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Weighted in time energy estimates for parabolic equations

with applications to non-linear and non-local problems
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Abstract. The paper suggests a modification of the contracting mapping
method for non-linear and non-local parabolic equations. This modification is
based on weighted in time energy estimates for the L2-norm of the solution of
a parabolic equation via a weighted version of the H

−1-norm of the free term
such that the inverse matrix of the higher order coefficients of the parabolic
equation is included into the weight. More precisely, this estimate represents
the upper estimate that can be achieved via transformation of the equation
by adding a constant to the zero order coefficient. The limit constant in this
estimate is independent from the choice of the dimension, domain, and the
coefficients of the parabolic equation.
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1. Introduction

The paper studies first boundary value problems for parabolic equations. A
modification is suggested for the contracting mapping method for non-linear and
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non-local parabolic equations. This modification is based on special estimates for
L2-norm of the solution of a linear parabolic equation via a weighted version of
H−1-norm of the free term.

The classical result for parabolic equations is the so-called energy estimate for
the L2-type Sobolev norm of the solution via a H−1-norm of the nonhomogeniuos

term, where H−1 is the space being dual to the space
0

W 1
2 (D) (see, e.g., the first

energy inequality in Ladyzhenskaia [3]). We suggest a modification of this estimate.
We found a suboptimal upper estimate that can be achieved by varying the

zero order coefficient of the original equation by adding a constant. In other words,
we study the case when the original equation is transformed into a new one such
that the original solution u(x, t) is to be replaced by u(x, t)e−Kt; the value of K is
being varied (Theorem 3.1 and Lemma 7.1). The limit constant in these estimates
is the same for all possible choices of the dimension, domain, time horizon, and
the coefficients of the parabolic equations. It is why it can be called a universal
estimate. These results represent an important development of the extension of
the results from [2], where an ”universal” estimate was obtained for the gradient
via L2-norm of the free term. In contrast, the present paper gives the estimate of
the L2-norm via a H−1-type norm of the nonhomogeniuos term, i.e., via a weaker
norm. It is shown that the estimate obtained is sharp (Theorem 6.1).

As an example of applications, this estimate was used to obtain explicit suffi-
cient conditions of existence and regularity for a variety of non-linear and non-local
parabolic equations (Theorems 5.1-5.3). The corresponding proof is based on the
contracting mapping theorem.

The results of this paper were partially presented on 5th World Congress of
Nonlinear Analysts (WCNA) held in 2008 in Orlando, USA, and on 6th European
Conference on Elliptic and Parabolic Problems held in 2009 in Gaeta, Italy.

2. Definitions

Spaces and classes of functions. We denote by | · | the Euclidean norm in

Rk and the Frobenius norm in Rk×m, and we denote by Ḡ denote the closure of a
region G ⊂ Rk.

We denote by ‖ · ‖X the norm in a linear normed space X , and (·, ·)X denote
the scalar product in a Hilbert space X . For a Banach space X , we denote by
C([a, b], X) the Banach space of continuous functions x : [a, b] → X .

Let G ⊂ Rk be an open domain, then Wm
q (G) denote the Sobolev space of

functions that belong Lq(G) together with the distributional derivatives up to the
mth order, q ≥ 1.

We are given an open domain D ⊆ Rn such that either D = Rn or D is
bounded with C2-smooth boundary ∂D.

Let T > 0 be given, and let Q
∆

= D × (0, T ).

LetH0 ∆

= L2(D), and letH1 ∆

=
0

W 1
2 (D) be the closure in theW 1

2 (D)-norm of the
set of all smooth functions u : D → R such that u|∂D ≡ 0. Let H2 = W 2

2 (D) ∩H1

be the space equipped with the norm of W 2
2 (D). The spaces Hk are Hilbert spaces,

and Hk is a closed subspace of W k
2 (D), k = 1, 2.

Let H−1 be the dual space to H1, with the norm ‖ · ‖H−1 such that if u ∈ H0

then ‖u‖H−1 is the supremum of (u,w)H0 over all w ∈ H1 such that ‖w‖H1 ≤ 1.
H−1 is a Hilbert space.
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We will write (u,w)H0 for u ∈ H−1 and w ∈ H1, meaning the obvious extension
of the bilinear form from u ∈ H0 and w ∈ H1.

We denote by ℓ̄1 the Lebesgue measure in R, and we denote by B̄1 the σ-algebra
of Lebesgue sets in R1.

For k = −1, 0, 1, 2, we introduce the spaces

Xk ∆

= L2
(
[0, T ], B̄1, ℓ̄1;H

k
)
, Ck ∆

= C
(
[0, T ];Hk

)
.

We introduce the spaces

Y k
∆

= Xk∩ Ck−1, k = 0, 1, 2,

with the norm ‖u‖Y k

∆

= ‖u‖Xk + ‖u‖Ck−1.

We use the notations

∇u ∆

=
( ∂u
∂x1

,
∂u

∂x2
, . . . ,

∂u

∂xn

)⊤
, ∇ · U =

n∑

i=1

∂Ui

∂xi

for functions u : Rn → R and U = (U1, . . . , Un)
⊤ : Rn → Rn. In addition, we use

the notation

(U, V )H0 =

n∑

i=1

(Ui, Vi)H0 , ‖U‖H0 = (U,U)
1/2
H0

for functions U, V : D → Rn, where U = (U1, . . . , Un) and V = (V1, . . . , Vn).
2.0.1. The boundary value problem. We consider the following problem

(2.1)
∂u
∂t = Au+ ϕ, t ∈ (0, T ),
u(x, 0) = 0, u(x, t)|x∈∂D = 0.

Here u = u(x, t), (x, t) ∈ Q, and

(2.2) Ay ∆

=

n∑

i=1

∂

∂xi

n∑

j=1

(
bij(x, t)

∂y

∂xj
(x)
)

+

n∑

i=1

fi(x, t)
∂y

∂xi
(x) + λ(x, t)y(x),

where b(x, t) : Rn × [0, T ] → Rn×n, f(x, t) : Rn × [0, T ] → Rn, and λ(x, t) : Rn ×
[0, T ] → R, are bounded measurable functions, and bij , fi, xi are the components
of b,f , and x. The matrix b = b⊤ is symmetric.

To proceed further, we assume that Conditions 2.1-2.2 remain in force through-
out this paper.

Condition 2.1. There exists a constant δ > 0 such that

(2.3) ξ⊤b(x, t) ξ ≥ δ|ξ|2 ∀ ξ ∈ Rn, (x, t) ∈ Q.

Inequality (2.3) means that equation (2.1) is coercive.

Condition 2.2. The functions b(x, t) : Rn × R → Rn×n, f(x, t) : Rn × R →
Rn, λ(x, t) : Rn × R → R, are measurable, and

ess sup
(x,t)∈Q

[
|b(x, t)| + |b(x, t)−1| + |f(x, t)| + |λ(x, t)|

]
< +∞.

We introduce the sets of parameters

µ
∆

= (T, n, D, δ, b, f, λ),

P = P(µ)
∆

=

(
T, n, D, δ, ess sup

(x,t)∈Q

[
|b(x, t)| + |f(x, t)| + |λ(x, t)|

])
.

We consider all possible µ such that the conditions imposed above are satisfied.
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3. Special estimates for the solution

We assume that ϕ ∈ X−1. This means that there exist functions

F = (F1, ..., Fn) : Q→ Rn

and F0 : Q→ R such that Fk ∈ X0 = L2(Q), k = 0, 1, ..., n, and

(3.1) ϕ(x, t) = ∇ · F (x, t) + F0(x, t).

In other words, ϕ(x, t) =
∑n
k=1

∂Fk

∂xk

(x, t) + F0(x, t).

The classical solvability results for the parabolic equations give that there exists
a unique solution u ∈ Y 1 of problem (2.1) for any ϕ ∈ X−1.

Theorem 3.1. For any µ and any M > 0, ε > 0, there exists

K = K(ε,M,P(µ)) ≥ 0

such that

sup
s∈[0,t]

e−2Ks‖u(·, s)‖2
H0 +M

∫ t

0

e−2Ks‖u(·, s)‖2
H0ds(3.2)

≤
(1

2
+ ε
)∫ t

0

e−2Ks(F (·, s), b(·, s)−1F (·, s))H0ds

+ε

∫ t

0

e−2Ks‖F0(·, s)‖2
H0ds

∀t ∈ [0, T ], ϕ ∈ X−1,

where u is the solution of problem (2.1), and where Fi ∈ X0 are such that (3.1)
holds.

4. The case of non-linear and non-local equations

Let us consider a mapping N (v) : Y 1 → X−1 such that

N (v)
∆

=

n∑

i=1

∂

∂xi

n∑

j=1

(
b̂ij(v(·), x, t)

∂v

∂xj
(x, t)

)
(4.1)

+

n∑

i=1

f̂i(v(·), x, t)
∂v

∂xi
(x, t)(4.2)

+λ̂(v(·), x, t)v(x, t) + ϕ̂(v(·), x, t),

where

b̂(v(·), x, t) : Y 1 ×Q→ Rn×n,

f̂(v(·), x, t) : Y 1 ×Q→ Rn,

λ̂(v(·), x, t) : Y 1 ×Q→ R,

are bounded functions. In (4.1), b̂ij , f̂i, xi are the components of b̂, f̂ , and x. The
function ϕ̂(v(·), x, t) defined on Y 1×Q is such that ϕ̂(v(·), x, t) ∈ X−1 for any given

v(·) ∈ Y 1. The matrix b̂ = b̂⊤ is symmetric.
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Theorem 4.1. Let u ∈ Y 1 be a solution of the problem

(4.3)
∂u
∂t = N (u), t ∈ (0, T ),
u(x, 0) = 0, u(x, t)|x∈∂D = 0.

such that Conditions 2.1-2.2 are satisfied for

b(x, t) = b̂(u(·), x, t), f(x, t) = f̂(u(·), x, t),
and λ(x, t) = λ̂(u(·), x, t), and such that ϕ(x, t)

∆

= ϕ̂(u(·), x, t) belongs to X−1 and
is such that (3.1) holds for Fi ∈ X0. Then, for any M > 0 and ε > 0, there exists
K = K(ε,M,P(µ)) ≥ 0 such that (3.2) holds, where P(µ) is defined as above for
the functions b, f, λ.

Note that the parabolic equation in (4.3) is non-linear and non-local in time
and space. Moreover, the operator N (u) are not necessary causal with respect to
time; the case of (N (v))(t) defined by the values {v(·, s), s ≥ t} is not excluded.

Theorem 4.1 does not establish existence. Some existence results for non-local
and non-linear problems are given below.

5. Applications: existence for non-linear and non-local equations

The estimates from Theorem 3.1 can be also applied to analysis of non-linear
and non-local parabolic equations. These equations have many applications, and
they were intensively studied (see. e.g., Ammann [1], Ladyzenskaya et al [4], Zheng
[5], and references there). Theorem 3.1 gives a new way to establish conditions of
solvability of these equations. This approach covers many cases when the solutions
and the gradient are included into the non-local and non-linear term.

Let B(u(·)) : X0 → X−1 be a mapping that describes non-linear and non-local
term in the equation.

Let us consider the following boundary value problem in Q:

(5.1)
∂u
∂t = Au+B(u) + ϕ, t ∈ (0, T ),
u(x, 0) = 0, u(x, t)|x∈∂D = 0.

Here A is the linear operator defined above. For K > 0, introduce the mappings

(5.2) BK(u)
∆

= e−KtB(ūK), where ūK(x, t)
∆

= eKtu(x, t).

Theorem 5.1. Assume that B(u) maps X0 into X−1. Moreover, assume that
there exist constants K∗ > 0 and C∗ > 0 such that

‖BK(u1) −BK(u2)‖X−1 ≤ C∗‖u1 − u2‖X0 ∀u1, u2 ∈ X0,

∀K ∈ [K∗,+∞).(5.3)

Then there exists a unique solution u ∈ Y 1 of problem (5.1) for any ϕ ∈ X−1.

Theorem 5.2. Assume that

ess sup
(x,t)∈Q

(∣∣∣
∂b

∂x
(x, t)

∣∣∣+
∣∣∣
∂f

∂x
(x, t)

∣∣∣+
∣∣∣
∂λ

∂x
(x, t)

∣∣∣+
∣∣∣
∂b

∂t
(x, t)

∣∣∣
)
< +∞.(5.4)

Further, assume that B(u) maps X1 into X0 and that there exist constants K∗ > 0
and C∗ > 0 such that

‖BK(u1) −BK(u2)‖X0 ≤ C∗‖u1 − u2‖X1 ∀u1, u2 ∈ X1,

∀K ∈ [K∗,+∞).(5.5)

Then there exists a unique solution u ∈ Y 2 of problem (5.1) for any ϕ ∈ X0.
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5.0.2. Examples of admissible B. Some examples covered by Theorems 5.1-5.2
are listed below.

Theorem 5.3. The assumptions of Theorem 5.1 hold for the following map-
pings B(u):

(i) A local non-linearity:

B(u) = β(u(x, t), x, t),

where β : R ×Q → R is a measurable function such that β(0, ·) ∈ L2(Q) and that
there exists a constant CL > 0 such that

|β(z1, x, t) − β(z2, x, t)| ≤ CL|z1 − z2| ∀z1, z2 ∈ R, x, t.(5.6)

(ii) A distributional non-linearity:

B(u)
∆

= ∇ · β(u(x, t), x, t),

where β : R×Q→ Rn is a measurable function such that β(0, ·) ∈ L2(Q) and (5.6)
holds.

(iii) A non-local in space non-linearity (integral nonlinearity):

(B(u))(x, t) =

∫

D

β(u(y, t), x, t, y)dy,

where β : R × Q ×D → R is a measurable function such that
∫
D
β(0, x, t, y)dy ∈

L2(Q) as a function of (x, t), and there exists a constant CL > 0 such that

|β(z1, x, t, y) − β(z2, x, t, y)| ≤ CL|z1 − z2| ∀z1, z2 ∈ R, x, t, y.(5.7)

We assume here that D is a bounded domain.
(iv) A non-local in space distributional non-linearity:

(B(u))(x, t) = ∇ ·
∫

D

β(u(y, t), x, t, y)dy,

where β : R × Q × D → Rn is a measurable function such that
∫
D
β(0, ·, y)dy ∈

L2(Q) as a function of (x, t), and (5.7) holds. We assume here that D is a bounded
domain.

(v) A non-local in time and space non-linearity:

(B(u))(x, t) =

∫ t

0

ds

∫

D

β(u(y, s), x, t, y, s)dy,

where β : R×Q2 → R is a measurable function such that
∫ t
0
ds
∫
D
β(0, x, t, y, s)dy ∈

L2(Q) as a function of (x, t), and there exists a constant CL > 0 such that

|β(z1, x, t, y, s) − β(z2, x, t, y, s)| ≤ CL|z1 − z2| ∀z1, z2 ∈ R, x, t, y, s.(5.8)

We assume here that D is a bounded domain.
(vi) A non-local in time and space distributional non-linearity:

(B(u))(x, t) = ∇ ·
∫ t

0

ds

∫

D

β(u(y, s), x, t, y, s)dy,

where β : R×Q2 → Rn is a measurable function such that
∫ t
0 ds

∫
D β(0, ·, y, s)dy ∈

L2(Q) as a function of (x, t), and (5.8) holds. We assume here that D is a bounded
domain.

(vii) Nonlinear delay parabolic equations:

(5.9) (B(u))(x, t)
∆

= ∇ · β(u(x, τ(t)), x, τ(t)) + β̂(u(x, τ(t)), x, τ(t)).
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Here τ(·) : [0, T ] → R is a given measurable function such that τ(t) ∈ [0, t], and that
there exists θ ∈ [0, T ) such that τ(t) = 0 for t < θ, the function τ(·) : [θ, T ] → R is

non-decreasing and absolutely continuous, and ess supt∈[θ,T ]

∣∣dτ
dt (t)

∣∣−1
< +∞. The

functions β : R × Rn × [0, T ] → Rn and β̂ : R × Rn × [0, T ] → R are bounded

and measurable. In addition, we assume that the derivative ∂β
∂x (x, t) is bounded,

β(0, ·) ∈ L2(Q), β̂(0, ·) ∈ L2(Q), and there exists a constant CL > 0 such that

|β(z1, x, t) − β(z2, x, t)| + |β̂(z1, x, t) − β̂(z2, x, t)|
≤ CL|z1 − z2| ∀z1, z2 ∈ R, x, t.(5.10)

(viii) Non-local term for the backward Kolmogorov equations for a jump diffu-
sion process:

(Bu)(x, t)
∆

=

∫

Rn

I{x+c(x,y,t)∈D}(u(x+ c(x, y, t), t)

−u(x, t) − c(x, y, t)⊤∇u(x, t))ρ(y, t)dy.

Here ρ(y, t) : Rn×[0, T ] → R is a function such that ρ(·) ∈ L∞([0, T ], ℓ1, B̄1, L1(R
n)).

The function c(x, y, t) : D × Rn × [0, T ] → Rn is measurable, and there exists a
uniquely defined function ψ : D×Rn × [0, T ] → Rn such that z = x+ c(x, y, t) for
y = ψ(x, z, t). In addition, we assume that ess supt∈[0,T ]

∫
D×D

|r(x, z, t)|2dxdz <
+∞, where the function r(x, z, t)

∆

= ρ(ψ(x, z, t), t)∂ψ∂z (x, z, t) is such that the deriv-

ative ∂c
∂x (x, y, t) is bounded.

Theorem 5.4. Assume that (5.4) holds. Then the remaining assumptions of
Theorem 5.2 hold for B(u) such as in Theorem 5.3(i),(iii),(v), as well as for B(u)
with delay such as in Theorem 5.3(vii) given that β ≡ 0.

Clearly, linear combinations of the non-linear and non-local terms listed above
are also covered, as well as terms formed as compound mappings.

The statement of Theorem 5.4 for the case of B(u) with delay was presented
in [2].

Remark 5.1. The proof of Theorems 5.1-5.2 is based on the contraction map-
ping theorem. However, it is not required that the operator B(u) is ”small”. In-
stead, we require that (5.3) or (5.5) is satisfied for all large enough K. For the
non-local in time operators described in Theorem 5.3 (v)-(vii), this requires causal-
ity of the operator B(u) with respect to time; this can be seen from the proof given
below. For instance, it is not possible to replace the operator in Theorem 5.3(v) by
the operator

(B(u))(x, t) =

∫ T

0

ds

∫

D

β(u(y, s), x, t, y, s)dy

that is not non-causal with respect to time. For this B(u), the contraction mapping
theorem still ensures existence but only if the function β is ”small”.
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6. On the sharpness of the estimates

Theorem 6.1. There exists a set of parameters (n,D, b(·), f(·), λ(·)) such that,
for any T > 0, M ≥ 0, ε > 0, K > 0,

∀T > 0, c > 0,K > 0 ∃ϕ ∈ X−1 :(6.1)

e−2KT ‖u(·, T )‖2
H0 ≥

(
1

2
− ε

)∫ T

0

(F (·, t), b(·, t)−1F (·, t))H0dt,

where u is the solution of problem (7.1) and Fi ∈ X0 are such as presented in (3.1),
F = (F1, ..., Fn).

7. Proofs

Lemma 7.1. For any admissible µ and any ε > 0, M > 0, there exists K̃ =
K̃(ε,M,P(µ)) ≥ 0 such that

‖u(·, t)‖2
H0 +M

∫ t

0

‖u(·, s)‖2
H0ds

≤
(1

2
+ ε
)∫ t

0

(
(F (·, s), b(·, s)−1F (·, s))H0ds+ ε

∫ t

0

‖F0(·, s)‖2
H0ds

for all K ≥ K̃(ε,M,P), t ∈ (0, T ], for all ϕ ∈ X−1 represented as (3.1) with
Fi ∈ X0. Here u ∈ Y 1 is the solution of the boundary value problem

(7.1)
∂u
∂t = Au −Ku+ ϕ, t ∈ (0, T ),
u(x, 0) = 0, u(x, t)|x∈∂D = 0.

Uniqueness and existence of solution u ∈ Y 1 of problem (7.1) follows from the
classical results (see, e.g., Ladyzhenskaia [3], Chapter III).

Proof of Lemma 7.1. Clearly, Au = Asu+ Aru, where

Asu = ∇ · (b∇u) =

n∑

i=1

∂

∂xi

n∑

j=1

(
bij

∂u

∂xj

)
, Aru =

n∑

i=1

fi
∂u

∂xi
+ λu.

Assume that ϕ(·, t) is differentiable and has a compact support inside D for all t.
We have that

‖u(·, t)‖2
H0 − ‖u(·, 0)‖2

H0(7.2)

= (u(·, t), u(·, t))H0 − (u(·, 0), u(·, 0))H0

= 2

∫ t

0

(
u,
∂u

∂s

)

H0

ds = 2

∫ t

0

(u,Au−Ku+ ϕ)H0 ds

= 2

∫ t

0

(
u,∇ · (b∇u

))
H0

ds+ 2

∫ t

0

(u,Aru)H0 ds− 2K

∫ t

0

(u, u)H0 ds

+2

∫ t

0

(u, ϕ)H0 ds.
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Let arbitrary ε0 > 0 and ε̂0 > 0 be given. Let v
∆

=
√
b, i.e., b = v2, v = v⊤. We

have that

2 (u, ϕ)H0 = 2 (u,∇ · F )H0 + 2 (u, F0)H0

= −2
(
v∇u, v−1F

)
H0

+ 2 (u, F0))H0(7.3)

≤ 2

1 + 2ε0
(v∇u, v∇u)2H0 +

(
1

2
+ ε0

)∥∥v−1F
∥∥2

H0

+
1

ε̂0
‖u‖2

H0 + ε̂0 ‖F0‖2
H0

=
2

1 + 2ε0
(∇u, b∇u)2H0 +

(
1

2
+ ε0

)(
F, b−1F

)
H0

+
1

ε̂0
‖u‖2

H0 + ε̂0 ‖F0‖2
H0 ,

and

2 (u,∇ · (b∇u))H0 = −2 (∇u, b∇u)H0 .(7.4)

In addition, we have that, under the integrals in (7.2),

2 (u,Aru)H0 ≤ ε−1
1 ‖u‖2

H0 + ε1 ‖Aru‖2
H0 ∀ε1 > 0.

By the first energy inequality, there exist constants c′∗ = c′∗(P) > 0 and c∗ =
c∗(P) > 0 such that

(7.5)

∫ t

0

‖u(·, s)‖2
H1 ds ≤ c′∗

n∑

k=0

∫ t

0

‖Fk(·, s)‖2
H0 ds ≤ c∗

∫ t

0

(
F, b−1F

)
H0

ds.

(See, e.g. inequality (3.14) from [3], Chapter III). Moreover, this constant c∗ can
be taken the same for all t ∈ [0, T ] and all K > 0. Further, there exists a constant
c1 = c1(P) > 0 such that

2 (u,Aru)H0 ≤ ε−1
1 ‖u‖2

H0 + c1ε1 ‖u‖2
H1 .

It follows that

2

∫ t

0

(u,Aru)H0 ds ≤ ε−1
1

∫ t

0

‖u‖2
H0 ds+ ε0

∫ t

0

(
F, b−1F

)
H0

ds,(7.6)

if ε1 > 0 is taken such that c1c∗ε1 = ε0.
By (7.2)-(7.6), it follows that

‖u(·, t)‖2
H0 +M

∫ t

0

‖u(·, s)‖2
H0ds

≤
[ 2

1 + 2ε0
− 2
] ∫ t

0

(∇u, b∇u)H0 ds+ [ε−1
1 + ε̂−1

0 +M − 2K]

∫ t

0

‖u‖2
H0 ds

+
(1

2
+ 2ε0

) ∫ t

0

(
F, b−1F

)
H0

ds+ (ε0 + ε̂0)

∫ t

0

‖F0(·, s)‖2
H0 ds

≤
(1

2
+ 2ε0

) ∫ t

0

(
F, b−1F

)
H0

ds+ (ε0 + ε̂0)

∫ t

0

‖F0(·, s)‖2
H0 ds,

if 2K > ε−1
1 + c′v +M . Then the proof of Lemma 7.1 follows. �
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Proof of Theorem 3.1. Clearly, u(x, t) = eKtuK(x, t), where u is the solution
of problem (2.1) and uK is the solution of (7.1) for the nonhomogeneous term
e−Ktϕ(x, t). Therefore, Theorem 3.1 follows immediately from Lemma 7.1.

Proof of Theorem 4.1 follows immediately from Theorem 3.1 and Lemma 7.1
applied to the set of the coefficients (b, f, λ) that is independent from K. �

Proof of Theorem 5.1. Note that u ∈ Y 1 is the solution of the problem (5.1) if

and only if uK(x, t)
∆

= e−Ktu(x, t) is the solution of the problem

(7.7)
∂uK

∂t = AuK −KuK +BK(uK) + ϕK , t ∈ (0, T ),
uK(x, 0) = 0, uK(x, t)|x∈∂D = 0,

where ϕK(x, t)
∆

= e−Ktϕ(x, t). In addition,

‖u‖Y 1 ≤ eKT ‖uK‖Y 1 , ‖ϕK‖X−1 ≤ ‖ϕ‖X−1 .

Therefore, the solvability and uniqueness in Y 1 of problem (5.1) follows from exis-
tence of K > 0 such that problem (7.7) has an unique solution in Y 1. Let us show
that this K can be found.

We introduce operators FK : X−1 → Y 1 such that u = FKϕ is the solution of
problem (7.1).

Let g ∈ X−1 be such that

g = ϕ+ BK(w), where w = FKg.(7.8)

In that case, uK
∆

= FKg ∈ Y 1 is the solution of (7.7).
Equation (7.8) can be rewritten as g = ϕ+RK(g), or

g −RK(g) = ϕ,(7.9)

where the mapping RK : X−1 → X−1 is defined as

RK(g) = BK(FKg).

Let w = FKh, where h ∈ X−1. By Theorem 3.1 reformulated as Lemma 7.1, for
any ε > 0, M > 0, there exists K(ε,M,P(µ)) ≥ 0 and a constant C0 = C0(P(µ))
such that

sup
t∈[0,T ]

‖w(·, t)‖2
H0 +M

∫ T

0

‖w(·, s)‖2
H0ds ≤ C0‖h‖2

X−1 ∀h ∈ X−1.(7.10)

and, therefore,

M

∫ T

0

‖w(·, s)‖2
H0ds ≤ C0‖h‖2

X−1 ∀h ∈ X−1.

Hence

‖FKh‖2
X0 ≤M−1C0‖h‖2

X−1.

Let us select M and K such that δ∗
∆

= C∗M
−1/2C

1/2
0 < 1. By (5.3), it follows that

‖RK(g1) −RK(g2)‖X−1 ≤ C∗‖FKg1 − FKg2‖X0 ≤ C∗M
−1/2C

1/2
0 ‖g1 − g2‖X−1

= δ∗‖g1 − g2‖X−1 .

By the contraction mapping theorem, it follows that the equation (7.9) has an
unique solution g ∈ X−1. Hence problem (7.7) has an unique solution uK = FKg ∈
Y 1. This completes the proof of Theorem 5.1. �

Proof of Theorem 5.2. Let w = FKh, where h ∈ X0, and where Fk is the
operator defined in the proof of Theorem 5.1. By (5.4), the assumptions of Lemma



WEIGHTED IN TIME ENERGY ESTIMATES 379

7.1 from [2] are satisfied. By this lemma, for any ε > 0, M > 0, there exists
K = K(ε,M, b, f, λ) ≥ 0 and a constant C0 = C0(b, f, λ) such that

sup
t∈[0,T ]

‖w(·, t)‖2
H1 +M

∫ T

0

‖w(·, s)‖2
H1ds ≤ C0‖h‖2

X0 ∀h ∈ X0

and

M

∫ T

0

‖w(·, s)‖2
H1ds ≤ C0‖h‖2

X0 ∀h ∈ X0.

The rest of the proof of Theorem 5.2 repeats the proof of Theorem 5.1 with the
replacement of Y 1 for Y 2, and X−1 for X0, and with RK being a mapping RK :
X0 → X0. �

Proof of Theorem 5.3. The proof for (i)-(iv) represents simplified versions of
the proof for (v)-(vi) given below and will be omitted.

Let us prove (v). Let Qt
∆

= {(y, s) ∈ Q : s ≤ t}. We have that

|BK(u1)(x, t) −BK(u2)(x, t)|

≤ e−Kt
∫

Qt

|β(eKsu1(y, s), x, t, y, s) − β(eKsu2(y, s), x, t, y, s)|dyds

≤ e−KtCL

∫

Qt

eKs|u1(y, s) − u2(y, s)|dyds ≤ CLℓn+1(Q)1/2‖u1(·) − u2(·)‖X0

for all u1(·), u2(·) ∈ X0. Since the domain Q is bounded, we have that

‖B(u1) −B(u2)‖X−1 ≤ ‖B(u1) −B(u2)‖X0 ≤ ℓn+1(Q)1/2‖B(u1) −B(u2)‖L∞(Q).

Hence (5.3) holds.
Further, it follows from the assumptions that B(0) ∈ X0. Hence B(u) ∈ X0

for all u ∈ X0. This completes the proof of statement (v).

Let us prove (vi). By the definition, B(u) = ∇ · B̂(u), where B̂ : X0 → X0 is
a mapping similar to the one from statement (v). Then the proof is similar to the
proof of statement (v).

Let us prove statement (vii). Let Cτ = ess supt∈[θ,T ]

∣∣dτ
dt (t)

∣∣−1
< +∞. We have

that

‖BK(u1) − BK(u2)‖2
X−1

≤
∫ T

0

e−2Kt‖β(eKτ(t)u1(·, τ(t)), ·, τ(t)) − β(eKτ(t)u2(·, τ(t)), ·, τ(t))‖2
H0dt

+

∫ T

0

e−2Kt‖β̂(eKτ(t)u1(·, τ(t)), ·, τ(t)) − β̂(eKτ(t)u2(·, τ(t)), ·, τ(t))‖2
H0dt

≤ 2C2
L

∫ T

0

‖u1(·, τ(t))) − u2(·, τ(t))‖2
H0dt

= 2C2
L

∫ T

0

‖u1(·, τ(t)) − u2(·, τ(t))‖2
H0

(
dτ(t)

dt

)−1

dτ(t)

≤ 2C2
LCτ

∫ τ(T )

τ(θ)

‖u1(·, s) − u2(·, s)‖2
H0ds ≤ C2

LCτ‖u1 − u2‖2
X0 .

By the assumptions, it follows that B(0) ∈ X−1. Hence B(u) ∈ X−1 for all u ∈ X0.
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Let us prove statement (viii). We have that BK(u) = B(u), i.e., it is indepen-

dent from K. Further, B(u) = B̂(u) + B̃(u), where

(B̂(u))(x, t) =

∫

Rn

I{x+c(x,y,t)∈D}u(x+ c(x, y, t), t)ρ(y, t)dy

=

∫

D

u(z, t)r(x, z, t)dz,

and

(B̃(u))(x, t) = −u(x, t)
∫

Rn

I{x+c(x,y,t)∈D}ρ(y, t)dy

−
(∫

Rn

I{x+c(x,y,t)∈D}c(x, y, t)ρ(y, t)dy

)⊤

∇u(x, t)

= −u(x, t)
∫

D

r(x, z, t)dz −
(∫

D

r(x, z, t)(z − x)dz

)⊤

∇u(x, t).

It follows from the assumptions that B̃ : X0 → X−1 is a linear and continuous

operator. Hence it suffices to prove that (5.3) holds for the operator B̂. Clearly,

B̂(0) = 0. Further, we have that

‖B̂(u1) − B̂(u2)‖2
X−1

≤ ‖B̂(u1) − B̂(u2)‖2
X0

=

∫

Q

(∫

D

(u1(z, t) − u2(z, t))r(x, z, t)dz

)2

dxdt

≤
∫

Q

(∫

D

|u1(z, t) − u2(z, t)|2dz
)(∫

D

|r(x, z, t)|2dz
)
dxdt

≤
∫ T

0

dt

(∫

D

|u1(z, t) − u2(z, t)|2dz
)∫

D

dx

∫

D

|r(x, z, t)|2dz

≤
(

ess sup
t∈[0,T ]

∫

D×D

|r(x, z, t)|2dxdz
)

‖u1 − u2‖2
X0 .

This completes the proof of statement (viii) and the proof of Theorem 5.3. �

Proof of Theorem 5.4 repeats the proof of the corresponding statements of
Theorem 5.3 with minor adjustments. �

Proof of Theorem 6.1. Repeat that u(x, t) = eKtuK(x, t), where u is the so-
lution of problem (2.1) and uK is the solution of (7.1) for hK(x, t) = e−Kth(x, t).
Therefore, it suffices to find n, D, b, f, λ, such that

∀T > 0, ε > 0,K > 0 ∃ϕ ∈ X−1 :

|u(·, T )‖2
H0 ≥

(
1

2
− ε

)∫ T

0

(F (·, t), b(·, t)−1F (·, t))H0dt,(7.11)

where u is the solution of problem (7.1) and Fi ∈ X0 are such as presented in (3.1),
F = (F1, ..., Fn).

Let us show that (7.11) holds for

n = 1, D = (−π, π), b(x, t) ≡ 1, f(x, t) ≡ 0, λ(x, t) ≡ 0.
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In this case, (7.1) has the form

u′t = u′′xx −Ku+ h, u(x, 0) ≡ 0, u(x, t)|x∈∂D = 0,

Let

γ = m2 +K, ϕm(x, t)
∆

= m sin(mx)eγt, Fm(x, t)
∆

= − cos(mx)eγt,

where m = 1, 2, 3, . . .. It can be verified immediately that the solution of the
boundary value problem is

u(x, t) = m sin(mx)

∫ t

0

e−γ(t−s)+γsds = m sin(mx)e−γt
∫ t

0

e2γsds

= m sin(mx)e−γt
e2γt − 1

2γ
.

Hence

‖u(·, T )‖2
H0 = m2‖ sin(mx)‖2

H0e
−2γT

(
e2γ − 1

2γ

)2

= m2πe−2γT (e2γT − 1)2

4γ2
,

and
∫ T

0

‖Fm(·, t)‖2
H0dt = ‖ cos(mx)‖2

H0

∫ T

0

e2γtdt = π
e2γT − 1

2γ
.

It follows that

‖u(·, T )‖2
H0

(∫ T

0

‖Fm(·, t)‖2
H0dt

)−1

=
m2

2γ
e−2γT (e2γT − 1)

=
m2

2γ
(1 − e−2γT ) → 1

2

as γ → +∞. In particular, it holds if K is fixed and m → +∞. It follows that
(6.1) holds. This completes the proof of Theorem 6.1. �
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