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Entire solutions of the Fisher-KPP equation in time periodic
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ABSTRACT. This paper is concerned with the existence of the pulsating type
entire solutions of the Fisher-KPP equation with advection term in time peri-
odic media. By constructing appropriate subsolutions and supersolutions, we
prove that there exists a pulsating type entire solution which behaves as two
pulsating traveling fronts coming from two opposite directions and approach-
ing each other. The main technique here is to characterize the asymptotic
behavior of the pulsating traveling front as t — —oo.
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1. Introduction

In the present paper, we consider the nonlinear evolutionary equation in time
periodic media of the following form:
(1.1)
Ut — V. (A(ta y)vu(ta €, y)) + q(tvy) ’ Vu(t, Z, y) - f(ta yvu) in (tvxvy) eRx Qv
vAVu =0 on (t,z,y) € R x 09,
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where Q = {(z,y) € R? x w} is a smooth unbounded domain and w is a C*
bounded domain of RV 4,

Equation (1.1) is the generalization of the homogeneous reaction-diffusion equa-
tion

(1.2) uy — Au = f(u) in RV,

For the homogeneous equation (1.2), the most interesting problem is the so called
planar traveling front and its qualitative properties, which have first been inves-
tigated by Fisher [9] and Kolmogorov, Petrovsky and Piskunov [19] in their pio-
neering articles. Here a planar traveling front is a solution of the form w(t,z) =
U(z - e+ ct) with e a unit vector and ¢ the propagation speed in the direction e.
For more detailed results, we refer to Chen [6], Hamel and Nadirashvili [16] and
Volpert et al. [38].

In this paper we only concerned with pulsating traveling fronts. For the equa-
tion (1.1), when the variable ¢ in A, ¢ and f is replaced by the variable z and are L;
periodic with respect to the variable x;, Freidlin and Gartner [13] and Freidlin [12]
investigated propagation phenomena by using a stochastic method. However, they
did not give the proof of the existence of fronts. Xin [44] first proved existence
of pulsating traveling waves in the form u = ¢(x - e + ct, ). Shigesada, Kawasaki
and Teramoto [35,36] first defined the notion of pulsating traveling fronts, which
is a generalization of the notion of planar fronts to space periodic environments.
Namely, a classical solution of equation (1.1) that satisfies:

(13) Ve e ROt € Rou(t+ L-efc,x,y) =u(t,z+ L,y),
' u(t,z,y) > 0asxz-e — —oo and wu(t,z,y) — 1 asx-e— 400,

where L = (L1, ..., Ly) and each L; are positive numbers, ¢ is the wave speed, 0 and
1 are the only zeros of the reaction term f(z,v,-) for all (z,y) € RY. However,
they only carried out numerical approximations and heuristic computations. One
can easily check that a pulsating traveling front is a solution of the form u(t, x,y) =
¢(x - e+ ct,x,y), where ¢ is periodic in & and satisfies

lim o(z,x,y) — 0, 1iIJP o(z,x,y) —1, z=x-.e+ct

For a fully space periodic environment with positive nonlinearity, Beresty-
cki and Nirenbeg [2] and Berestycki et al. [3] gave the analytical result by us-
ing the same definition as Shigesada, Kawasaki and Teramoto [35,36]. Then
Fréjacques [10] extended the notion of the pulsating traveling front to the time
periodic environment with positive nonlinearity. Namely, a solution u that satisfies

(1.4) Ve e ROt € Rou(t+T,2,y) = u(t,z + cTe,y),
' u(t,z,y) > 0asxz-e — —oo and wu(t,z,y) — 1 asx-e— 400,

where T is the period. The pulsating traveling front for the bistable nonlinearity
was studied by Alikakos et al. [1]. Recently, Nolen and Xin [34] studied traveling
waves in space-time periodic shear flows, in the form u = ¢(x-e+ct,y, t). Nadin [31]
extended the results to the space-time periodic media in terms of the contribution
of Nolen et al. [32,33]. For the results of generalized pulsating traveling fronts, we
refer to Berestycki and Hamel [4].

Next we give some assumptions on the coefficients and the nonlinearity. For
the diffusion matrix A(t,y) = (4i;(t,y)),<; j<n, We assume that it is of class
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Cl,a/2;2,a

ty

Si<ijenAii (6L Y)&E > aolél®, V(ty) ERx @, §&,& € RV, 1<i,j <N,

(R x @) satisfying

where a > 0 is some constant. The advection term ¢(t,y) = (¢:(¢,y))1<i<n 1s of

class C’1 /22, (R x @). Assume that equation (1.1) has two stationary solutions

pE(t,y), where pE(t,y) € C;’;mﬁ’a(R x ) satisfies

pi = V- (At y)VpE(ty) + a(t.y) - VpE(ty) = f(ty,u) in (ta,y) ERxQ,
vAVpEt =0 on (t,r,y) € R x 9Q.

Without loss of generality, we assume that p~(t,y) < p™(¢,y) are periodic in ¢.
Note that, by doing an easy translation, we always assume that equation (1.1) has
two equilibrium: 0 and p(t,y) > 0 in the sequel.

We assume that the nonlinearity f(¢,y,u) is of class C’1 /T2OR @) with
respect to (¢,y) locally uniformly in v € R and 9f/Ju exists and is continuous in
R x @ x R and satisfies the following monostable condition:

f(t,y,0) =0, %(t,y,0)>0 for all (t,y) eRxw,

(15) f(t,y,s) >0, Vse(0,p(t,y)) for some (t,y) € R x o,
for all (¢,y) € R x @, and for some 0 > 0,0 < s < s’ < o, we have
fty,p(ty) —s) < f(ty,plt,y) — ).

All functions A;j, ¢; and f(-,-,u) (for all u € R) are assumed to be periodic
with respect to ¢, Namely,

Aij(t+T,y) = Aii(ty), @t +T,y) = al(t,y),
ft+T,y,u) = f(t,y,u), (t,y) EeRxw,

where T" > 0 is a fixed constant.
Define

(1) ) = Sty (10),

which belongs to Cl /2, “(R x ©). Assume that there is p such that 0 < p <
ming«g p(t,y) and, for any classical bounded supersolution 4 of (1.1) satisfying
4 <p(t,y) and Qg = {a(t, z,y) > p(t,y) — p} # 0, there exists a family of functions
(pr)refo,1] defined in Qg such that

(1.7)

1+a/2;2
T+ p, is continuous in C,, +°‘/ T Qa),

(z,y) i
T pr(t,x,y) is nondecreasmg for each (t,z,y) € Qa,

po =0,p1 > p,infg_p; >0 for each 7 € (0, 1],
vAV(i+p:) >0 on (R x9Q)NQy -,

where Qg - = {(t,z,y) € Qa, 0(t,x,y) + p-(t, 2, y) < p(t,y)}. We shall also assume
that there are 8 > 0 and v > 0 such that the map

(1.8) (t,y,s) — g(t, y, s) belongs to COP(R x @ x [0,7]),
u
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and

(1.9) fty,s) <C(ty)s, (ty) €Rxw, sel0,pty)

Given a unit vector e € R? x {0}V =%, a pulsating traveling front u(t, z,) of (1.1)
connecting 0 and p(t, y) travels in the direction e with mean speed ¢ € R* satisfying

u = V- (At y)Vult, z,y)) + a(t,y) - Vult,z,y) = f(t,y,u) in(t,z,y) ERxQ,
vAVu=0 on (t,z,y) € R x 99,
0 <wu(t,r,y) <p(t,y) forall (t,z,y) € R x Q.

Let u(t,z,y) := ¢(t,ct —x - e,y). We have

G+ cps — eA(t,y)edss + Vy - (€A(t, y)ds) + eA(t,y)Vyds — Vy - (At y)Vy9)
+q(t,y) - Vyd — eq(t, y)os — f(t,y,¢) =0, (t,5,y) € R* x Q,

vVANIB.EOD on (t,s,y) € R? x dw,

ot +T,s,y)=o(t,s,y) forall(t,s,y) € R? x o,

limg oo O(t, 8,y) — 0,lims—, 4o (¢, s,y) — p(t,y) uniformly in (¢,y) € R x @.

In the present paper, we are interested in the existence of pulsating type entire
solutions of (1.1), which are defined for all (t,z,y) € R x €. The entire solutions
have first been studied in the one dimensional case in various mathematical models,
especially for equation (1.2) with monostable or bistable nonlinearities. See, for
instance, Chen and Guo [7], Guo and Morita [14], Hamel and Nadirashvili [15,16],
Fukao, Morita, Ninomiya [8], Morita and Ninomiya [30] and Yagisita [45]. Recently,
Li et al. [20] and Wang et al. [43] have investigated the entire solutions of the
nonlocal diffusion equation with delayed nonlinearity. See also Li et al. [21] and
Lv [22] for the Fisher-KPP equation with nonlocal dispersal and Wang et al. [42]
for delayed lattice differential equations with monostable nonlinearity. Here, it
needs to be pointed out that Chen and Guo [7] and Guo and Morita [14] developed
an unified approach based on the comparison principle to find entire solutions for
reaction-diffusion equations with both bistable and monostable nonlinearities. For
high dimensional spaces, entire solutions has been obtained by Li et al. [23], Liu et
al. [24] and Liu and Li [25] in infinite cylinders by considering a pair of traveling
curved fronts. In [23], Li et al. used the comparison argument to prove the existence
of the entire solutions of reaction-advection- diffusion equations in infinite cylinders
with both the monostable and the combustion nonlinearities. In [24], Liu et al. got
the pulsating type entire solutions of reaction-advection-diffusion equations with
monostable nonlinearity in space periodic framework by considering two pulsating
traveling front connecting a constant unstable stationary state to a stable stationary
state. Liu and Li [25] obtained the entire solutions for the bistable nonlinearity in
heterogenous media by using a similar argument to Berestycki, Hamel and Matano
[5] and Guo and Morita [14]. For other related results we refer to [26-29,37,39-41]

From the dynamical points of view, the study of entire solution is essential for
a full understanding of the transient dynamics and the structure of the global at-
tractors. Also, entire solutions can be used to imply the dynamics of two solutions
can have distinct histories in the configuration, though their asymptotic profiles as
t — +oo coincide, see Morita and Ninomiya [30]. It is well known that the exis-
tence, uniqueness and stability of the pulsating traveling fronts of the monostable
reaction-advection-diffusion equations has been studied by Hamel [17] and Hamel
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and Roques [18]. However, the pulsating type entire solutions of (1.1) is still open,
this motivate us to solve it.

Inspired by the construction in [14], we prove that, for any given direction
vectors, there exist pulsating type entire solutions which behave as two pulsating
fronts coming from both directions and approaching each other. Hereafter, for any
given unit vectors pair (ey,ez), where e; (i = 1,2) satisfy |e;] = 1 (i = 1,2) and
€2 = —eq, we consider a pair of pulsating fronts (¢;,¢;) (i = 1,2). Thus we can
rewrite (1.10) as the following problem:

(01), + c(di), — €At y)e(di) o + Vy - (€At 9)(¢4),) + eAt, y)Vy (di)
=Vy - (Alt,y)Vy(i) +a(t,y) - Vy(ei)
eq (19)(65), — F(ty.6) =0, (t,5.) €R2 x 0,
VAVQE 3 5,9) € R? x dw,
Gi(t+T,s,y) = gbl-(t, s,y) forall (¢,s,9) € R? x @,
lims— oo ¢(t, 8,y) — 0,lims_. 100 ¢4(t, 5,y) — p(t,y) uniformly in (¢,y) € R x @.

Our main result is as follows.

THEOREM 1.1. Assume that (1.5) and (1.9) hold. For any unit vectors pair
(e1,e2) with e = —eq, let ¢i(t, s,y) (i = 1,2) be the solutions of (1.11) and c*(e;) >
0 (i = 1,2) be the corresponding minimal pulsating traveling speeds. Then for any
¢i > c*(e;) and 0; € R (i =1,2), (1.1) has an entire solution u(t,z,y) that satisfies:

lim sup |U(t,il?,y) —le(t,Clt—iZ?'el +915y)

t——o0 z-e1>0

(1.12) + sup |u(t,x,y) — ¢a(t,cot —x - ea+602,y)|| =0
x-e1<0

uniformly in y e RN~ Moreover, we have

(i): 0, (t,x,y) € R x Q;
(11)- 0<u< p(t,y), (t,,y) € R x Q;
(iii): limy— oo ult, 2,y) — p(t,y), (ty) ER xw.

This paper is organized as follows. In Section 2, we will give the exponential
asymptotic behavior of the pulsating traveling fronts ¢;(¢,s,y) (i = 1,2) by con-
sidering the corresponding eigenvalue problem. IN Section 3, we first deal with an
ordinary differential system which plays an indispensable role in constructing the
supersolution of (1.1), then we prove Theorem 1.1 by using the subsolution and
supersolution constructed in (3.11) and (3.8). At last, we give some discussions in
Section 4.

2. Preliminaries

In this section, we show the asymptotic behavior of the pulsating traveling
fronts ¢;(t,s,y) (i = 1,2).

Let ¢(t,y) be defined as in (1.6). For each A € R, denote k(A) the principal
eigenvalue of the following operator:

(2.1) P — V- (AVY) +2X e AV +q-Vip+[AV - (Ae) — Ag-e — N2eAe—((t,y)]y = 0,



138 WEI-JIE SHENG AND MEI-LING CAO

with time periodicity conditions in R x w and boundary conditions vAVy =
A(vAe)y on R x dw, and denote by v, the unique positive principal eigenfunc-
tion such that [[1)[| pec(rxz) = 1. Suppose

(22) o < 0,

where 1o < 0 denotes the principal eigenvalue of the linearized operator around 0,

P(t,y) = e = V- (AL Yy) V) +a(t,y) - Vi = (G Y)Y,

with time-periodicity conditions in Rx& and Neumann boundary condition vAV1) =
0 on R x dw (with a slight abuse of notations, Vi denotes (0,...,0,V,¥) €

{0} x RN =4). Define
. : k()
¢(e) = inf (‘T) !

and for each ¢ > ¢*(e), define A, > 0 as
Ae = min{A; > 0, k() + ¢\ = 0}.

These quantities are well-defined real numbers. Under all the assumptions above,
(1.1) admits a pulsating traveling front when ¢ > ¢*(e), and the pulsating traveling
front is unique, monotone and stable. For more detailed results, we refer the reader
to [10,17,18].

Utilizing the above result and inspiring by Hamel [17], we can obtain the ex-
ponential behavior of ¢ below in terms of the linear operator.

LEMMA 2.1. ( [17]) Assume that (1.8)-(1.9) and (2.2) hold. Then there exists
a constant B > 0 such that

(2.3)  o(t,s,y) ~ Be iy (t,y) ass— —oo  uniformly in (t,y) € R x @,

if ¢ > c*(e), and
(2.4)
ot s,y) ~ Bls|*" TN yae(t,y), ass— —oo  uniformly in (t,y) € R X @,

if ¢ = c*(e), where X* > 0 is the unique root of the equation
E(A\) + c"(e)A =0,
and 2m + 1 (m € N) is the multiplicity of the solution \*.
From Lemma 2.1, we immediately have the following proposition.

PROPOSITION 2.2. Under all the assumptions in Lemma 2.1, there exist some
positive constants ki, K; , n; and X\; such that, for any ¢; > c*(e;) (i = 1,2),
di(t, s,y) (i =1,2) satisfy

(2.5) {kiem < @ilt, s,y) < KieM®, Vs <0, (t,y) € Rxa,

Dsi(t,s,y) > midi(t,s,y), Vs <0, (t,y) €eRxw,

where i =1, 2.
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3. Existence of the Pulsating Entire Solution

In the present section, we prove our main result Theorem 1.1 by constructing
appropriate subsolutions and supersolutions. Before giving the definition of the
subsolutions and supersolutions, we first discuss the following ordinary differential
equations which plays an important role in constructing supersolutions of (1.1):

{pl (t) = c1 + MeoPr(t)

Po(t) = co + MeoPr ()

with the assumptions that 0 < ¢; < ¢a, M > 0 and @ > 0. Note that, pe(t)—p1(t) =
¢o — ¢1 > 0. By the additional assumption p2(0) < p1(0), we obtain

p2(t) — p1(t) — p2(0) — p1(0) = cat — eyt <0 for all ¢ < 0.

Thus pa(t) < p1(t) (¢ <0), if p2(0) < p1(0).
Actually, we can solve the first equation of (3.1) explicitly as follows:

(3.1)

1 M
(3.2) pl(t) = pl(o) + Clt — log {1 + _eMpl(O)(l _ eClOlt)} .
« C1
Setting,
1 M
(3.3) wi = p1(0) — — log {1 + —eMPI(O)}
(0% C1
and
(3.4) wa 1= w1 + p2(0) + p1(0).

Then we have
1 r M
_ _ _ __ ' Laat _ = Japi(0)
(3.5) p1(t) — c1t — wq - log {1 T¢ } , T o e .

It immediately follows that
(3.6) 0<pi(t) — 1t —wy < Rpe® ™ forall t <0,

where R is some positive constant. Following a similar argument, we obtain the
same estimate for pa(t) — cot — wa.

Next we give the explicit definition of the subsolutions and supersolutions of
(1.1) on (t,2,y) € (=00, 0] x Q

DEFINITION 3.1. We call a function u(t,z,y) € CH*/2292(¢ 4 y) is a su-
persolution of (1.1) on (t,x,y) € (—o0,0] x Q, if it satisfies:
(3.7)
Uy — V- (VA(tvy)ﬂ(tv Z, y)) + q(tvy) ’ Vﬂ(t,x,y) > f(tv y,’(_l,) n (tv Z, y) eRx Qv
vAVE >0 on (t,x,y) € R x 99,

By reversing the inequality in (3.7), we can give the definition of the subsolution
of (1.1) similarly.

Now, we start to construct a supersolution of (1.1).

THEOREM 3.2. Assume that the nonlinearity f satisfy (1.5) and (1.9). Let
¢i(t,s,y) be the solution of (1.11). Then for any unit vectors pair (e1,e2) with
es = —eq and |e;] =1, (i = 1,2), and for ¢; > ¢*(e;) > 0, we can choose o and M
such that

(38) ﬁ(ta €, y) = (bl(_x T €1 +p1(t)a tvy) + ¢2(_I T €2 +p2(t)7ta y)
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is a supersolution of (1.1) for t <0, where o and M will be defined later.
Proor. Clearly, vAVu = 0. Thus, it only remains to verify that
(3.9) F(u):=u— V- (VA(t,y)u) + q(t,y) - Va) — f(t,y,u) >0 forallt <0,

which is equivalent to prove

2
*7:(77/) = Z[(bi,t + C¢i,s - eA(tu y)e¢i,ss + vy . (GA(t, y)(bl,s) + €A(t7 y)vy¢i,s

i1
=V (Alt,y)Vyoi) +q(t,y) - Vyoi —eq(t,y)pis — f(t,y, ¢i)]
= P1o1,s +P2g2s — C1d1,s — c2g2s + f(t,y, 01)

+f(ta Y, ¢2) - f(ta Y, ¢1 + ¢2)

G(t,z,y) :
— 1 7 )4 s —
(bl,s + ¢2,s) ¢21 (p2 @

= (¢1,s + ¢2,S) (Me(lp1 - U(tv'rvy)) )

G(t,x,y)

- (bl,s + ¢2,s )

= ¢1:(p1 —a

where
G(ta z, y) = f(ta Y, (bl + ¢2) - f(ta Y, ¢1) - f(ta Y, ¢2)a
_ G(t,z,y)
U(t, o y) - (bl,s + ¢2,s .
Define
(3.10) A= min{\, A2 }.

Then we have e*2P2 < e 1 and eMPr < M1 since po(t) < pi(t) < 0. By the

assumption (1.10) and f(0) = 0, we have
G(tuxmy) = f(t7y7¢1+¢2)_f(t7y7¢1)_f(t7y7¢2)
1 1
< ¢ {/0 fult,y, d1 + s¢2)ds _/0 fu(3¢2):|

1 1
< o[ [ nttwoyis= [ nson)
0 0
< L¢227
where L := max y w)erxwx[0,2] Quuf (t,y,u). It follows from a similar argument

that
G(ta €T, y) < L¢12'
In order to prove that F(a) > 0, we divide it to two cases.
A: x-e; > 0. Utilizing Proposition 2.2, we immediately have
Gtwy) _ _Le® L
P15+ P25 P15+ P2 T M+ b2/
LE e (Ceetp(®) < LBy o

m m
LK1 e>‘p1 (t) )
m

Ult,z,y) =

IN

IN
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B: z-e; <0, that is = - e5 > 0. Similarly, we have
Le” - Lo

Ult,z, < <
( v) Ols + P25 M2+ O15/P2
Ao(—z-e
< LK et (-e-eatra(t) < LK2e)\2;D2(t)
2 2
< LK, M)
B/
Taking
LK, LK
a =, MZmax{ 1, 2}.
m 2
Then we get F(u) > 0. Namely, u(t,z,y) = ¢p1(—z - e1 +p1(t),t,y) + d2(—x - e2 +
pa2(t), t,y) is a supersolution of (1.1). The proof is complete. O

REMARK 3.3. In the proof of Theorem 3.2, we use the condition co > cy.
Indeed, by changing the variable x — —x and the invariance of (1.1), it is easy to
show that Theorem 3.2 holds for ca < ¢1 since the function p1(t) and pa(t) exchange
the roles.

Define

(311) Q(ta xz, y) = max{¢l(clt —T-eq, tvy)a ¢2(62t — X - e?vta y)} .

Clearly, u(t, z,y) is a subsolution of equation (1.1) in the sense of distribution since
the maximum of subsolutions is also a subsolution.

PrROOF OF THEOREM 1.1. Considering the following cauchy problem:
(3.12)

Un,t — R (VA(t,y)’U,n) + q(tvy) ' Vun = f(tvya un)v (t,{E,y) S [—TL, +OO) X Qv
vAVu, =0, (t,z,y) € (—n,+00) x 09,
Un,0 = un(_nu x, y) =
max{¢1(—z-e; —cin+wi, —n,y) + g2 (—T - €2 — coan + we, —n,y)}, (x,y) € Q.
where wy and ws are defined by (3.3) and (3.4), respectively.
This problem is well posed and the maximum principle holds, since the domain
w is bounded and all the coefficients are periodic with respect to ¢. For a similar

proof, we refer to Freedman [11].
First it follows from the maximum principle that

un(t,z,y) > u(t,z,y), (t,z,y)€[—n,+00) x Q,

where u,, (¢, z,y) is the unique classical solution of (3.12) that satisfies 0 < u,, (¢, z,y) <
p(t,y) for any (t,z,y) € [-n,0] x Q with n > 0 (n € N). On the other hand, The-
orem 3.2 implies that

un(t,iE,y) S (bl(_'r'el +p1(t),t,y)+¢2(—$'€2 +p2(t),t,y),V(t,iE,y) € [—TL,O] x Q.

By the standard parabolic estimates and passing n — 400, we can obtain an entire
solution u(t, z,y) of (1.1) such that,

u(t,z,y) < ult,z,y) < at,z,y).
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Note that, the entire solution obtained above is just a special case of Theorem
1.1 with 6; = w; and 03 = wy. For any 64,62 € R, define
a(t,z,y) =ult — 1,z + & y),

where

02(91 - wl) — 01(92 - WQ)
€2
c1 + C2

=

and

01w+ 0 —wo
- c1 + co '
Letting a(t, z,y) by u(t,z,y), then we find an entire solution of (1.1).
Next, we verify (1.11). Without loss of generality, we may assume that ¢; < co.
We first consider the case x - e; > 0. It follows that

0 < ¢~z -e1+pi(t),t,y) + da(—x-ea +pa(t),t,y) — pa(—2 - €2 + cat + wo, t,y),
< KM 4 osup g 5| Roe M
S

IN

Kiet® 4 sup |¢2,S|’Roecl)‘t
S

RQecl At

IN

where R > 0 is some constant. Hence, we have

0 u(t,x,y) — da(—x - ea + cot + wa, t,y)
ﬂ’(tu x, y) - phlg(—(b s €2 + C2t + w2, t7 y)
Rzeclkt.

ININ A

Similarly, when z - e; < 0, we have
0< p1(—x-e1+pi(t), t,y) + dpa(—x - e2 + pa(t), t,y)
—¢1(—z €1+ crt +wy, t,y), < Ries™
and
0 <ult,z,y) — ¢1(—x-e1 + et +wi,t,y) < Rie M,

with R1 > 0 is some constant.
Taking R = max{R1,Ra}, we obtain

0 < sup {u(t,z,y) — p1(—x-e1 + 1t +wi,t,y)}

z-e1<0
+ sup {u(t,z,y) — pa(—x - €1 + c1t + wa, t,y)}
x-e1>0
< RGC)\t.
The proof is complete. O

REMARK 3.4. If the nonlinearity f in (1.1) is independent of t and y, namely,

(3.13) f(ty,u) = f(u)
and f satisfy

f(0)=f(1) =0, f'(1) <0,
(3.14) £(s)>0, Vse(0,1),
1'(s) < f(0)  for all s € (0,400).
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By using the ordinary differential equation

(3.15) ) = fC),
we can prove that equation (1.1) with the nonlinearity f satisfies (3.13) and (3.14)
has another type of pulsating traveling entire solution w; ,(t,x,y) satisfying:

max{x;¢1(—z-e1 +cit+01,t,y), Xud2(—z-e2+cat+02,t,y),C(t)}
< wup(t,z,y) < min{a, x (¢, z,y), 1},
where
(3.16) wik(t,2,y) = xiP1(—z - e1 +p1(1), 1, y) + xpd2(—2 - 2 + p2(t), t,y) + p(t)
with (i,k) = (1,0),(0,1),(1,1) are supersolutions for t € (—oo,—T1]. For any

ci > c*(e;) (i = 1,2), and 61,02 € R, there exist monotone increasing functions
p;(t) (j = 1,2) satisfying

(3.17) pj(t) = ¢jt — 0;] < Rae?,
where Th and k; are some positive constants, and the function p sstisfies
(3.18) p(t) = poe" @Y and 0 < ¢(t) — p(t) < Roe O,

where Ry is a positive constant.

4. Discussion

In this paper, we establish the existence of pulsating entire solutions of the
reaction-advection-diffusion equation with a classical KPP nonlinearity by con-
structing appropriate subsolutions and supersolutions. Recently, Nadin [31] and
Nolen et al. [32,33] have obtained the existence of pulsating traveling fronts and
theirs’ qualitative properties in space-time periodic media, this motivate us to study
pulsating entire solutions of the reaction-advection-diffusion equation in space-time
periodic media, which we leave it for further studies.
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