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Enstrophy growth in the viscous Burgers equation
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Abstract. We study bounds on the enstrophy growth for solutions of the
viscous Burgers equation on the unit circle. Using the variational formulation
of Lu and Doering, we prove that the maximizer of the enstrophy’s rate of
change is sharp in the limit of large enstrophy up to a numerical constant but
does not saturate the Poincaré inequality for mean-zero 1-periodic functions.
Using the dynamical system methods, we give an asymptotic representation
of the maximizer in the limit of large enstrophy as a viscous shock on the
background of a linear rarefactive wave. This asymptotic construction is used
to prove that a larger growth of enstrophy can be achieved when the initial
data to the viscous Burgers equation saturates the Poincaré inequality up to
a numerical constant.

An exact self-similar solution of the Burgers equation is constructed to
describe formation of a metastable viscous shock on the background of a linear
rarefactive wave. When we consider the Burgers equation on an infinite line
subject to the nonzero (shock-type) boundary conditions, we prove that the

maximum enstrophy achieved in the time evolution is scaled as E3/2, where E

is the large initial enstrophy, whereas the time needed for reaching the maximal
enstrophy is scaled as E−1/2 log(E). Similar but slower rates are proved on the
unit circle.
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1. Introduction

We consider the initial-value problem for the one-dimensional viscous Burgers
equation,

(1.1)

{

ut + 2uux = uxx, x ∈ T, t ∈ R+,
u|t=0 = u0, x ∈ T,

where T =
[

− 1
2 ,

1
2

]

is the unit circle equipped with the periodic boundary conditions
for the real-valued function u. Local well-posedness of the initial-value problem
(1.1) holds for u0 ∈ Hs

per(T) with s > − 1
2 [8]. The Burgers equation is used as

a toy model in the context of a bigger problem of how to control existence and
regularity of solutions of the three-dimensional Navier–Stokes equations [6, 13].
Recent applications of the Burgers equation to the theory of turbulence can be
found in [16, 20].

Lu and Doering [14] considered the question of optimal bounds on the enstro-
phy growth. The enstrophy for the Burgers equation (1.1) is defined by

(1.2) E(u) =
1

2

∫

T

u2
xdx.

Integration by parts for a local solution of the Burgers equation (1.1) in H3
per(T)

yields

dE(u)

dt
=

∫

T

ux(uxxx − 2uuxx − 2u2
x)dx = −

∫

T

(u2
xx + u3

x)dx ≡ R(u),(1.3)

where R(u) is the rate of change of E(u).
If u ∈ C1

per(T), then there is ξ ∈ T such that ux(ξ) = 0. Using the elementary
bound,

u2
x(x) =

(

∫ x

ξ

−
∫ 1+ξ

x

)

uxuxxdx ⇒ ‖ux‖L∞ ≤ ‖ux‖1/2
L2 ‖uxx‖1/2

L2 ,

and the Young inequality for a, b ∈ R+,

ab ≤ ap

pǫp
+
ǫqbq

q
,

1

p
+

1

q
= 1, ǫ > 0,

the rate of change R(u) in (1.3) can be estimated by

(1.4) R(u) ≤ −‖uxx‖2
L2 + ‖ux‖5/2

L2 ‖uxx‖1/2
L2 ≤ 3

44/3
‖ux‖10/3

L2 ≡ 3

2
E5/3(u),

provided that p = 4
3 , q = 4, and ǫ =

√
2.

In the framework of the Burgers equation (1.1), Lu and Doering [14] showed
that the bound R(u) ≤ CE5/3(u) on the enstrophy growth is sharp in the limit
of large enstrophy, up to a choice of the numerical constant C > 0. To prove the
claim, they considered the maximization problem,

(1.5) max
u∈H2

per(T)
R(u) subject to E(u) = E ,

for a given value of E > 0. An analytical solution of the constrained maximization
problem (1.5) was studied in the asymptotic limit of large E by using Jacobi’s
elliptic functions. We note that the bound (1.4) is achieved instantaneously in time
and it may not hold for solutions of the viscous Burgers equation (1.1) for a finite
time interval.



ENSTROPHY GROWTH IN THE VISCOUS BURGERS EQUATION 307

Ayala and Protas [2] reiterated the same question on the validity of bound (1.4)
integrated over a finite time interval. The energy balance equation for the Burgers
equation (1.1) is given by

(1.6) K(u) =
1

2

∫

T

u2dx ⇒ dK(u)

dt
=

∫

T

u(uxx − 2uux)dx = −2E(u).

If bound (1.4) is sharp on the time interval [0, T ] for some T > 0, then integration
of the enstrophy equation (1.3) implies

(1.7) E1/3(u(T )) − E1/3(u0) ≤
1

2

∫ T

0

E(u(t))dt =
1

4
[K(u0) −K(u(T ))] .

The Burgers equation (1.1) maps the set of periodic functions with zero mean
to itself. Using the Poincaré inequality for periodic functions with zero mean,

(1.8) K(u0) ≤
1

4π2
E(u0),

and neglecting K(u(T )) in (1.7), we can obtain

(1.9) E(u(T )) ≤
(

E1/3(u0) +
1

16π2
E(u0)

)3

.

Note that this bound together with the energy dissipation K(u(t)) ≤ K(u0) implies
global well-posedness of the initial-value problem (1.1) for any u0 ∈ H1

per(T).
Using the extended maximization problem for the global solution of the Burgers

equation (1.1) in H1
per(T),

(1.10) max
u0∈H1

per(T)
E(u(T )) subject to E(u0) = E ,

Ayala and Protas [2] showed numerically that the integral bound (1.9) is not sharp
even in the limit of large E .

We shall use the notation A = O(Ep) as E → ∞ if there are constants C±
such that 0 ≤ C− < C+ < ∞ and C−Ep ≤ A ≤ C+Ep. Let T∗ be the value of T ,
where maxu0∈H1

per(T)E(u(T )) is maximal over T ∈ R+. The main claims in [2] are

reproduced in Table I.

Initial condition Time T∗ Enstrophy at T∗ Energy K at T∗
A maximizer of (1.5) O(E−0.6) O(E1.0) O(E0.7)
A maximizer of (1.10) O(E−0.5) O(E1.5) O(E1.0)

Table I: Enstrophy growth in the Burgers equation from the numerical results
in [2].

The first line in Table I shows that the instantaneous maximizer of the problem
(1.5) does not saturate the Poincaré inequality (1.8) and does not lead to large
growth of the enstrophy. On the other hand, the second line in Table I shows
that the bound (1.9) is not sharp. The bound (1.7) could be sharp if K(u0) −
K(u(T∗)) = O(E1/2) but the numerical work in [2] reported large deviations in
numerical approximations of this quantity,

(1.11) K(u0) −K(u(T∗)) = O(E0.68±0.25),

which may indicate that the underlying relation may have a logarithmic (or other)
correction.
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In this paper, we shall study further properties of the analytical solution of
the constrained maximization problem (1.5). We shall use this solution and its
generalizations (see Section 2) as an initial condition for the Burgers equation (1.1).
In particular, we shall address rigorously the numerical results of [2]. Our main
results are summarized in Table II.

Initial condition Time T∗ Enstrophy at T∗ Energy K at T∗
(2.6) and (2.8) O(E−2/3 log(E)) O(E) O(E2/3)

(2.6) and (2.9) O(E−1/2 log1/2(E)) O(E3/2 log−3/2(E)) O(E log−1(E))

Table II: Enstrophy growth in the Burgers equation from our analytical re-
sults.

The analytical results in Table II justify partially the results of numerical ap-
proximations in Table I. We conjecture that the optimal rate is achieved with

(1.12) T∗ = O(E−1/2), E(u(T∗)) = O(E3/2), K(u(T∗)) = O(E),

but the proof of this rate is not achieved in this paper due to technical limitations
of our method (see Remarks 2 and 3). Similarly, we cannot derive an analytical
analogue of the numerical result (1.11) and hence, the sharpness of the nonlocal
bound (1.7) remains an open question for further studies.

In the recent work [17], we explored the Cole–Hopf transformation [7, 11] and
the Laplace method for the heat equation [15, Chapter 3]) to prove the conjecture
(1.12) for a sinusoidal initial data. For such initial data, we also proved that
K(u0) −K(u(T∗)) = O(E) and hence the nonlocal bound (1.7) is not sharp.

From a technical point of view, using the dynamical system methods, we prove
that the maximizer of the constrained maximization problem (1.5) does not saturate
the Poincaré inequality (1.8). In the limit of large enstrophy E , this maximizer
resembles a viscous shock on the background of a linear rarefactive wave. If this
maximizer is taken as the initial data to the viscous Burgers equation (1.1), it does
not give the largest change of enstrophy, compared to the case when the initial data
saturates the Poincaré inequality (1.8). On the other hand, if the shock’s width is
used as an independent parameter relative to the background intensity of the linear
rarefactive wave, the initial data can saturate the Poincaré inequality (1.8) for large
values of E , up to a numerical constant, and achieve a faster growth of enstrophy
in the time evolution of the viscous Burgers equation.

We note that our construction of the viscous shocks on the background of a
linear rarefactive wave is similar to the diffusive N -waves that appear at the inter-
mediate stages of dynamics of arbitrary initial data in the Burgers equation over
an infinite line [12]. However, these metastable states correspond to Gaussian fun-
damental solutions of the heat equation in self-similar variables [3, 4], whereas our
solutions are obtained on a circle of large but finite period after a scaling transfor-
mation. Nevertheless, our results still rely on the analysis of the Burgers equation
over an infinite line subject to the non-zero (shock-type) boundary conditions, where
viscous shocks are known to be asymptotically stable [19, 9, 10].

The technique of this paper does not use much of the Cole–Hopf transforma-
tion, which is well known to reduce the viscous Burgers equation to the linear heat
equation. The transformation is only used in Sections 5 and 6 to reduce techni-
calities in the convergence analysis for dynamics of viscous shocks in bounded and
unbounded domains.
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The paper is organized as follows. Section 2 presents main results. Solutions
of the constrained maximization problem (1.5) are characterized in Section 3. Self-
similar solutions of the Burgers equation on the unit circle are considered in Section
4. Section 5 presents analysis of the Burgers equation on an infinite line. Evolution
of a viscous shock on the background of a linear rarefactive wave is studied in
Section 6. Proofs of the main results for two different initial data in Table II are
given in Sections 7 and 8.

Acknowledgement. The author thanks D.Ayala and B. Protas for pointing
out his attention to this problem. He is indebted by useful discussions with C.R.
Doering, M. Beck, W. Craig, J. Goodman, S. Gustafson, B. Sandstede, A. Stefanov,
T.P. Tsai, and C.E. Wayne. His research is supported in part by the NSERC grant.

2. Main results

We shall first reexamine the solution of the constrained maximization problem
(1.5). Unlike the work of Lu and Doering [14], we avoid the use of special functions
(the Jacobi elliptic functions) but use dynamical system techniques to study the
limit of large enstrophy E . As a result, we obtain the following theorem. Here
Ȟ2

per(T) denotes the restriction of H2
per(T) to odd functions and A = OL∞(B) as

B → ∞ indicates that ‖A‖L∞ = O(B).

Theorem 1. For sufficiently large E, there exists a unique solution u∗ ∈
Ȟ2

per(T) of the constrained maximization problem (1.5) with u′∗(0) < 0 satisfying

(2.1) u∗(x) = 4k(2x− tanh(kx)) + OL∞(k2e−k), as k → ∞,

where k determines the leading order expansions,

K(u∗) =
8

3
k2 + O(k),(2.2)

E(u∗) =
32

3
k3 + O(k2),(2.3)

R(u∗) =
256

5
k5 + O(k4).(2.4)

Corollary 1. When k is expressed from (2.3) in terms of E = E(u∗), we
obtain

(2.5)
K(u∗) = 1

61/3 E2/3 + O(E1/3),

R(u∗) = 35/3

5·21/3 E5/3 + O(E4/3),

}

as E → ∞.

Remark 1. Corollary 1 improves the earlier claims in [2] and in [14] based on
numerical and asymptotic computations, respectively. It shows that the Poincare
inequality (1.8) is not saturated by the solution of the constrained maximization
problem (1.5), whereas the bound R(u) ≤ CE5/3(u) is sharp up to a choice of the
numerical constant C > 0 with

C =
35/3

5 · 21/3
<

1

2
.

We shall now consider the time evolution of the Cauchy problem (1.1) with the
initial data

(2.6) u0(x) = 4k(2x− f(x)), x ∈ T,
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Figure 1. Initial data (2.6) with (2.8) (dashed line) or (2.9) (solid
line) for k = 20 and l = 5.

where k > 0 is a free parameter and f : T → R is a fixed function satisfying

(2.7) f ∈ C1(T) : f(−x) = −f(x), f

(

1

2

)

= 1.

The maximizer of Theorem 1 is represented by (2.1). Neglecting the expo-
nentially small terms as k → ∞, this maximizer can be written in the form (2.6)
with

(2.8) f(x) =
tanh(kx)

tanh(k/2)
.

We say that the initial data (2.6) with (2.8) represents a shock on the background
of a linear rarefactive wave, where the width of the shock is inverse proportional to
large parameter k.

The maximizer of Theorem 1 does not saturate the Poincaré inequality (1.8)
in the limit k → ∞ (Remark 1). To allow more flexibility, we can take the initial
data in the form (2.6) with

(2.9) f(x) =
tanh(lx)

tanh(l/2)
,

where parameter l > 0 may be independent of the large parameter k. Figure 1
shows both functions (2.8) and (2.9) in the initial data (2.6) by dashed and solid
lines, respectively. If k = 20 and l = 5, the shock in (2.9) is much smoother than
the shock in (2.8).

If u0 is given by (2.6) with (2.9), then

(2.10) K(u0) = k2K̃(l), E(u0) = k2Ẽ(l),
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where

K̃(l) =
32

3
+

8

sinh2(l/2)
−

16 cosh(l/2)

l sinh(l/2)

[

1 +
l

2
+ 2 log(1 + e−l) − 2

l

∫ l

0

log(1 + e−z)dz

]

,

Ẽ(l) =
32l(cosh(l) + 2)

3 sinh(l)
− 32.

If l = k, then these expansions yield (2.2) and (2.3) up to the error terms. In
this case, if E = E(u0) is fixed, then

(2.11) k = O(E1/3), K(u0) = O(E2/3), as E → ∞.

The function F (l) = K̃(l)/Ẽ(l) is plotted on Figure 2 (left). We can see that
there is a maximum of the function F at l = l0 ≈ 3.0, where the maximum is at

F (l0) ≈ 0.025297 <
1

4π2
≈ 0.025330.

If l is fixed independently of k and if E = E(u0) is fixed, then

(2.12) k = O(E1/2), K(u0) = O(E), as E → ∞.

This shows that the initial data (2.6) with (2.9) saturates the Poincaré inequality
(1.8) in the limit k → ∞ up to a numerical constant. Note that the value of the
constant prefactor F (l0) for l0 ≈ 3.0 is 99.9% of the Poincare constant, compared
to the numerical computations in [2], where this prefactor was found from solutions
of the extended maximization problem (1.10) to be 97% of the Poincare constant.

To apply our method, we shall consider a slow (logarithmic) growth of the
parameter l in the limit k → ∞, which yields rates slower than rates (2.12). In
particular, we shall use the following elementary result.

Lemma 1. Fix L > 0 and let l := L log(k). Then, we have

(2.13) k = O(E1/2 log−1/2(E)), K(u0) = O(E log−1(E)), as E → ∞.

Proof. As k, l → ∞, the leading-order expression for K(u0) and E(u0) are
given by

(2.14) K(u0) =
8

3
k2 + O

(

k2

l

)

, E(u0) =
32

3
k2l + O(k2).

With the choice of l := L log(k), we are to solve E(u0) = E , which is equivalent to
the implicit equation,

(2.15) z = x log(x) + O(x), z :=
3E
16L

, x := k2.

We look at the asymptotic limit z → ∞. Setting

x :=
zu

log(z)
,

we rewrite the implicit equation (2.15) as the root finding problem,

(2.16) f(u) := u

(

1 − log(log(z))

log(z)
+

log(u)

log(z)
+ O

(

1

log(z)

))

− 1 = 0
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Figure 2. Function F (l) = K̃(l)/Ẽ(l) versus l (left) and function
R(u0) versus l for different values of k (right).

We note that f(1) = O
(

log(log(z))
log(z)

)

→ 0 as z → ∞ and f ′(1) = 1+O
(

log(log(z))
log(z)

)

6=
0 as z → ∞. By the implicit function theorem, there is a unique root in the

neighborhood of u = 1 such that u = 1 + O
(

log(log(z))
log(z)

)

as z → ∞. The assertion

(2.13) holds by (2.14) and (2.15). �

If u0 is given by (2.6) with (2.9), then

R(u0) = 64k3

[

16 − 12l

tanh2(l/2)

∫ l/2

0

sech4(x)dx +
2l2

tanh3(l/2)

∫ l/2

0

sech6(x)dx

]

− 128k2l3

tanh2(l/2)

∫ l/2

0

sinh2(x)sech6(x)dx.

The dependence of R(u0) versus l for different values of k is shown on Figure 2
(right). Since R(u0) > 0 for large values of k and l, the enstrophy E(u) grows
initially for t > 0.

We shall construct a solution of the Burgers equation (1.1) starting with the
initial data (2.6)–(2.7). We prove that this solution displays dynamics consisting
of two phases. In the first phase, a metastable viscous shock is formed from the
function −4kf(x). In the second phase, a rarefactive wave associated with the
linear function 8kx decays to zero. We compute the growth of enstrophy in two
cases: when l = O(k) and the scaling law (2.11) holds and when l = O(log(k)) and
the scaling law (2.13) holds. The following theorem gives the main result of this
paper.

Theorem 2. Consider the initial-value problem (1.1) with initial data in (2.6)
with (2.9). Let E = E(u0) be the initial enstrophy. There exists T∗ > 0 such that
the enstrophy E(u) achieves its maximum at u∗ = u(·, T∗). If l = O(k) as k → ∞,
then
(2.17)

T∗ = O(E−2/3 log(E)), E(u∗) = O(E), K(u∗) = O(E2/3), as E → ∞,
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whereas if l = O(log(k)) as k → ∞, then
(2.18)

T∗ = O(E−1/2 log1/2(E)), E(u∗) = O(E3/2 log−3/2(E)), K(u∗) = O(E log−1(E)),

as E → ∞.

Remark 2. Several obstacles appear in our method when we consider the case
l = O(1) and the scaling law (2.12). These obstacles come from the behavior of the
solution u(x, t) near the boundaries x = ± 1

2 as well as from the constraints on the
inertial time interval [0, T ], during which the solution approaches the viscous shock
on the background of a linear rarefactive wave.

3. Proof of Theorem 1

To prove Theorem 1, we obtain a convenient analytical representation of solu-
tions of the constrained maximization problem (1.5). We set v = ux and look for
critical points v ∈ H1

per(T) of the functional,

(3.1) J(v) =

∫

T

(

v2
x + v3 + λv2 + µv

)

dx,

where λ, µ ∈ R are the Lagrange multipliers associated with the following con-
straints,

(3.2)
1

2

∫

T

v2(x)dx = E ,
∫

T

v(x)dx = 0.

The latter constraint ensures that u is a periodic function on T. If v is even in
H1

per(T) and has zero mean, then u(x) =
∫ x

0 v(x
′)dx′ is odd in H2(T), u(±1) = 0,

and hence, u ∈ Ȟ2
per(T).

The Euler–Lagrange equations associated with the functional J(v) yield the
second-order differential equation,

(3.3) 2v′′(x) = 3v2(x) + 2λv(x) + µ, x ∈ T.

Integrating equation (3.3) over T and using the constraints (3.2), we find µ = −6E .
Hence we are dealing with the family of integrable second-order equations,

(3.4)
d2v

dx2
=

3

2
v2 + λv − 3E ⇒

(

dv

dx

)2

= v3 + λv2 − 6Ev + I,

where I is an integration constant.
The phase plane of system (3.4) is given by (v, v′) ∈ R

2. A typical phase
portrait is shown on Figure 3. There exist two equilibrium points of the second-
order equation (3.4), denoted by (a−, 0) and (a+, 0), where

(3.5) a± =
1

3

(

−λ±
√

λ2 + 18E
)

⇒ a− < 0 < a+.

Let us define

(3.6) I± = −a3
± − λa2

± + 6Ea± ⇒ I− < I+.

The equilibrium (a−, 0) is a center, whereas the equilibrium (a+, 0) is a saddle point.
For I = I+, there exists a homoclinic orbit connecting the stable and unstable
manifolds of the saddle point (a+, 0). This orbit can be found analytically,

(3.7) v(x) = a+ − 4k2sech2(kx), k =
1

2
4
√

λ2 + 18E.
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Figure 3. Phase portrait for the Euler–Lagrange equation (3.4)
with E = 5.

Inside the separatrix loop, there is a family of T -periodic orbits for I ∈ (I−, I+),
such that T is a strictly increasing function of I with

(3.8) T → 2π

ω
as I → I−, and T → ∞ as I → I+,

where

ω2 = −λ− 3a− =
√

λ2 + 18E = 4k2.

If k > π, there is a unique I0 ∈ (I−, I+) such that T = 1 at I = I0. The
corresponding 1-periodic solution v ∈ H1

per(T) of equation (3.3) is a critical point of
J(v). Integrating (3.4) for I = I0 further, we obtain a 1-periodic solution v(x−x0),
where x0 ∈ T is chosen uniquely from the constraints v′(0) = 0 and v(0) < a− < 0
(which yield an odd u with u′(0) < 0). In this way, a critical point of J(v) is
obtained and the parameter λ needs to be defined by the constraint E(u) = E .

To satisfy the constraint E(u) = E and to justify the asymptotic expansion
(2.1), we can use the representation,

(3.9) v(x) = a+ − 4k2y(ξ), ξ = kx,

where y(ξ) is a k-periodic solution of the second-order equation,

(3.10) y′′ − 4y + 6y2 = 0.

The k-periodic solution of equation (3.10), which is called a cnoidal wave, is equiva-
lent to a k-periodic sequence of homoclinic solutions, which are called solitary waves
[5] (see also Chapter 3 in [1]). This representation uses the theory of Jacobi’s ellip-
tic functions. We can obtain an equivalent approximation result by using methods
of the dynamical system theory [18].

Lemma 2. There are k0 > 0 and C > 0 such that for all k ∈ (k0,∞), the
k-periodic solution y(ξ) of the second-order equation (3.10) is close to the solitary
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wave y∞(ξ) = sech2(ξ) with the error bound,

(3.11) sup
ξ∈[−k/2,k/2]

|y(ξ) − y∞(ξ)| ≤ Ce−k.

Proof. We write a k-periodic sequence of the solitary waves as

y0(ξ) =
∑

n∈Z

sech2(ξ + kn)

and decompose the solution y of equation (3.10) as y(ξ) = y0(ξ) + Y (ξ). After
straightforward computations, Y satisfies

LY = F (Y ),

where L = −∂2
ξ + 4 − 12sech2(ξ) and

F (Y ) = 6Y 2 + 12
∑

n∈Z\{0}
sech2(ξ + kn)Y + 6

∑

n∈Z

∑

l∈Z\{n}
sech2(ξ + kn)sech2(ξ + kl).

The operator L : H2(R) → L2(R) has a one-dimensional kernel spanned by the
odd function y′∞(ξ). The rest of the spectrum of L includes an isolated eigenvalue
at −5 and the continuous spectrum for [4,∞). Hence the operator L is invertible
in the space of even functions.

Let Tk :=
[

−k
2 ,

k
2

]

and denote the restriction of H2
per(Tk) to even functions by

Ĥ2
per(Tk). Let L̂ : Ĥ2

per(Tk) → L̂2
per(Tk) be a restriction of L. Then, for sufficiently

large k, L̂ is invertible and there is C > 0 such that

(3.12) ‖L̂‖L̂2
per(Tk)→Ĥ2

per(Tk) ≤ C.

Existence and uniqueness of small solutions Y ∈ H2
per(Tk) of the fixed-point prob-

lem Y = L̂−1F (Y ) can be found by using contraction mapping arguments, provided
that

∥

∥

∥

∥

∥

∥

∑

n∈Z\{0}
sech2(· + kn)

∥

∥

∥

∥

∥

∥

L∞(Tk)

and

∥

∥

∥

∥

∥

∥

∑

n∈Z

∑

l∈Z\{n}
sech2(· + kn)sech2(· + kl)

∥

∥

∥

∥

∥

∥

L2(Tk)

converge to zero as k → ∞. We check this by explicit computations. There are
k0 > 0 and C1, C2 > 0 such that for all k ∈ (k0,∞), we have

(3.13)

∥

∥

∥

∥

∥

∥

∑

n∈Z\{0}
sech2(· + kn)

∥

∥

∥

∥

∥

∥

L∞(Tk)

≤
∑

n∈N

8e−(2n−1)k

(1 + e−(2n−1)k)2
≤ C1e

−k
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and
∥

∥

∥

∥

∥

∥

∑

n∈Z

∑

l∈Z\{n}
sech2(· + kn)sech2(· + kl)

∥

∥

∥

∥

∥

∥

L2(Tk)

≤
∥

∥sech2(·)
∥

∥

L2(Tk)

∥

∥

∥

∥

∥

∥

∑

l∈Z\{0}
sech2(· + kl)

∥

∥

∥

∥

∥

∥

L∞(Tk)

+2
∑

n∈N

∥

∥sech2(· + kn)
∥

∥

L∞(Tk)

∥

∥

∥

∥

∥

∥

∑

l∈Z\{n}
sech2(· + kl)

∥

∥

∥

∥

∥

∥

L2(Tk)

≤ 3
∥

∥sech2(·)
∥

∥

L2(Tk)

∥

∥

∥

∥

∥

∥

∑

l∈Z\{0}
sech2(· + kl)

∥

∥

∥

∥

∥

∥

L∞(Tk)

+4k1/2
∑

n∈N

∑

l∈N

∥

∥sech2(· + kn)
∥

∥

L∞(Tk)

∥

∥sech2(· + kl)
∥

∥

L∞(Tk)

≤ 2
√

3C1e
−k + 4C2

1k
1/2e−2k ≤ C2e

−k.(3.14)

Existence and uniqueness of Y with the error bound (3.11) follow from bounds

(3.12), (3.13), and (3.14), the contraction mapping arguments for Y = L̂−1F (Y ) in

Ĥ2
per(Tk), and the Sobolev embedding of H2

per(Tk) to L∞
per(Tk). �

To define uniquely λ in terms of E , we recall the constraints (3.2), which are
equivalent to the scalar equation,

(3.15) a+ = 4k

∫ k/2

−k/2

y(ξ)dξ = 8k(1 + O(ke−k)).

Because a+ is related to k by the exact expression (3.5), constraint (3.15) yields a
relationship between k and E given by

(3.16) a+ =
6E

λ+ 4k2
⇒ 32k3

(

1 + O(ke−k)
)

=
6E

1 +
√

1 − 9E
8k4

.

Hence we obtain

(3.17) k =

(

3

32
E
)1/3

+ 1 + O(E−1/3) as E → ∞,

which yields as E → ∞,

λ = 4k2

√

1 − 9E
8k4

=

(

3

4
E
)2/3

+ O(E1/3)

and

a+ = 8k(1 + O(ke−k)) = (48E)
1/3

+ O(1).

It follows from (3.17) that

E =
32

3
k3 − 32k2 + O(k), as k → ∞,

which recovers (2.3).
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Using constraints (3.2), the Euler–Lagrange equation (3.3), the representation
(3.9), and the constraint (3.15), we obtain

R(u) = 2λE +
1

2

∫

T

v3(x)dx

= 2λE + a2
+(4k2 − a+) − 32k5

∫ k/2

−k/2

y3(ξ)dξ.(3.18)

Substituting approximations (3.11), (3.16), and (3.17) into equation (3.18) yield

R(u) =
256

5
k5 + O(k4) as k → ∞,

which recovers (2.4).
To obtain (2.1) and (2.2), we integrate the solution v(x) and write

(3.19) u(x) =

∫ x

0

v(x′)dx′ = a+x− 4kz(kx),

where

z(ξ) =

∫ ξ

0

y(ξ′)dξ′, ξ = kx.

Therefore, we have

K(u) =
1

24
a2
+ − 8ka+

∫ 1/2

0

xz(kx)dx + 8k

∫ k/2

−k/2

z2(ξ)dξ.

It follows from (3.11) that for all large k, there is C > 0 such that z(ξ) is close to
z∞(ξ) = tanh(ξ) with the error bound,

(3.20) sup
ξ∈[−k/2,k/2]

|z(ξ) − z∞(ξ)| ≤ Cke−k,

which recovers (2.1) thanks to the expansion (3.15).
Integrating by parts, we also find the elementary expansion,

∫ 1/2

0

x tanh(kx)dx =
1

8
+

1

4k2

∫ ∞

0

log(1 + e−z)dz + O(k−1e−k) as k → ∞.

Together with (3.15) and (3.17), this expansion yields

K(u) =
8

3
k2 − 16k + 32

∫ ∞

0

log(1 + e−z)dz + O(k3e−k)) as k → ∞,

which recovers (2.2).
To complete the proof of Theorem 1, we need to show that the critical point

u ∈ Ȟ2
per(T) of J(ux) is a maximizer of R(u). However, this follows from the

uniqueness of the critical point u∗, for which R(u∗) > 0, and from the fact that
R(u) is bounded from above by the bound (1.4). Therefore, the proof of Theorem
1 is complete.

4. Burgers equation on the unit circle

To develop the proof of Theorem 2, we convert the initial-value problem for
the Burgers equation (1.1) with initial data (2.6)–(2.7) to a convenient form, which
separates the decay of the linear rarefactive wave and the relative dynamics of a
shock on the background of the rarefactive wave.
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Lemma 3. Let u0 be given by (2.6)–(2.7). Then, a unique solution u ∈
C(R+, H

1
per(T)) of the Burgers equation (1.1) is given by

(4.1) u(x, t) = p(t) (2x− w(ξ(x, t), τ(t))) , x ∈ T, t ∈ R+,

where

(4.2) p(t) =
4k

1 + 16kt
, ξ(x, t) =

4kx

1 + 16kt
, τ(t) =

16k2t

1 + 16kt
,

and w(ξ, τ) is a unique odd solution of the Burgers equation,

(4.3)

{

wτ = 2wwξ + wξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
w|τ=0 = f(ξ/4k), |ξ| ≤ 2k,

subject to the boundary conditions w = ±1 at ξ = ±2(k − τ).

Proof. Although the proof can be constructed by a direct substitution, we
will give all intermediate details. Recall that the initial-value problem (1.1) has
a unique global solution u ∈ C(R+, H

1
per(T)) if the initial data u0 satisfies (2.6)–

(2.7). Odd solutions in x are preserved in the time evolution of the Burgers equation
(1.1) and the Sobolev embedding of H1

per(T) to Cper(T) implies that the boundary

conditions u(± 1
2 , t) = 0 are preserved for all t > 0.

Let us look for the exact solution of the Burgers equation (1.1) in the separable
form,

u(x, t) = p(t) (2x− U(x, q(t))) ,

where p(t), q(t), and U(x, q) are new variables. If we choose ṗ = −4p2 and q̇ = p
starting with p(0) = p0 and q(0) = 0, then U(x, q) satisfies the initial-value problem,

(4.4)

{

Uq + 4xUx = 2UUx + 1
p(t)Uxx, x ∈ T, q > 0,

U |t=0 = f(x), x ∈ T,

subject to the boundary conditions U = ±1 at x = ± 1
2 . In addition, U is odd in x

for any q > 0.
We find from the differential equations ṗ = −4p2 and q̇ = p that

p(t) =
p0

1 + 4p0t
, q(t) =

1

4
log(1 + 4p0t).

Solving equation Uq + 4xUx = 0 along the characteristics, we define

dx

dq
= 4x ⇒ x = Ce4q,

where C is an integration constant. Noting that p(t) = p0e
−4q, we define (ξ, τ) by

∂τ

∂q
= p0e

−4q,
∂ξ

∂q
= −4ξ,

∂τ

∂x
= p0e

−4q.

Integrating these equations, we obtain the substitution,

U(x, q) = w(ξ, τ), ξ = p0xe
−4q =

p0x

1 + 4p0t
, τ =

1

4
p0(1 − e−4q) =

p2
0t

1 + 4p0t
,

which transforms (4.4) to (4.3). Odd functions U in x become odd functions w in ξ
and the boundary conditions U = ±1 at x = ± 1

2 become the boundary conditions

w = ±1 at ξ = ± 1
2 (p0 − 4τ). Setting p0 = 4k yields (4.1), (4.2), and (4.3). �
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Remark 3. The scaling law (1.12) formally follows from the similarity trans-
formation (4.1). If there exists an inertial range C− ≤ kt ≤ C+ for some k-
independent constants 0 < C− < C+ < ∞, where the H1-norm of w in ξ is
k-independent, then in this range, p(t) = O(k), K(u) = O(k2), E(u) = O(k3),
where k = O(E1/2) as E = E(u0) → ∞. To prove this claim rigorously, we study a
convergence of solutions of the rescaled Burgers equation (4.3) starting with the ini-
tial condition w0(ξ) = f(ξ/4k) to the k-independent viscous shock w∞(ξ) = tanh(ξ)
in a bounded but large domain |ξ| ≤ 2(k − τ) for τ = O(k). For a control of error
terms, we have to specify further restriction on the initial condition f(ξ/4k), which
result in weaker statements (2.17) and (2.18) of Theorem 2 compared to the scaling
law (1.12).

The Burgers equation wτ = 2wwξ + wξξ admits the viscous shock,

(4.5) w∞(ξ) = tanh(ξ).

In the initial-value problem,

(4.6)

{

wτ = 2wwξ + wξξ, ξ ∈ R, τ ∈ R+,
w|τ=0 = g(ξ/a), ξ ∈ R,

where a > 0 is a parameter, the viscous shock is an asymptotically stable attractor
in the space of odd functions g with fast (exponential) decay to ±1 as ξ → ±∞ [9].
To be able to deal with the dynamics of viscous shocks in the initial-value problem
(4.3) on a bounded domain, we shall first clarify the dynamics of viscous shocks in
the initial-value problem (4.6) on the infinite line.

5. Burgers equation on the infinite line

Let us rewrite the initial-value problem (4.6) for the Burgers equation on the
infinite line by using the original (unscaled) variables,

(5.1)

{

ut + 2uux = uxx, x ∈ R, t ∈ R+,
u|t=0 = u0, x ∈ R,

We impose the nonzero (shock-type) boundary conditions,

(5.2) lim
x→±∞

u(x, t) = ∓U∞, t ∈ R+,

for some U∞ > 0.
To control the enstrophy on the infinite line, we define

(5.3) E(u) =
1

2

∫

R

u2
xdx, R(u) = −

∫

R

(u2
xx + u3

x)dx,
dE(u)

dt
= R(u).

The bound R(u) ≤ 3
2E

5/3(u) on the enstrophy growth is derived similarly to (1.4).
In the case of the infinite line, the maximizer of R(u) at fixed E(u) is not decaying
at infinity. On the other hand, the result of Theorem 1 becomes now explicit.

Lemma 4. The maximization problem,

(5.4) max
ux∈H1(R)

R(u) subject to E(u) = E ,

admits a unique odd solution

(5.5) u∗(x) = −4k tanh(kx),
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where k is defined implicitly by E,

(5.6) E = E(u∗) =
32

3
k3,

and

(5.7) R(u∗) =
256

5
k5 =

35/3

5 · 21/3
E5/3.

Proof. The constrained maximization problem (5.4) for v = ux ∈ H1(R)
yields the functional,

J(v) =

∫

R

(

v2
x + v3 + λv2

)

dx,

where λ ∈ R is the Lagrange multiplier. The Euler–Lagrange equations give

2v′′(x) = 3v2(x) + 2λv(x), x ∈ R

for which the only solution v ∈ H1(R) is the soliton,

v(x) = −4k2sech2(kx), λ = 4k2,

where k > 0 is arbitrary. Integrating v(x) with respect to x, we obtain (5.5).
Integrating v2, v3, and v2

x over R, we obtain (5.6) and (5.7). �

Remark 4. The Burgers equation (5.1) subject to the boundary conditions (5.2)
with U∞ = 4k admits the viscous shock solution,

(5.8) u∞(x) = −4k tanh(4kx), k > 0,

which yields R(u∞) = 0 and E(u∞) = 4E(u∗).

Remark 5. Using the self-similar variables,

(5.9) u(x, t) = −4kw(ξ, τ), ξ = 4kx, τ = 16k2t,

the Burgers equation (5.1) can be written in the form,

(5.10)

{

wτ = 2wwξ + wξξ, ξ ∈ R, τ ∈ R+,
w|τ=0 = w0, ξ ∈ R,

where u0(x) = −4kw0(ξ). If the boundary conditions (5.2) are imposed with U∞ =
4k, then w satisfies the boundary conditions limξ→±∞ w(ξ, τ) = ±1.

5.1. Initial condition with l = k. Let us consider the time evolution of the
Burgers equations (5.1) and (5.10) starting with the initial condition,

(5.11) u0(x) = −4k tanh(kx), ⇒ w0(ξ) = tanh(ξ/4),

which is a local maximizer (5.5) in Lemma 4. Note that the initial-value problem
(5.10) with initial data (5.11) is independent of parameter k > 0. We shall prove
the following.

Lemma 5. For any integer m ≥ 0, there is a constant Cm > 0 such that a
unique solution of the initial-value problem (5.10) with initial data (5.11) satisfies

(5.12) sup
ξ∈R

∣

∣

∣
e|ξ|/2∂m

ξ (w(ξ, τ) − tanh(ξ))
∣

∣

∣
≤ Cme

−3τ/4, τ ∈ R+.
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Proof. Using the Cole–Hopf transformation [7, 11], the Burgers equation
(5.10) with initial data (5.11) admits the exact solution,

(5.13) w(ξ, τ) =
ψξ(ξ, τ)

ψ(ξ, τ)
,

where ψ(ξ, τ) > 0 is a solution of the heat equation ψτ = ψξξ on the real line R

with the initial condition ψ(ξ, 0) = cosh4(ξ/4). This exact solution exists in the
explicit form,

(5.14) ψ(ξ, τ) =
1

8

[

3 + 4 cosh(ξ/2)eτ/4 + cosh(ξ)eτ
]

, ξ ∈ R, τ ∈ R+.

As τ → ∞, the last term in (5.14) dominates and the solution converges in L∞

norm to the viscous shock w∞(ξ) = tanh(ξ). To prove this convergence, we rewrite
(5.14) in the form,

(5.15) ψ(ξ, τ) =
1

8
eτ cosh(ξ)

[

1 + 4 cosh(ξ/2)sech(ξ)e−3τ/4 + 3sech(ξ)e−τ
]

.

This representation and the Cole–Hopf transformation (5.13) yield the compact
expression,

(5.16) w(ξ, τ) = tanh(ξ) + w̃(ξ, τ),

where

(5.17) w̃ = e−3τ/4sech(ξ)
2 sinh(ξ/2) − 4 cosh(ξ/2) tanh(ξ) − 3 tanh(ξ)e−τ/4

1 + 4 cosh(ξ/2)sech(ξ)e−3τ/4 + 3sech(ξ)e−τ
.

The bound (5.12) follows from (5.17) thanks to the exponential decay in ξ and
τ . �

Corollary 2. Fix δ > 0. There exist K > 0 and C > 0 such that for all
k ≥ K, we have

(5.18) sup
x∈R

|u(x, t) − u∞(x)| ≤ C

kδ
, for all t ≥ T∗ :=

(1 + δ) log(k)

12k2
.

Proof. Bound (5.18) follows from (5.12) with m = 0 after the transformation
(5.9). �

Remark 6. We actually have shown convergence of u to u∞ in Hs norm for
any s ≥ 0, which follows from the exponential decay in ξ and τ .

Figure 4 shows the exact solution w(ξ, τ) for different values of τ together with
the rescaled enstrophy E =

∫∞
0
w2

ξdξ and its rate of change R = 2
∫∞
0

(w3
ξ −w2

ξξ)dξ
versus τ . The relevant integrals are approximated by using the MATLAB quad

function. The enstrophy E is a monotonically increasing function to the value
E∞ = 2

3 , whereas the rate of change R is initially increasing and then decreasing
to R∞ = 0. Note that by Lemma 5, we have exponentially rapid convergence
‖w(·, τ) − w∞‖H1 → 0 as τ → ∞.

If E = E(u0) = 32
3 k

3, then bound (5.18) shows that

(5.19) E(u∞) = O(E) and T∗ = O(E−2/3 log(E)) as E → ∞.

The asymptotic result (5.19) is included in the scaling law (2.17) of Theorem 2.
We have not achieved the maximal increase of the enstrophy with the initial data
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Figure 4. Top: The exact solution (5.13)–(5.14) for τ = 0, τ = 2,
and τ → ∞. Middle: Enstrophy E versus time τ . The dotted
curve shows the value of E at the viscous shock w∞(ξ) = tanh(ξ).
Bottom: Enstrophy’s rate of change R versus time τ .

(5.11) given by the instantaneous maximizer of Lemma 4. To achieve the maximal
growth of the enstrophy, we shall modify the initial data u0.

5.2. Initial condition with arbitrary l. Let us consider a more general
initial condition,

(5.20) u0(x) = −4k tanh(lx), ⇒ w0(ξ) = tanh(ξ/a),

where a = 4k
l is the only parameter of the initial-value problem (5.10) with initial

data (5.20). For analysis needed in the proof of Theorem 2, we need convergence of
the solution w(ξ, τ) to the viscous shock w∞(ξ) = tanh(ξ) in the H1-norm as the
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time τ gets large, and the smallness of w(ξ, τ) − w∞(ξ) at large values of ξ for all
times τ ≥ 0. Both objectives are achieved in the following result.

Lemma 6. Fix δ > 0. There are constants A > 0 and C > 0 such that for all
a ≥ A, a unique solution of the initial-value problem (5.10) with initial data (5.20)
satisfies

(5.21) sup
ξ∈R

|w(ξ, τ) − tanh(ξ)| ≤ C

a3δ+δ2τ1/2
for all τ ≥ 1

2
(1 + δ)2a log(a)

Furthermore, for any integer m ≥ 0, there are constants Am > 0 and Cm > 0, such
that for all a ≥ Am, we have
(5.22)
∣

∣∂m
ξ (w(ξ, τ) − tanh(ξ))

∣

∣ ≤ Cm

a1+m+δ
for all |ξ| ≥ 1

2
(1 + δ)2a log(a) and τ ≥ 0.

Proof. Using the Cole–Hopf transformation (5.13), we rewrite the initial-
value problem (5.10) with initial data (5.20) in the form,

(5.23)

{

ψτ = ψξξ, ξ ∈ R, τ ∈ R+,
ψ|τ=0 = cosha(ξ/a), ξ ∈ R.

The initial data can be represented in the form,

ψ|τ=0 =
1

2a
e|ξ|φa(ξ), φa(ξ) = (1 + e−2|ξ|/a)a.

The function φa is bounded by its value at ξ = 0,

(5.24) 1 ≤ φa(ξ) ≤ 2a, ξ ∈ R,

but the upper bound diverges quickly as a → ∞. On the other hand, for large
values of ξ, the function φa decays to 1 exponentially rapidly.

Fix δ > 0 and define ξa := 1+δ
2 a log(a). For sufficiently large a ≫ 1, there is

C > 0 such that

(5.25) 0 ≤ φa(ξ) − 1 = ea log(1+e−2|ξ|/a) − 1 ≤ Cae−2|ξ|/a ≤ C

aδ
, |ξ| ≥ ξa.

The upper bound in (5.25) converges to zero as a→ ∞.
To bound derivatives of φa in ξ, we note that

(5.26) φ′a(ξ) = −2(1 + e−2ξ/a)a−1e−2ξ/a, ξ > 0,

which implies that

(5.27) sup
ξ∈R+

|φ′a(ξ)| = 2a, sup
ξ≥ξa

|φ′a(ξ)| ≤ C

a1+δ
.

Writing (5.26) as

d

dξ
logφa(ξ) = − 2e−2ξ/a

1 + e−2ξ/a
, ⇒ d2

dξ2
logφa(ξ) =

1

a
sech2

(

ξ

a

)

, ξ > 0,

and using (5.24) and (5.25), we obtain by induction that, for any integer m ≥ 0,
there is Cm > 0 such that

(5.28) sup
ξ∈R+

|∂m
ξ φa(ξ)| ≤ Cm2a, sup

ξ≥ξa

|∂m
ξ φa(ξ)| ≤ Cm

am+δ
.
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The solution of the initial-value problem for the heat equation (5.23) is obtained
explicitly as

ψ(ξ, τ) =
1

2a
√

4πτ

∫ ∞

−∞
e−

(ξ−η)2

4τ +|η|φa(η)dη

=
1

2a
√
π
eτ

(

eξ

∫ ∞

−z+

e−z2

φa(ξ + 2τ + 2
√
τz)dz

+e−ξ

∫ z−

−∞
e−z2

φa(ξ − 2τ + 2
√
τz)dz

)

,

where

z± =
2τ ± ξ

2
√
τ
.

We shall rewrite the solution in the equivalent form,

ψ(ξ, τ) =
1

2a−1
eτ cosh(ξ) [1 + Ψ(ξ, τ)] ,(5.29)

Ψ(ξ, τ) :=
eξψ+(ξ, τ) + e−ξψ−(ξ, τ)√

π(eξ + e−ξ)
,(5.30)

where

ψ+(ξ, τ) :=

∫ ∞

−z+

e−z2

φa(ξ + 2τ + 2
√
τz)dz −

√
π,(5.31)

ψ−(ξ, τ) :=

∫ z−

−∞
e−z2

φa(ξ − 2τ + 2
√
τz)dz −

√
π.(5.32)

Using the Cole–Hopf transformation (5.13) and the explicit representation (5.30),
we write the solution of the Burgers equation (5.10) in the form,

(5.33) w(ξ, τ) = tanh(ξ) + w̃(ξ, τ), w̃(ξ, τ) =
∂ξΨ(ξ, τ)

1 + Ψ(ξ, τ)
,

where

∂ξΨ(ξ, τ) =
eξ∂ξψ+(ξ, τ) + e−ξ∂ξψ−(ξ, τ)√

π(eξ + e−ξ)
+

1

2
√
π

sech2(ξ)(ψ+(ξ, τ) − ψ−(ξ, τ)).

We first prove bound (5.21). Because ψ is even in ξ, we can consider ξ ≥ 0
without the loss of generality. To analyze ψ+, we define

za := z+ − ξa
2
√
τ

=
ξ − ξa + 2τ

2
√
τ

,

so that z ≥ −za corresponds to ξ ≥ ξa in the argument of φa(ξ). For any ξ ≥ 0
and τ ≥ τa := (1 + δ)ξa, we have

za ≥ 2τa − ξa
2
√
τa

≥ 1 + 2δ

2
√

2

√

a log(a),

which shows that za → ∞ as a→ ∞. The term ψ+(ξ, τ) can be split into the sum
of three terms

ψ+(ξ, τ) =

(
∫ ∞

−za

e−z2

dz −
√
π

)

+

∫ ∞

−za

e−z2

(φa(ξ + 2τ + 2
√
τz) − 1)dz

+

∫ −za

−z+

e−z2

φa(ξ + 2τ + 2
√
τz)dz ≡ I + II + III.(5.34)
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For all ξ ≥ 0 and τ ≥ τa, we obtain

I =

∫ −za

−∞
e−z2

dz ≤ 1

2za
e−z2

a ≤
√

2

(1 + 2δ)
√

a log(a)
e−

(1+2δ)2

8 a log(a)

and

III ≤ 2a

∫ −za

−z+

e−z2

dz ≤ 2a

2za
e−z2

a ≤
√

2

(1 + 2δ)
√

a log(a)
e−

(1+2δ)2

8 a log(a)+a log(2),

where the upper bounds are exponentially small as a → ∞ and the bound (5.24)
has been used. Using bound (5.25), we obtain

II ≤ Ca

∫ ∞

−za

e−z2−2(ξ+2τ+2
√

τz)/adz ≤
√
πCae−2(1+δ)2 log(a) ≤ C

a1+4δ+2δ2 .

Combining these terms and dropping the exponentially small terms, we infer that
for any fixed δ > 0 and for sufficiently large a≫ 1, there is C > 0 such that

(5.35) sup
τ≥τa

sup
ξ≥0

|ψ+(ξ, τ)| ≤ C

a1+4δ+2δ2 .

To analyze ψ−, we define

ẑa := z− − ξa
2
√
τ

=
−ξ − ξa + 2τ

2
√
τ

,

so that z ≤ za corresponds to ξ ≤ −ξa in the argument of φa(ξ). For any 0 ≤ ξ ≤ ξa
and τ ≥ τa, we have

ẑa ≥ τa − ξa√
τa

≥ δ√
2

√

a log(a),

which shows that ẑa → ∞ as a→ ∞. The term ψ−(ξ, τ) can be split into the sum
of three terms

ψ−(ξ, τ) =

(

∫ ẑa

−∞
e−z2

dz −
√
π

)

+

∫ ẑa

−∞
e−z2

(φa(ξ − 2τ + 2
√
τz) − 1)dz

+

∫ z−

ẑa

e−z2

φa(ξ − 2τ + 2
√
τz)dz ≡ I + II + III.(5.36)

Using computations similar to those for ψ+(ξ, τ), we obtain for any 0 ≤ ξ ≤ ξa and
τ ≥ τa,

I ≤ 1

δ
√

2a log(a)
e−

δ2

2 a log(a), II ≤ C

a3δ+2δ2 ,

III ≤ 1

δ
√

2a log(a)
e−

δ2

2 a log(a)+a log(2).

Again, for any fixed δ > 0 and for sufficiently large a≫ 1, there is C > 0 such that

(5.37) sup
τ≥τa

sup
0≤ξ≤ξa

|ψ−(ξ, τ)| ≤ C

a3δ+2δ2 .

Finally, the exponential factor in front of ψ− yields the following simple esti-
mate:

(5.38) sup
ξ≥ξa

e−2ξψ−(ξ, τ) ≤
√
π(2a − 1)e−2ξa ≤ Ce−(1+δ)a log(a)+a log(2), τ ≥ 0,

where the upper bound is exponentially small as a→ ∞.
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Because of the symmetry for ξ ≤ 0, we infer from (5.35), (5.37), and (5.38)
that for any fixed δ > 0 and for sufficiently large a ≫ 1, there is constant C > 0
such that

(5.39) sup
τ≥τa

sup
ξ∈R

|Ψ(ξ, τ)| ≤ C

a3δ+2δ2 .

This result shows that Ψ is small for τ ≥ τa in the denominator of the exact solution
(5.33).

We now proceed with similar expressions for ∂ξψ+(ξ, τ) and ∂ξψ−(ξ, τ). Using
the representation (5.34), we find

(5.40) ∂ξI =
1

2
√
τ
e−z2

a ,

∂ξII =
1

2
√
τ
e−z2

a(φa(ξa) − 1) +
1

2
√
τ

∫ ∞

−za

e−z2

∂zφa(ξ + 2τ + 2
√
τz)dz

=
1√
τ

∫ ∞

−za

ze−z2 (

φa(ξ + 2τ + 2
√
τz) − 1

)

dz,(5.41)

and

∂ξIII =
1

2
√
τ

[

e−z2
+φa(0) − e−z2

aφa(ξa)
]

+
1

2
√
τ

∫ −za

−z+

e−z2

∂zφa(ξ + 2τ + 2
√
τz)dz(5.42)

=
1√
τ

∫ −za

−z+

ze−z2

φa(ξ + 2τ + 2
√
τz)dz.(5.43)

Using bounds (5.24) and (5.25), we obtain that for any ξ ≥ 0 and τ ≥ τa there is
C > 0 such that

∂ξI ≤ C√
τ
e−

(1+2δ)2

8 a log(a), |∂ξII| ≤
C√

τa1+4δ+2δ2 ,

|∂ξIII| ≤
C√
τ
e−

(1+2δ)2

8 a log(a)+a log(2),

where in the computations for ∂ξII we have used the fact that the function
√
τe−4τ/a

is monotonically decreasing for any τ > a
8 , whereas τa ≫ O(a) as a→ ∞.

Combining all bounds and dropping the exponentially small factors, we infer
that for any fixed δ > 0 and sufficiently large a≫ 1, there is C > 0 such that

(5.44) sup
ξ≥0

|∂ξψ+(ξ, τ)| ≤ C√
τa1+4δ+2δ2 , τ ≥ τa.

Similarly, we obtain

(5.45) sup
0≤ξ≤ξa

|∂ξψ−(ξ, τ)| ≤ C√
τa3δ+2δ2 , τ ≥ τa

and

(5.46) |∂ξψ−(ξ, τ)| ≤ 2a

√
τ

∫

√
τ−ξ/(2

√
τ)

−∞
|z|e−z2

dz, τ ≥ 0, ξ ≥ ξa,
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which yields

(5.47) sup
ξ≥ξa

e−2ξ|∂ξψ−(ξ, τ)| ≤ C2a

√
τ
e−2ξa ≤ C√

τ
e−(1+δ)a log(a)+a log(2), τ ≥ τa.

Because of the symmetry for ξ ≤ 0, we infer from (5.44), (5.45), and (5.47) that for
any fixed δ > 0 and for sufficiently large a≫ 1, there is constant C > 0 such that

(5.48) sup
ξ∈R

∣

∣

∣

∣

eξ∂ξψ+(ξ, τ) + e−ξ∂ξψ−(ξ, τ)

eξ + e−ξ

∣

∣

∣

∣

≤ C√
τa3δ+2δ2 , τ ≥ τa.

We now need to estimate the difference ψ+(ξ, τ) − ψ−(ξ, τ). We can write

ψ+(ξ, τ) − ψ−(ξ, τ) =

1

2
√
τ

∫ ∞

0

φa(η)

[

e−
(η−ξ−2τ)2

4τ − e−
(η+ξ−2τ)2

4τ

]

dη

=
1√
τ

(
∫ −τ

−2τ

+

∫ ∞

−τ

)

φa(η + 2τ)e−
ξ2+η2

4τ sinh

(

ξη

2τ

)

dη

≡ I + II.

For any |ξ| ≤ 1
2τ , we have

|I| =
1√
τ

∫ 2τ

τ

φa(2τ − η)e−
ξ2+η2

4τ sinh

( |ξ|η
2τ

)

dη

≤ 2a

√
τ

∫ ∞

τ

e−
(η−|ξ|)2

4τ dη ≤ 2a
√
τ

τ − |ξ|e
− (τ−|ξ|)2

4τ ≤ 2a+1

√
τ
e−

1
16 τ .

Then, we represent

II =
1√
τ

∫ ∞

−τ

(φa(η + 2τ) − 1)e−
ξ2+η2

4τ sinh

(

ξη

2τ

)

dη

+
1√
τ

∫ ∞

−τ

e−
ξ2+η2

4τ sinh

(

ξη

2τ

)

dη

≡ IIa + IIb,

and estimate

|IIb| =
1√
τ

∫ ∞

τ

e−
ξ2+η2

4τ sinh

( |ξ|η
2τ

)

dη ≤ 1√
τ

∫ ∞

τ

e−
(η−|ξ|)2

4τ dη ≤ 2√
τ
e−

1
16 τ .

and

|IIa| ≤
Ca√
τ
e2|ξ|/a−4τ/a

∫ ∞

−τ

e−
(η−|ξ|+4τ/a)2

4τ dη ≤ Ca√
τ

√
τe−3τ/a ≤ C

√

log(a)√
τa3δ+3δ2/2

,

where we have used again the fact that the function
√
τe−3τ/a is monotonically

decreasing for any τ > a
6 , whereas τa ≫ O(a) as a → ∞. Because I and IIb are

exponentially small in a for all τ ≥ τa, there is C > 0 such that

(5.49) sup
|ξ|≤ 1

2 τ

|ψ+(ξ, τ) − ψ−(ξ, τ)| ≤ C
√

log(a)√
τa3δ+3δ2/2

≤ C√
τa3δ+δ2 , τ ≥ τa.

On the other hand, for any |ξ| ≥ 1
2τ , there is C > 0 such that

(5.50) sech2(ξ)|ψ+(ξ, τ) − ψ−(ξ, τ)| ≤ C2ae−τ ,
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which is exponentially small in a for all τ ≥ τa. It follows from (5.49)–(5.50) that
for any fixed δ > 0 and for sufficiently large a ≫ 1, there is constant C > 0 such
that

(5.51) sup
ξ∈R

sech2(ξ)|ψ+(ξ, τ) − ψ−(ξ, τ)| ≤ C√
τa3δ+δ2 , τ ≥ τa.

Representation (5.33) and bounds (5.39), (5.48) and (5.51) yield the desired bound
(5.21).

We can now prove bound (5.22) for m = 0. Using the exponential factors, we
have bound (5.38), which is exponentially small as a→ ∞ for all ξ ≥ ξa and τ ≥ 0.
We can rewrite bounds (5.46) and (5.50) in the equivalent form:

e−2ξ|∂ξψ−(ξ, τ)| ≤ C2ae−2ξa , ξ ≥ ξa, τ ≥ 0,

and

sech2(ξ)|ψ+(ξ, τ) − ψ−(ξ, τ)| ≤ C2ae−2ξa , ξ ≥ ξa, τ ≥ 0.

Therefore, these bounds are also exponentially small as a → ∞ and we only need
to show that the terms ψ+(ξ, τ) and ∂ξψ+(ξ, τ) remain small for all ξ ≥ (1 + δ)ξa
and τ ≥ 0. We need the extra factor (1 + δ) in ξ ≥ (1 + δ)ξa to ensure that za is
bounded from below by

za =
ξ − ξa + 2τ

2
√
τ

≥ δξa + 2τ

2
√
τ

≥
√

2δξa =
√

δ(1 + δ)a log(a),

where we have used the fact that the function
√
τ + δξa

2
√

τ
reaches minimum at

τ0 = δξa

2 > 0.
Using the splitting of ψ+ in (5.34), we infer that the estimates for I and III

produce exponentially small terms in a, whereas the estimate for II produces an
algebraically small term in a. As a result of analysis similar to the one for (5.35),
we find that there is C > 0 such that

(5.52) sup
τ≥0

sup
ξ≥(1+δ)ξa

|ψ+(ξ, τ)| ≤ Cae−2(1+δ)ξa/a ≤ C

a2δ+δ2 .

Using the exact expression (5.40) and the fact that the function

1√
τ
e−(δξa+2τ)2/(4τ)

reaches maximum for τ ≥ 0 at

τ0 =
1

4

(

√

1 + 4δ2ξ2a − 1
)

≈ δξa
2
,

we obtain

∂ξI ≤ C
√

a log(a)
e−δ(1+δ)a log(a).

Similarly, using the exact expression (5.43), we obtain

|∂ξIII| ≤
C

√

a log(a)
e−δ(1+δ)a log(a)+a log(2).

Using the exact expression (5.41) rewritten as

∂ξII =
1

2
√
τ
e−z2

a(φa(ξa) − 1) +

∫ ∞

−za

e−z2

φ′a(ξ + 2τ + 2
√
τz)dz,
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and the bounds (5.25) and (5.27), we obtain

|∂ξII| ≤
C

√

log(a)aδ+1/2
e−δ(1+δ)a log(a) +

C

a1+δ
.

Combining these estimates together, we infer that there is C > 0 such that

(5.53) sup
τ≥0

sup
ξ≥(1+δ)ξa

|∂ξψ+(ξ, τ)| ≤ C

a1+δ
.

Using (5.52) and (5.53), we obtain the desired bound (5.22) for m = 0. Bound
(5.22) for m ∈ N follows by recursion from the higher-order derivatives of the exact
solution (5.33), the decompositions (5.34) and (5.36), and the bound (5.28) on the
higher-order derivatives of the function φa. �

Corollary 3. Fix δ > 0 and let a = 4k
l . There exist A > 0 and C > 0 such

that for all a ≥ A,

(5.54) sup
x∈R

|u(x, t) − u∞(x)| ≤ C

a3δ+δ2t1/2
, for all t ≥ T∗ :=

(1 + δ)2a log(a)

32k2
.

Proof. Bound (5.54) follows from (5.21) after the scaling transformation (5.9).
�

Remark 7. We can also prove convergence of u to u∞ in H1 norm but it
requires some decay as |ξ| → ∞ and an extension of bound (5.21) for the first
derivative in ξ, which we do not establish in Lemma 5. Note that bounds (5.21)
and (5.22) will be applied on large but finite intervals in ξ.

Figure 5 shows the exact solution w(ξ, τ) with a = 10 for different values of
τ together with the rescaled enstrophy E =

∫∞
0
w2

ξdξ. The integrals in the exact

solution (5.33) were approximated by using the MATLAB quad function. The
behavior of w and E looks similar to the case a = 4 shown on Figure 4 but it
takes longer for E to approach to the limit E∞ = 2

3 from the initially smaller value

E0 = 2
3a .

Explicit computation with the initial data (5.20) yields E(u0) = 32
3 k

2l, whereas

we recall that E(u∞) = 128
3 k3. If l = O(1) as k → ∞, we have k = O(E1/2) and

hence

(5.55) E(u∞) = O(E3/2), T∗ = O(E−1/2 log(E)), as E → ∞.

If l = L log(k) for a fixed L > 0, then Lemma 1 implies that

k = O(E1/2 log−1/2(E))

. From (5.54), we have

(5.56) T∗ =
(1 + δ)2

8Lk

[

1 + O
(

log log(k)

log(k)

)]

.

Hence we have
(5.57)

E(u∞) = O(E3/2 log−3/2(E)) and T∗ = O(E−1/2 log1/2(E)) as E → ∞.

The asymptotic result (5.57) is included in the scaling law (2.18) of Theorem 2. On
the other hand, the maximal rate (5.55) can not be achieved, because if l = O(1),
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Figure 5. Left: The exact solution (5.33) with a = 10 for τ = 0,
τ = 5, and τ → ∞. Right: Enstrophy E versus time τ . The dotted
curve shows the value of E at the viscous shock.

then a = O(k) and the lower bound on the time τ ≥ 1
2 (1 + δ)2a log(a) in bound

(5.21) is beyond the time interval τ ∈ (0, k) in Lemma 3 as k → ∞.

6. Dynamics of a viscous shock in a bounded domain

By Lemma 3, the initial-value problem (1.1) is replaced by the equivalent prob-
lem,

(6.1)

{

wτ = 2wwξ + wξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
w|τ=0 = w0, |ξ| ≤ 2k,

subject to the initial condition w0(ξ) = f(ξ/4k) and the inhomogeneous boundary
conditions w = ±1 at ξ = ±2(k − τ), where f is given by either (2.8) or (2.9).

Let us define the norm

(6.2) ‖w‖L2
k,τ

:=

(

∫ 2(k−τ)

−2(k−τ)

|w(ξ, τ)|2dξ
)1/2

.

An approximate solution of the initial-value problem (6.1) can be thought in the
form,

(6.3) wapp(ξ, τ) =
∂

∂ξ
logψapp(ξ, τ),

where ψapp is a solution of the homogeneous heat equation on the real line. For f
in either (2.8) or (2.9), the approximate solution is constructed in Lemmas 5 or 6,
respectively. We shall assume that

(6.4) 0 ≤ ∂

∂ξ
wapp(ξ, τ) ≤ 1, ξ ∈ R, τ ∈ R+,

which is a reasonable assumption for a monotonic transition from wapp,0(ξ) =
tanh(ξ/a) with either a = 4 or a → ∞ as k → ∞ to the viscous shock w∞(ξ) =
tanh(ξ).
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We write wapp(ξ, τ) = tanh(ξ) + w̃(ξ, τ) and assume that for any fixed C0 ∈
(0, 1), and for sufficiently large k ≫ 1, there is a small Ck > 0 such that
(6.5)

sup
τ∈[0,C0k]

(

|w̃(2(k − τ), τ)| +
∣

∣

∣

∣

d

dτ
w̃(2(k − τ), τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

d2

dτ2
w̃(2(k − τ), τ)

∣

∣

∣

∣

)

≤ Ck

k
,

where Ck → 0 as k → ∞.
Furthermore, we assume that for sufficiently large k ≫ 1, there is a small

Dk > 0 such that

(6.6) sup
ξ∈[−2k,2k]

(

|w0(ξ) − wapp,0(ξ)| +
∣

∣w′
0(ξ) − w′

app,0(ξ)
∣

∣

)

≤ Dk

k3/2
,

where Dk → 0 as k → ∞.
Using the Cole–Hopf transformation, we rewrite the initial-value problem (6.1)

in the form,

(6.7) w =
ψξ

ψ
⇒

{

ψτ = ψξξ, |ξ| < 2(k − τ), τ ∈ (0, k),
ψ|τ=0 = ψ0, |ξ| ≤ 2k,

subject to the initial condition ψ0 = exp
(

∫ ξ

0 w0(ξ
′)dξ′

)

and the Robin boundary

conditions ψξ = ±ψ at ξ = ±2(k − τ). Using the decomposition

(6.8) ψ = ψapp(1 + Ψ),

we find the equivalent initial-value problem,

(6.9)

{

Ψτ = Ψξξ + 2wappΨξ, |ξ| < 2(k − τ), τ ∈ (0, k),
Ψ|τ=0 = Ψ0, |ξ| ≤ 2k,

subject to the initial condition,

(6.10) Ψ0(ξ) =
ψ0(ξ)

ψapp,0(ξ)
− 1 = exp

(

∫ ξ

0

[w0(ξ
′) − wapp,0(ξ

′)] dξ′
)

− 1,

and the Robin inhomogeneous boundary conditions,

(6.11) Ψξ = ±χ(τ)(1 + Ψ), ξ = ±2(k − τ), τ ∈ [0, k],

where

(6.12) χ(τ) = 1 − wapp(2(k − τ), τ) =
2e−4(k−τ)

1 + e−4(k−τ)
− w̃(2(k − τ), τ).

By bound (6.5) and explicit expression (6.12), for any fixed C0 ∈ (0, 1) and for
sufficiently large k ≫ 1, there is a small Ck > 0 such that

(6.13) sup
τ∈[0,C0k]

(|χ(τ)| + |χ′(τ)| + |χ′′(τ)|) ≤ Ck

k
.

Because Ck → 0 as k → ∞ in (6.13), the Robin boundary conditions (6.11) converge
to the Neumann conditions as k → ∞.

By bound (6.6) and explicit expression (6.10), for sufficiently large k ≫ 1, there
is a small Dk > 0 such that

(6.14) sup
ξ∈[−2k,2k]

|Ψ0(ξ)| ≤
Dk

k1/2
, ‖Ψ0‖L2

k,0
≤ Dk, ‖Ψ′

0‖L2
k,0

+ ‖Ψ′′
0‖L2

k,0
≤ Dk

k
.

Because Dk → 0 as k → ∞ in (6.14), the initial condition (6.10) converges to 0 as
k → ∞.
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Using apriori energy estimates, we prove the following result.

Lemma 7. Assume (6.4), (6.13), and (6.14). Fix C0 ∈ (0, 1). There exist
constants K ≥ 1 and C > 0, such that for all k ≥ K and τ ∈ [0, C0k], the unique
solution of the Burgers equation (6.1) satisfies

(6.15) ‖w − wapp‖2
L2

k,τ
+ ‖∂ξ(w − wapp)‖2

L2
k,τ

≤ C
(

Ck +D2
k

)

where Ck and Dk are defined by (6.13) and (6.14).

Proof. We note the correspondence,

(6.16) w = wapp +
Ψξ

1 + Ψ
.

Fix C0 ∈ (0, 1) and introduce the energy for the initial-boundary value problem
(6.9),

(6.17) H(τ) :=
1

2
‖Ψ‖2

L2
k,τ

+
1

2
‖Ψξ‖2

L2
k,τ
, τ ∈ [0, C0k].

If H(τ) is small for all τ ∈ [0, C0k], then there is C > 0 such that

(6.18) ‖w − wapp‖2
L2

k,τ
≤ CH(τ).

The initial-boundary value problem (6.9) inherits the local well-posedness of
the initial-value problem (1.1) if Ψ0 ∈ H1([−2k, 2k]) as long as

(6.19) sup
|ξ|≤2(k−τ)

|Ψ(ξ, τ)| < 1, τ ∈ [0, C0k],

to ensure that 1 + Ψ(ξ, τ) > 0 for all |ξ| ≤ 2(k − τ) and τ ∈ [0, k]. Recalling
Sobolev’s embedding of H1 to L∞, we have

(6.20) ∃C > 0 : sup
|ξ|≤2(k−τ)

|Ψ(ξ, τ)| ≤ C
√

H(τ), τ ∈ [0, C0k],

hence the constraint (6.19) is satisfied if H(τ) remains small for all τ ∈ [0, C0k].
Computations are simplified for the even solutions Ψ(−ξ, τ) = Ψ(ξ, τ), which

generate odd solutions w(−ξ, τ) = −w(ξ, τ) of the Burgers equation (6.1). Mul-
tiplying the heat equation (6.9) by the solution Ψ and integrating in ξ over the
time-dependent interval [−ξ+(τ), ξ+(τ)] with ξ+(τ) = 2(k − τ), we obtain

1

2

d

dτ
‖Ψ‖2

L2
k,τ

+ 2Ψ2
+(τ) = 2χ(τ)Ψ+(τ)(1 + Ψ+(τ)) + 2wapp(ξ+(τ), τ)Ψ2

+(τ)

−‖Ψξ‖2
L2

k,τ
− ‖w1/2

app,ξΨ‖2
L2

k,τ
,

where Ψ+(τ) = Ψ(ξ+(τ), τ). Canceling redundant terms, this expression becomes

1

2

d

dτ
‖Ψ‖2

L2
k,τ

= 2χ(τ)Ψ+(τ) − ‖Ψξ‖2
L2

k,τ
− ‖w1/2

app,ξΨ‖2
L2

k,τ
.(6.21)

Thanks to property (6.4), the rate of change of ‖Ψ‖2
L2

k,τ
in τ is almost negative

definite, except of the first boundary term, which is small as k → ∞. The boundary
term is controlled by (6.13) and (6.20). We need one more equation to be able to
control the energy H(τ) for τ ∈ [0, C0k].
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Differentiating the heat equation (6.9) in ξ, multiplying the resulting equation
by Ψξ, integrating in ξ over [−ξ+(τ), ξ+(τ)], and performing similar simplifications,
we obtain

1

2

d

dτ
‖Ψξ‖2

L2
k,τ

= 2χ(τ)(1 + Ψ+(τ))(Ψξξ)+(τ) − 2χ3(τ)(1 + Ψ+(τ))2

−‖Ψξξ‖2
L2

k,τ
+ ‖w1/2

app,ξΨξ‖2
L2

k,τ
,

where (Ψξξ)+(τ) = Ψξξ(ξ+(τ), τ). For strong solutions of the initial-value problem
(6.9), we obtain by continuity that

(6.22)
d

dτ
Ψ+(τ) = (Ψτ − 2Ψξ)

∣

∣

∣

∣

ξ=ξ+(τ)

= (Ψξξ)+(τ) − 2χ2(τ)(1 + Ψ+(τ)).

Hence we have

1

2

d

dτ
‖Ψξ‖2

L2
k,τ

= 2χ(τ)(1 + Ψ+(τ))
d

dτ
Ψ+(τ) + 2χ3(τ)(1 + Ψ+(τ))2

− ‖Ψξξ‖2
L2

k,τ
+ ‖w1/2

app,ξΨξ‖2
L2

k,τ
,(6.23)

The positive last term in (6.23) is compensated by the negative second term in
(6.21) in the sum of these two expressions. Additionally, we can move the derivative
of Ψ+(τ) under the derivative sign and obtain

d

dτ
H1(τ) = 2(χ(τ) − χ′(τ))Ψ+(τ) − χ′(τ)Ψ2

+(τ) + 2χ3(τ)(1 + Ψ+(τ))2

−‖Ψξξ‖2
L2

k,τ
− ‖w1/2

app,ξΨ‖2
L2

k,τ
− ‖(1 − wapp,ξ)

1/2Ψξ‖2
L2

k,τ
,(6.24)

where

H1(τ) := H(τ) − χ(τ)(2Ψ+(τ) + Ψ2
+(τ)).

The last three terms in the right-hand-side of equation (6.24) are negative thanks
to property (6.4). On the other hand, the functions χ(τ) and χ′(τ) are controlled
by (6.13). Integrating (6.24) on [0, C0τ ] and using Sobolev’s inequality (6.20) and

an elementary inequality 2
√

H(τ) ≤ 1 +H(τ), we obtain

H1(τ) −H1(0) ≤ Ck

k

∫ τ

0

(1 +H(τ ′))dτ ′, τ ∈ [0, C0k].

By the estimate (6.13), Sobolev’s inequality (6.20) again, and Gronwall’s inequality,
we infer that there is a constant C > 0 such that

(6.25) H(τ) ≤ C (H(0) + Ck) , τ ∈ [0, C0k].

By the estimate (6.14), we have H(0) ≤ D2
k and bound (6.25) yields control of the

first term in the bound (6.15) from the correspondence (6.18).
Let us now control the second term in the bound (6.15). Differentiating the heat

equation (6.9) twice in ξ, multiplying the resulting equation by Ψξξ, integrating in
ξ over [−ξ+(τ), ξ+(τ)], and performing similar simplifications, we obtain

1

2

d

dτ
‖Ψξξ‖2

L2
k,τ

= 2(Ψξξ)+(τ)(Ψξξξ)+(τ)

−2χ(τ)(Ψξξ)
2
+(τ) + 2(wapp,ξξ)+(Ψξ)

2
+(τ)(6.26)

−‖Ψξξξ‖2
L2

k,τ
+ 3‖w1/2

app,ξΨξξ‖2
L2

k,τ
− ‖w1/2

app,ξξξΨξ‖2
L2

k,τ
,(6.27)
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where the subscript “+” denotes the boundary value at ξ = ξ+(τ). For strong
solutions of the initial-value problem (6.9), we obtain by continuity that

d

dτ
(Ψξ)+(τ) = (Ψτξ − 2Ψξξ)

∣

∣

∣

∣

ξ=ξ+(τ)

= (Ψξξξ)+(τ) − 2χ(τ)(Ψξξ)+(τ) + 2(wapp,ξ)+(Ψξ)+(τ)(6.28)

and

(6.29) (wapp,ξξ)+ = (wapp,τ )+ − 2(wapp)+(wapp,ξ)+ = 2χ(τ)(wapp,ξ)+ − χ′(τ).

Using (6.11), (6.22), (6.28), and (6.29) we can rewrite (6.27) in the form:

1

2

d

dτ
‖Ψξξ‖2

L2
k,τ

= −2(2χ3(τ) + 2χ(τ)(wapp,ξ)+ − χ′(τ))(1 + Ψ+(τ))
d

dτ
Ψ+(τ)

−2χ2(τ)(1 + Ψ+(τ))2(4χ3(τ) + 2χ(τ)(wapp,ξ)+ − χ′(τ))

+4χ(τ)(Ψξξ)
2
+(τ) − ‖Ψξξξ‖2

L2
k,τ

+ 3‖w1/2
app,ξΨξξ‖2

L2
k,τ

−‖w1/2
app,ξξξΨξ‖2

L2
k,τ
.

To control ‖Ψξξ‖2
L2

k,τ
, we define

H2(τ) :=
1

2
‖Ψξξ‖2

L2
k,τ

+ 4H1(τ) +
γ

2
‖Ψ‖2

L2
k,τ

+(2χ3(τ) + 2χ(τ)(wapp,ξ)+ − χ′(τ))
(

2Ψ+(τ) + Ψ2
+(τ)

)

,(6.30)

where γ is to be specified below. Thus we obtain

d

dτ
H2(τ) = 2(Ψ+(τ) + Ψ2

+(τ))
d

dτ
(2χ3(τ) + 2χ(τ)(wapp,ξ)+ − χ′(τ))

−2χ2(τ)(1 + Ψ+(τ))2(4χ3(τ) + 2χ(τ)(wapp,ξ)+ − χ′(τ))

+8(χ(τ) − χ′(τ))Ψ+(τ) − 4χ′(τ)Ψ2
+(τ) + 8χ3(τ)(1 + Ψ+(τ))2

+2γχ(τ)Ψ+(τ) + 4χ(τ)(Ψξξ)
2
+(τ) − ‖Ψξξξ‖2

L2
k,τ

− ‖Ψξξ‖2
L2

k,τ

−3‖(1 − wapp,ξ)
1/2Ψξξ‖2

L2
k,τ

−4‖w1/2
app,ξΨ‖2

L2
k,τ

− 4‖(1 − wapp,ξ)
1/2Ψξ‖2

L2
k,τ

−γ‖w1/2
app,ξΨ‖2

L2
k,τ

− ‖(γ + wapp,ξξξ)
1/2Ψξ‖2

L2
k,τ
.

If we choose

γ := − inf
τ∈[0,C0k]

inf
ξ∈[−ξ+(τ),ξ+(τ)]

wapp,ξξξ ≥ 0,

the last term is negative for any τ ∈ [0, C0k]. By Sobolev’s inequality,

∃C > 0 : sup
|ξ|≤2(k−τ)

|Ψξξ(ξ, τ)|2 ≤ C(‖Ψξξξ‖2
L2

k,τ
+ ‖Ψξξ‖2

L2
k,τ

), τ ∈ [0, C0k],

and the smallness of χ, the term

4χ(τ)(Ψξξ)
2
+(τ) − ‖Ψξξξ‖2

L2
k,τ

− ‖Ψξξ‖2
L2

k,τ

is also negative. All other integral terms are negative, whereas the boundary terms
are controlled by the estimate (6.13), Sobolev’s inequality (6.20), and the previous
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estimate (6.25). As a result, we obtain

H2(τ) ≤ H2(0) +
Ck

k

∫ τ

0

(1 +H1(τ
′))dτ ′ ≤ H2(0) + Ck, τ ∈ [0, C0k].

Using (6.14), (6.25), and (6.30), we infer that there is a constant C > 0 such that

‖Ψξξ‖2
L2

k,τ
≤ C(Ck +D2

k), τ ∈ [0, C0k].(6.31)

Thanks to the exact expression

∂ξ(w − wapp) =
Ψξξ

1 + Ψ
−

Ψ2
ξ

(1 + Ψ)2
,

and Sobolev’s inequality,

∃C > 0 : sup
|ξ|≤2(k−τ)

|Ψξ(ξ, τ)|2 ≤ C(‖Ψξξ‖2
L2

k,τ
+ ‖Ψξ‖2

L2
k,τ

), τ ∈ [0, C0k],

bounds (6.25) and (6.31) yield control of the second term in the bound (6.15). �

Remark 8. Recall that wapp(ξ, τ) = tanh(ξ) + w̃(ξ, τ), where w̃ is small for
large values of τ . If we consider the operator L = ∂2

ξ +2 tanh(ξ)∂ξ on the truncated

domain [−ξ0, ξ0] subject to the Neumann boundary conditions, then the eigenvalues
of this boundary-value problem for even eigenfunctions are located on the real line
and bounded from above by −1 for any ξ0 > 0. This suggests the asymptotic stability
of the zero solution of Ψτ = LΨ but does not imply any good bounds on the norm
of the resolvent operator (λId − L)−1, which is needed for the estimates of the
remainder terms. Moreover, the norm of the resolvent operator (λId − L)−1 may
grow exponentially as ξ0 → ∞ because the continuous spectrum of L on the infinite
line domain R touches the imaginary axis and the zero eigenvalue. See Section 4.4
in Scheel & Sandstede [18]. Apriori energy estimates used in the proof of Lemma
7 avoid this problem, as well as they incorporate moving boundary conditions in
analysis of the remainder terms.

7. Proof of Theorem 2: Case l = O(k) as k → ∞.

We shall consider the initial data (2.6) with (2.8). This corresponds to the
choice l = k, which represents a more general case l = O(k) as k → ∞.

By Lemma 3, a solution of the Burgers equation (1.1) is written in the form

(7.1) u(x, t) = p(t) (2x− w(p(t)x, τ)) , p(t) =
4k

1 + 16kt
, τ =

16k2t

1 + 16kt
,

where w solves the rescaled Burgers equation (6.1) with the initial data

(7.2) w0(ξ) = λ tanh(ξ/4) ⇒ ψ0(ξ) = cosh4λ(ξ/4),

where

λ = coth(k/2) = 1 +
2e−k

1 − e−k
.

The approximate solution of the rescaled Burgers equation (6.1) is given by Lemma
5. It can be written in the Cole–Hopf form (6.3) with

(7.3) ψapp(ξ, τ) =
1

8

(

3 + 4 cosh(ξ/2)eτ/4 + cosh(ξ)eτ
)

.
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Note that ψapp,0(ξ) = cosh4(ξ/4). Assumption (6.4) is satisfied by the direct com-
putations. Assumption (6.5) follows from bound (5.12) of Lemma 5 with

(7.4) ∃C > 0 : Ck = Cke−(k−τ), τ ∈ [0, C0k],

which is exponentially small as k → ∞ for any C0 ∈ (0, 1).
The initial condition,

Ψ0(ξ) = cosh4(λ−1)(ξ/4) − 1 = exp

(

8e−k

1 − e−k
log

[

cosh

(

ξ

4

)])

− 1,

implies that for sufficiently large k ≫ 1, there is C > 0 such that

sup
|ξ|≤2k

|Ψ0(ξ)| ≤ Cke−k, ‖Ψ0‖L2
k,0

≤ Ck3/2e−k, ‖Ψ′
0‖L2

k,0
+‖Ψ′′

0‖L2
k,0

≤ Ck1/2e−k.

Hence assumption (6.14) holds with Dk = Ck3/2e−k for some C > 0. Because D2
k

is much smaller than Ck for all τ ∈ [0, C0k], Lemma 7 yields

(7.5) ‖w − wapp‖2
L2

k,τ
+ ‖∂ξ (w − wapp) ‖2

L2
k,τ

≤ Cke−(k−τ), τ ∈ [0, C0k].

Applying Lemma 3, we write an approximate solution of the Burgers equation
(1.1) in the form,

(7.6) uapp(x, t) = p(t) (2x− wapp(p(t)x, τ)) , p(t) =
4k

1 + 16kt
, τ =

16k2t

1 + 16kt
,

on the time interval

(7.7) 0 ≤ 16kt ≤ C0

1 − C0
.

Because |p(t)| = O(k) as k → ∞ for any t in the time interval (7.7), bound (7.5)
and Sobolev embedding of H1 to L∞ imply that there are constants C > 0 and
α > 0 such that

sup
x∈T

|u(x, t) − uapp(x, t)| ≤

Ck sup
|ξ|≤2(k−τ)

|w(ξ, τ) − wapp(ξ, τ)| ≤ Ck3/2e−αk,(7.8)

for any t in the time interval (7.7). The error bound (7.8) is exponentially small as
k → ∞.

By Lemma 5, the approximate solution converges to the limiting solution in
the form,

(7.9) u∞(x, t) = p(t) (2x− w∞(p(t)x)) , p(t) =
4k

1 + 16kt
,

where w∞(ξ) = tanh(ξ). Bound (5.18) in Corollary 2 imply that there are δ > 0
and C > 0 such that

(7.10) sup
x∈T

|uapp(x, t) − u∞(x, t)| ≤ C

kδ
,

in the inertial range

(7.11)
C∞(k)

1 − C∞(k)
≤ 16kt ≤ C0

1 − C0
,

where

C∞(k) =
4(1 + δ) log(k)

3k
< C0.
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We note that C∞(k) → 0 as k → ∞.
In the inertial range (7.11), we can compute the leading order approximation

of E(u) and K(u) from the values of E(u∞) and K(u∞). Using the representation
(7.9), we obtain

(7.12) K(u∞) =
1

6
p2(t)+O(p(t)), E(u∞) =

2

3
p3(t)+O(p2(t)), as p(t) → ∞,

On the other hand, R(u) is approximated from R(u∞) by

(7.13) R(u∞) = −8p4(t) + O(p3(t)) as p(t) → ∞.

BecauseR(u∞) < 0, the maximum ofE(u) occurs at the time t = T∗ ≤ C∞(k)
16k(1−C∞(k)) .

Moreover, it is clear that E(u∞) and hence E(u) is decreasing for all times t ≥ T∗.
It remains to prove that T∗ = O(k−2 log(k)) as k → ∞ or, in other words, that

there exists C̃∞(k) = O(log(k)/k) < C∞(k) such that T∗ occurs inside

C̃∞(k)

16k(1 − C̃∞(k))
≤ T∗ ≤ C∞(k)

16k(1 − C∞(k))
.

If this is the case, then the scaling law (2.17) of Theorem 2 follows from the er-
ror bounds (7.8) and (7.10), the triangle inequality, as well as from the previous
computations: p(t) = O(k) as k → ∞ and k = O(E1/3) as E → ∞.

To show that T∗ = O(k−2 log(k)) as k → ∞, we compute R(uapp) by using the
explicit representation (7.6) with wapp(ξ, τ) = tanh(ξ) + w̃(ξ, τ), where w̃ is given
by (5.17). Asymptotic computations yield

R(uapp) = 2p5(t)

∫ p(t)/2

0

(

w3
apr,ξ − w2

apr,ξξ

)

dξ

−12p4(t)

∫ p(t)/2

0

w2
apr,ξdξ + O(p3(t))

= 2Np5(t)e−3τ/4 − 8p4(t) + O
(

e−3τ/4p4(t), p3(t)
)

as e−3τ/4 → 0 and p(t) → ∞, where N is given by

N =

∫ ∞

0

cosh(ξ/2)
(

−28sech3(ξ) + 139sech5(ξ) − 120sech7(ξ)
)

dξ

+

∫ ∞

0

sinh(ξ/2) sinh(ξ)
(

26sech4(ξ) − 30sech6(ξ)
)

dξ.

Numerical approximation of the integral shows that N ≈ 5.5189 > 0. (The pos-
itivity of N also follows from the fact that R is positive for the approximate so-
lution wapp shown on the right panel of Figure 4.) Therefore, R(ũapp) = 0 at
the time t = T∗ (corresponding to τ = τ∗ by the transformation in (7.6)), when
p(T∗) = O(e3τ∗/4). Since p(T∗) = O(k) as k → ∞ everywhere in (7.7), we have
τ∗ = O(log(k)) ≪ C0k or T∗ = O(k−2 log(k)) as k → ∞. The proof of Theorem 2
for l = k is now complete.

8. Proof of Theorem 2: Case l = O(log(k)) as k → ∞.

We shall now consider the initial data (2.6) with (2.9). By Lemma 1, we fix
L > 0 and set

(8.1) l := L log(k).
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This choice represents a more general case l = O(log(k)) as k → ∞.
By Lemma 3, a solution of the Burgers equation (1.1) is written in the form

(8.2) u(x, t) = p(t) (2x− w(p(t)x, τ)) , p(t) =
4k

1 + 16kt
, τ =

16k2t

1 + 16kt
,

where w solves the rescaled Burgers equation (6.1) with the initial data

(8.3) w0(ξ) = λ tanh(ξ/a) ⇒ ψ0(ξ) = coshλa(ξ/a),

where a = 4k
l and λ = coth(l/2). The approximate solution of the rescaled Burgers

equation (6.1) is given by Lemma 6. It can be written in the Cole–Hopf form (6.3)
with

(8.4) ψapp =
1

2a−1
eτ cosh(ξ)

[

1 +
eξψ+(ξ, τ) + e−ξψ−(ξ, τ)√

π(eξ + e−ξ)

]

,

where ψ± are defined by (5.31)–(5.32). Note that ψapp,0(ξ) = cosha(ξ/a). As-
sumption (6.4) is satisfied by the monotonicity of the transition from wapp,0(ξ) =
tanh(ξ/a) to w∞(ξ) = tanh(ξ). Assumption (6.5) follows from bound (5.22) with

(8.5) ∃C > 0 : Ck =
Ck

a1+δ
=
C log1+δ(k)

kδ
, τ ∈ [0, C0k],

as long as

(8.6) 2(k − τ) ≥ 1

2
(1 + δ)2a log(a), τ ∈ [0, C0k].

Constant Ck is algebraically small as k → ∞, whereas the constraint (8.6) yields
an upper bound on C0,

(8.7) C0 ≤ C∗
0 := 1 − 1

4k
(1 + δ)2a log(a) = 1 − (1 + δ)2

L

[

1 − log(l/4)

log(k)

]

.

To ensure that C∗
0 > 0, we require L > (1 + δ)2.

The initial condition,

Ψ0(ξ) = cosha(λ−1)(ξ/a) − 1 = exp

(

2ae−l

1 − e−l
log

[

cosh

(

ξ

a

)])

− 1,

implies that for sufficiently large k ≫ 1, there is C > 0 such that

sup
|ξ|≤2k

|Ψ0(ξ)| ≤ Cke−l =
C

kL−1
, ‖Ψ0‖L2

k,0
≤ C

kL−3/2
,

‖Ψ′
0‖L2

k,0
+ ‖Ψ′′

0‖L2
k,0

≤ C

kL−1/2
,

hence the assumption (6.14) is satisfied with Dk = C
kL−3/2 for some C > 0. Constant

Dk is algebraically small as k → ∞ provided L > 3
2 . Lemma 7 yields

(8.8)

‖w − wapp‖2
L2

k,τ
+ ‖∂ξ(w − wapp)‖2

L2
k,τ

≤ C

(

1

k2L−3
+

log1+δ(k)

kδ

)

, τ ∈ [0, C0k].

Applying Lemma 3, we write an approximate solution of the Burgers equation
(1.1) in the form,

(8.9) uapp(x, t) = p(t) (2x− wapp(p(t)x, τ)) , p(t) =
4k

1 + 16kt
, τ =

16k2t

1 + 16kt
,
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on the time interval

(8.10) 0 ≤ 16kt ≤ C0

1 − C0
.

Because |p(t)| = O(k) as k → ∞ for any t in the time interval (8.10), bound (8.8)
and Sobolev embedding of H1 to L∞ imply that there is constant C > 0 such that

sup
x∈T

|u(x, t) − uapp(x, t)| ≤ Ck sup
|ξ|≤2(k−τ)

|w(ξ, τ) − wapp(ξ, τ)|

≤ C

(

1

kL−5/2
+

log(1+δ)/2(k)

kδ/2−1

)

,(8.11)

for any t in the time interval (8.10). The error bound (8.11) is algebraically small
as k → ∞ provided L > 5

2 and δ > 2, instead of our previous constraint L > 3
2 .

By Lemma 6, the approximate solution converges to the limiting solution in
the form,

(8.12) u∞(x, t) = p(t) (2x− w∞(p(t)x)) , p(t) =
4k

1 + 16kt
,

where w∞(ξ) = tanh(ξ). Bounds (5.54) and (5.56) in Corollary 3 imply that there
is a positive constant C such that

(8.13) sup
x∈T

|uapp(x, t) − u∞(x, t)| ≤ Ck

a3δ+δ2+1/2 log1/2(a)
≤ C log3δ+δ2

(k)

k3δ+δ2−1/2
,

in the inertial range

(8.14)
C∞

1 − C∞
≤ 16kt ≤ C0

1 − C0
,

where

C∞ =
2(1 + δ)2

L
< C0.

Because of constraint (8.7) on C0, we realize that L > 3(1 + δ)2 instead of our
previous constraint L > (1 + δ)2.

In the inertial range (8.14), the computations of R(u∞), E(u∞) and K(u∞) are
identical to those in Section 7 and yield expressions (7.12) and (7.13). In particular,
E(u∞) = O(k3) and K(u∞) = O(k2) as k → ∞. Modifications of the previous
argument show that the maximum of E(u) at the time t = T∗ occurs for T∗ =

O(k−1) as k → ∞. By Lemma 1, we have k = O(E1/2 log−1/2(E)). Substituting
this into the previous expressions yields the scaling law (2.18) of Theorem 2 for
l = L log(k). The constraints on L and δ are consistent if

L >
5

2
, δ > 2, and L > 3(1 + δ)2,

which can be satisfied, for instance, by the choice L = 49 and δ = 3.

References

[1] J. Angulo Pava, Nonlinear Dispersive Equations (Existence and Stability of Solitary and
Periodic Travelling Wave Solutions) (AMS, Providence, 2009).

[2] D. Ayala and B. Protas, “On maximum enstrophy growth in a hydrodynamic system”, Phys-
ica D 240 (2011), 1553–1563.

[3] M. Beck and C.E. Wayne, “Invariant manifolds and the stability of traveling waves in scalar
viscous conservation laws”, J. Diff. Eqs. 244 (2008), 87–116.



340 DMITRY PELINOVSKY

[4] M. Beck and C.E. Wayne, “Using global invariant manifolds to understand metastability in
the Burgers equation with small viscosity”, SIAM J. Appl. Dyn. Syst. 8 (2009), 1043–1065.

[5] J.P. Boyd, “Cnoidal waves as exact sums of repeated solitary waves: new series for elliptic
functions”, SIAM J. Appl. Math. 44 (1984), 952–955.

[6] J.M. Burgers, “A mathematical model illustrating the theory of turbulence,” Adv. Appl.
Mech. 1 (1948), 171–199.

[7] J.D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,” Q. Appl. Math.
9 (1951), 225–236.

[8] D.B. Dix, “Nonuniqueness and uniqueness in the initial-value problem for Burgers equation”,
SIAM J. Math. Anal. 27 (1996), 708–724.

[9] J. Goodman, “Nonlinear asymptotic stability of viscous shock profiles for conservation laws”,
Arch. Rat. Mech. Anal. 95 (1986), 325–344.

[10] J. Goodman, A. Szepessy, and K. Zumbrun, “A remark on the stability of viscous shock
waves”, SIAM J. Math. Anal. 25 (1994), 1463–1467.

[11] E. Hopf, “The partial differential equations ut + uux = µuxx”, Comm. Pure Appl. Math. 3

(1950), 201–230.
[12] Y.J. Kim and A.E. Tzavaras, “Diffusive N-waves and metastability in the Burgers equation”,

SIAM J. Math. Anal. 33, 607–633 (2001).
[13] H.-O. Kreiss and J. Lorenz, Initial–Boundary Value Problems and the Navier–Stokes Equa-

tions, (SIAM, Philadelphia, 2004).
[14] L. Lu and C.R. Doering, “Limits on enstrophy growth for solutions of the three-dimensional

Navier-Stokes equations”, Indiana Univ. Math. J. 57 (2008), 2693-2727.
[15] P. Miller, Applied Asymptotic Analysis, Graduate Studies in Mathematics 75 (AMS Publi-

cations, Providence, 2006).
[16] K. Ohkitania and M. Dowker, “Burgers equation with a passive scalar: Dissipation anomaly

and Colombeau calculus”, J. Math. Phys. 51 (2010), 033101 (7 pages).
[17] D. Pelinovsky, “Sharp bounds on enstrophy growth in the viscous Burgers equation”, Pro-

ceedings of Royal Society A 468 (2012), 3636–3648.
[18] B. Sandstede and A. Scheel, “Absolute and convective instabilities of waves on unbounded

and large bounded domains”, Physica D 145 (2000), 233–277.
[19] D.H. Sattinger, “On the stability of waves of nonlinear parabolic systems”, Advances in Math.

22 (1976), 312–355.
[20] B.K. Shivamoggi, “Passive scalar advection in Burgers turbulence: Mapping-closure model,”

Int. J. Theor. Phys. 43 (2004), 2081–2092.

Department of Mathematics, McMaster University, Hamilton, Ontario, Canada,

L8S 4K1

E-mail address: dmpeli@math.mcmaster.ca


