5 (2008), 87–99.
[21] S.Z. Zheng, X.L. Zheng and Z. Feng, Regularity for a class of degenerate elliptic equations

with discontinuous coefficients under natural growth, J. Math. Anal. Appl. 346 (2008), 359–
373.



42 LEI WEI AND ZHAOSHENG FENG

School of Mathematical Science, Jiangsu Normal University, Xuzhou 221116, China

Department of Mathematics, University of Texas–Pan American, Edinburg, TX

78539, USA

E-mail address: zsfeng@utpa.edu


