
Dynamics of PDE, Vol.9, No.4, 273-304, 2012

Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular

potentials

Sergio Frigeri and Maurizio Grasselli

Communicated by James Robinson, received February 3, 2012.

Abstract. Here we consider a Cahn-Hilliard-Navier-Stokes system character-

ized by a nonlocal Cahn-Hilliard equation with a singular (e.g., logarithmic)

potential. This system originates from a diffuse interface model for incompress-

ible isothermal mixtures of two immiscible fluids. We have already analyzed

the case of smooth potentials with arbitrary polynomial growth. Here, taking

advantage of the previous results, we study this more challenging (and physi-

cally relevant) case. We first establish the existence of a global weak solution

with no-slip and no-flux boundary conditions. Then we prove the existence of

the global attractor for the 2D generalized semiflow (in the sense of J.M. Ball).

We recall that uniqueness is still an open issue even in 2D. We also obtain,

as byproduct, the existence of a connected global attractor for the (convec-

tive) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we establish

the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and

M.I. Vishik).
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1. Introduction

In [14] we have introduced and analyzed an evolution system which consists of

the Navier-Stokes equations for the fluid velocity u suitably coupled with a non-local

convective Cahn-Hilliard equation for the order parameter ϕ on a given (smooth)

bounded domain Ω ⊂ R
d, d = 2, 3. This system derives from a diffuse interface

model which describes the evolution of an incompressible mixture of two immiscible

fluids (see, e.g., [26, 28, 29, 30, 32] and references therein). We suppose that the

temperature variations are negligible and the density is constant and equal to one.

Thus u represents an average velocity and ϕ the relative concentration of one fluid

(or the difference of the two concentrations). Then the nonlocal Cahn-Hilliard-

Navier-Stokes system reads as follows

ϕt + u · ∇ϕ = ∆µ,(1.1)

ut − div(2ν(ϕ)Du) + (u · ∇)u+ ∇π = µ∇ϕ+ h,(1.2)

µ = aϕ− J ∗ ϕ+ F ′(ϕ),(1.3)

div(u) = 0,(1.4)

in Ω × (0,+∞). We endow the system with the boundary and initial conditions

∂µ

∂n
= 0, u = 0, on ∂Ω,(1.5)

u(0) = u0, ϕ(0) = ϕ0, in Ω,(1.6)

where n is the unit outward normal to ∂Ω. Here ν is the viscosity, π the pressure,

h denotes an external force acting on the fluid mixture, J : R
d → R is a suitable

interaction kernel, a is a coefficient depending on J (see section below for the related

assumptions), F is the configuration potential which accounts for the presence of

two phases.

Here we prove the existence of a global weak solution when the double-well

potential F can be singular in (−1, 1), that is, its derivative is unbounded at the

endpoints. A typical situation of physical interest is the following (see [10])

F (s) =
θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)) − θc

2
s2,(1.7)

where θ, θc are the (absolute) temperature and the critical temperature, respec-

tively. If 0 < θ < θc then phase separation occurs, otherwise the mixed phase

is stable. We recall that the logarithmic terms are related to the entropy of the

system.

For the existence of a weak solution, we take advantage of our previous analysis

for regular potentials (i.e., defined on the whole R) with polynomially controlled

growth of arbitrary order (see [14]) and we use a suitable approximation procedure

inspired by [18]. Then, we extend to potentials like (1.7) the results obtained in

[21] for regular potentials. Such results are concerned with the global longtime
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behavior of (weak) solutions. More precisely, in the spirit of [5], we can define a

generalized semiflow in 2D and prove that it possesses a global (strong) attractor by

using the energy identity. Then we analyze the 3D case by means of the trajectory

approach introduced in [20] (see also [34]) and generalized in [11, 12]. In this

framework, we show the existence of a trajectory attractor.

We recall that the usual Cahn-Hilliard equation is characterized by the chem-

ical potential µ = −∆ϕ + F ′(ϕ). However, this equation has a phenomenological

nature. On the contrary, the nonlocal one can be rigorously justified, viewing the

standard Cahn-Hilliard equation as its approximation (see [24, 25], cf. also [14]

and references therein).

The standard (local) system with a singular potential has been analyzed in

[1, 2, 9] (for regular potentials see, e.g., [22, 23, 35, 37] and references therein).

Most of the results known for the Navier-Stokes equations essentially hold for the

(local) Cahn-Hilliard-Navier-Stokes system as well. On the contrary, in the non-

local case, due to the weaker smoothness of ϕ, proving uniqueness and/or getting

higher-order estimates seem a non-trivial task even in dimension two (see [14, 21]).

A further interesting and challenging issue is to analyze the sharp interface limit of

the nonlocal system (see [3] for a rigorous result in the local case). It is worth men-

tioning that a nonlocal system for liquid-vapour phase transition has been proposed

and analyzed in [33] (see also [27]).

We conclude by observing that the technique we use in 2D can be easily adapted

to show that the 3D (convective) Cahn-Hilliard equation with a singular potential

has a connected global (strong) attractor (for regular potentials see [21] and refer-

ences therein, cf. also [4, 17] for results on the local case). To our knowledge this

is the first result on the existence of a global attractor for a nonlocal Cahn-Hilliard

equation with singular potential.

The plan goes as follows. In the next section, we introduce the weak formulation

of our problem. Then we state the existence theorem whose proof is given in

Section 3. Section 4 is devoted to the global attractor in 2D, while Section 5

is concerned with the existence of the trajectory attractor whose structural and

attraction properties are discussed in Section 6.

2. Weak solutions and existence theorem

Let us set H := L2(Ω) and V := H1(Ω). For every f ∈ V ′ we denote by f the

average of f over Ω, i.e.,

f :=
1

|Ω| 〈f, 1〉.

Here |Ω| stands for the Lebesgue measure of Ω.

Then we introduce the spaces

V0 := {v ∈ V : v = 0}, V ′
0 := {f ∈ V ′ : f = 0},
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and the operator A : V → V ′, A ∈ L(V, V ′) defined by

〈Au, v〉 :=

∫

Ω

∇u · ∇v ∀u, v ∈ V.

We recall that A maps V onto V ′
0 and the restriction of A to V0 maps V0 onto V ′

0

isomorphically. Let us denote by N : V ′
0 → V0 the inverse map defined by

ANf = f, ∀f ∈ V ′
0 and NAu = u, ∀u ∈ V0.

As is well known, for every f ∈ V ′
0 , Nf is the unique solution with zero mean value

of the Neumann problem
{

−∆u = f, in Ω
∂u
∂n = 0, on ∂Ω.

Furthermore, the following relations hold

〈Au,Nf〉 = 〈f, u〉, ∀u ∈ V, ∀f ∈ V ′
0 ,(2.1)

〈f,N g〉 = 〈g,Nf〉 =

∫

Ω

∇(Nf) · ∇(N g), ∀f, g ∈ V ′
0 .(2.2)

We also consider the standard Hilbert spaces for the Navier-Stokes equations (see,

e.g., [36])

Gdiv := {u ∈ C∞
0 (Ω)d : div(u) = 0}L2(Ω)d

, Vdiv := {u ∈ H1
0 (Ω)d : div(u) = 0}.

We denote by ‖ · ‖ and (·, ·) the norm and the scalar product on both H and Gdiv,

respectively. We recall that Vdiv is endowed with the scalar product

(u, v)Vdiv
= (∇u,∇v), ∀u, v ∈ Vdiv.

We shall also use the definition of the Stokes operator S with no-slip boundary

condition. More precisely, S : D(S) ⊂ Gdiv → Gdiv is defined as S := −P∆ with

domain D(S) = H2(Ω)d ∩ Vdiv, where P : L2(Ω)d → Gdiv is the Leray projector.

Notice that we have

(Su, v) = (u, v)Vdiv
= (∇u,∇v), ∀u ∈ D(S), ∀v ∈ Vdiv

and S−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv. Thus, according

with classical spectral theorems, it possesses a sequence {λj} with 0 < λ1 ≤ λ2 ≤
· · · and λj → ∞, and a family {wj} ⊂ D(S) of eigenfunctions which is orthonormal

in Gdiv. It is also convenient to recall that the trilinear form b which appears in

the weak formulation of the Navier-Stokes equations is defined as follows

b(u, v, w) =

∫

Ω

(u · ∇)v · w, ∀u, v, w ∈ Vdiv.

We suppose that the potential F can be written in the following form

F = F1 + F2,

where F1 ∈ C(2+2q)(−1, 1), with q a fixed positive integer, and F2 ∈ C2([−1, 1]).
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We can now list the assumptions on the kernel J , on the viscosity ν, on F1, F2

and on the forcing term h.

(A1): J ∈W 1,1(Rd), J(x) = J(−x), a(x) :=

∫

Ω

J(x−y)dy ≥ 0, a.e. x ∈
Ω.

(A2): The function ν is locally Lipschitz on R and there exist ν1, ν2 > 0

such that

ν1 ≤ ν(s) ≤ ν2, ∀s ∈ R.

(A3): There exist c1 > 0 and ǫ0 > 0 such that

F
(2+2q)
1 (s) ≥ c1, ∀s ∈ (−1,−1 + ǫ0] ∪ [1 − ǫ0, 1).

(A4): There exists ǫ0 > 0 such that, for each k = 0, 1, · · · , 2 + 2q and each

j = 0, 1, · · · , q,

F
(k)
1 (s) ≥ 0, ∀s ∈ [1 − ǫ0, 1),

F
(2j+2)
1 (s) ≥ 0, F

(2j+1)
1 (s) ≤ 0, ∀s ∈ (−1,−1 + ǫ0].

(A5): There exists ǫ0 > 0 such that F
(2+2q)
1 is non-decreasing in [1 − ǫ0, 1)

and non-increasing in (−1,−1 + ǫ0].

(A6): There exist α, β ∈ R with α+ β > −min[−1,1] F
′′
2 such that

F
′′

1 (s) ≥ α, ∀s ∈ (−1, 1), a(x) ≥ β, a.e. x ∈ Ω.

(A7): lims→±1 F
′
1(s) = ±∞.

(A8): h ∈ L2(0, T ;V ′
div) for all T > 0.

Remark 1. Assumptions (A3)-(A7) are satisfied in the case of the physically

relevant logarithmic double-well potential (1.7) for any fixed positive integer q. In

particular, setting

F1(s) =
θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)), F2(s) = −θc

2
s2,

then (A6) is satisfied if and only if β > θc − θ. However, note that other reasonable

potentials satisfy the above assumptions (e.g., the ones which are unbounded at

the endpoints).

Remark 2. The requirement a(x) ≥ β a.e x ∈ Ω is crucial (see [7, Rem.2.1],

cf. also [8]). For example, in the case of the double-well smooth potential F (s) =

(s2 − 1)2, which is usually taken as a fairly good smooth approximation of the

singular potential, the existence result in [14] requires the condition a(x) ≥ β with

β > 4.

The notion of weak solution to problem (1.1)-(1.6) is given by

Definition 1. Let u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and 0 < T < +∞
be given. A couple [u, ϕ] is a weak solution to (1.1)-(1.6) on [0, T ] corresponding to

[u0, ϕ0] if
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• u, ϕ and µ satisfy

u ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv),(2.3)

ut ∈ L4/3(0, T ;V ′
div), if d = 3,(2.4)

ut ∈ L2(0, T ;V ′
div), if d = 2,(2.5)

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),(2.6)

ϕt ∈ L2(0, T ;V ′),(2.7)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) ∈ L2(0, T ;V ),(2.8)

and

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 a.e. (x, t) ∈ Q := Ω × (0, T );(2.9)

• for every ψ ∈ V , every v ∈ Vdiv and for almost any t ∈ (0, T ) we have

〈ϕt, ψ〉 + (∇µ,∇ψ) = (u, ϕ∇ψ),(2.10)

〈ut, v〉 + (2ν(ϕ)Du,Dv) + b(u, u, v) = −(ϕ∇µ, v) + 〈h, v〉;(2.11)

• the initial conditions u(0) = u0, ϕ(0) = ϕ0 hold.

Remark 3. Note that (2.3)–(2.7) imply u ∈ Cw([0, T ];Gdiv) (u ∈ C([0, T ];Gdiv)

if d = 2) and ϕ ∈ C([0, T ];H), for all T > 0. Therefore, the initial conditions

u(0) = u0 and ϕ(0) = ϕ0 make sense.

Theorem 1. Assume that (A1)-(A8) are satisfied for some fixed positive inte-

ger q. Let u0 ∈ Gdiv, ϕ0 ∈ L∞(Ω) such that F (ϕ0) ∈ L1(Ω). In addition, assume

that |ϕ0| < 1. Then, for every T > 0 there exists a weak solution z := [u, ϕ] to

(1.1)-(1.6) on [0, T ] corresponding to [u0, ϕ0] such that ϕ(t) = ϕ0 for all t ∈ [0, T ]

and

ϕ ∈ L∞(0, T ;L2+2q(Ω)).(2.12)

Furthermore, setting

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫

Ω

∫

Ω

J(x − y)(ϕ(x, t) − ϕ(y, t))2dxdy +

∫

Ω

F (ϕ(t)),

the following energy inequality holds

E(u(t), ϕ(t)) +

∫ t

s

(
2‖

√
ν(ϕ)Du(τ)‖2 + ‖∇µ(τ)‖2

)
dτ

≤ E(u(s), ϕ(s)) +

∫ t

s

〈h(τ), u(τ)〉dτ,(2.13)

for all t ≥ s and for a.a. s ∈ (0,∞), including s = 0. If d = 2, the weak solution

z := [u, ϕ] satisfies

(2.14)
d

dt
E(u, ϕ) + 2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2 = 〈h, u〉,

i.e., equality holds in (2.13) for every t ≥ 0.
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On account of [21, Corollary 1], the argument used to prove Theorem 1 also

yields an existence result for the convective nonlocal Cahn-Hilliard equation with a

given velocity field. Note that, in this case, the energy identity holds in 3D as well.

In addition, uniqueness goes as in [21, Proposition 5]. Thus we can summarize the

results in the following

Proposition 1. Assume that (A1) and (A3)-(A7) are satisfied for some fixed

positive integer q. Let u ∈ L2
loc([0,∞);Vdiv ∩L∞(Ω)d) be given and let ϕ0 ∈ L∞(Ω)

such that F (ϕ0) ∈ L1(Ω). In addition, suppose that |ϕ0| < 1. Then, for every

T > 0, there exists a unique ϕ ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) which fulfills (2.9) and

(2.12), solves (2.10) on [0, T ] with µ given by (2.8) and initial condition ϕ(0) = ϕ0.

In addition, for all t ≥ 0, we have (ϕ(t), 1) = (ϕ0, 1) and the following energy

identity holds

(2.15)
d

dt

(
1

4

∫

Ω

∫

Ω

J(x− y)(ϕ(x, t) − ϕ(y, t))2dxdy +

∫

Ω

F (ϕ(t))

)
+ ‖∇µ‖2 = (uϕ,∇µ).

Remark 4. Note that, thanks to (2.6), (2.8) and (2.13), we have that

F ′(ϕ) ∈ L2(0, T ;V ), F (ϕ) ∈ L∞(0, T ;L1(Ω)), ∀T > 0.

Remark 5. Assumptions (A3)–(A6) ensure that, thanks to Lemma 1 and

Lemma 2, property (2.12) holds for some fixed q ≥ 1. Indeed, such assumptions al-

low us to obtain some estimates for the approximating (regular) potential Fǫ which

are crucial in the approximation argument of the proof of Theorem 1 (see (3.9)

and (3.11) below). Actually, Theorem 1 states that for each q ≥ 1 there exists a

solution satisfying (2.12). Notice that, since the L∞(0, T ;L∞(Ω))-regularity of ϕ is

not guaranteed (since ϕ might not be measurable with values in L∞(Ω)), we cannot

rely on such a regularity in order to choose some fixed q (e.g., q = 1) for Fǫ (cf.

(3.10) below). Furthermore, (2.12) does not follow from (2.9). Indeed, recall that

L∞(0, T ;L∞(Ω)) ⊂ L∞(Q) with strict inclusion.

3. Proof of Theorem 1

We consider the following approximate problem Pǫ: find a weak solution [uǫ, ϕǫ]

to

ϕ′
ǫ + uǫ · ∇ϕǫ = ∆µǫ,(3.1)

u′ǫ − div(ν(ϕǫ)2Duǫ) + (uǫ · ∇)uǫ + ∇πǫ = µǫ∇ϕǫ + h,(3.2)

µǫ = aϕǫ − J ∗ ϕǫ + F ′
ǫ(ϕǫ),(3.3)

div(uǫ) = 0,(3.4)

∂µǫ

∂n
= 0, uǫ = 0, on ∂Ω,(3.5)

uǫ(0) = u0, ϕǫ(0) = ϕ0, in Ω.(3.6)
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Problem Pǫ is obtained from (1.1)-(1.6) by replacing the singular potential F with

the smooth potential

Fǫ = F1ǫ + F 2,

where F1ǫ is defined by

(3.7) F
(2+2q)
1ǫ (s) =






F
(2+2q)
1 (1 − ǫ), s ≥ 1 − ǫ

F
(2+2q)
1 (s), |s| ≤ 1 − ǫ

F
(2+2q)
1 (−1 + ǫ), s ≤ −1 + ǫ

and F1ǫ(0) = F1(0), F ′
1ǫ(0) = F ′

1(0),. . . F
(1+2q)
1ǫ (0) = F

(1+2q)
1 (0), while F 2 is a

C2(R)-extension of F2 on R with polynomial growth satisfying

F 2(s) ≥ min
[−1,1]

F2 − 1, F
′′

2(s) ≥ min
[−1,1]

F ′′
2 , ∀s ∈ R.(3.8)

The following elementary lemmas are basic to obtain uniform (w.r.t. ǫ) esti-

mates for a weak solution to the approximate problem.

Lemma 1. Suppose that (A3) and (A4) hold. Then, there exist cq, dq > 0,

which depend on q but are independent of ǫ, and ǫ0 > 0 such that

(3.9) Fǫ(s) ≥ cq|s|2+2q − dq, ∀s ∈ R, ∀ǫ ∈ (0, ǫ0].

Proof. By integrating (3.7) we get

F1ǫ(s) =






∑2+2q
k=0

1
k!F

(k)
1 (1 − ǫ)[s− (1 − ǫ)]k, s ≥ 1 − ǫ

F1(s), |s| ≤ 1 − ǫ
∑2+2q

k=0
1
k!F

(k)
1 (−1 + ǫ)[s− (−1 + ǫ)]k, s ≤ −1 + ǫ.

(3.10)

Due to (A4) we have, for ǫ small enough,

F1ǫ(s) ≥
1

(2 + 2q)!
F

(2+2q)
1 (1 − ǫ)[s− (1 − ǫ)]2+2q, ∀s ≥ 1 − ǫ,

so that, in particular,

F1ǫ(s) ≥
1

(2 + 2q)!
F

(2+2q)
1 (1 − ǫ)(s− 1)2+2q, ∀s ≥ 1,

and (A3) implies that (for ǫ small enough)

F1ǫ(s) ≥ 2cq(s− 1)2+2q ≥ cqs
2+2q − dq, ∀s ≥ 1,

where cq = c1/2(2 + 2q)! and dq is another constant depending only on q. Fur-

thermore, we have F1ǫ(s) = F1(s) ≥ 0 ≥ cqs
2+2q − dq for 0 ≤ s ≤ 1 − ǫ, provided

we choose dq ≥ cq, while for 1 − ǫ ≤ s ≤ 1 we have F1ǫ ≥ 2cq[s − (1 − ǫ)]2+2q ≥
0 ≥ cqs

2+2q − dq. Summing up, we deduce that there exists ǫ0 > 0 such that

F1ǫ(s) ≥ cqs
2+2q − dq, for all s ≥ 0 and for all ǫ ∈ (0, ǫ0]. By using (3.8) we also

get (3.9) for s ≥ 0. Similarly we obtain (3.9) for s ≤ 0. �
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Lemma 2. Suppose (A4) and (A6) hold. Then, setting c0 := α+β+min[−1,1] F
′′
2 >

0, there exists ǫ1 > 0 such that

(3.11) F ′′
ǫ (s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω, ∀ǫ ∈ (0, ǫ1].

Proof. From (3.10) we have

F ′′
1ǫ(s) =





∑2q
k=0

1
k!F

(k+2)
1 (1 − ǫ)[s− (1 − ǫ)]k, s ≥ 1 − ǫ

F ′′
1 (s), |s| ≤ 1 − ǫ

∑2q
k=0

1
k!F

(k)
1 (−1 + ǫ)[s− (−1 + ǫ)]k, s ≤ −1 + ǫ.

(3.12)

Assumption (A4) implies that for ǫ small enough F ′′
1ǫ(s) ≥ F ′′

1 (1 − ǫ) for s ≥ 1 − ǫ

and F ′′
1ǫ(s) ≥ F ′′

1 (−1 + ǫ) for s ≤ −1 + ǫ. Since F ′′
1ǫ(s) = F ′′

1 (s) for |s| ≤ 1− ǫ, (A6)

implies that there exists ǫ1 > 0 such that

F ′′
1ǫ(s) ≥ α, ∀s ∈ R, ∀ǫ ∈ (0, ǫ1].(3.13)

This estimate together with (3.8) and (A6) imply (3.11). �

Due to the existence result proved in [14], for every T > 0, Problem Pǫ admits

a weak solution zǫ := [uǫ, ϕǫ] such that

uǫ ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv),(3.14)

u′ǫ ∈ L4/3(0, T ;V ′
div), if d = 3,(3.15)

u′ǫ ∈ L2(0, T ;V ′
div), if d = 2,(3.16)

ϕǫ ∈ L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ),(3.17)

ϕ′
ǫ ∈ L2(0, T ;V ′),(3.18)

µǫ ∈ L2(0, T ;V ).(3.19)

Indeed, it is immediate to check that all the assumptions of [14, Theorem 1]

and of [14, Corollary 1] are satisfied for Problem Pǫ. In particular, we use Lemma

1, Lemma 2 and the fact that, due to the definition of F1ǫ and to the polynomial

growth assumption on F 2, assumption (H5) of [14, Theorem 1] is trivially satisfied

for each ǫ > 0 (with some constants depending on ǫ).

Furthermore, according to [14, Theorem 1] and using (A2), the approximate

solution zǫ := [uǫ, ϕǫ] satisfies the following energy inequality

1

2
‖uǫ(t)‖2 +

1

4

∫

Ω

∫

Ω

J(x− y)(ϕǫ(x, t) − ϕǫ(y, t))
2dxdy +

∫

Ω

Fǫ(ϕǫ(t))

+

∫ t

0

(ν1‖∇uǫ‖2 + ‖∇µǫ‖2)dτ ≤ 1

2
‖u0‖2

+
1

4

∫

Ω

∫

Ω

J(x− y)(ϕ0(x) − ϕ0(y))
2dxdy

+

∫

Ω

Fǫ(ϕ0) +

∫ t

0

〈h, uǫ〉dτ, ∀t ∈ [0, T ].(3.20)
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From (A5) it is easy to see (cf. (3.33) and (3.34) below) that there exists ǫ1 > 0

such that

F1ǫ(s) ≤ F1(s), ∀s ∈ (−1, 1), ∀ǫ ∈ (0, ǫ1].(3.21)

Therefore, using the assumptions on ϕ0, u0 and Lemma 1, from (3.20) we get the

following estimates

‖uǫ‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv) ≤ c,(3.22)

‖ϕǫ‖L∞(0,T ;L2+2q(Ω)) ≤ c,(3.23)

‖∇µǫ‖L2(0,T ;H) ≤ c.(3.24)

Henceforth c will denote a positive constant which depends on the initial data (i.e.,

on ‖u0‖, ‖ϕ0‖,
∫
Ω F (ϕ0)) and on ‖h‖L2(0,T ;V ′

div), F , Ω, J , ν1, but is independent of

ǫ.

We then take the gradient of (3.3) and multiply the resulting identity by ∇ϕǫ

in L2(Ω). Arguing as in [14, Proof of Theorem 1] and using (3.11), we get

‖∇µǫ‖2 ≥ c20
4
‖∇ϕǫ‖2 − k‖ϕǫ‖2,

with k = 2‖∇J‖2
L1. This last estimate together with (3.23) and (3.24) yield

‖ϕǫ‖L2(0,T ;V ) ≤ c.(3.25)

As far as the bounds on the time derivatives {u′ǫ} and {ϕ′
ǫ} are concerned, on

account of (3.1) and (3.2), arguing by comparison as in [14, Proof of Theorem 1],

one gets

‖ϕ′
ǫ‖L2(0,T ;V ′) ≤ c,(3.26)

‖u′ǫ‖L2(0,T ;V ′

div) ≤ c, d = 2(3.27)

‖u′ǫ‖L4/3(0,T ;V ′

div) ≤ c, d = 3.(3.28)

In order to obtain an estimate for {µǫ} we need to control the sequence of averages

{µǫ}. To this aim observe that equation (3.1) can be written in abstract form as

follows

ϕ′
ǫ + uǫ · ∇ϕǫ = −Aµǫ in V ′.(3.29)

Let us test (3.29) by N (F ′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)) to get

〈F ′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ),Nϕ′
ǫ〉 + 〈N (uǫ · ∇ϕǫ), F

′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)〉
= −〈µǫ, F

′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)〉.(3.30)

Recall that uǫ · ∇ϕǫ = 0. On the other hand, we have

〈µǫ, F
′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)〉 =

〈aϕǫ − J ∗ ϕǫ + F ′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ), F
′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)〉
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≥ 1

2
‖F ′

ǫ(ϕǫ) − F ′
ǫ(ϕǫ)‖2 − 1

2
‖aϕǫ − J ∗ ϕǫ‖2

≥ 1

2
‖F ′

ǫ(ϕǫ) − F ′
ǫ(ϕǫ)‖2 − CJ‖ϕǫ‖2.(3.31)

Therefore, by means of (3.31) and (3.23), from (3.30) we deduce

‖F ′
ǫ(ϕǫ) − F ′

ǫ(ϕǫ)‖ ≤ c(‖Nϕ′
ǫ‖ + ‖N (uǫ · ∇ϕǫ)‖ + 1)

≤ c(‖ϕ′
ǫ‖V ′

0
+ ‖uǫ · ∇ϕǫ‖V ′

0
+ 1).(3.32)

Observe now that, due to (A4) and (A5), there holds

|F ′
1ǫ(s)| ≤ |F ′

1(s)|, ∀s ∈ (−1, 1), ∀ǫ ∈ (0, ǫ1],(3.33)

for some ǫ1 > 0. Indeed, for s ∈ [1 − ǫ, 1) we have

F ′
1(s) =

2q∑

k=0

1

k!
F

(k+1)
1 (1 − ǫ)[s− (1 − ǫ)]k

+
1

(2q + 1)!
F

(2q+2)
1 (ξ)[s− (1 − ǫ)]1+2q

≥
1+2q∑

k=0

1

k!
F

(k+1)
1 (1 − ǫ)[s− (1 − ǫ)]k = F ′

1ǫ(s),(3.34)

for ǫ small enough, where ξ ∈ (1 − ǫ, s) and where we have used the fact that, due

to (A5), F
(2+2q)
1 (ξ) ≥ F

(2+2q)
1 (1 − ǫ). Arguing similarly, we get F ′

1ǫ(s) ≥ F ′
1(s) for

s ∈ (−1,−1+ ǫ] and for ǫ small enough. However, due to (A4) and (A7), for ǫ small

enough we have that F ′
1ǫ(s) ≥ F ′

1(1−ǫ) ≥ 0 for s ≥ 1−ǫ and F ′
1ǫ(s) ≤ F ′

1(−1+ǫ) ≤ 0

for s ≤ −1 + ǫ. Recalling also that F ′
1ǫ(s) = F ′

1(s) for |s| ≤ 1− ǫ, we obtain (3.33).

Let s0 ∈ (−1, 1) be such that F ′(s0) = 0 (cf. (A7)) and introduce

H(s) := F (s) +
a∞
2

(s− s0)
2, Hǫ(s) := Fǫ(s) +

a∞
2

(s− s0)
2,(3.35)

for every s ∈ (−1, 1) and every s ∈ R, respectively. We have set a∞ := ‖a‖L∞(Ω).

Observe that, owing to (3.11), H ′
ǫ is monotone and (for ǫ small enough) H ′

ǫ(s0) =

F ′(s0) = 0. Since ϕ0 ∈ (−1, 1), we can apply an argument devised by Kenmochi et

al. [31] (see also [15]) and deduce the following estimate

δ‖H ′
ǫ(ϕǫ)‖L1(Ω) ≤

∫

Ω

(ϕǫ − ϕ0)(H
′
ǫ(ϕǫ) −H ′

ǫ(ϕǫ)) +K(ϕ0)(3.36)

where δ depends on ϕ0 and K(ϕ0) depends on ϕ0, F , |Ω| and on a∞. For the

reader’s convenience let us recall briefly how (3.36) can be deduced. Fix m1,m2 ∈
(−1, 1) such that m1 ≤ s0 ≤ m2 and m1 < ϕ0 < m2. Introduce, for a.a. fixed

t ∈ (0, T ), the sets

Ω0 := {m1 ≤ ϕǫ(x, t) ≤ m2}, Ω1 := {ϕǫ(x, t) < m1}, Ω2 := {ϕǫ(x, t) > m2}.
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Setting δ := min{ϕ0 −m1,m2 − ϕ0} and δ1 := max{ϕ0 −m1,m2 − ϕ0}, then for ǫ

small enough we have

δ‖H ′
ǫ(ϕǫ)‖L1(Ω) = δ

∫

Ω1

|H ′
ǫ(ϕǫ)| + δ

∫

Ω2

|H ′
ǫ(ϕǫ)| + δ

∫

Ω0

|H ′
ǫ(ϕǫ)|

≤
∫

Ω1

(ϕǫ(t) − ϕ0)H
′
ǫ(ϕǫ) +

∫

Ω2

(ϕǫ(t) − ϕ0)H
′
ǫ(ϕǫ) + δ

∫

Ω0

|H ′
ǫ(ϕǫ)|

≤
∫

Ω

(ϕǫ(t) − ϕ0)H
′
ǫ(ϕǫ) + (δ1 + δ)

∫

Ω0

|H ′
ǫ(ϕǫ)|

≤
∫

Ω

(ϕǫ(t) − ϕ0)H
′
ǫ(ϕǫ) + (δ1 + δ)

∫

Ω0

{
|F ′

1(ϕǫ)| + |F ′
2(ϕǫ)| + a∞|ϕǫ − s0|

}
,

where we have used (3.33). We therefore get (3.36) with K(ϕ0) given by

K(ϕ0) = (δ1 + δ)|Ω|
(

max
[m1,m2]

(|F ′
1| + |F ′

2|) + a∞δ2

)
,

with δ2 := max{s0−m1,m2− s0}. On account of the definition of Hǫ and recalling

(3.32) we obtain

‖H ′
ǫ(ϕǫ) −H ′

ǫ(ϕǫ)‖ ≤ c(‖ϕ′
ǫ‖V ′

0
+ ‖uǫ · ∇ϕǫ‖V ′

0
+ 1) + a∞‖ϕǫ − ϕ0‖.(3.37)

Therefore, by means of (3.36)-(3.37) and using the following bound (cf. (3.22)

and (3.23), see [14, Proof of Corollary 1])

‖uǫ · ∇ϕǫ‖L2(0,T ;V ′

0
) ≤ c,

we infer that there exists

a constant L(ϕ0) depending on ϕ0 such that

‖F ′
ǫ(ϕǫ)‖L2(0,T ;L1(Ω)) ≤ L(ϕ0).(3.38)

Since
∫
Ω µǫ =

∫
Ω F

′
ǫ(ϕǫ), then ‖µǫ‖L2(0,T ) ≤ c. Hence by Poincaré-Wirtinger

inequality and (3.24) we get

‖µǫ‖L2(0,T ;V ) ≤ c.(3.39)

Estimates (3.22), (3.23), (3.25)-(3.28), (3.39) and well-known compactness re-

sults allow us to deduce that there exist functions u ∈ L∞(0, T ;Gdiv)∩L2(0, T ;Vdiv),

ϕ ∈ L∞(0, T ;L2+2q(Ω))∩L2(0, T ;V )∩H1(0, T ;V ′), and µ ∈ L2(0, T ;V ) such that,

up to a subsequence, we have

uǫ ⇀ u weakly∗ in L∞(0, T ;Gdiv), weakly in L2(0, T ;Vdiv),(3.40)

uǫ → u strongly in L2(0, T ;Gdiv), a.e. in Ω × (0, T ),(3.41)

u′ǫ ⇀ ut weakly in L4/3(0, T ;V ′
div), d = 3,(3.42)

u′ǫ ⇀ ut weakly in L2(0, T ;V ′
div), d = 2,(3.43)

ϕǫ ⇀ ϕ weakly∗ in L∞(0, T ;L2+2q(Ω)), weakly in L2(0, T ;V ),(3.44)

ϕǫ → ϕ strongly in L2(0, T ;H), a.e. in Ω × (0, T ),(3.45)

ϕ′
ǫ ⇀ ϕt weakly in L2(0, T ;V ′),(3.46)
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µǫ ⇀ µ weakly in L2(0, T ;V ).(3.47)

In order to pass to the limit in the variational formulation for Problem Pǫ and

hence prove that z = [u, ϕ] is a weak solution to the original problem, we need

to show that |ϕ| < 1 a.e. in Q = Ω × (0, T ). To this aim we adapt an argument

devised in [17] (cf. also [19]).

Thus, we introduce the sets

Eǫ
1,η := {(x, t) ∈ Q : ϕǫ(x, t) > 1 − η}, Eǫ

2,η := {(x, t) ∈ Q : ϕǫ(x, t) < −1 + η},

where η ∈ (0, 1) is chosen so that s0 ∈ (−1+ η, 1− η) with s0 such that F ′(s0) = 0.

For ǫ small enough, recalling that H ′
ǫ(s) ≥ 0 for s ∈ [s0, 1) and H ′

ǫ(s) ≤ 0 for

s ∈ (−1, s0], we can write

H ′
ǫ(1 − η)|Eǫ

1,η|d+1 ≤ ‖H ′
ǫ(ϕǫ)‖L1(Q), |H ′

ǫ(−1 + η)||Eǫ
2,η|d+1 ≤ ‖H ′

ǫ(ϕǫ)‖L1(Q),

(3.48)

where | · |d+1 is the d+1-Lebesgue measure in Q, and observe that ‖H ′
ǫ(ϕǫ)‖L1(Q) ≤

cL(ϕ0) + c (cf. (3.23) and (3.38)). Furthermore, as a consequence of the pointwise

convergence (3.45) and by using Fatou’s lemma, it is easy to see that we have

|E1,η|d+1 ≤ lim inf
ǫ→0

|Eǫ
1,η|d+1, |E2,η|d+1 ≤ lim inf

ǫ→0
|Eǫ

2,η|d+1,(3.49)

where

E1,η := {(x, t) ∈ Q : ϕ(x, t) > 1 − η}, E2,η := {(x, t) ∈ Q : ϕ(x, t) < −1 + η}.

Hence, due to the pointwise convergence H ′
ǫ(s) → H ′(s), for every s ∈ (−1, 1), we

get from (3.48) and (3.49)

|E1,η|d+1 ≤ cL(ϕ0) + c

H ′(1 − η)
, |E2,η|d+1 ≤ cL(ϕ0) + c

|H ′(−1 + η)| .(3.50)

Letting η → 0 and using (A7) we obtain |{(x, t) ∈ Q : |ϕ(x, t)| ≥ 1}| = 0 and

therefore |ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q.

This bound, the pointwise convergence (3.45) in Q and the fact that F ′
ǫ → F ′

uniformly on every compact interval included in (−1, 1), entail that

F ′
ǫ(ϕǫ) → F ′(ϕ) a.e. in Q.(3.51)

Convergences (3.40)-(3.47) and (3.51) allow us, by a standard argument, to

pass to the limit in the variational formulation of Problem Pǫ and hence to prove

that z = [u, ϕ] is a weak solution to (1.1)-(1.6).

Let us now establish the energy inequality (2.13). Let us first show that (2.13)

holds for s = 0 and t > 0. Indeed, the energy inequality satisfied by the approximate

solution zǫ = [uǫ, ϕǫ] can be written as follows

1

2
‖uǫ(t)‖2 +

1

2
‖√aϕǫ(t)‖2

− 1

2
(ϕǫ(t), J ∗ ϕǫ(t)) +

∫

Ω

Fǫ(ϕǫ(t))
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+

∫ t

0

(
2‖

√
ν(ϕǫ)Duǫ‖2 + ‖∇µǫ‖2

)
dτ

≤ 1

2
‖u0‖2 +

1

2
‖√aϕ0‖2 − 1

2
(ϕ0, J ∗ ϕ0)

+

∫

Ω

Fǫ(ϕ0) +

∫ t

0

〈h, uǫ〉dτ, ∀t > 0.(3.52)

We now use the strong convergences (3.41) and (3.45), the weak convergences

(3.40) and (3.47), the bound (3.21) for the approximate potential F1ǫ, the fact

that Fǫ(ϕǫ(t)) → F (ϕ(t)) a.e. in Ω and for a.e. t ∈ (0, T ) (see (3.51)) and Fatou’s

lemma. Observe that, as a consequence of the uniform bound ‖
√
ν(ϕǫ)‖∞ ≤ √

ν2

(cf. assumption (A2)), of the strong convergence
√
ν(ϕǫ) →

√
ν(ϕ) in L2(0, T ;H)

and of the weak convergence (3.40), we have (see, e.g., [14, Lemma1])
√
ν(ϕǫ)Duǫ ⇀

√
ν(ϕ)Du, weakly in L2(0, T ;H).(3.53)

By letting ǫ → 0, from (3.52) we infer that (2.13) holds for almost every t >

0. Furthermore, due to the regularity properties of the solution, there exists a

representative z = [u, ϕ] such that u ∈ Cw([0,∞);Gdiv) and ϕ ∈ C([0,∞);H)

(henceforth we shall always choose this representative). Therefore, (2.13) holds for

all t ≥ 0 since the function E(z(·)) : [0,∞) → R is lower semicontinuous. The lower

semicontinuity of E is a consequence of the fact that F is a quadratic perturbation of

a (strictly) convex function in (−1, 1). Indeeed, by (A6) we have that F ′′(s) ≥ α∗,

for all s ∈ (−1, 1), with α∗ = α+ min[−1,1] F
′′
2 . Then F can be written in the form

F (s) = G(s) +
α∗

2
s2,(3.54)

with G convex on (−1, 1) (see [21, Lemma 2]).

Let us now prove that the energy inequality (2.13) also holds between two

arbitrary times s and t. Indeed, setting

Eǫ(zǫ(t)) =
1

2
‖uǫ(t)‖2 +

1

2
‖√aϕǫ(t)‖2 − 1

2
(ϕǫ(t), J ∗ ϕǫ(t)) +

∫

Ω

Fǫ(ϕǫ(t)),(3.55)

and applying [21, Lemma 3], we deduce (see Remark 6) that the approximate

solution zǫ = [uǫ, ϕǫ] satisfies

Eǫ(zǫ(t)) +

∫ t

s

(
2‖

√
ν(ϕǫ)Duǫ‖2 + ‖∇µǫ‖2

)
dτ ≤ Eǫ(zǫ(s)) +

∫ t

s

〈h, uǫ〉dτ,(3.56)

for every t ≥ s and for a.e. s ∈ (0,∞), including s = 0.

Define Gǫ in such a way that

Fǫ(s) = Gǫ(s) +
α∗

2
s2,(3.57)

with α∗ as in (3.54). Since, due to (3.13), Gǫ is convex on (−1, 1), then we can

write

Gǫ(ϕǫ) ≤ Gǫ(ϕ) +G′
ǫ(ϕǫ)(ϕǫ − ϕ).
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Hence, for every non-negative ψ ∈ D(0, t), we have
∫

Qt

Gǫ(ϕǫ)ψ ≤
∫

Qt

Gǫ(ϕ)ψ +

∫

Qt

G′
ǫ(ϕǫ)(ϕǫ − ϕ)ψ,

where Qt := Ω × (0, t). Thus, thanks to (3.39) and (3.41), we get
∣∣∣
∫

Qt

G′
ǫ(ϕǫ)(ϕǫ − ϕ)ψ

∣∣∣ ≤ c‖G′
ǫ(ϕǫ)‖L2(0,T ;H)‖ϕǫ − ϕ‖L2(0,T ;H)

≤ c‖ϕǫ − ϕ‖L2(0,T ;H) → 0,

as ǫ→ 0. Here we have used the fact that, since ‖F ′
ǫ(ϕǫ)‖L2(0,T ;H) ≤ c andG′

ǫ(ϕǫ) =

F ′
ǫ(ϕǫ)−α∗ϕǫ, then ‖G′

ǫ(ϕǫ)‖L2(0,T ;H) ≤ c. Therefore, by using Lebesgue’s theorem

(recall (3.21) and the fact that |ϕ| < 1 a.e. in Q) we find

lim sup
ǫ→0

∫

Qt

Gǫ(ϕǫ)ψ ≤ lim
ǫ→0

∫

Qt

Gǫ(ϕ)ψ =

∫

Qt

G(ϕ)ψ.

On the other hand, thanks to Fatou’s lemma and to the pointwise convergence

Fǫ(ϕǫ) → F (ϕ), we also have the liminf inequality. Then, on account of (3.54) and

(3.57), we deduce that
∫

Qt

Fǫ(ϕǫ)ψ →
∫

Qt

F (ϕ)ψ, ∀ψ ∈ D(0, t), ψ ≥ 0.(3.58)

Let us multiply (3.56) by a non-negative ψ ∈ D(0, t) and integrate the resulting

inequality w.r.t. s from 0 and t, where t > 0 is fixed. We obtain

Eǫ(zǫ(t))

∫ t

0

ψ(s)ds+

∫ t

0

ψ(s)

∫ t

s

(
2‖

√
ν(ϕǫ)Duǫ‖2 + ‖∇µǫ‖2

)
dτds

≤
∫ t

0

Eǫ(zǫ(s))ψ(s)ds +

∫ t

0

ψ(s)

∫ t

s

〈h, uǫ〉dτds.

By using strong and weak convergences for the sequence {zǫ} and (3.58), passing

to the limit as ǫ→ 0 in the above inequality, we infer

E(z(t))

∫ t

0

ψ(s)ds+

∫ t

0

ψ(s)ds

∫ t

s

(
2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2

)
dτ

≤
∫ t

0

E(z(s))ψ(s)ds +

∫ t

0

ψ(s)ds

∫ t

s

〈h, u〉dτ,

which can be rewritten as follows

Vz(t)

∫ t

0

ψ(s)ds ≤
∫ t

0

Vz(s)ψ(s)ds,

where

Vz(t) := E(z(t)) +

∫ t

0

(
2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2

)
dτ −

∫ t

0

〈h, u〉dτ.

Thus we have
∫ t

0

(Vz(s) − Vz(t))ψ(s)ds ≥ 0, ∀ψ ∈ D(0, t), ψ ≥ 0,

which implies that Vz(t) ≤ Vz(s) for a.e. s ∈ (0, t). Therefore, (2.13) is proven.
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Finally, for d = 2, we can choose

µ and u as test functions in (2.10) and (2.11), respectively,

due to their regularity properties,

and then we can proceed as in [14, Proof of Corollary 2] to deduce (2.14).

Indeed, when we consider the duality product 〈ϕt, µ〉, we are led to the duality

〈ϕt, G
′(ϕ)〉, with the convex function G given by (3.54). Now, define the functional

G : H → R ∪ {+∞} as

G(ϕ) :=

{ ∫
Ω
G̃(ϕ) ∀ϕ ∈ H s.t. G(ϕ) ∈ L1(Ω)

+∞ otherwise,

where G̃ : R → R ∪ {+∞} is given by G̃(s) := G(s) for all s ∈ dom(G), and

G̃(s) = +∞ for all s ∈ R − dom(G). The function G̃ is a lower-semicontinuous

proper convex function on R and, due to (A7), its subdifferential is given by ∂G̃(s) =

G′(s) for all s ∈ int(dom(G)) = (−1, 1), and ∂G̃(s) = ∅ for all s /∈ (−1, 1). Then,

[6, Proposition 2.8, Chap. II] entails that G is lower-semicontinuous and convex on

H , and that ξ ∈ ∂G(ϕ) iff ξ(x) ∈ ∂G̃(ϕ(x)) for a.a x ∈ Ω. Notice that, if |ϕ| < 1

a.e. in Ω, the last condition is satisfied if and only if ξ(x) = G′(ϕ(x)) for a.a. x ∈ Ω.

Let us now apply [16, Proposition 4.2] to the functional G and to the ϕ component

of the weak solution z to (1.1)–(1.6). All conditions of this proposition are fulfilled,

since, in particular, we have G′(ϕ) ∈ L2(0, T ;V ). Hence, we infer that G(ϕ(·)) is

absolutely continuous on [0, T ] and that

d

dt
G(ϕ(t)) =

d

dt

∫

Ω

G(ϕ(t)) = 〈ϕt(t), G
′(ϕ(t))〉, a.a. t ∈ (0, T ).

By exploiting this identity, the energy equation (2.14) can be obtained without

difficulties.

Remark 6. In [21, Lemma 3] a growth assumption is made on the regular

potential (polynomial growth less then 6 when d = 3). Therefore, the application

of [21, Lemma 3] to obtain the approximate energy inequality (3.56) would require

the condition q = 1 (recall that the approximate potential Fǫ has polynomial growth

of order 2+2q). Nevertheless, by exploiting an argument of the same kind as above

and by suitably approximating regular potentials of arbitrary polynomial growth by

a sequence of potentials of polynomial growth of order less then 6, it is not difficult

to improve [21, Lemma 3] and remove such growth assumption. Therefore [21,

Lemma 3] can be extended to regular potentials of arbitrary polynomial growth

and (3.56) also holds for q > 1.

4. Global attractor in 2D

In this section we first prove that in 2D we can define a generalized semiflow

on a suitable metric space Xm0
which is point dissipative and eventually bounded.

Furthermore, we show that such generalized semiflow possesses a (unique) global
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attractor, provided that the potential F is bounded in (−1, 1) (like, e.g., (1.7)). The

argument is a generalization of the one used in [21] and based on [5]. Henceforth,

we refer to [5] for the basic definitions and results on the theory of generalized

semiflows.

Consider system (1.1)-(1.4) endowed with (1.5) for d = 2 and assume that the

external force h is time-independent, i.e.,

(A9): h ∈ V ′
div.

The first step is to define a suitable metric space for the weak solutions and

consequently to construct a generalized semiflow. To this aim, fix m0 ∈ (0, 1) and

introduce the metric space

Xm0
:= Gdiv × Ym0

,(4.1)

where

Ym0
:= {ϕ ∈ L∞(Ω) : |ϕ| < 1 a.e. in Ω, F (ϕ) ∈ L1(Ω), |ϕ| ≤ m0}.(4.2)

The space Xm0
is endowed with the metric

d(z1, z2) := ‖u1 − u2‖ + ‖ϕ1 − ϕ2‖ +
∣∣∣
∫

Ω

F (ϕ1) −
∫

Ω

F (ϕ2)
∣∣∣
1/2

,(4.3)

for every z1 := [u1, ϕ1] and z2 := [u2, ϕ2] in Xm0
. Let us denote by G the set of all

weak solutions corresponding to all initial data z0 = [u0, ϕ0] ∈ Xm0
. We prove that

G is a generalized semiflow on Xm0
.

Proposition 2. Let d = 2 and suppose that (A1)-(A7) and (A9) hold. Then

G is a generalized semiflow on Xm0
.

Proof. It can be seen immediately that hypotheses (H1), (H2) and (H3) of

the definition of generalized semiflow [5, Definition 2.1] are satisfied. It remains

to prove the upper semicontinuity with respect to initial data, i.e., that G satisfies

(H4) of [5, Definition 2.1]. We can argue as in [21, Proposition 3]. Thus we only

give the main steps of the proof. Consider a sequence {zj} ⊂ G, with zj := [uj, ϕj ]

such that zj(0) := [uj0, ϕj0] → z0 := [u0, ϕ0] in Xm0
. We have to show that there

exist a subsequence {zjk
} and a weak solution z ∈ G with z(0) = z0 such that

zjk
(t) → z(t) for each t ≥ 0. Now, every weak solution zj satisfies the energy

identity (2.14) so that

E(zj(t)) +

∫ t

0

(
2‖

√
ν(ϕj)Duj(τ)‖2 + ‖∇µj(τ)‖2

)
dτ = E(zj0) +

∫ t

0

〈h, uj(τ)〉dτ,

(4.4)

where zj0 := zj(0). From this identity and using the assumptions on F we deduce

estimates of the form (3.22)-(3.28). Furthermore, since |ϕ0j | ≤ m0 and m0 ∈ (0, 1)

is fixed, we can repeat the argument used in the existence proof to control the
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sequence of the averages of the approximated chemical potentials (see (3.29)-(3.38))

and get

‖F ′(ϕj)‖L2(0,T ;L1(Ω)) ≤ L(m0),(4.5)

where L(m0) is a positive constant depending on m0. Hence, an estimate of the

form (3.39) for µj holds. From these estimates we deduce the existence of a couple

z = [u, ϕ] and of a function µ with u, ϕ and µ having the regularity properties

(2.3)-(2.8) and such that (3.40)-(3.47) hold for suitable subsequences of {uj}, {ϕj}
and {µj}. In order to prove that z = [u, ϕ] is a weak solution by passing to the limit

in the variational formulation for zj we need to know that (2.9) is satisfied for ϕ.

To this aim we use the same argument we applied to the sequence of approximate

solutions {ϕǫ} (cf. proof of Theorem 1).

More precisely, for η ∈ (0, 1) fixed

we can introduce the sets

Ej
1,η := {(x, t) ∈ Q : ϕj(x, t) > 1 − η}, Ej

2,η := {(x, t) ∈ Q : ϕj(x, t) < −1 + η},

and so we have

H ′(1 − η)|Ej
1,η|d+1 ≤ ‖H ′(ϕj)‖L1(Q), |H ′(−1 + η)||Ej

2,η|d+1 ≤ ‖H ′(ϕj)‖L1(Q),

where H is defined as in (3.35). Therefore, recalling (4.5), by first letting j → ∞
and then η → 0 we can deduce that

|ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q.

On the other hand, since we also have

uj(t) ⇀ u(t) weakly in Gdiv, ϕj(t) ⇀ ϕ(t) weakly in H, ∀t ≥ 0,

then z(0) = z0. It remains to prove the convergence of the sequence {zj(t)} to z(t)

in Xm0
for each t ≥ 0. Reasoning as in [21], we represent the singular potential F

as follows

F (s) = G(x, s) −
(
a(x) − c0

2

)s2
2
,

where c0 = α + β + min[−1,1] F
′′
2 > 0. Here, due to (A6), the function G(x, ·) is

strictly convex in (−1, 1) for a.e. x ∈ Ω. Therefore, the energy E can still be written

as

E(z) =
1

2
‖u‖2 +

c0
4
‖ϕ‖2 − 1

2
(ϕ, J ∗ ϕ) +

∫

Ω

G(x, ϕ(x))dx, ∀z = [u, ϕ] ∈ Xm0
,

and the same argument used in [21, Proposition 3] applies. �

As done for regular potentials (see [21]), a dissipativity property of the gener-

alized semiflow G can be proven in the case of singular (bounded) potentials.

Proposition 3. Let d = 2 and suppose that (A1)-(A7), (A9) hold. Then G is

point dissipative and eventually bounded.
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Proof. Recalling the proof of [14, Corollary 2] a dissipative estimate can be

established, namely,

E(z(t)) ≤ E(z0)e
−kt + F (ϕ0)|Ω| +K, ∀t ≥ 0,(4.6)

where k, K are two positive constants which are independent of the initial data,

with K depending on Ω, ν1, J , F , ‖h‖V ′

div
. From (4.6) we get (see [21, Proposition

4])

d
2(z(t), 0) ≤ cE(z0)e

−kt + cMm0
+ c, ∀t ≥ 0,

which entails that the generalized semiflow G is point dissipative and eventually

bounded. �

We can now state the main result of this section.

Proposition 4. Let d = 2 and suppose that (A1)-(A7), (A9) hold. Further-

more, assume that F is bounded in (−1, 1). Then G possesses a global attractor.

Proof. In light of Proposition 3 and by [5, Proposition 3.2] and [5, Theorem

3.3] we only need to show that G is compact. Let {zj} ⊂ G be a sequence with

{zj(0)} bounded in Xm0
. We claim that there exists a subsequence {zjk

} such that

zjk
(t) converges in Xm0

for every t > 0. Indeed, the energy identity (4.4) entails the

existence of a subsequence (not relabeled) such that (see the proof of Proposition

2) for almost all t > 0

uj(t) → u(t) strongly in Gdiv, ϕj(t) → ϕ(t) strongly in H and a.e. in Ω,

where z = [u, ϕ] is a weak solution. Since F is bounded in (−1, 1), by Lebesgue’s

theorem we therefore have
∫

Ω

F (ϕj(t)) →
∫

Ω

F (ϕ(t)), a.e. t > 0.

Hence E(zj(t)) → E(z(t)) for almost all t > 0. Thus, arguing as in [21, Theorem 3,

Proposition 3], we deduce that zj(t) → z(t) in Xm0
for all t > 0, which yields the

compactness of G. �

We can also prove the existence of the global attractor for the convective non-

local Cahn-Hilliard equation with u ∈ L∞(Ω)d ∩ Vdiv, d = 2, 3. Indeed, thanks

to Proposition 1, we can define a semigroup S(t) on Ym0
(cf. (4.2)) endowed the

metric

d̄(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖ +
∣∣∣
∫

Ω

F (ϕ1) −
∫

Ω

F (ϕ2)
∣∣∣
1/2

, ∀ϕ1, ϕ2 ∈ Ym0
.

Then we have

Theorem 2. Let u ∈ L∞(Ω)d ∩ Vdiv be given. Suppose that (A1), (A3)-(A7)

are satisfied and assume that F is bounded in (−1, 1). Then the dynamical system

(Ym0
, S(t)) possesses a connected global attractor.
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The proof goes as in [21, Proof of Theorem 4]. Note that, due to uniqueness,

the global attractor is connected.

5. Existence of a trajectory attractor

In this section, by relying on the theory developed in [11, 12] (see also [34]), we

prove that a trajectory attractor can be constructed for the nonlocal Cahn-Hilliard-

Navier-Stokes system (1.1)-(1.4) subject to (1.5) with F satisfying (A3)-(A7). The

construction of the trajectory attractor for problem (1.1)-(1.5) in the case of regular

potentials with polynomial growth has been done in [21]. We concentrate on the

3D case.

Let us first resume some basic definitions and results from the theory of tra-

jectory attractors for non-autonomous evolution equations (see [12, Chap. XI and

Chap. XIV] and [11] for details).

Consider an abstract nonlinear non-autonomous evolution equation with sym-

bol σ in a set Σ. The symbol σ is a functional parameter which represents all

time-dependent terms (like external forces) and coefficients of the equation.

For every M > 0, the solutions are sought in a topological (usually Banach)

space FM which consists of vector-valued functions z : [0,M ] → E, where E is a

given Banach space. The space FM is endowed with a given topology ΘM , such that

(FM ,ΘM ) is a Hausdorff topological space with a countable base. By means of FM

the space F+
loc is defined as F+

loc := {z : [0,∞) → E : Π[0,M ]z ∈ FM , for all M > 0},
where Π[0,M ] is the restriction operator on the interval [0,M ]. The space F+

loc is

endowed with a local convergence topology Θ+
loc, i.e., the topology that induces the

following definition of convergence for a sequence {zn} ⊂ F+
loc to z ∈ F+

loc

zn → z in Θ+
loc if Π[0,M ]zn → Π[0,M ]z in ΘM ,

for everyM > 0. It can be seen that the space (F+
loc,Θloc) is a Hausdorff topological

space with a countable base. On the space F+
loc the translation semigroup {T (t)}t≥0

is defined, for every z ∈ F+
loc, as

T (t)z := z(· + t), ∀t ≥ 0.

The semigroup {T (t)} is continuous in the topology Θ+
loc (see, e.g., [11, Proposition

2.2]).

For each σ ∈ Σ let us denote by KM
σ the set of some solutions from FM and

by K+
σ the set of some solutions from F+

loc. The set K+
σ is said to be a trajectory

space of the evolution equation corresponding to the symbol σ ∈ Σ.

We shall need a slightly more general functional setting than the one devised

in [11]. Indeed, in order to construct a trajectory attractor without any bound-

edness assumption on the potential F , we must define a family of bounded sets of

trajectories with a suitable attraction property. The idea is to take a subspace F+
b

of the space F+
loc on which a metric dF+

b
is given and assume that the trajectory
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space K+
σ corresponding to the symbol σ ∈ Σ satisfies K+

σ ⊂ F+
b , for every σ ∈ Σ.

This approach is in the spirit of the theory of (M, T )−attractors in [12, Chap. XI,

Section 3], where T is a topological space where some metric is defined and M is

the corresponding metric space.

Consider the united trajectory space K+
Σ := ∪σ∈ΣK+

σ of the family {K+
σ }σ∈Σ.

We have K+
Σ ⊂ F+

b . Recall that the family {K+
σ }σ∈Σ is said to be translation-

coordinated if for any σ ∈ Σ and any z ∈ K+
σ we have T (t)z ∈ K+

T (t)σ, for all t ≥ 0.

If {K+
σ }σ∈Σ is translation-coordinated, then we have T (t)K+

Σ ⊂ K+
Σ , for every t ≥ 0,

i.e., the translation semigroup {T (t)} acts on K+
Σ . Introduce now the family

B+
Σ :=

{
B ⊂ K+

Σ : B bounded in F+
b w.r.t. the metric dF+

b

}
.

We shall refer to this family in the definition of a uniformly (w.r.t σ ∈ Σ) attracting

set P ⊂ F+
loc for {K+

σ }σ∈Σ in the topology Θ+
loc and in the definition of the uniform

(w.r.t. σ ∈ Σ) trajectory attractor AΣ of the translation semigroup {T (t)}.

Definition 2. A set P ⊂ F+
loc is said to be a uniformly (w.r.t. σ ∈ Σ)

attracting set for the family {K+
σ }σ∈Σ in the topology Θ+

loc if P is uniformly (w.r.t.

σ ∈ Σ) attracting for the family B+
Σ , i.e. for any B ∈ B+

Σ and for any neighbourhood

O(P ) in Θ+
loc there exists t1 ≥ 0 such that T (t)B ⊂ O(P ), for every t ≥ t1.

Definition 3. A set AΣ ⊂ F+
loc is said to be a uniform (w.r.t. σ ∈ Σ)

trajectory attractor of the translation semigroup {T (t)} in the topology Θ+
loc if AΣ

is compact in Θ+
loc, AΣ is a uniformly (w.r.t. σ ∈ Σ) attracting set for {K+

σ }σ∈Σ

in the topology Θ+
loc, and AΣ is the minimal compact and uniformly (w.r.t. σ ∈ Σ)

attracting set for the family {K+
σ }σ∈Σ in the topology Θ+

loc, i.e., if P is any compact

uniformly (w.r.t. σ ∈ Σ) attracting set for the family {K+
σ }σ∈Σ, then AΣ ⊂ P .

From the definition it follows that, if the trajectory attractor exists, then it is

unique.

To prove some properties of the trajectory attractor we need that the set K+
Σ

be closed in Θ+
loc. Assume that Σ is a complete metric space. Recall that the family

{K+
σ }σ∈Σ is called (Θ+

loc,Σ)−closed if the graph set ∪σ∈ΣK+
σ × {σ} is closed in the

topological space Θ+
loc ×Σ. If {K+

σ }σ∈Σ is (Θ+
loc,Σ)−closed and Σ is compact, then

K+
Σ is closed in Θ+

loc (see, e.g., [11, Proposition 3.2]).

Remark 7. We shall see that (cf. Proposition 6), although by means of the

topological-metric scheme above the boundedness assumption on the potential F

can be avoided as far as the construction of the trajectory attractor for system

(1.1)-(1.5) with singular potential is concerned, it seems difficult to get rid of such

an assumption when one wants to prove the closedness of the trajectory space K+
Σ .

We now state the main abstract result which can be established by applying

[12, Chap. XI, Theorem 2.1] to the topological space F+
loc, to the family B+

Σ and
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to the family

B+
ω(Σ) :=

{
B ⊂ K+

ω(Σ) : B bounded in F+
b w.r.t. the metric dF+

b

}
,

where K+
ω(Σ) := ∪σ∈ω(Σ)K+

σ and where ω(Σ) is the ω−limit set of Σ, defined as

ω(Σ) :=
⋂

t≥0

[ ⋃

h≥t

T (h)Σ
]

Σ
=

{
σ ∈ Σ : ∃hn → ∞, ∃σn ∈ Σ s.t. T (hn)σn → σ

}
.

We also refer the reader to [11, Theorem 3.1].

Theorem 3. Let the spaces (F+
loc,Θ

+
loc) and (F+

b , dF+

b
) be as above, and the

family of trajectory spaces {K+
σ }σ∈Σ corresponding to the evolution equation with

symbols σ ∈ Σ be such that K+
σ ⊂ F+

b , for every σ ∈ Σ. Assume there exists a subset

P ⊂ F+
loc which is compact in Θ+

loc and uniformly (w.r.t. σ ∈ Σ) attracting in Θ+
loc

for the family {K+
σ }σ∈Σ in the topology Θ+

loc. Then, the translation semigroup

{T (t)}t≥0, which acts on K+
Σ if the family {K+

σ }σ∈Σ is translation-coordinated,

possesses a (unique) uniform (w.r.t. σ ∈ Σ) trajectory attractor AΣ ⊂ P which

is strictly invariant

T (t)AΣ = AΣ, ∀t ≥ 0.

In addition, if the family {K+
σ }σ∈Σ is translation-coordinated and (Θ+

loc,Σ)−closed,

with Σ a compact metric space, then AΣ ⊂ K+
Σ and

AΣ = Aω(Σ),

where Aω(Σ) is the uniform (w.r.t. σ ∈ ω(Σ)) trajectory attractor for the family

B+
ω(Σ) and Aω(Σ) ⊂ K+

ω(Σ).

Suppose that for a given abstract nonlinear non-autonomous evolution equation

a dissipative estimate of the following form can be established

dF+

b
(T (t)w,w0) ≤ Λ0

(
dF+

b
(w,w0)

)
e−kt + Λ1, ∀t ≥ t0,(5.1)

for every w ∈ K+
Σ , for some fixed w0 ∈ F+

b and for some Λ0 : [0,∞) → [0,∞) locally

bounded and some constants Λ1 ≥ 0, k > 0, where k, Λ0 and Λ1 are independent

of w. Furthermore, assume that the ball

BF
+

b
(w0, 2Λ1) := {w ∈ F+

b : dF+

b
(w,w0) ≤ 2Λ1}

is compact in Θ+
loc. By virtue of (5.1) such ball is a uniformly (w.r.t. σ ∈ Σ)

attracting set for the family {K+
σ }σ∈Σ in the topology Θ+

loc (actually, BF
+

b
(w0, 2Λ1)

is uniformly (w.r.t. σ ∈ Σ) absorbing for the family B+
Σ). Theorem 3 therefore

entails that the translation semigroup {T (t)}t≥0 possesses a (unique) uniform (w.r.t.

σ ∈ Σ) trajectory attractor AΣ ⊂ BF
+

b
(w0, 2Λ1).

Let us now turn to (1.1)-(1.5) and apply to this system the scheme described above.
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For q ≥ 1, m0 ∈ (0, 1) and for any given M > 0 we set

FM =
{

[v, ψ] ∈ L∞(0,M ;Gdiv × L2+2q(Ω)) ∩ L2(0,M ;Vdiv × V ) :

vt ∈ L4/3(0,M ;V ′
div), ψt ∈ L2(0,M ;V ′),

ψ ∈ L∞(QM ), |ψ| ≤ 1 a.e. in QM , |ψ| ≤ m0

}
,

where QM = Ω×(0,M). We endow FM with the weak topology ΘM which induces

the following notion of weak convergence: a sequence {[vm, ψm]} ⊂ FM is said to

converge to [v, ψ] ∈ FM in ΘM if

vn ⇀ v weakly∗ in L∞(0,M ;Gdiv) and weakly in L2(0,M ;Vdiv),

(vn)t ⇀ vt weakly in L4/3(0,M ;V ′
div),

ψn ⇀ ψ weakly∗ in L∞(0,M ;L2+2q(Ω)) and weakly in L2(0,M ;V ),

(ψn)t ⇀ ψt weakly in L2(0,M ;V ′).

Then, we can define the space

F+
loc =

{
[v, ψ] ∈ L∞

loc([0,∞);Gdiv × L2+2q(Ω)) ∩ L2
loc([0,∞);Vdiv × V ) :

vt ∈ L
4/3
loc ([0,∞);V ′

div), ψt ∈ L2
loc([0,∞);V ′),

ψ ∈ L∞(QM ), |ψ| ≤ 1 a.e. in QM , ∀M > 0, |ψ| ≤ m0

}
,

endowed with the inductive limit weak topology Θ+
loc. In F+

loc we consider the

following subset

F+
b =

{
[v, ψ] ∈ L∞(0,∞;Gdiv × L2+2q(Ω)) ∩ L2

tb(0,∞;Vdiv × V ) :

vt ∈ L
4/3
tb (0,∞;V ′

div), ψt ∈ L2
tb(0,∞;V ′),

ψ ∈ L∞(Q∞), |ψ| < 1 a.e. in Q∞, |ψ| ≤ m0, F (ψ) ∈ L∞(0,∞;L1(Ω))
}
,

where Q∞ := Ω × (0,∞), endowed with the following metric

dF+

b
(z2, z1) : = ‖z2 − z1‖L∞(0,∞;Gdiv×L2+2q(Ω)) + ‖z2 − z1‖L2

tb(0,∞;Vdiv×V )

+ ‖(v2)t − (v1)t‖L
4/3

tb (0,∞;V ′

div)
+ ‖(ψ2)t − (ψ1)t‖L2

tb(0,∞;V ′)

+
∥∥∥

∫

Ω

F (ψ2) −
∫

Ω

F (ψ1)
∥∥∥

1/2

L∞(0,∞)
,(5.2)

for all z2 := [v2, ψ2], z1 := [v1, ψ1] ∈ F+
b . If X is a Banach space and τ ∈ R, we

denote by Lp
tb(τ,∞;X), 1 ≤ p <∞, the space of functions f ∈ Lp

loc([τ,∞);X) that

are translation bounded in Lp
loc([τ,∞);X), i.e. such that (see, e.g., [12])

‖f‖p
Lp

tb(τ,∞;X)
:= sup

t≥τ

∫ t+1

t

‖f(s)‖p
Xds <∞.(5.3)

For the trajectory space K+
h corresponding to a symbol h we mean
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Definition 4. For every h ∈ L2
loc([0,∞);V ′

div) the trajectory space K+
h is the

set of all weak solutions z = [v, ψ] to (1.1)-(1.5) with external force h which belong

to the space F+
loc and satisfy the energy inequality (2.13) for all t ≥ s and for a.a.

s ∈ (0,∞).

Remark 8. Notice that in the definition of the trajectory space K+
h we do not

assume that the energy inequality (2.13) is satisfied also for s = 0. In this way

the family {K+
h }h∈Σ (Σ is a generic symbol space included in L2

loc([0,∞);V ′
div)) is

translation-coordinated and therefore the semigroup {T (t)} acts on K+
Σ .

According to Theorem 1, if (A1)-(A7) hold, then for every z0 = [v0, ψ0] such

that

v0 ∈ Gdiv, ψ0 ∈ L∞(Ω), ‖ψ0‖∞ ≤ 1, F (ψ0) ∈ L1(Ω), |ψ0| ≤ m0,

and every h satisfying (A8) there exists a trajectory z ∈ K+
h for which z(0) = z0.

Let us consider now

h0 ∈ L2
tb(0,∞;V ′

div),

and observe that h0 is translation compact in L2
loc,w([0,∞);V ′

div). Then, by defini-

tion, the hull

H+(h0) :=
[{
T (t)h0 : t ≥ 0

}]
L2

loc,w([0,∞);V ′

div)
,

where [·]X denotes the closure in the space X , is compact in L2
loc,w([0,∞);V ′

div)

(see, e.g., [12, Section 6] and [11, Proposition 6.8]).

As symbol space Σ we take the compact metric space given by Σ = H+(h0).

Recall that every h ∈ H+(h0) is translation compact in L2
loc,w([0,∞);V ′

div) as well

(see [11, Proposition 6.9]) and

‖h‖L2
tb(0,∞;V ′

div) ≤ ‖h0‖L2
tb(0,∞;V ′

div), ∀h ∈ H+(h0).(5.4)

Hence we can state the main result of this section.

Theorem 4. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;V ′

div). Then,

the translation semigroup {T (t)} acting on K+
H+(h0)

possesses the uniform (w.r.t.

h ∈ K+
H+(h0)) trajectory attractor AH+(h0). This set is strictly invariant, bounded

in F+
b and compact in Θ+

loc. In addition, if the potential F is bounded on (−1, 1)

and h0 ∈ L2
tb(0,∞;Gdiv) or h0 is translation-compact in L2

loc([0,∞);V ′
div),

then K+
H+(h0)

is closed in Θ+
loc, AH+(h0) ⊂ K+

H+(h0)
and we have

AH+(h0) = Aω(H+(h0)).

The proof of Theorem 4 is based on two propositions. The first one establishes

a dissipative estimate of the form (5.1) for weak solutions to (1.1)-(1.5).

Proposition 5. Let (A1)-(A7) hold and let h0 ∈ L2
tb(0,∞;V ′

div). Then, for

all h ∈ H+(h0), we have K+
h ⊂ F+

b and the following dissipative estimate holds

dF+

b
(T (t)z, 0) ≤ Λ0

(
dF+

b
(z, 0)

)
e−kt + Λ1, ∀t ≥ 1,(5.5)
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for all z ∈ K+
h . Here Λ0 : [0,∞) → [0,∞) is a nonnegative monotone increasing

continuous function, k and Λ1 are two positive constants with k = min(1/2, λ1ν1),

λ1 being the first eigenvalue of the Stokes operator S. Moreover, Λ0, Λ1 depend on

ν1, ν2, λ1, F, J, |Ω|, and Λ1 also depends on ‖h0‖L2
tb(0,∞;V ′

div) and on m0.

Proof. The following estimate can be obtained by arguing as in the proof of

[14, Corollary 2] (see also the proof of [21, Theorem 5]). There exist two positive

constants k1, k2 such that

E(z) ≤ k1

(ν1
2
‖∇v‖2 + ‖∇µ‖2

)
+ k2,(5.6)

for every weak solution z = [v, ψ] to (1.1)-(1.5) satisfying ψ = 0. Furthermore, it

can be shown that k1 = max(2, 1/λ1ν1).

Take now z = [v, ψ] ∈ K+
h with h ∈ H+(h0) and set z̃ = [v, ψ̃], where ψ̃ := ψ−ψ.

Recall that ψ = ψ0. It is easily seen that z̃ is a weak solution to the same system

where the potential F and the viscosity ν are replaced by, respectively,

F̃ (s) := F (s+ ψ0) − F (ψ0), ν̃(s) := ν(s+ ψ0).

Since z satisfies (2.13) for all t ≥ s and for a.a. s ∈ (0,∞), then an energy inequality

of the same form as (2.13) also holds for z̃, namely,

Ẽ(z̃(t)) +

∫ t

s

(2‖
√
ν̃(ψ̃)Dv‖2 + ‖∇µ̃‖2)dτ ≤ Ẽ(z̃(s)) +

∫ t

s

〈h(τ), v(τ)〉dτ,(5.7)

for all t ≥ s and for a.a. s ∈ (0,∞), where we have set

Ẽ(z̃(t)) :=
1

2
‖v(t)‖2 +

1

4

∫

Ω

∫

Ω

J(x− y)(ψ̃(x, t) − ψ̃(y, t))2dxdy +

∫

Ω

F̃ (ψ̃(t))

and µ̃ := aψ̃−J ∗ ψ̃+ F̃ ′(ψ̃) = aψ−J ∗ψ+F ′(ψ) = µ. The weak solution z̃ fulfills

(ψ̃, 1) = 0 and therefore (5.6) can be applied to z̃. Such estimate and (5.7) entail

the inequality

Ẽ(z̃(t)) +
1

k1

∫ t

0

Ẽ(z̃(τ))dτ ≤ k2

k1
(t− s) +

1

2ν1

∫ t

s

‖h(τ)‖2
V ′

div
dτ

+ Ẽ(z̃(s)) +
1

k1

∫ s

0

Ẽ(z̃(τ))dτ, ∀t ≥ s, a.a. s ∈ (0,∞).

By means of the identity

Ẽ(z̃(t)) = E(z(t)) − F (ψ0)|Ω|,

from the previous inequality we get

E(z(t)) + k

∫ t

0

E(z(τ))dτ ≤ l(t− s)

+
1

2ν1

∫ t

s

‖h(τ)‖2
V ′

div
dτ + E(z(s)) + k

∫ s

0

E(z(τ))dτ,(5.8)
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for all t ≥ s and for a.a. s ∈ (0,∞), where k = 1/k1 and l = k2/k1 + F (ψ0)|Ω|/k1.

By applying [21, Lemma 1] from (5.8) we deduce that

E(z(t)) ≤ E(z(s))e−k(t−s) +
1

2ν1

∫ t

s

e−k(t−τ)
(
‖h(τ)‖2

V ′

div
+ 2ν1l

)
dτ

≤ ek sup
s∈(0,1)

E(z(s))e−kt +K2,(5.9)

for all t ≥ 1, where

K2 =
l

k
+

l

2ν1(1 − e−k)
‖h0‖2

L2
tb(0,∞;V ′

div).

Here we have used (5.4). Note that |ψ0| ≤ m0 and therefore K can be estimated

by a constant depending on ν1, λ1, F, J, |Ω| and on h0, m0. Observe now that we

have

C1

(
‖v(s)‖2 + ‖ψ(s)‖2+2q

L2+2q(Ω) +

∫

Ω

F (ψ(s)) − 1
)

≤ E(z(s)) ≤ C2

(
‖v(s)‖2 + ‖ψ(s)‖2+2q

L2+2q(Ω) +

∫

Ω

F (ψ(s)) + 1
)
,(5.10)

and therefore

sup
s∈(0,1)

E(z(s)) ≤ C2

(
‖v‖2

L∞(0,1;Gdiv) + ‖ψ‖2+2q
L∞(0,1;L2+2q(Ω)) + sup

s∈(0,1)

∫

Ω

F (ψ(s)) + 1
)

≤ C3d
2+2q

F
+

b

(z, 0).(5.11)

By combining (5.9) with (5.10) and (5.11) we get

‖v(t)‖2 + ‖ψ(t)‖2+2q
L2+2q(Ω) +

∫

Ω

F (ψ(t)) ≤ cd2+2q

F+

b

(z, 0)e−kt +K2 + c, ∀t ≥ 1,

(5.12)

which yields

‖T (t)v‖2
L∞(0,∞;Gdiv) + ‖T (t)ψ‖2+2q

L∞(0,∞;L2+2q(Ω)) +
∥∥∥

∫

Ω

F (T (t)ψ)
∥∥∥

L∞(0,∞)

≤ cd2+2q

F
+

b

(z, 0)e−kt +K2 + c, ∀t ≥ 1.(5.13)

On account of the definition of the metric dF+

b
, (5.13) allows to estimate three terms

on the left hand side of (5.5). The remaining four terms on the left hand side of

(5.5) can be handled by performing the same kind of calculations done in the proof

of [21, Proposition 7]. In particular, the two terms in the L2
tb(0,∞;Vdiv)-norm of

T (t)v and in the L2
tb(0,∞;V )-norm of T (t)ψ can be estimated by writing the energy

inequality between t and t+ 1 and by using the estimate

‖∇µ‖2 ≥ k3‖∇ψ‖2 − k4‖ψ‖2,

where k3 = c40/2 and k4 = 2‖∇J‖2
L1, with c0 = α + β + min[−1,1] F

′′
2 > 0. This

last estimate has been obtained in [14] for the case of regular potentials, but it still

holds for singular potentials satisfying assumption (A6). Finally, the two terms in

the L
4/3
tb (0,∞;V ′

div)-norm of T (t)vt and in the L2
tb(0,∞;V ′)-norm of T (t)ψt can
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be estimated by comparison on account of (5.12), using also the estimates for the

L2
tb(0,∞;Vdiv)-norm of T (t)v and the L2

tb(0,∞;V )-norm of T (t)ψ. We refer to [21,

Proposition 7] for the details. �

The next proposition, which concerns with the (ΘM , L2(0,M ;V ′
div))-closedness

property of the family {KM
h }h∈L2(0,M ;V ′

div) of trajectory spaces on [0,M ], requires

a boundedness assumption on the potential F .

Proposition 6. Let (A1)-(A7) hold and assume that the potential F is bounded

on (−1, 1). Let hm ∈ L2(0,M ;V ′
div) and consider [vm, ψm] ∈ KM

hm
such that

{[vm, ψm]} converges to [v, ψ] in ΘM and {hm} converges to h strongly in

L2(0,M ;V ′
div).

Then [v, ψ] ∈ KM
h .

Proof. Observe that [vm, ψm] ∈ K+
hm

(i) belongs to FM with µm satisfying (2.8);

(ii) fulfills (2.10)-(2.11) together with µm = aψm−J ∗ψm+F ′(ψm) and h = hm;

(iii) satisfies the energy inequality

E(zm(t)) +

∫ t

s

(2‖
√
ν(ψm)Dvm‖2 + ‖∇µm‖2)dτ

≤ E(zm(s)) +

∫ t

s

〈hm(τ), vm(τ)〉dτ,(5.14)

for each m ∈ N, for a.a. s ∈ [0,M ] and for all t ∈ [0,M ] with t ≥ s. Thus, due to

the convergence assumption on the sequence {[vm, ψm]} and to the boundedness of

F , it is immediate to see that there exists a constant c > 0 such that

(5.15) |E(zm(s))| ≤ c, ∀m, a.a. s ∈ [0,M ].

Therefore, (5.14) and the convergence assumption on the sequence {hm} imply the

control ‖∇µm‖L2(0,M ;H) ≤ c. On the other hand, by exploiting the argument used

in the proof of Theorem 1 it is easy to find the bound

‖F ′(ψm)‖L2(0,T ;L1(Ω)) ≤ L(ψm),

with some constant L(ψm) depending on ψm, and furthermore we also have |ψm| ≤
m0, with m0 ∈ (0, 1). Therefore, noting that

∫
Ω µm =

∫
Ω F

′(ψm), we deduce that

‖µm‖L2(0,M) ≤ c, with the constant c depending on the fixed parameter m0. The

Poincaré-Wirtinger inequality then implies

‖µm‖L2(0,M ;V ) ≤ c.(5.16)

As a consequence, there exists µ ∈ L2(0,M ;V ) such that up to a subsequence we

have

µm ⇀ µ, weakly in L2(0,M ;V ).(5.17)
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Since, as a consequence of the convergence assumption on {[vm, ψm]}, for a subse-

quence we have [vm, ψm] → [v, ψ] strongly in L2(0,M ;Gdiv×H) and hence ψm → ψ

also almost everywhere in Ω × (0,M), then we get µ = aψ − J ∗ ψ + F ′(ψ). Using

now the convergence assumptions on {[vm, ψm]} and on {hm}, the above mentioned

strong convergence and (5.17), we can pass to the limit in the variational formula-

tion for the weak solution [vm, ψm] with external force hm and deduce that [v, ψ]

is a weak solution with external force h.

Finally, in order to prove that the weak solution [v, ψ] satisfies the energy

inequality on [0,M ] with external force h we let m → ∞ in (5.14). In particu-

lar, we rely on the convergence
√
ν(ψm)Dvm ⇀

√
ν(ψ)Dv weakly in L2(0,M ;H)

(cf. (3.53)) and on Lebesgue’s theorem to pass to the limit in the nonlinear term∫
Ω
F (ψm(s)). Hence we conclude that [v, ψ] ∈ KM

h . �

Remark 9. It is not difficult to see, by arguing as in [12, Chap. XV, Prop.

1.1], that the same conclusion of Proposition 6 holds if the convergence assumption

on {hm} is replaced with the weak convergence hm ⇀ h in L2(0,M ;Gdiv).

Proof of Theorem 4. In virtue of Proposition 5 the ball BF
+

b
(0, 2Λ0) :=

{z ∈ F+
b : dF+

b
(z, 0) ≤ 2Λ0} is a uniformly (w.r.t. h ∈ H+(h0)) absorbing set for

the family {K+
h }h∈H+(h0). Such a ball is also precompact in Θ+

loc. By applying the

first part of Theorem 3 we deduce the existence of the uniform (w.r.t. h ∈ H+(h0))

trajectory attractor AH+(h0) ⊂ BF
+

b
(0, 2Λ0), which is compact in Θ+

loc and, since

T (t) is continuous in Θ+
loc, strictly invariant. Proposition 6 and the fact that H+(h0)

is a compact metric space imply that the united trajectory space K+
H+(h0)

is closed

in Θ+
loc. The second part of Theorem 3 allows us to conclude the proof. �

6. Further properties of the trajectory attractor

Let us discuss first some structural properties of the trajectory attractor.

Denote by Z(h0) := Z(H+(h0)) the set of all complete symbols in ω(H+(h0)).

Recall that a function ζ : R → V ′
div with ζ ∈ L2

loc(R;V ′
div) is a complete symbol

in ω(H+(h0)) if Π+T (t)ζ ∈ ω(H+(h0)) for all t ∈ R, where Π+ is the restriction

operator on the semiaxis [0,∞). It can be proved (see [11, Section 4] or [12, Chap.

XIV, Section 2]) that, due to the strict invariance of ω(H+(h0)), given a symbol

h ∈ ω(H+(h0)) there exists at least one complete symbol ĥ (not necessarily unique)

which is an extension of h on (−∞, 0] and such that Π+T (t)ĥ ∈ ω(H+(h0)) for all

t ∈ R. Note that we have Π+Z(h0) = ω(H+(h0)).

To every complete symbol ζ ∈ Z(h0) there corresponds by [12, Chap. XIV,

Definition 2.5] (see also [11, Definition 4.4]) the kernel Kζ in Fb which consists of

the union of all complete trajectories which belong to Fb, i.e., all weak solutions

z = [v, ψ] : R → Gdiv ×H with external force ζ ∈ Z(h0) (in the sense of Definition

1 with T ∈ R) satisfying (2.13) on R (i.e., for all t ≥ s and for a.a. s ∈ R) that
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belong to Fb. We recall that the space (Fb, dFb
) is defined as the space (F+

b , d
+
Fb

)

with the time interval (0,∞) replaced by R in the definitions of F+
b and dF+

b
. The

space (Floc,Θloc) can be defined in the same way.

Set

KZ(h0) :=
⋃

ζ∈Z(h0)

Kζ .

Then, if the assumptions of Theorem 4 hold with F bounded in (−1, 1) and h0 ∈
L2

tb(0,∞;Gdiv) or h0 is translation-compact in L2
loc([0,∞);V ′

div), we also have (see,

e.g., [11, Theorem 4.1])

AH+(h0) = Aω(H+(h0)) = Π+KZ(h0),

and the set KZ(h0) is compact in Θloc and bounded in Fb.

On the other hand, it is not difficult to see that, under the assumptions of

Theorem 4, Kζ 6= ∅ for all ζ ∈ Z(h0). Indeed, by virtue of [11, Theorem 4.1] (see

also [12, Chap. XIV, Theorem 2.1]), this is a consequence of the fact that the

family {K+
h }h∈H+(h0) of trajectory spaces satisfies the following condition: there

exists R > 0 such that BF
+

b
(0, R) ∩ K+

h 6= ∅ for all h ∈ H+(h0). In order to check

this condition fix an initial datum z∗0 = [v∗0 , ψ
∗
0 ], with v∗0 , ψ

∗
0 taken as in Theorem

1. We know that for every h ∈ H+(h0) there exists a trajectory z∗h ∈ K+
h such that

z∗h(0) = z∗0 and such that the energy inequality (2.13) holds for all t ≥ s and for

a.a. s ∈ (0,∞), including s = 0. Arguing as in Proposition 5 (cf. (5.9) written

for s = 0 and all t ≥ 0) we get an estimate of the form dF+

b
(z∗h, 0) ≤ Λ(z∗0 , h0)

(see also (5.4)), where the positive constant Λ depends on E(z∗0) and on the norm

‖h0‖L2
tb(0,∞;V ′

div). The above condition is thus fulfilled by choosing R = Λ(z∗0 , h0).

As far as the attraction properties are concerned, we observe that, due to

compactness results, the trajectory attractor attracts the subsets of the family

B+
H+(h0)

in some strong topologies. Indeed, setting

Xδ1,δ2
:= Hδ1(Ω)d ×Hδ2(Ω), Yδ1,δ2

:= H−δ1(Ω)d × (Hδ2(Ω))′,(6.18)

where 0 ≤ δ1, δ2 < 1 and using the compact embeddings

L2(0,M ;Vdiv × V ) ∩W 1,4/3(0,M ;V ′
div × V ′) →֒→֒ L2(0,M ; Xδ1,δ2

),

L∞(0,M ;Gdiv ×H) ∩W 1,4/3(0,M ;V ′
div × V ′) →֒→֒ C([0,M ]; Yδ1,δ2

),

then Theorem 4 implies the following (see [12, Chap. XIV, Theorem 2.2])

Corollary 1. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;V ′

div). Then,

for every 0 ≤ δ1, δ2 < 1 the trajectory attractor AH+(h0) from Theorem 4 is

compact in L2
loc([0,∞); Xδ1,δ2

) ∩ C([0,∞); Yδ1,δ2
), bounded in L2

tb(0,∞); Xδ1,δ2
) ∩

Cb([0,∞); Yδ1,δ2
), and for every B ∈ B+

H+(h0)
and every M > 0 we have

distL2(0,M ;Xδ1,δ2
)

(
Π[0,M ]T (t)B,Π[0,M ]AH+(h0)

)
→ 0,
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distC([0,M ];Yδ1,δ2
)

(
Π[0,M ]T (t)B,Π[0,M ]AH+(h0)

)
→ 0,

as t → +∞, where distX(A,B) denotes the Hausdorff semidistance in the Banach

space X between A,B ⊂ X, and Π[0,M ] is the restriction operator to the interval

[0,M ].

Let us now define, for every B ⊂ K+
H+(h0), the sections

B(t) :=
{
[v(t), ψ(t)] : [v, ψ] ∈ B

}
⊂ Yδ1,δ2

, t ≥ 0.

Similarly we set

AH+(h0)(t) :=
{
[v(t), ψ(t)] : [v, ψ] ∈ AH+(h0)

}
⊂ Yδ1,δ2

, t ≥ 0,

KZ(h0)(t) :=
{

[v(t), ψ(t)] : [v, ψ] ∈ KZ(h0)

}
⊂ Yδ1,δ2

, t ∈ R.

Then, as a further consequence of Theorem 4 we have (see [12, Chap. XIV, Defi-

nition 2.6, Corollary 2.2]) the following

Corollary 2. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;Gdiv) or h0

translation-compact in L2
loc([0,∞);V ′

div). Then the bounded subset

Agl := AH+(h0)(0) = KZ(h0)(0)

is the uniform (w.r.t. h ∈ H+(h0)) global attractor in Yδ1,δ2
, 0 ≤ δ1, δ2 < 1,

of system (1.1)–(1.5), namely (i) Agl is compact in Yδ1,δ2
, (ii) Agl satisfies the

attracting property

distYδ1,δ2
(B(t),Agl) → 0, t→ +∞,

for every B ∈ B+
H+(h0)

, and (iii) Agl is the minimal set satisfying (i) and (ii).

Remark 10. In the 2D case the energy identity might be exploited to show the

convergence to the trajectory attractor in the strong topology of the original phase

space. This was done in [13] for a reaction-diffusion system without uniqueness.
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