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Abstract. We show global existence and uniqueness of strong solutions for
the Schrödinger-Poisson system in the repulsive Coulomb case with relativistic
kinetic energy.
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1. Introduction

In this article, we study the global well-posedness of the semi-relativistic Schrödinger-
Poisson system on a finite domain. This system is relevant to the description of
many-body semi-relativistic quantum particles in the mean-field limit (for instance,
in heated plasma), when the particles move with extremely high velocities. Con-
sider semi-relativistic quantum particles confined in domain Ω ⊂ R

3 which is an
open, finite volume set with a C2 boundary. The particles interact by the electro-
static field they collectively generate. In the mean-field limit, the density matrix
that describes the mixed state of the system satisfies the Hartree-von Neumann
equation

(1.1)

{

i∂tρ(t) = [HV , ρ(t)], x ∈ Ω, t ≥ 0

−∆V = n(t, x), n(t, x) = ρ(t, x, x), ρ(0) = ρ0
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satisfying Dirichlet boundary conditions, ρ(t, x, y) = 0 if x or y ∈ ∂Ω, for t ≥ 0.
The Hamiltonian is given by

HV := Tm + V (t, x)(1.2)

where the relativistic kinetic energy operator Tm :=
√
−∆ +m2 − m is defined

via the spectral calculus. Here, ∆ denotes the Dirichlet Laplacian on L2(Ω), and
m > 0 is the particle mass; see [3, 2] for a derivation of this system of equations
in the non-relativistic case. Since ρ(t) is a positive, self-adjoint trace-class operator
acting on L2(Ω), its kernel can, for every t ∈ R+, be decomposed with respect to
an orthonormal basis of L2(Ω). The kernel of the initial data ρ0 can be represented
in the form

(1.3) ρ0(x, y) =
∑

k∈N

λkψk(x)ψk(y)

where {ψk}k∈N denotes an orthonormal basis of L2(Ω), with ψk|∂Ω = 0 for all
k ∈ N, and coefficients

λ := {λk}k∈N ∈ ℓ1 , λk ≥ 0 ,
∑

k

λk = 1.(1.4)

As shown below, there exists a one-parameter family of complete orthonormal bases
of L2(Ω), {ψk(t)}k∈N, with ψk(t)|∂Ω = 0 for all k ∈ N, and for t ∈ R+, such that
the kernel of the solution ρ(t) to (1.1) can be represented as

(1.5) ρ(t, x, y) =
∑

k∈N

λkψk(t, x)ψk(t, y).

Notably, the coefficients λ are independent of t, and thus the same as those in
ρ0. Substituting (1.5) in (1.1), the one-parameter family of orthonormal vectors
{ψk(t)}k∈N is seen to satisfy the semi-relativistic Schrödinger-Poisson system

(1.6) i
∂ψk

∂t
= Tmψk + V ψk, k ∈ N

(1.7) −∆V [Ψ] = n[Ψ], Ψ := {ψk}∞k=1,

(1.8) n[Ψ(x, t)] =

∞
∑

k=1

λk|ψk|2,

with initial data {ψk(0)}∞k=1. The potential function V [Ψ] solves the Poisson equa-
tion (1.7). On both V [Ψ] and ψk(t), for all k ∈ N, we impose Dirichlet boundary
conditions

(1.9) ψk(t, x) , V (x, t) = 0, t ≥ 0, ∀x ∈ ∂Ω.

As we show in Lemma 6, below, solutions of (1.6)-(1.8) preserve the orthonormality
of {ψk(t)}k∈N.

The state space for the Schrödinger-Poisson system is given by

L := {(Ψ, λ) | Ψ = {ψk}∞k=1 ⊂ H
1

2

0 (Ω) ∩H1(Ω) is a complete

orthonormal system in L2(Ω),

λ = {λk}∞k=1 ∈ ℓ1, λk ≥ 0, k ∈ N,

∞
∑

k=1

λk

∫

Ω

|∇ψk|2dx <∞}.
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For fixed λ ∈ ℓ1, λk > 0, and for sequences of square integrable functions Φ :=
{φk}∞k=1 and Ψ := {ψk}∞k=1, we define the inner product

(Φ,Ψ)L2

λ(Ω) :=

∞
∑

k=1

λk(φk, ψk)L2(Ω),

which induces the norm

‖Φ‖L2

λ(Ω) := (

∞
∑

k=1

λk‖φk‖2
L2(Ω))

1

2 ,

and we introduce the corresponding Hilbert space

L2
λ(Ω) := {Φ = {φk}∞k=1 | φk ∈ L2(Ω), ∀ k ∈ N, ‖Φ‖L2

λ(Ω) <∞}.

Our main result is as follows.

Theorem 1. For every initial state (Ψ(x, 0), λ) ∈ L, there is a unique mild
solution Ψ(x, t), t ∈ [0,∞), of (1.6)-(1.8) with (Ψ(x, t), λ) ∈ L, which is also a
unique strong global solution in L2

λ(Ω).

Establishing the global well-posedness of the Schrödinger-Poisson system plays
a crucial role in proving the existence and nonlinear stability of stationary states,
i.e. the nonlinear bound states of the Schrödinger-Poisson system, which was done
in the nonrelativistic case in [4, 6]. The problem in one dimension was treated in
[8]. The semiclassical limit of the Schrödinger-Poisson system with the relativistic
kinetic energy was studied in the recent article [1]. Global well-posedness for a single
semi-relativistic Hartree equation in R

3 was established in [5]. In the present work,
we deal with the infinite system of equations in a finite volume set with Dirichlet
boundary conditions, and, as distinct from [5], we do not use the regularization of
the Poisson equation. Moreover, both the results of [5] and Theorem 1 above do
not rely on Strichartz type estimates.

2. Proof of global well-posedness

We make a fixed choice of λ = {λk}∞k=1 ∈ ℓ1, with λk > 0 and
∑

λk =
1, denoting the sequence of coefficients determined by the initial data ρ0 of the
Hartree-von Neumann equation (1.1) via (1.5), for t = 0. We note that we require
all λk > 0 to be positive for the subsequent analysis. This does not lead to any
loss of generality since by density arguments, any ρ0 (and likewise ρ(t)) can be
approximated arbitrarily well by an expansion of the form (1.3), respectively (1.5),
with λk > 0.

We introduce inner products (·, ·)
H

1/2

λ (Ω)
and (·, ·)H1

λ(Ω) which induce the gen-

eralized inhomogenous Sobolev norms

‖Φ‖
H

1/2

λ
(Ω)

:= (
∞
∑

k=1

λk‖φk‖2

H
1

2 (Ω)
)

1

2 and ‖Φ‖H1

λ(Ω) := (
∞
∑

k=1

λk‖φk‖2
H1(Ω))

1

2 ,

and define the corresponding Hilbert spaces

H1/2
λ (Ω) := {Φ = {φk}∞k=1 | φk ∈ H

1

2

0 (Ω), ∀ k ∈ N, ‖Φ‖
H

1/2

λ (Ω)
<∞}
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and

H1
λ(Ω) := {Φ = {φk}∞k=1 | φk ∈ H

1

2

0 (Ω) ∩H1(Ω), ∀ k ∈ N, ‖Φ‖H1

λ(Ω) <∞}
respectively. We also introduce the generalized homogenous Sobolev norms

‖Φ‖
Ḣ

1/2

λ (Ω)
:= (

∞
∑

k=1

λk‖|p|
1

2φk‖2
L2(Ω))

1

2 and ‖Φ‖Ḣ1

λ(Ω) := (

∞
∑

k=1

λk‖∇φk‖2
L2(Ω))

1

2 .

Here, |p| stands for the operator
√
−∆, and has the meaning of the relativistic

kinetic energy of a particle with zero mass. We note the following equivalence of
norms.

Lemma 2. For Φ ∈ H1/2
λ (Ω), the norms ‖Φ‖

H
1/2

λ (Ω)
and ‖Φ‖

Ḣ
1/2

λ (Ω)
are equiv-

alent. If Φ ∈ H1
λ(Ω), then ‖Φ‖H1

λ(Ω) is equivalent to ‖Φ‖Ḣ1

λ(Ω).

Proof. Clearly

‖Φ‖
Ḣ

1/2

λ (Ω)
≤ (

∞
∑

k=1

λk{‖φk‖2
L2(Ω) + ‖|p| 12φk‖2

L2(Ω)})
1

2

= (

∞
∑

k=1

λk‖φk‖2

H
1

2 (Ω)
)

1

2 = ‖Φ‖
H

1/2

λ (Ω)
.

We will make use of the Poincaré inequality

(2.1)

∫

Ω

|∇φk|2dx ≥ cp

∫

Ω

|φk|2dx

with the constant cp > 0 dependent upon the domain Ω with Dirichlet boundary
conditions. Thus

‖|p| 12φk‖2
L2(Ω) ≥

√
cp‖φk‖2

L2(Ω),

which enables us to estimate

‖Φ‖
H

1/2

λ (Ω)
= (

∞
∑

k=1

λk{‖φk‖2
L2(Ω) + ‖|p| 12φk‖2

L2(Ω)})
1

2 ≤

≤
√

1 +
1

√
cp

(

∞
∑

k=1

λk‖|p|
1

2φk‖2
L2(Ω))

1

2 = C‖Φ‖
Ḣ

1/2

λ (Ω)
.

Let us compare the remaining two norms. Clearly,

‖Φ‖Ḣ1

λ(Ω) ≤ (

∞
∑

k=1

λk‖φk‖2
H1(Ω))

1

2 = ‖Φ‖H1

λ(Ω).

On the other hand, by means of the Poincaré inequality (2.1),

‖Φ‖H1

λ(Ω) = (

∞
∑

k=1

λk{‖φk‖2
L2(Ω) + ‖∇φk‖2

L2(Ω)})
1

2 ≤

≤
√

1 +
1

cp
(

∞
∑

k=1

λk‖∇φk‖2
L2(Ω))

1

2 = ‖Φ‖Ḣ1

λ(Ω).

�



THE SEMI-RELATIVISTIC SCHRÖDINGER-POISSON SYSTEM 125

Let Ψ = {ψm}∞m=1 be a wave function and the relativistic kinetic energy oper-

ator acts on it TmΨ = (
√
−∆ +m2 −m)ψ componentwise. We have the following

two lemmas.

Lemma 3. The domain of the kinetic energy operator is given by D(Tm) =
H1

λ(Ω) ⊆ L2
λ(Ω).

Proof. Let Ψ ∈ H1
λ(Ω). Then

∞
∑

m=1

λm‖ψm‖2
H1(Ω) =

∞
∑

m=1

λm{‖ψm‖2
L2(Ω) + ‖∇ψm‖2

L2(Ω)} ≥
∞
∑

m=1

λm‖ψm‖2
L2(Ω),

and also, ‖Ψ‖L2

λ(Ω) <∞. We estimate

‖Tmψk‖2
L2(Ω) = ((−∆ +m2)ψk, ψk)L2(Ω)

+m2‖ψk‖2
L2(Ω) − 2m(

√

−∆ +m2ψk, ψk)L2(Ω) ≤
‖∇ψk‖2

L2(Ω) + 2m2‖ψk‖2
L2(Ω) ≤ c(m)‖ψk‖2

H1(Ω),

where c(m) is a mass dependent constant. Hence

‖TmΨ‖2
L2

λ(Ω) =
∞
∑

k=1

λk‖Tmψk‖2
L2(Ω) ≤ c(m)

∞
∑

k=1

λk‖ψk‖2
H1(Ω) <∞.

�

Lemma 4. The operator Tm generates the group e−iTmt, t ∈ R, of unitary
operators on L2

λ(Ω).

Proof. For α, β ∈ L2
λ(Ω) we compute the inner product

(e−iTmtα, e−iTmtβ)L2

λ(Ω) =
∞
∑

k=1

λk(e−iTmtαk, e
−iTmtβk)L2(Ω)

=

∞
∑

k=1

λk(αk, βk)L2(Ω) = (α, β)L2

λ(Ω).

�

We rewrite the Schrödinger-Poisson system for x ∈ Ω into the form

(2.2) Ψt = −iTmΨ + F [Ψ(x, t)], where F [Ψ] := i−1V [Ψ]Ψ,

−∆V [Ψ] = n[Ψ], where V |∂Ω = 0,

n[Ψ] =

∞
∑

k=1

λk|ψk|2

and prove the following auxiliary result.

Lemma 5. The map defined in (2.2) F : H1
λ(Ω) → H1

λ(Ω) is locally Lipschitz
continuous.
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Proof. Let Ψ, Φ ∈ H1
λ(Ω) with Ψ = {ψk}∞k=1, Φ = {φk}∞k=1 and t ∈ [0, T ].

Then,

‖F [Ψ] − F [Φ]‖H1

λ
(Ω) = ‖i−1V [Ψ]Ψ − i−1V [Φ]Φ‖H1

λ
(Ω)

= ‖V [Ψ](Ψ − Φ) + (V [Ψ] − V [Φ])Φ‖H1

λ(Ω).

This can be easily estimated above by means of Lemma 2 by

C‖V [Ψ](Ψ − Φ)‖Ḣ1

λ(Ω) + C‖(V [Ψ] − V [Φ])Φ‖Ḣ1

λ(Ω),

which equals
(2.3)

C(

∞
∑

k=1

λk‖∇(V [Ψ](ψk − φk))‖2
L2(Ω))

1

2 + C(

∞
∑

k=1

λk‖∇((V [Ψ] − V [Φ])φk)‖2
L2(Ω))

1

2 .

Here, C denotes a finite, positive, universal constant. Clearly, we have

‖∇(V [Ψ](ψk −φk))‖2
L2(Ω) ≤ 2‖(∇V [Ψ])(ψk −φk)‖2

L2(Ω) +2‖V [Ψ]∇(ψk −φk)‖2
L2(Ω).

By means of the Schwarz inequality this can be bounded above by

C‖∇V [Ψ]‖2
L4(Ω)‖ψk − φk‖2

L6(Ω) + 2‖V [Ψ]‖2
L∞(Ω)‖∇(ψk − φk)‖2

L2(Ω).

By applying the Sobolev embedding theorems to these expressions, we arrive at

C‖∆V [Ψ]‖2
L2(Ω)‖∇(ψk − φk)‖2

L2(Ω) ≤ C‖V [Ψ]‖2
H2(Ω)‖∇(ψk − φk)‖2

L2(Ω).

To estimate the remaining term in (2.3), we use

‖∇((V [Ψ]−V [Φ])φk)‖2
L2(Ω) ≤ 2‖∇(V [Ψ]−V [Φ])φk‖2

L2(Ω)+2‖(V [Ψ]−V [Φ])∇φk‖2
L2(Ω).

The Schwarz inequality yields

2‖∇(V [Ψ] − V [Φ])‖2
L4(Ω)‖φk‖2

L4(Ω) + 2‖(V [Ψ] − V [Φ])‖2
L∞(Ω)‖∇φk‖2

L2(Ω).

Applying the Sobolev embedding theorem along with the Hölder inequality to these
expressions, we find

C‖∆(V [Ψ] − V [Φ])‖2
L2(Ω)‖φk‖2

L6(Ω) + C‖∆(V [Ψ] − V [Φ])‖2
L2(Ω)‖∇φk‖2

L2(Ω).

From the Sobolev inequality used in the first of the two terms above we deduce the
upper bound

C‖V [Ψ] − V [Φ]‖2
H2(Ω)‖∇φk‖2

L2(Ω).

Therefore, for the norm of the difference ‖F [ψ]−F [Φ]‖H1

λ(Ω) we have the estimate

from above as

C‖V [Ψ]‖H2(Ω)(

∞
∑

k=1

λk‖∇(ψk − φk)‖2
L2(Ω))

1

2

+C‖V [Ψ] − V [Φ]‖H2(Ω)(
∞
∑

k=1

λk‖∇φk‖2
L2(Ω))

1

2 ,

which obviously equals to

C‖V [Ψ]‖H2(Ω)‖Ψ − Φ‖Ḣ1

λ(Ω) + C‖V [Ψ] − V [Φ]‖H2(Ω)‖Φ‖Ḣ1

λ(Ω).

Let us apply the Poincaré and the Schwarz inequalities to estimate the Sobolev
norm of the potential function as

‖V [Ψ]‖H2(Ω) ≤ C‖∆V ‖L2(Ω) = C‖n[Ψ]‖L2(Ω).
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Hence, our goal is to estimate the appropriate norm of the particle concentration.
From the Schwarz inequality,

‖n[Ψ]‖2
L2(Ω) =

∞
∑

k,l=1

λkλl(|ψk|2, |ψl|2)L2(Ω) ≤ (

∞
∑

k=1

λk‖ψk‖2
L4(Ω))

2.

and using the Hölder inequality along with the Sobolev inequality,

‖n[Ψ]‖L2(Ω) ≤ C

∞
∑

k=1

λk‖ψk‖2
L6(Ω) ≤ C

∞
∑

k=1

λk‖∇ψk‖2
L2(Ω).

Hence, we arrive at the estimates for the particle concentration and the norms on
the potential function,

‖n[Ψ]‖L2(Ω) ≤ C‖Ψ‖2
Ḣ1

λ(Ω)
, ‖V [Ψ]‖H2(Ω) ≤ C‖Ψ‖2

Ḣ1

λ(Ω)

with ‖ · ‖Ḣ1

λ(Ω) and ‖ · ‖H1

λ(Ω) equivalent via Lemma 2. Evidently,

W := V [Ψ] − V [Φ]

satisfies the Poisson equation,

−∆W = n[Ψ] − n[Φ], W |∂Ω = 0,

and Dirichlet boundary conditions. Applying the Poincaré inequality along with
the Schwarz inequality, we arrive at

‖W‖2
H2(Ω) ≤ C‖∆W‖2

L2(Ω),

such that

‖W‖H2(Ω) ≤ C‖n[Ψ] − n[Φ]‖L2(Ω).

We will use the trivial inequality

|n[Ψ] − n[Φ]| ≤
∞
∑

k=1

λk(|ψk| + |φk|)|ψk − φk|.

The Schwarz inequality applied twice yields

‖n[Ψ] − n[Φ]‖2
L2(Ω) ≤

(

∞
∑

k=1

λk

√

∫

Ω

(|ψk| + |φk|)2|ψk − φk|2dx
)2

≤ (

∞
∑

k=1

λk‖|ψk| + |φk|‖L4(Ω)‖ψk − φk‖L4(Ω))
2

≤ (

∞
∑

k=1

λk(‖ψk‖L4(Ω) + ‖φk|‖L4(Ω))‖ψk − φk‖L4(Ω))
2,

and using it again gives
∞
∑

k=1

λk(‖ψk‖L4(Ω) + ‖φk|‖L4(Ω))
2

∞
∑

s=1

λs‖ψs − φs‖2
L4(Ω).

Applying the Hölder and Sobolev inequalities, we arrive at

C

∞
∑

k=1

λk(‖∇ψk‖2
L2(Ω) + ‖∇φk‖2

L2(Ω))

∞
∑

s=1

λs‖∇ψs −∇φs‖2
L2(Ω).
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This quantity can be easily estimated above by

C

(

∞
∑

k=1

λk‖ψk‖2
H1(Ω) +

∞
∑

l=1

λl‖φl‖2
H1(Ω)

)

∞
∑

s=1

λs‖ψs − φs‖2
H1(Ω),

which clearly equals to

C(‖Ψ‖2
H1

λ(Ω) + ‖Φ‖2
H1

λ(Ω))‖Ψ − Φ‖2
H1

λ(Ω).

Therefore,

‖n[Ψ] − n[Φ]‖L2(Ω) ≤ C(‖Ψ‖H1

λ(Ω) + ‖Φ‖H1

λ(Ω))‖Ψ − Φ‖H1

λ(Ω)

and
‖V [Ψ] − V [Φ]‖H2(Ω) ≤ C(‖Ψ‖H1

λ
(Ω) + ‖Φ‖H1

λ
(Ω))‖Ψ − Φ‖H1

λ
(Ω).

Collecting the estimates above, we arrive at

‖F [Ψ] − F [Φ]‖H1

λ(Ω) ≤ C(‖Ψ‖2
H1

λ(Ω) + ‖Φ‖2
H1

λ(Ω))‖Ψ − Φ‖H1

λ(Ω),

which completes the proof of the lemma. �

From standard arguments (see for instance Theorem 1.7 of [7]) thus follows that
the above Schrödinger-Poisson system admits a unique mild solution Ψ in H1

λ(Ω)

on a time interval [0, T ), for some T > 0, satisfying the integral equation

Ψ(t) = e−iTmtΨ(0) + e−iTmt

∫ t

0

eiTmsF [Ψ(s)]ds(2.4)

in H1
λ(Ω). Moreover,

limtրT ‖Ψ(t)‖H1

λ(Ω) = ∞
if T is finite. We also note that Ψ is a unique strong solution in L2

λ(Ω). We shall
next prove that this solution is in fact global in time. First we prove the following
lemma.

Lemma 6. Suppose for the unique mild solution (2.4) of the Schrödinger-
Poisson system (1.6)-(1.8) that {ψk(x, 0)}∞k=1 at t = 0 forms a complete orthonor-
mal system in L2(Ω). Then, for any t ∈ [0, T ), the set {ψk(x, t)}∞k=1 remains a
complete orthonormal system in L2(Ω). Moreover, the L2

λ(Ω)-norm is preserved,

‖Ψ(x, t)‖L2

λ(Ω) = ‖Ψ(x, 0)‖L2

λ(Ω), t ∈ [0, T ).

Proof. Given the solution Ψ(t) of the Schrödinger-Poisson system on [0, T ),
we obtain the time-dependent one-particle Hamiltonian

HVΨ
(t) = Tm + VΨ(t, x)

where the potential VΨ solves −∆VΨ(t, x) = n[Ψ(t)] with Dirichlet boundary con-
ditions, see (1.2). Accordingly, the components of Ψ(t) solve the linear, non-
autonomous Schrödinger equation i∂tψk(t, x) = HVΨ

(t)ψk(t, x), for k ∈ N, on the
time interval [0, T ). We thus have, for t ∈ [0, T ),

(2.5) ψk(x, t) = (e−i
R

t
0

HVΨ
(τ)dτψk)(x, 0), k ∈ N,

and therefore

(ψk(x, t), ψl(x, t))L2(Ω) = (e−i
R

t
0

HVΨ
(τ)dτψk(x, 0), e−i

R

t
0

HVΨ
(τ)dτψl(x, 0))L2(Ω) =
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= (ψk(x, 0), ψl(x, 0))L2(Ω) = δk,l, k, l ∈ N,

where δk,l stands for the Kronecker symbol. Obviously, for k ∈ N,

‖ψk(x, t)‖2
L2(Ω) = ‖ψk(x, 0)‖2

L2(Ω),

such that for t ∈ [0, T ), the L2
λ(Ω)-norm is conserved,

‖Ψ(x, t)‖L2

λ
(Ω) = (

∞
∑

k=1

λk‖ψk(x, t)‖2
L2(Ω))

1

2

= (

∞
∑

k=1

λk‖ψk(x, 0)‖2
L2(Ω))

1

2 = ‖Ψ(x, 0)‖L2

λ(Ω).

Let us consider an arbitrary function f(x) ∈ L2(Ω). Clearly, we have the expansion

f(x) =
∞
∑

k=1

(f(y), ψk(y, 0))L2(Ω)ψk(x, 0)

and similarly

ei
R t
0

HVΨ
(τ)dτf(x) =

∞
∑

k=1

(ei
R t
0

HVΨ
(τ)dτf(y), ψk(y, 0))L2(Ω)ψk(x, 0).

Thus, by means of (2.5) we arrive at the expansion

f(x) =

∞
∑

k=1

(f(y), ψk(y, t))L2(Ω)ψk(x, t)

for t ∈ [0, T ). �

Furthermore, we have conservation of energy for solutions to the Schrödinger-
Poisson system in the following sense.

Lemma 7. For the unique mild solution (2.4) of the Schrödinger-Poisson sys-
tem (1.6)-(1.8) and for any value of time t ∈ [0, T ) we have the identity

‖Ψ(x, t)‖2

Ḣ
1/2

λ (Ω)
+

1

2
‖∇V [Ψ(x, t)]‖2

L2(Ω) = ‖Ψ(x, 0)‖2

Ḣ
1/2

λ (Ω)
+

1

2
‖∇V [Ψ(x, 0)]‖2

L2(Ω).

Proof. Complex conjugation of the Schrödinger-Poisson system (1.6) yields

(2.6) −i∂ψ̄k

∂t
= Tmψ̄k + V [ψ]ψ̄k, k ∈ N.

Adding the k-th equation of the original system (1.6) multiplied by
∂ψ̄k

∂t
, and the

k-th equation in (2.6) multiplied by
∂ψk

∂t
, we obtain

∂

∂t
‖T

1

2

mψk‖2
L2(Ω) +

∫

Ω

V [ψ]
∂

∂t
|ψk|2dx = 0, k ∈ N.

Thus, multiplying by λk, and summing over k, we find

(2.7)
∂

∂t
‖Ψ(x, t)‖2

Ḣ
1/2

λ (Ω)
+

∫

Ω

V [Ψ(x, t)]
∂

∂t
n[Ψ(x, t)]dx = 0.
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One can easily verify the identity

∂

∂t
‖∇V [Ψ(x, t)]‖2

L2(Ω) = 2

∫

Ω

V [Ψ(x, t)]
∂

∂t
n[Ψ(x, t)]dx,

which we substitute in (2.7) to complete the proof of the lemma. �

With the auxiliary statements proven above at our disposal, we may now prove
our main result, Theorem 1.

Proof of Theorem 1. The proof follows from the blow-up alternative and
conservation laws. It follows from Lemma 7 that ‖Ψ(t)‖

Ḣ
1/2

λ (Ω)
is bounded from

above uniformly in time,

‖Ψ(t)‖2

Ḣ
1/2

λ (Ω)
≤ ‖Ψ(t)‖2

Ḣ
1/2

λ (Ω)
+

1

2
‖∇V [Ψ(t)]‖2

L2(Ω)

= ‖Ψ(0)‖2

Ḣ
1/2

λ (Ω)
+

1

2
‖∇V [Ψ(0)]‖2

L2(Ω).

We need to bound ‖Ψ(t)‖Ḣ1

λ(Ω). We recall the mild solution of the Schrödinger-

Poisson system (1.6)-(1.8), given by

Ψ(t) = e−iTmtΨ(0) + e−iTmt

∫ t

0

eiTmsF [Ψ(s)]ds,(2.8)

which implies

‖Ψ(t)‖H1

λ
(Ω) ≤ ‖Ψ(0)‖H1

λ
(Ω) +

∫ t

0

‖F [Ψ(s)]‖H1

λ
(Ω).

From Lemma 2, we have

‖F [Ψ]‖H1

λ(Ω) = ‖V [Ψ]Ψ‖H1

λ(Ω) ≤ C‖V [Ψ]Ψ‖Ḣ1

λ(Ω)

≤ C

(

∞
∑

k=1

λk‖∇(V [Ψ]ψk)‖2
L2(Ω)

)1/2

.

Now,

‖∇(V [ψ]ψ)‖2
L2(Ω) ≤ ‖∇V [Ψ]ψk‖2

L2(Ω) + ‖V [Ψ]∇ψk‖2
L2(Ω)

≤ ‖∇V [Ψ]‖2
L6(Ω)‖ψk‖2

L3(Ω) + ‖V [Ψ]‖2
L∞(Ω)‖∇ψk‖2

L2(Ω)

≤ ‖∇V [Ψ]‖2
L6(Ω)‖ψk‖2

H1/2(Ω) + ‖V [Ψ]‖2
L∞(Ω)‖ψk‖2

H1(Ω),

where we have used Hölder’s inequality in the second line and the Sobolev inequality

‖f‖
L

6

3−2p (Ω)
≤ C‖f‖Hp(Ω)
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in the last line. To evaluate ‖∇V [Ψ]‖L6(Ω), recall that ∆V [Ψ] = −n[Ψ]. Applying
Hölder’s and Sobolev inequalities, we get

‖∇V [Ψ]‖2
L6(Ω) ≤ C‖∇V [Ψ]‖2

H1(Ω) ≤ C‖n[Ψ]‖2
L2(Ω)

≤ C

∞
∑

k,l=1

λkλl(|ψk|2, |ψl|2)L2(Ω) ≤ C

∞
∑

k,l=1

λkλl‖ψkψl‖2
L2(Ω)

≤ C

∞
∑

k,l=1

λkλl‖ψk‖2
L6(Ω)‖ψl‖2

L3(Ω)

≤ C(

∞
∑

k=1

λk‖ψk‖2
H1(Ω))(

∞
∑

l=1

λl‖ψl‖2
H1/2(Ω))

≤ C‖Ψ‖2
Ḣ1

λ(Ω)
‖Ψ‖2

Ḣ
1/2

λ (Ω)
.

We now estimate ‖V [Ψ]‖L∞(Ω). The Sobolev inequality implies

‖V [Ψ]‖2
L∞(Ω) ≤ C‖|p|−1/2n[Ψ]‖2

L2(Ω).

We claim that ‖|p|−1/2n[Ψ]‖L2(Ω) is controlled by ‖Ψ‖
Ḣ

1/2

λ (Ω)
.

‖|p|−1/2n[Ψ]‖2
L2(Ω) = (n[Ψ], |p|−1n[Ψ])L2(Ω) ≤ ‖n[Ψ]‖L3/2(Ω)‖|p|−1n[Ψ]‖L3(Ω)

≤ C‖Ψ‖2
L3(Ω)‖|p|−1n[Ψ]‖H1/2(Ω)

≤ C‖Ψ‖2
H1/2(Ω)‖|p|−1/2n[Ψ]‖L2(Ω),

where we have used Hölder’s inequality in the first line, and the Sobolev inequality
in the second line. It follows that

‖|p|−1/2n[Ψ]‖L2(Ω) ≤ C‖Ψ‖2

Ḣ
1/2

λ (Ω)
,

and hence

‖V [Ψ]‖2
L∞(Ω) ≤ C‖Ψ‖4

Ḣ
1/2

λ (Ω)
.

Combining the above estimates yields

‖F [Ψ]‖Ḣ1

λ(Ω) ≤ C‖Ψ‖2

Ḣ
1/2

λ (Ω)
‖Ψ‖Ḣ1

λ(Ω).

This implies

‖Ψ(t)‖Ḣ1

λ
(Ω) ≤ ‖Ψ(0)‖Ḣ1

λ
(Ω) +

∫ t

0

C0‖Ψ(s)‖Ḣ1

λ
(Ω),

where C0 is a constant proportional to the initial energy

‖Ψ(0)‖2

Ḣ
1/2

λ (Ω)
+

1

2
‖∇V [Ψ(0)]‖2

L2(Ω).

By Gronwall’s lemma,

‖Ψ(t)‖Ḣ1

λ(Ω) ≤ C1e
C2t, t > 0.

By the blow-up alternative, this implies that the Schrödinger-Poisson system is
globally well-posed in H1

λ(Ω). �
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