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On stability of the catenoid under vanishing mean curvature
flow on Minkowski space
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ABSTRACT. We establish basic local existence as well as a stability result con-
cerning small perturbations of the Catenoid minimal surface in R3 under hy-
perbolic vanishing mean curvature flow.
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1. Introduction

The minimal surface equation in Riemannian geometry has a natural analogue
on a Lorentzian background. In particular, working on a Minkowski background
R** = {(t,z)|z € R?} equipped with the standard metric dg = dt* — >, , dz}
and considering surfaces S which for fixed ¢ are graphs of functions ¢(t, z) over R?,
we find the equation

? o1 0 b,
11 = — d =0
W w e i:zl,zaxi[wﬂvmw—eﬁ%}

We note that this equation appears in string theory [3].

As of this point in time, there appears to be no general theory for dealing with
quasilinear problems of this nature, and even perturbative questions appear highly
challenging. The most basic of these is to study the stability of the trivial solution
¢ = 0 describing a plane, which was effected in [1], [8]. We are not aware of works
studying the stability under (1.1) of other minimal surfaces in R®. Here we would
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like to initiate the study of the (in)stability of another natural static solution (i.
e. minimal surface in the Riemannian sense) of (1.1), the Catenoid. This is the
solution given by the graph of

(1.2) o(t,r) =Q(r) :=log(r+Vr2=1),r=|z| >1

In order to obtain some basic idea of what to expect, it is natural to look at elliptic
and parabolic analogues of (1.1), and in particular, the question of stability of this
solution in the variational sense. Here it has been well-known since the 1980’s [9]
that the Catenoid (as well as all other non-planar minimal surfaces) are unstable,
and thus at least for the parabolic analogue of (1.1) generic perturbations of (1.2)
are expected to lead to singularity formation (via neck pinching) and the formation
of two planes. It is not too far-fetched to surmise that the solution (1.2) is also
unstable for the flow (1.1), although we are far from having an argument for this.
In the following sections, we aim to settle some very basic questions concerning
(1.1): first, the most basic issue is that of understanding local well-posedness for
arbitrary (sufficiently smooth) perturbations of (1.2). Second, in order to better
understand potential singularity formation for generic perturbations of (1.2), we
establish a result on stability of (1.2) for certain generic radial perturbations which
are supported far away from the collar » = 1, as long as the resulting deformation
stays away from the collar (here we take advantage of the Huyghen’s principle).
This result implies in particular that for these solutions, a singularity can only set
in once the ’collar starts to move’.

2. Local existence

Instead of working with an explicit graph representation which yields the de-
scription (1.1), one may also work with an implicit description. Then the minimal
surface equation for a hypersurface

=0

in Minkowski space-time is given by

v, N@ =0, NY=V/|VYy|, V*=mV,

v=0
and Vo, = O, |W| = /m(W, W), where m is the Minkowski metric diag(—1,1,1, 1).
This can also be written

(VI PPm*? — VUVAT)V, Va0 =0

2.1. Hyperbolicity. We write a four vector X = (XY X’), where X' is a
three vector. For a three vector let |X’| denote the Euclidean distance. Set

g*P(X) = |X|Pm*® — X*XP  where X = X/|X'|

With repeated upper and lower Greek indices a,(3,7,9,... being summed over
0,1,2,3 and repeated Latin indices i, j, ... being summed over 1,2, 3 only we have:

LEMMA 2.1. We have
(2.1) 9P (X)ealp = —(bo + T7;)* +77&¢;
where

(2.2) 79 =XX7,  and AV =(1-(X%?(0Y - X'X7).
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and X = X/|X'|, where |X'| = X?+ X3+ X2, We have
(2.3) (L= ITP)(In)* = (T /|T1)?) < 7ning < (Inf = [T*ny])?
Proor. Completing the square we get
g’ (X)eabp = — (& + 2XOXI¢08; + (XO)ZXin&&) + |X|2(5ij§i§j - Xi)?jﬁiﬁj)
9°%(X)€abs = — (€0 + XOX7€,)” +|X]P (67 - X1X)ese;

If n is a unit vector then one sees that
(24) 7ning = (1= (X)) (1= (X*n)?) = (1= | X XFnx])? = (IX°] = [ X))
from which the last inequality follows. O

Returning to the graph representation by writing (¢, x,y, 2) = z — ¢(t, x, ),
we have X = (¢¢, — ¢z, —dy, 1) and g*?9,03V¥ = 0 becomes

(2.5) 9°%(0¢)0a0s = 0

where the sum is only over o, 8 = 0,1, 2, since ¢ is independent of z; this is seen
to co-incide with (1.1). The symbol for this operator is the same as (2.2) but with
the sum over only «, 5 =0, 1,2, i.e. with £ replaced by (&, &1, &2,0). This satisfies
Garding’s hyperbolicity condition, see [5], if Y7, ., ;77 &¢&; is positive definite,
which is the case if the initial surface is time like:

(2.6) X2 = VU =1+¢2 + ¢, — ¢} >0,
since (X™)2 + (X'2)? = (¢2 + ¢2)/(¢2 + ¢2 +1) < 1.
2.2. Energy Estimates.

LEMMA 2.2. Let g®® be as in the previous lemma and suppose that |)A(0| <1l-—e.
Suppose the ¢ solves the equation

(2.7) > ¢*(X)0adsd =G

aB=0,1,2

m a set
Dy ={(z,t); |t —x0| <R—-t, 0<t<T}
and let Sy = {(x,t);|x — x| < R —t} and

E(t):/ (B0 +T70;)8)* + 7780 0;¢ da

St

Then

B0 < ol e (VB + [ 160 sy ). () =sup (] +7)

has energy estimates, with a constant depending on & and T and some norms of X .
PRrROOF. We have

G = " 0,059 = — (9o + Tﬂ‘aj)% +0i(v99;¢) + ((90 + T*0)T7 — 0:7v"7) 9,0
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Note that
(2.8) (9o + T*0x) (v 0:¢0;9)
=270, 0;(0p + T ) — 27" (0;,T%) 0 O + ((Do + T"0k)v7) 010 0,6
= 20;(70i6) (90 + T*9)6) — 2(90 + T*04)6 95 (v 9:0)
+ (B0 + T*0k)77) 0i 05 — 29" (0;T%) 8,0 Db
We hence get
(00 +T"0) (@0 + T70;)8)" + 70,600
=2((0o + T*0k)9) (Do + T70;)*¢ + (o + T"0%) (v 06 9;0)
= 2((9o + T* %)) ((ao +T70;)%p — 0 (7”8@)) + 20, ('yijaid) (@ + Tkak)¢)
+ (B0 + T*0k)7y7) 0 05 — 29" (0;T%) 0;p b
=20; (119016 (80 + T*0k)6) +2((90 + T*04)8) (0 + T" )T — 0,7)0;0)
—2((00 + T*01)9) G + (0o + T*0)v7) 0 05 — 2+ (0;T*) Di O
If we integrate this over S, we get
(2.9) E(t) — B(0) + H(t) = R(t) + G(t),

Were the flux is given by

(2.10) H(t)= | H%P0,¢03¢dx
Cy

where Cr = {(z,t); |t —xo| =R —1t,0 <t < T} and
HP0,6050 = (((90+T79;)0)" +779,6 0;6) (1+ T nx) 207916 (9o + T 00),
and the remainder is
t
(2.11) R(t) = / / R*P8,¢ 059 dads
0 JD,
where

(212)  R*0a6 956 = —(OuT") (00 + T70;)8)" +170,60;9 )
+2((9 + T*0)9) (90 + T ) T = 977) 050
+ ((90 + T*0)v"7) 0: 95 — 279 (9;T*) 0;¢ O

and the inhomogeneous term is

(2.13) // 2((00 + T*0y) Gd:cds<2/\/ $)[|G(s, )|l p2(s.) d
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It follows from the previous lemma that
(2.14)  H*%6u&p = ((o + T7€;)* +77€i&;) (1 + Trng) — 2077 €5 (60 + T7€;)

> ((§o+T78)% +77&&) (1 + TFny) — 24/vinin i [v7£:€; [&0 + TIE|
> ((&0 +T7€) +796&) 1+ T ngk) — 2(1 — [TFng )\ /79 6&5 €0 + T7¢;| > 0
and hence that the Flux is nonnegative. Moreover
R 006 036] < C-(10T |+ 107) (00 + T*00)6)? + 77916 0;0)
We get the inequality

t
E(t) < E(0) +/ Cen(s) E(s) + 2V E(s)|G(s, )|l L2(s,) ds
0
from which the lemma follows by a standard Gronwall argument. O

LEMMA 2.3. Let g®?(X) be as in the previous lemma. Suppose that |)A(O| <1l-—e¢,
for 0 <t <T and X,h € L>=([0,T], C*(R?)) and ¢ € L>([0,T], H*(R?)). Let

(2.15) Pop= > gP(X)0a0p0+ Y h’0s¢.
afB=0,1,2 £8=0,1,2

Then we have

(2.16)

Z ||87¢(t7 )HH* < C( Z H8V¢(O, )HH* +A HP¢(7—7 ')”HS dT)v 0<t<T

[v]<1 [v|<1

for any positive or negative integer |s| < k. Here ||ul|}. = [ [a(&)[*(1 + [£]?)*d¢,
where 1 is the Fourier transform. The constant C' depends on n(T),T,e, X, h. The
inequality also applies for s < k a nonnegative integer and* X, h € L*>([0,T], H*(R?)),
provided k > 4.

ProOF. Following [4] section 6.3 we differentiate the equation with respect to
x derivatives only 97 = 97" 95* and use that the coefficient in front of 93 is constant
to obtain

(2.17) POJo= Y f5-000¢+0]P¢
[81< ]

and the result for positive s follows from using the previous lemma in R™ x [0, T7,
together with that the ||¢(¢, -)|| 2 is bounded by its value when ¢ = 0 plus a constant
times the time derivative in the interval.

For negative s = —k we set
(2.18) = (1—-0,)", ¢ =(I - L)k
Then
(2.19) Po = (I — N)* Py — RO
where R is a differential operator of the form
(2.20) ROy = > 0)(f450°-00)).

[v]:101<k

1In this notation it is understood that also X; € Hk-1,
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We write this as

(2.21) Py = (I—20,) " (ROY + Pg)
By definition of the Sobolev norm for negative s
(2.22) I = 22) 7" Pz ~ (I = £2) "M 2Pg| 12 = || PY -

The lemma for positive s therefore gives

S 1076 ire < O X 107000 e [ 1ROV PO ).

[v]<1 [v[<1

It follows from the particular form of R that
(2.23) [ROY(L, ) [m-+ < CllOP(E, )| e

and therefore by Gronwalls lemma that

e21) X it s < C( X 10760+ [ IPOAr v ).

[v]<1 [v|<1

Since - <1 107, -+ ~ 22 1<1 1070 (¢, ) || g+ this concludes the proof of the
first part of the lemma.

To conclude under the assumption X € L>([0,T], H*(R?)),k > 4, and s a non-
negative integer, observe that in (2.17) we have

Y 155030011z S I|6] e

[81<l~l

due to Sobolev’s embedding H?(R?) C L>(R?). O
2.3. Local existence.

LEMMA 2.4. Let g*?(X) be as in the previous lemma. Suppose that |)?0| <l-—¢,
for0<t<T and X € L>=([0,T],C?*(R?)) and g € H**1(R?), h € H*(R?) Then
the equation

(2.25) > P (X)0uds0 =0, 9|

aB=0,1,2

has a solution O¢ € L>=([0,T], H*(R?)).

-9 at(b’t:o =h

PRrROOF. Following [4] section 6.3, we introduce the adjoint operator

(2.26) Pio= > 0a05(3°"(X)0).

aB=0,1,2

By the estimate in the previous lemma applied to L* with ¢ replaced by T — ¢ we
have

T
2.27) ot )l -+ S/t [P*¢(s, ) —+-1ds, ¢ €C5([~00,T) x R?).

If f € L}([0,T); H*(R?)), then

T T
(228 |(f,0) =| / (F(t. ), o(t, ) dt| < C / T O] p—



ON STABILITY OF THE CATENOID 95

This therefore defines a linear functional L(v) = (f, ¢) for all ¢ of the form ¢ =
P*¢, for some ¢ € Cg"([—oo,T) X Rz). Since this defines a linear subspace of
LY([~o0, T]; H-¥~Y(R?)), where we have the bound

T
(2.29) L) <C / IR —

the functional can by the Hahn-Banach theorem be extended to the whole space
without increasing the bound. Therefore there is an element in the dual space
u € L*([—o0, T]; H*1(R?)) such that

(2.30) L(y) = (wv), ¢ €L ([~o0, T H *'(R?)).

(That the dual space of H—* is H* follows from Parseval’s formula and the fact
that by Riesz Representation theorem its true for L?.) In view of the bound it
follows that u(t,z) = 0, for ¢ < 0. In particular it follows that

(2.31) (f,¢) = (u, P*¢)

for all p€ C5° ([0, T)x R?), i.e. u is a distributional solution of the equation Pu= f,
when 0 < t < T, with vanishing Cauchy data. A solution with arbitrary Cauchy
data is obtained if one choose any function ug with given data and introduce u—wuyg
as unknown. ]

PROPOSITION 2.5. Suppose that f and h are smooth functions on Sy = {z; |x—
xo| < R+ 2¢} such that

(2:32) 1+f7, +£2,-h* = 20+ £2,+12,), and || fllasso) HIhl sy < K.
Then there is a Ty g > 0 such that the initial value problem

9°%(00)0a050 =0,  |,_g =1, Qd|_o=h

has a solution in Dy, = Up<¢<T, St, where Sy = {(t,z); |x —x0| < R—t}, satisfying
1+¢3, + 63, —df > e(1+¢7, +¢37,) and [|o(t, )| s (s,) + 196t )l racs,y < 2K, for
0 <t <T.. Any higher regularity of the initial data (i. e. the property to belong to
H®, s >5) is preserved.

PRrROOF. First we note that we can extend data outside the set |z — x| < R
so that the conditions on (f, k) hold everywhere and (f, h) have compact support.
Just multiply h by a cutoff and then f by another cutoff which is unity on the
support of the first cutoff. Outside a compact set our metric is then the Minkowski
metric. We now set up an iteration ¢° = 0 and for k > 1

(2.33) 908 N)0.050F =0, |, =1f "], = h-

The existence of (smooth) solutions to the linear equation above was given in the
previous lemma. What remains to show is that ¢* converges, which will follow from
first proving that the sequence is uniformly bounded with respect to H®. This in
turn will follow from the energy estimate, Lemma 2.3 above after first differentiating
the equation to obtain equations and estimates for higher derivatives. This is a
standard argument that can be found e.g. in [4] section 6.3. O

THEOREM 2.6. Suppose that S is a smooth surface (2 manifold in 3 dimensional
Euclidean space). Suppose also that k is a smooth function on S satisfying |k| <
1. Then there is 3 manifold M in 4 dimensional Minkowski space satisfying the
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Minimal surface equation and such that S = Sy , where Sy = {x; (t,x) € M} and
is the normal velocity of Sy, when t = 0.

PROOF. In local coordinates this becomes the problem above, and the solution
has to be unique in overlapping coordinate systems. (|

For completeness’ sake, we also shortly discuss a different coordinate system
next:

2.4. Cylindrical coordinates. The gradient expressed in cylindrical coordi-
nates in space (t,r,z,0) is

VU = 0,0, + V0,0, + 17 ' Wydy + V0.
The divergence in cylindrical coordinates is
V-N=0;N; +r10.(rN,) + 0,N, + 19 Ng,

which expressed in terms of ¥ is

0. Vv, B
oilve! rarlyrl Temlyr el =0 EEI

With U (¢, x,y,2) = z — ¢(t, x,y) this reduces to (1.1) expressed in cylindrical
coordinates:
& dp 10 b, 10 -y
g[ﬁ] [\/Z] [W}ZQ L=1+¢7+¢5/r* — ¢}

However, we will rewrite our surface with ¥ = r — 4 (t, 2, 6):

r or

72 00

Oy 10, r 10 Woy 0 ey o qyy2ip2n? g
(2.34) ot [\/Z] Cror [\/Z] 200 [\/f} S0z [\/Z] =0, L= T4yi+9p /=i
LEMMA 2.7. The above equation takes they form
~ 1 2
(2:35) 97(00)0adpy = — (1 + 92 + Sv§ — ¥7),

where the principal symbol is in the coordinates (0%, 0,,0g/r) replaced by (7,¢,n) is
5 (00t = (L) — (L—u2)C — (L~ Hu3)” — 207
=2y 2epeTn + 20, Lhe(n.

We have

(2.36) (L +47) 1§ (00)als = (T — CC = D) = (€,m),
where (¢, n) = coC? + c1n? + c2(n is positive definite if

1
(2.37) >0, 1+ T—Qw;j’ + % —y? > 0.

PROOF. Simplifying gives

1 1 1 1
L(wtt - 1/}zz - r—21/)99 - ) - 5(1/}15Lt — L, — szz - r_zwﬁLG) = Oa

r
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or
(1402 + B/ — 7 (e — e — o0 — ) — 503 =
ubstbes + ot — Vi) — Vs (Butbes + gben — Vi)
— o (st + ~orion — Vi),
We have

(1492 + 58 — (1 598 + 42— 97) (Yax + 5 000)
= (bt o) — (V2o VR0t gttt b (L4024 9—07).

Replacing (9%, 0,,00/7) by (7,¢,n) and dividing by M = (1 + 2 + T%wg) we get
the characteristic polynomial:

2 — AC? — Bn* — 2C7¢ — 2D + 2E(n,

where

A:

L+ 0§ — 47 L+ 92— 47 Y Yty Yoy:
M » B= M C_M’ D_Mr’ E_MT

Completing the squares we get

(1 —C¢—Dn)*> = ((A+ C*)¢* + (B+ D*)n* —2(E — CD)(n)

This satisfies Garding’s hyperbolicity condition if the last polynomial is positive
definite, i.e. if

A+C*>0, B+D*>0, and (A+C*(B+ D?) > (E - CD)?
We have
MA(A+C?) = (1) (1 03 —7) 44202 = (1—0f) (L g +02—49)
and
MAB+ D) = (14+42) (1 0 + 2 = 47)
Moreover
MY(E —CDY = (1402 + 503 — ) v 503
Hence

(2.38) M*(A+C*)(B+ D?*) — M*(E—-CD)*=

(1492 + 93) (L4 g9+ 42— 93)? > 0,
which proves the lemma. O
Hence in the case 1) is independent of 6 (2.34) is hyperbolic as long as
(2.39) 1+ —? >0, and ¢ > 0.
In our case we are looking at a small perturbation w of cosh z:
1) = coshz +w

If initial data (w, wy)|t=o are small then (2.39) will hold, and local existence follows.
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3. Stability for perturbations away from the collar

We study here radial perturbations of the static catenoid solution to the hyper-
bolic vanishing mean curvature flow which are supported far away from the ’collar’
of the catenoid. We show that under a universal smallness assumption, a large class
of such perturbations leads to solutions which exist 'until the perturbation reaches
the collar’. Thus for these solutions any potential instability only sets in once the
‘collar starts to move’. In the sequel all functions are of the form f(t,r), r = |z|.

THEOREM 3.1. Let Q(r) = log[r + V72 — 1] the catenoid solution in polar
coordinates, and consider perturbations at time t = 0 of the form

(e e)limo = (F(5) A7 19(5))

for any XA > 1, where (f,g) € C§°(1,2) and we make the smallness assumption
S0, + S0 10590 e, < o
1<a<N 0<a<N-1
where N > 10 and ko is sufficiently small, independent of A\. Then the solution
o(t,r) = Q(r) + e(t,r) with initial data
(Q +¢,et)li=0

exists at least on the time interval [0, \ — C1] where Cy is a universal constant
(independent of the other parameters).

ProoOF. We use Klainerman’s method of commuting vector fields. Thus intro-
duce the family of operators

FQ = t(?t —|—’I”8T, Fl = t&r +r8t, = 1,2
We note that

> 08T =ollz2, < ko

1<a<N—1
where I' stands for any one of the above vector fields. In light of Proposition 2.5,
the key will be the following

PROPOSITION 3.2. Let 6 > 0 small enough. Then provided ko = k() > 0
is small enough, there exists a universal constant K with the following property:
assume that for any T € [0, A — C1], we have

Yo 002 e(t s

2,.(0.71xRy) < Kho,
1<]a|<N

Z Z I(t)~° 0, Te(t, t Mooz, (omxry) < Kko,
1<|a|<N-1 T

1
Z [(8)2 0 e(t, )l Ly, (0,11 x 1) < Kkio,
1<|a|<F 42

Here 0f, denotes all operators of the form 0" 072, an + az = a. Then one may
replace K by % on the right hand side.
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PROOF. (Proposition) Write 0 = 07 — 02 — 10, and let ¢(t,7) = Q(r) +&(t,r).
We first derive the equation for e:

O — AQ =

1 1
I+ 190 e[ e ) + 3 b ey

1=1,2

We reformulate this as

1 1
% =1 V2o e =20 oy~ e

t

1 1

3.1 o ( _

1) +i:21,2€ o \/1+|Vx¢|2—5% \/1+|V1Q|2)
1 1

3.2 + 200, —

32 i;QQ (\/1 +[Vao|? - 5? \/1 + |VzQ|2)

1
3.3 + 201,
e 2500 )

(34) \/ 1+ |v ¢|2 - Et \% 1+ |v Q Z le T \/m]

i=1,2

where we have exploited the fact that @ is a static solution, i. e.

Y Rt ()
VITIV.0F g o V14 V.QP?

As all functions are radial, we compute

1 1
> Qu0n,( _ )

i=1,2 \/1 + V2|2 —€; \/1 + V. Ql?
= _QT [ [(QT) +2Qrer + Er - 5? . (QQ) }
25 (14 |Vee)? —ed)? (1+|V.Q2)2
1 1 1
— O(— -
(T4)[(1+|Vx¢l2—€?)% (1+Q?)%]
O(%) err + O(L)er O(l) ErErr — EtEir

(1+|Va0|2 —€?)2 r (14 |Vao2 —€3)2

Here the expressions O(ik) depend only on r and have symbol type behavior.
Further, since 0, ( ) , we have

1+Q

1
2,0z, (—=) = O(— e,
2 ) = O
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We then formulate the equation for ¢ as

1 1
R R v e vies el

t

1 1

3.5 2. 0. -
(3 +i:21,2€1 1(\/1+|Vx¢|2—5? \/1+|V1Q|2)

1 Err + O(l)gr 1 Er&rr — EtEtr
3.6 O(— r O(-
30 BTN e e T e

1 1 1 1
37 O_ T O 3 3
0 FOe et A

(3.8) +(\/m VIHIVLQP) D Qu0s, \/ﬁ]

i=1,2
Energy estimates: We start by bootstrapping the bound

(3.9) R (7 (BT PPy

2 ([0,T]xRy) = Kko(t)°
1<a<N

Thus let D = 978%2, with 1 < 323 = |a| < N — 1. Write schematically (we

suppress constant coefficients)
(3.10)

O(D%) + [D*,0le

(3.11)

1
= a 2 _ 2\ = D2 s
3 DU IVao — [ = DD (s

S ai=a

1
VT |—va|2)
(3.12)
1 1
Daz - Dagam _
+:Z (&) 1(¢1+|W|2—a% ¢1+|vmc2|2)
(3.13)

err +O(L)er

D% (0()) D% )+Da2(0(%))Da3( Erérm ~ &ty

r (1+|Va0|2 —€?)2 (1+|Va0|2 —€?)2
(3.14)
4+ D (0(L)) Dse, + Do (0(2)) D | L L ]
r3 ' r (L+[Vao2 —c2)%  (1+Q2)3
(3.15)
[ %1 2 2 2 a2 as 71
+ D (/14 |Vag|? — &2 \/1+|va|>§21) Q.. D mm]

In order to improve the bound (3.9), we use the standard energy method for free
waves. Specifically, writing

1

Xao(t) == 5

/0 (ID®i(t, )2 + 8, D(t, )|?) rdr,
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we get
4 S
Xt =3 AL () - / (D, 0)-D%%, rdr
i=1 0

where the A%, are the contributions corresponding to the terms (3.12) to (3.15), i.
e. writing the latter as X}, ..., X2 we have

AZ:/ X! D%, rdr
0

Contribution of AL. We treat the first line of (3.12), the second being similar.
This contribution is the integral

t o)
> [ ] o fis v -epe)
> ai=a

(3.16)

1 B 1
VI+IVedl? —ef 1+[V.QP
Using the Huyghen’s principle which implies » > A — ¢ on the support of &, we
obtain the bound
(3.17)

0.0 (

X 0y D*? ( )Do‘st rdrdt

1
_ < (X
VI+ (Va2 —e? 1+ IVlez)‘ =l

) KRty > D%

la|<fas|+2

Then we divide the above integral into the cases as = «, |a| — 1 > |az| > %,
las] < % We first deal with the latter two. In the second situation, we have

lar| + |az| < &, and so (pointwise bound)

| D (\/1+ Va2 — e7) D (&) < (8) "2 K ko

In this case, using also (3.17), the above integral (3.16) is then bounded by

< /Ot<Kmo>3<s>25<s>-% (=) Krofs) H]ds 57 (o) + (Kono) P52 1)

2

whence we can close provided 1 (Krg)* + (KAO)BI‘/’\%’\ < (Kko)?.
2

In the third situation when |az| < &, we have

(3.18)

s 1 _ Zli—1
1P ‘(\/1+|Vz¢|2_Ef_\/1+|VzQ|2)”L$° S Kro[(A=t) "+ Kro(t)~2|(t) ",
while also

(3.19) 1D (\/1 + V202 =)D (e0) 12, S Kro(t)’,

and so the corresponding contribution to (3.16) is also bounded by

< / (K ro)> ()2 (s) " H[(A—s) " + Kmo(s)~F]ds <[5~ (Ko)' + (K ro)® 282 1)

3
Finally, consider the case a3 = a. We write schematically
1 1

VIt Vool -2 1+ V.QP

(3.20) 9, D*( ) = FiD%y + F2 D%y, + F3,
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where we have

107 F1|| Lo + [0 Fallpee S (A —8) "1 + Kro(t)2, =0,1

1Fsllz2, S Kro(t)[(A =) + Kro(t) 2]
In order to deal with the contributions of the top derivatives D%e, D%y, we use
integration by parts:

/ / 1+ |V ¢|2 — &% )EtFlD EttD Et rdrdt

— —/ (1/14 |V, ¢|2—at)atF1(D Et) rdrll

— —/ / 8,5 14 |V.0|? —st)stFl]( t)2rdrdt

and we have

/ (V14 [Vab? — 2)eeFy (DO, v
0

S Kro(t)"2[|D%4(t, )17, + K < (Kro)* (1)

and further

’ /0 /OOO Or [(\/m)gt}:ﬂ (Do‘at)z rdrdt}
: / (K ko) () [(A — )" + Kro(s)~3](s) " ds

0

log A
07 (Fo) 1) o (Kowo) P57 < (o) (1)
2
if we choose kg small enough (in relation to § as well as in an absolute sense).

For the contribution of the second top derivative term, we find

/ / 14 |Vo9|? — e?)ei F20, (DY) D&y rdrdt

/ / (/14 [Vadf2 — ), Fy] (D) D%<, rdrdt

and we have

’%ar[r(\/ L+ Va0 — ed)erB)(t, )] S Krolt) 2 [(A—)7" + Krolt)

It follows that

t [e'e]
] / / (\/14|Vad|? — €7)ee[Fs + Fo (D) | Dy rdrdt|
0 JO

< [ Krols)E(Kno()™[(A = )7 + Knrols)~#]ds

Nl=

]
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provided kg is small enough in relation to J, as well as in absolute size. This con-
cludes treating the contribution of AL.

Contribution of A%Z. We again distinguish between the cases |as| < |a|, ag = a.
In the former case, we get provided |a| > |as| > & the inequalities

Erp —I—O(%)s

1D°2(0()) D )z, S O 0 Knolt),

r (1+ Va0l —€7)
s l as Er&rr — Et&¢r k)2 () — £ YRV
D70 D™ (I s, S (Ko=) (0740

1D ({14 |Vadl? —ef)llLes, S1

and if ag < %, we have

az (O( L)) pes
1D OGP (T v - )

1 Er€rr — EtEtr 2 —1/0—1
D*(O(=))D* ~ < (KK A—t t
[ D2 ( (T)) ((1+|Vw¢|2—s§)%)”L””N( 0)"A=1)7 ()

1D (\/1+ [ Vadl2 = D12, S Kro) () [(A =) + (Kro)(t) 2]

We infer that

t t [e'e)
|/ Ag(s)ds|g// IX2|| D%, |7 drds
0 0 0

< / (Kro)2 () (A — ) [(Kro)s) ™ F + (A — )] ds
< (Kro)2 (), 0<t<A—C4

provided we choose C7 sufficiently large. On the other hand, if a3 = «, only the

case when all derivatives fall on ¢, needs to be considered, as the remaining cases

are treated in the situation |as| < |a|. Thus this is the contribution of the terms
1 DQEM« 1 E’I"DQE’I"T

3.2 O(= 5, O(=
(3:21) (r2)(1+|w¢l2—g§)‘a (r)(1+|vm¢|2—s%’)

e

Here we perform integration by parts twice:

1 0,D%¢
(3.22) // 1+ |Ve2 —e2)O r e rdrdt
Vot ~e)0GE) e ap —e

1 D%e, o
/ / 14 |V.02 — gt)O(—Q) R 52)§ Or D%y rdrdt
T — &y )2

°°1
/ / 1+|v ¢|2 2) O(= )}D er D%y rdrdt
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1 e, D%
(3.23) 1+ 1|V, 2—5 O(- - TT D%y rdrdt
[ oot e

1 e, D%
» 2 (0] i - = O drd
// 14 |V.9|2 —e2)0(= )(1+|V¢|2 Y: D%y rdrdt

1 €
- -0,10(1 T D%, D% rdrdt
// S ] ‘*

For the first terms after the equality sign in these two equations, we perform an
integration by parts with respect to ¢, thereby obtaining the expressions

1 [ 1 1 -
(3.22) = 2/ 0 T, ¢>I2 /D% rdrlt

a |2
// 8,5 1+|vx¢|2 ))O(_Q)|D er|” rdr dt
O01
// 1+|v ¢|2_5) O(= )} e, D%y rdrdt

as well as
(3.23) = 1/00 0(1) er Do, |2 rdr
' 2 (Hlvml2 e) 0
E
r D%,.|? rdrdt
// (T =)D el rer

1 €
- -0,.10(1 " D%, D% rdrdt
// 7ol “<1+|vx¢|2—a%>] ‘*

The first combination of terms is bounded by

1(3.22)] SN — )2 (K ko)2(t)* + /t(K50)3<s>2‘5—§(A — ) 3ds

0
< (Kro)2 ), 0 <t <A —Cy,

while the second combination of terms is bounded by

t
|(3:23)] S(A—6)71(6) "2 (K ko) (1) + / (Kro)* ()72 (A — )" ds
0
< (Kko)2(t)?°,0<t<A—C4
as desired.

Contribution of A3*. These can easily be handled as in the situation |as| < |«
for the preceding term AZ2.

Finally, to complete the (plain) energy bootstrap, we still need to bound the
contribution of the commutator term [D®, OJe. Tt is immediate to verify that

[D*, 0= Y Fs(r)D%

1BI<|al-1
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with |Fjg| < r~171e=81 <=2 Then we get the bound

t 00 t
|/ / [D,O)eD%; rdrdt| < / (A= 5)"2(Kro)?(s)? ds
o Jo 0
< (Kko)2(t)?,0<t<A—C4

provided C; is chosen large enough. This concludes the bootstrap for the bound
(3.9).

Boosted energy bounds. Here we improve the estimate
(3.24) Z Z 1ty =005, Te(t (t Mrserz, (orixry) < Ko
1<a<N-1 T

We mimic the process used for the energy bounds, but this time with D* =
6,561 02T'1 5. To begin with, note that we no longer have the simple bound (3.17),
but instead the more complicated

1 1

(3.25) }@,TD“S(\/H Vodl? -2 1+ |VIQ|2)’
SIA=DT + Kro®)2] Y D%, Jas| < g
1<la|<]as]+2
(3.26)
|0 D ( 1 el

VI+IVooP —2  /1+IV.QP
1 N
S =07 +Kro®’A=073 Y D% N =2 > fag > T

- 1<]al< s +2
where now D$ etc may involve one operator of the form I'; 2, and we have
s(a) = 1, provided D* =T o,
and s(a) = 0 otherwise. To see this, note that if the operator I'y o falls on the first
factor in a product term V,Q - V,e = @Qr&,, then we have I'2Q,¢, = O(%)ar, while
I1Qre, = O(5)(T1e — rey) = O(2)82 — O(L)e;. The reason for the term factor
Kro(t)°(A— t)_% is the fact that the operator I'y » may fall on one factor &, while
the remaining Btﬁ 1972 may fall on another factor €, ., and a priori we only have an
L2-bound at our disposal for this in case |ag| > §. However, since
B+ B2 =z =1 <N =3,
we can the use the radial Sobolev embedding and our support assumptions to get
100,07 00,0 (8,7)] S 77210000 0P 0 (), S (Kro)(A— )% (8)°

Now we estimate the same four contributions as for the energy bounds:
Using (3.12) - (3.15), we commence with

Contribution of Al; here we use the same notation as before. Writing this as
n (3.16), we distinguish between a3 = «a, |a| — 1 > |as| > &, |as| < §. In the
second situation, we can exactly replicate the argument given for the plain energy
bounds, except in the case when D3 does not involve the operator I'; 5, whence
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one of D*1:2 involves this operator, and hence the product D*' (/- --)D*2¢&; cannot
simply be placed into L* without incurring a loss. Assume first that

!
D*?gy = DQ2F17281§

Then we exploit the gain in the Sobolev embedding due to our assumption of
radiality: we distinguish between two cases, in each of which we have to exploit the
null-structure:
(i): |r —t| < 4. Note that we have

(T1 4+ Ta)e(er — &)

3.27 P =
( ) &r €t r4t )

and so we have?

0un D% 1 1

VIt Voo -2 1+ |VmQ|2)

(T +To)e(er — &)
~ Oy D (Qrey) + Oy D
t, (Qrer) + 0y, [ i ]
Since |(I'; +T)e(t, r)| < Kro(t)’ (logr) 2 on the support® of the function under our
assumption, as well as

ID T e(t,7)|| L S v 2 |DT e(t, 7)1 ,

~

we obtain obtain the bound
(T1+To)e(e, — st)]
r+t

3.25) 0D liz,, S SR ozt ()

and further
(3.20) 10D (@Qre)l 2, S (K ko)A — )7L

We conclude that under our current assumptions, we can bound

| / / (1) D%/l Va0 — 2D (=)

1
V1F |v -2 V1+|V.QP

/ 1D (V1 +1Vadl? = D)Lz, X (r, ) D2 (1) 25,

18D (- )|l z2, D%l 2, dt

(3.30) x 0, D (

) D% rdrdt’

r > XA —t. But we have

S (Kro)(6)2,

and so we can bound the preceding expression, using (3.28) as well as (3.29) by

where x'(r,t) localizes to the region |r —t| < 5,

I () D% (1)l S ¢ 21D (2) 2

rdr rdr

2More precisely, the absolute value of the expression on the left is bounded by a linear
combination of the absolute values of expressions like the one on the right, with as replaced by
B < a3. This follows from the a priori bounds underlying our calculations. Our argument works
as well for these more general expressions

3This follows from |(T'1 4+ I'2)e(t, )| < (log 7")% [[0r(T1 + 1"2)€||L2d
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provided we choose 26 < %

(ii): |r —t| > 5. Here we use the identity
(F2e)® — (Tie)®
(331) E% — €t2 = W,

whence

1 1
VI+IVegl? —ef 1+ IVlez)

(Toe)? — (1“15)2}
T2 _ t2 !

B, D% (

~ at,rDas (QT‘ET‘) + at,rDa?’ [

t
107

(T2e)? — (I'1e)?
7‘2 _ t2

We conclude that we can bound the long expression (3.30) by

< (Kko)* /0 (log s)2 (s)*~2 ds

and if x? localizes to |r — t| > r > X —t, we obtain

X0, D% | iz, S (Ko)? log )29~

”XQat,TDa3 (QTET)HLf ar ”DQEtHLﬁdT dt

rdr

t
+/0 1D%5 (|| g D24 1o

In order to bound the contribution of the second integral expression, we have to
exploit an extra gain in t. For this, note that

o orlee —tle
Xer =X g5

and hence we have

1X?8er D (Qrer )2, S (Kro)(t)’™!
In conjunction with*
(3.32) D¢y < (Kko)(t)° (A — 1)~
We conclude that

(K ko) /0 (log s)2 (s)%~2 ds

=

t
[ 1D (o lem 1Dz, 10 D™ @) sz, D%l 2, e
0

< (Koo)' / (log )} (5192 ds + (K o)’ / (571N — ) F ds < (Kro)* (1),

provided § < %
The case when D& = I'; D¢ is handled analogously: as in (3.25) (recall that

la1| < & under our current assumption |as| > &) we find
(3.33)

D (14 1Vad D) S (A -0+ Kro)) 3] 3 D]

1< <|ay|+1

4Recall that here the D2 involves an operator I'1 2 whence we cannot directly apply the
dispersive estimate
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where s(«) is defined as in (3.25). Further, from (3.17) and our assumption |a|—1 >
|as|, we have

1 1
VI+ Voo —2  /1+IV.QP
ST =) + (Kro)(8) 2 (K ko) (1)

Haif.,rl)a3 (

ez,

Combining these last two bounds with the simple || D¢||~ < (Kko)(t)™ 2

~

inserting everything into (3.30) (but without the cutoff x!), we obtain

(3.30) without x*| <

t
L ID 6 g 1D e e 00D -l 17z,

< (K#o)* / (A=) 71+ (Kro)(s)"212(s)% 72 ds < (K ko) (1)

provided that § < %

This concludes the bootstrap for the contribution of Al and the boosted energy,
provided |o| — 1 > |ag| > &
Now consider the case |ag| < ¥. First assume that D = DT 5. If we have
max | 2| < &, then we have

1D (/1 + Va0 — €2) D%y 1=, S (Kro) ()2,

and so we bound (3.30) without the localizer x! by
t
S / (Kro)*(s)"2[A = 5) 7" + (Kko)(s)~2](s)® ds < (Krio)(t)*
0

where we have used the bound (3.25). Next, if |as| > & and D is as before,
we split into the regimes |r — t| < t%,§; < 1, and the complement. Note that

necessarily |az| < N — 2, whence in the first situation (|r —¢| < ¢°*) we have (using
Sobolev)

D¢y | < (Kro)(t)°~ 2,10, D% (...)| £ (Kro)[(A—t) "+ (Kro) (t) 2] (1) (A1) "2

where for the second bound we have used (3.25). It follows that we control (3.30)
under the restriction |r — | < #%* by (using Cauchy Schwarz with respect to y)

< /Ot<Kno>[<A —8) 7L+ (Kro)(s)Z)(s)PTE T3 (A — 5) 77 ds < (K o) ()%,

provided ¢ + 52—1 < 1. If on the other hand |r — t| > t°*, we write

_ tleD*2e —r['1 D*2e
- 12— p2

Dazft

and further

10D (... )| S (Kro)[(A =) " + (Kro)(t) "2 ](8)° (A — )2
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and so we bound (3.30) in this situation by
tI'oD*2¢ — rI'y D%

t2 —T2

t
S [ 102 Ol s
0

2z, 10:D% (. ) e, ID%eell 2, dt

rdr

S (ra)® [0 =9+ (K)o 20— ) s

< (Kro)*(t)*,
provided § < 01. The argument for the case |a;| > % is similar. Next, consider the
case when the derivative I'; 5 is either in D®* or D*2. Then in light of (3.33) we
have the bound

1D (14 Vool — D) D, S (Kko) ()

while in light of equation (3.25) we also have
10:D% () 2, S (Kro)* ()" + (Kro)(t) 2 (A= 1),

rdr

whence in this situation the expression (3.30) is bounded by

< / (K ko) ()2 [(K o) ()1 + (o) (s) ™ (A — 5)"1] ds
< (Kro){t)?,0<t< A= C

Finally, in case a3 = «, it suffices to consider the case when all derivatives
in D*3 fall on a second derivative term, i. e. the first two terms of (3.20) (the
remaining cases are treated as before), and for these one proceeds exactly as after
(3.20), using integration by parts. This concludes the contribution of AL.

Contribution of A%2. Next, we treat the contribution of the two terms in (3.13),
again in the situation where one of D23 involves a vector fields I'1 . We may
assume that |as| < |af or that not all derivatives fall on €, since else one replicates
the integration by parts argument from the energy bounds in (3.21).

Start with |aq| < % First, assume that one of D“%# involves I'1 2. Then we have

err + O(2)er
(1 + |vx¢|2 - 5%>%

where one uses relations like after (3.26) of the form

Yi(t) = |D° (O(— ) D (

r

ez, S A=) "2Kro(t)’,

rl(O(riz))gw _ O(Tig)(rla —rEn), Ty (0(%))% _ (0(%))%

Also, we find
1
Ya(t) = | D (0(;)) D™ (

ErEprr — EtEr
(L+|Vogf2 —e3)?

Mz, < (Kro)2(A—t)~1t= 5 ()%

To see this, write

|DY(ererr — tetr)| S Z |D315TD525M — DﬁlatDﬁzsm
B1+B2=a
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If || < N, at most one of |31, |B2| is > . If for this multi-index B1,2 we have
that DA% also involves I'1 > exactly once, and the other operator DP2.1 does not,
then under our assumptions

Nl=

| DPre, DP2e,, — DﬁlstDﬁ%tTHLidr < (Kko)2(t)~

On the other hand, if the unique operator DP12 with |8y 2| > % does not involve

I'y,2, but the other operator does, then assuming say 32| > &, we get (using the

improved radial Sobolev embedding)
| D%, DP2e,, — DﬁletDﬁ25tr||L2d
S ”XTZtDﬁlET,t”L"O||Dﬁ2 (5T,t)r||LﬁdT
D%, —rDP2(g, ;)
(r)?

1 1
+ lxr<e{ry> D7 e llnoe 2 lIxr< e,

< (Kko)*t™% (1)

The case |31] > &

assumed |aq| <

5 is similar, and this establishes the bound on Y5(t). Since we also
%, we have

Ya(t) := [|D* (/14 [Vadl* =Pl Les, S 1,

whence we obtain the bound

/O Ya(5)(Yi(s) + Ya(s)) | D%l 2 ds

& / (B ro)* (A= )" Hs)[(A = 5) " + (5)°s™ ¥ ds
0
< (Kro)2 (), 0<t <A -4

provided C7 > 1.
Next, assuming |aq| > % while still assuming I'y » to occur in D23, we use

N SA-0 Y (02D 2, +1D%(era)rlz, )

18] <|as|

+O=n7t Y

18]<|as]

S (Kro) A =1)7H(1)°

FLQDQS Dﬁfnt

+1

)

2

rdr

2

rdr

as well as
Ya(t) S (o) (A= 1)1~ %.
On the other hand, for the term Y3(t), we get

o [e3 1
1D (W 1+ [Vadl? = eD)llnzg, ~ 1D (~er + ey —ei)l,

1
S [|[D* (E(Flf —rey))|les + D (g2 — €7) >

rdr rdr

< (K ko) ()~ + (K o) (t)° =
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where we used the fact that |o;| < |a| under our current assumptions, as well as
the radial Sobolev embedding H!.; C L>. Hence in the present case, we get the
bound

| M)+ eIl s

t
S (@l [ (5910 5)
0
+ (Kro)A = 8) () + (Kko)(s) 2] ds < (Kro)?(t)?
provided 2§ < % and 0 <t < X —Cj with C; > 1. Finally, the case when I'; 5 is
contained in D' is handled similarly and omitted.

Contribution of A3*. These are handled like A2 in the case |as| < |a.

Contribution of the commutator term [D®,0). Write D* = DTy 4, |o/| <
N — 2 with D = 81972, Then we have

[DT, 0] = D[, 0] + [D*, 0T

and further
1

[[o,0) = —20, [['1,0] = r_2F1’

whence we have
[D9Ty,0) = —2D% 0+ Y Fa(r)dlT,
1<[B1< el 1
Ny w1
(DT, 0] = DY T + > Fa(rofr,
1<18]< e ~1
where we have Fj(r) = O(r=2719"=81) Then we need to estimate

t oo , 1 ’
/0 /0 [~ D= ST+ Z Fy(r)0°T (D Tye),r drdt

1<|BI<]al -1

t [e%e}
/ / [2D¥0+ > F(r)0Ty)e(D Toe)ir drdt
0o Jo

1<|BI<]al-1
We easily obtain (I' =T'y 2)
t 00
| / / [ Y Fs(r)dlT]e(D'Te)sr drdt|
070 1gipI<lal-1
t
< / (Kro)?(X—5)72(s)2 ds < (Kro)2(t)?°,0 <t <\ —Cy,
0
provided C7 > 1. Next, we estimate

t o)
[ / / [— D izrla} (D' Tye)r drdt]
0 Jo r
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Here we have to be careful to avoid a potential logarithmic loss. Thus write

o1 1 1
D —5Tie = 5D Tie+0(— Z/|D7I‘15|)

[vI<|ex

For the contribution of the error term, we have (recalling the constraints for the
support of the integrand)

| / / ST [DTel) (D Tie)r drdt|

|7\<\a’\

D’YI‘1<€ o
S/O(A— )7 D0 =l 1D The)sllzz, ds

d

[vI<l|e
t

< (Klio)2/ (A —8)"2(8)2 ds < (Kro)? (1), 0 <t <A —Cp, Oy > 1.
0

For the leading term above, we find
Lo 1 ,
/0 /0 [ - =D Lie] (D Tye)er drdt|
1 [ D¥Te(t,),2 / D¥T1e(0,-) 2
=—- —)rd —)'rd
5 /0 ( ) r+ - 2/, ( ) rdr

r r
1 [ D*T4e(0,-

< —/ (718( : ))2rdr
2 0 '

and we have ,
1 [ ,D>T1e(0,-
_/ (716( ! ))2r dr < (Kko)?
2 0 T
upon choosing K suitably.
Finally, the contribution of the term —2D® O, i. e. the expression

t oo
/ / ~2D° D (D Tqe),r drdt
0 Jo

is handled precisely like the contributions of Al - A% using the equation of . This
concludes the bootstrap for the boosted energy bounds.

The dispersive estimate: Finally we improve the bound

Z ||<t>%8 e(t, s, (0, mxry) < Ko
1<a<f 42
Due to the already bootstrapped energy bounds, we may assume ¢t > 1. Our point
of departure is again (3.10), with |a| > 1. Denoting the right hand side by Fy (¢, r),
we pass to a one-dimensional formulation via r2z D¥(t,7) =: £4(t, ). Then we find
that
OF, + r3[D*, 0 = r*F,

Here we have introduced O = 87 — 2. We can solve this problem by invoking
the odd extension of all functions (with respect to r) to (—oo,00) and using the
standard d’Alembert’s solution. We then obtain

+(t— t) _ _ N
o [ 0 S+ o T i
|[r—(t— t)
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where 08, free = 0, €q,free[0] = (€a(0, ), 0:€4(0,+)). Then the bound

1

||5a free( )||L°° < Kli0< > 2

follows from easily from the d’Alembert parametrix, and we thus need to show that
under our assumptions, we have the bound

. r+(t—1) .
/ / WD, Ole(F ) + b Full, p) dudi] < (1) Ko
|r—(t— t

We again treat the various ingredients forming F,, and the first term in the inte-
grand separately.

(i): The contribution of the term —u2[D*, O)e(t, 1). We write [D*, Oe(f, ) =
2o1<181</al Fs(p)0Pe(t, 1) where Fg(p) = O(m). Then we distinguish be-
tween the following cases:

(i1): t < t, r < t. Note that then |r + (t — )| ~ t, and due to Huyghen’s
principle, we also get ¢t > 1 on the support of €. Then we estimate

r(t-)

t
7'_% ‘ ‘/I B Xt~<<t Z /’L%Fﬁ (/,L)aﬁg(t, /,L) dﬂdﬂ
0 r—(t

—(t=0)] 1<[pI<al
_ ~ _ _1
S X [ xre N, S Fonale) ™ Kool
1<|BI<] e
We have used here the Cauchy-Schwarz inequality with respect to the p-integral.

(i2): T < t, r > t. Here the (t)~z-decay comes from the r~z-factor outside.
Estimate

‘//( Xigt Z M%FB(M)aBE(EM)dﬂdﬂ
r—(t— t

1<|BI< |

0% 5 [ el -0,

1<|B|<|a

In the last inequality, we have used that x> A\ — ¢ on the support of e(t, ). Since
A—t>t for t < t, we can bound the last expression by

t
< - / Nt K ko(A — B4+ dF < Kro(t) ™},
0

as desired.

(i3): t > t. in this case, we have to exploit control over the vector fields T'; o¢.
Simply write (for |5] > 1)

8% = 970, e = 87( [T — rer4])

whence

L _9/1 I % I
HEFs(0%el Sp P (5 D0 pElOTTael 4 D pEl07e)

A<l 1<7|<18]
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One then estimates

1 t r+(t—t~) l N
' 2|/o/| o TR Y wEFs()de(t, p) dud]
r—(t—t

1<|6|< |
8F12€( ) ~
Ly / v - D 2y g
F1<18] -1 H
> / Vi A= D072z, dE
1<FIL18]

< (Kro){log t)t ™10 < (Kko)t ™2

Here we have again invoked the Cauchy-Schwarz inequality with respect to the p-
integration, as well as a simple version of Hardy’s inequality as well as the already
bootstrapped energy bounds.

This concludes the case (i).

Next, we distinguish between the contribution of the null-form, (3.12), and the
remaining terms in F, (¢, 1), which are treated like the term (i).

(ii): The contribution of the source terms Fy(t, 1); the null-form.
We use the following identity for the null-form:

_ TofTag - Flfrlg

(3.34) 8 frg — O, fOrg o

Thus we write
1 1
VIt Voo -2 1+ |V.QP

1 1
(3.35) + €, O, ( — )
i:zl,Q \/1+|Vx¢|2—5% V1+ VL QP?

Zj:1,2( 1)7H el (

)

_tt

)

1
\/1+\v s2—e2  \/1+|V.QP?

t2
Note that
1 1

DOTy( ~ — )

\/1+|vw¢|2 — & \/1+|V1Q|2

1
=0(-) > IDPe+0( Y D Taer,| Y D)

1BI<]al+1 161<a 161<a

while also (in the first sum the operator D” may involve at most one operator T
and none in the second and third)

1 1
DT —
1(¢1 +Veol2 - 1+ |va|2)
1
=0(-) > @D+ 0( Y DTy, Y [DPes)

1BI<|ex|+2 1BI<lal 1BI<|a|
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where we have s(8) = 1 if D? = T'15 and s(3) = 0 otherwise. Introduce the
quantity

1 1 .
Goa=0(=) > |D°[+0() »  r D%

1B]<|al+1 |BI<|al+2

(#ia): bounding the integral

\/ /Tﬂt i PECARLIETERAY, I
2_ 1,2
|r—(t—1)| u

T

<
|
i

a1 toaz=a

We distinguish between the following cases:
(iia.1): t < t. Here we have [u? — 2| > ¢2, whence for |a| < § +2, a = a; + as,

we get
(=D 1 [D*Te| G,
‘ Xt Pt = d Cﬂ
|r—(t—1%) —t2 + p?

_1({logt)2 DY Te(t -
test G G )z, i
) Jo ' (logu)> ndn

1
< (Kro)(t) "4 (logt)? < (Kro)(t)~ 7, provided 26 < 5

S ()

Here we have used Cauchy-Schwarz with respect to x4 and the bound
D™ Te(t, )
(log 1) 2

which comes from the support properties of € and our current restrictions on r, t.

|| ez, S IDTe@ ),

(iia.2): t > t. We observe that if further |t —p?| ~ 1?2 ~ 2, one argues exactly
as in case (iia.1). If [2 — p?| < 2, then p ~ t ~ t. Thus if we further restrict to
[t2 — p?| > t1791 | we get, using

S—
|Goslliz, S (o)™

and introducing a cutoff 2 to implement the above restrictions on u,f

r+(t— t) DTl G
/ / 't | 2 : = dudt|
lr—(t—7)| —t°+p

< (Kﬁ0)2t7(2726761)/ <10gt)2dt < (Kﬁo)ﬂogt)% ~(1-26-8) < (Kﬁo)f%
0

provided 26 + 61 < %
Thus we may further restrict to |2 — p2| < £1791,# > t, which we do via a multiplier
x3. Introduce the quantity

1 1
H, := D0, -
" (\/1+|Vm¢|2—s% \/1+|m|2)

—0() Y Dol Y D%l Y1020

o
1BI<|al+1 B81< 15l +1 |181<|al+1
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Undoing the null-form expansion as on the right hand side of (3.34), i. e. writing
things as on the left hand side of (3.35), we find

%// X?’u%|D°‘15t_#|l1f0¢2d,udt~
|r—(t—1)|

4 (t—1) 1 N
<r %/ / 3/ﬁ|Da1£t7M|O(;) Z |DPe,,| dudt

r=(t=9) 18] <|az|+1

r+(t—1) p
[ et X Dl Y D%

|Bl<|28+1 18I</az|+1

Using the Cauchy-Schwarz inequality with respect to p and assuming (as we may
since |on| + o] < & +2) Jou| < & + 2, the first term is bounded by

t_ 51 ~ _
S [FHO-DICD i, Y D%,
0 |B]<|crz|+1

< (Kro)(t)~2

provided 1 > 24.

To bound the second integral above, we have to use a different observation, namely
that the restrictions p € [r4 (t — 1), |[r — (t —1)|], |t — | < £ imply that ¢ ranges
over an interval of length ~ r. Then we find

r+(t—1) )
%//I X w2 |Dm€t,u|[ Z |D65u|][ Z |DB€M|]d,udt

|Bl<|28+1 18I<]az]+1
1

< (Kﬁo)%%w-%-l < (Kko)(t)~*

where we have estimated the factors |D%'ey |, ZWISI(’%‘H |DPe,,| in L75,, and used

Cauchy-Schwarz for the p-integral. This concludes case (ii.a).
(ib): bounding the integral

r+(t t D 1—\ I
7“7% ‘// 1| 2 €| Otzd dﬂ
\ — p?

a1 +as=a r—(t— t

where

In=0( Y |DTyser,| > D%
181<]| 181<le
and we have again reverted to writing things as on the right hand side in (3.34). By
what was shown in (iia.2), (iia.2), it follows that it suffices to analyze the analogues
(iib.1) - (iib.2) with the latter case only for [t> — p?| > #101,
(iib.1): T < t. Again p > t on the support of the integrand. We estimate this
(using Cauchy-Schwarz with respect to u) by

D™ Te ~ N
1ogt%/ el ol & oo vz < 542
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Then we use
s < a1 . < nY)
oy, £ 1D Tl S (o)D)

Hasllzz,, S (K ko) ()

and so we can bound

-

t
2(logt)? / 1D T e, ol 2 dt <t 2<1ogt>%(Kno)3/ 39 dt < (Kro)t™ 2
0
provided § is chosen small enough (35 < 3).

(ib.2): t > t, |[£2—p?| > 1791, In case ju < t, we can estimate this contribution
just like in the preceding case (iib.1). Thus assume now pu > t > t. Due to
Huyghen’s principle, it suffices to restrict the integrand to the backward light cone
centered at (r,t). It then follows that we get the bound (on that portion of the
integrand)

|2 D™ Te| S 72|90, D™ T 2
In fact, we can write for D“'I'e with arguments (tN, 1) in the backward light cone
centered at (r,t)
o 8, (2D Te) d
p = Ok e) dp
max{A—t,r—(t—t}
and from Cauchy-Schwarz
|D*Te| < 139, D' Te| 2,
Thus we infer the bound® (here y* localizes to the region specified above)

%/ /r+(t t) /1,2Da11—‘8|[a2 i i
\

r—(t—%)| t2 12

< / Xzl 210, D° el 2, o1, dF

t
S (Ko [ g0 d < (ot
0

provided 61 4+ 36 < 1. This completes case (ii.b) and hence the contribution of the
null-form.

(111): The contribution of the source terms F, (t w); remaining terms. Here we
explain how to deal with the two terms of (3.13), the remaining ones being treated
similarly.

(itia) We commence by bounding the expression (|as| + |ag| < § +2)

_1 =D 1 eun + O(£)en ~
// uz D (0(—5)) D™ ( ) dudt
|r—(t—D)| Iz (1+[Vzp]? — )2

We distinguish between the following cases:

5The extra -1 comes from the weight in || - %!
wnd
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(itia.1): t < t. In this case, we have u > t on the support of the integrand,
and so we can bound this contribution by

t
SO [OSD S Dl i (Rnap 0 <<= G
0 |B]<lasz|+2

if we use the already bootstrapped energy bounds.
(iiia.2): t > t. Here we write
Cpp = ,—tv[l"ls — peglu

Then we get (for [as| + |as| < § +2)

=9 1o a, 1 s Ew"'o(l)
T e ) P 7 dud]

—op B % (1+ Vool — )}
< / A-D7[ Y DM, +O-D Y D%, JdE
0 1<|8|< |as|+1 1<|BI< s ] +2
t _ DBl e ~ DPe =
—1 -2 1  —
1 /Ou—t) DI e P S DD DI b PIREL
161<]as| 181<]as|+1

< (Kro)t ™ Hlogt)t® < (Kko)t 2,0 <t < A — Cy,

where in the last step we use the already bootstrapped energy bounds.

(#1ib) Finally, we also treat the contribution of the term

ro3 / / 3 Do (O 1 az Ep€up — EtCip
u (L)) pes ) dud?
7= p (1+|Vagl? —})2
We use the same case distinction as above:
(i1ib.1): t < t. We have p 2 t. Here again we have to use the null-structure (3.34),
i. e. write

|Da3( EuEup — Et€ip _ )‘ < DﬁlFsD%I‘gu
2 _ 2\3/1~ 2 _ 72
L+ Va9l =2 oy eigaictan) 115~ T
Then we can bound the above integral expression by
— > _ S5 1
<3 > ||D511“5|\Lzow ID%Tey 2, dE S (Kro)*t >+ (logt)=

0
|B11+|B21 <& +2

< (Kro)t™?

(i4ib.2): t > t. If we further restrict to |u — 2| > t2, we can argue exactly as before
(one only gains t~'+29 which is enough). Thus assume now |u? — #2| < t2, whence
p ~ t. We further distinguish between |p? — 2| > #1791 and |p? — 2| < t*=% In
the former case, one infers for the integral above the bound

1

< (Kko)2t 712000 « (Kg)t ™2
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provided 8, §, are small enough. On the other hand, if we restrict to ¢ > ¢, |u? —£2| <

1791 via a cutoff 3, we obtain without using the null-structure (and restricting to
o] + Jas| < & +2)

t pr4(t—1) _
r_% ’ / / X3M%Da2 (O(l))Das ( EnCup — EtCtp ) dudﬂ
0 J]|r—(

o) H (1+|Va0]? —e3)?
t
— ~ 5 _
S EHY D%, Y D%, ) d
0 Bl<Y 18]< o +1

t
5 (Kﬂo)ztil/ /{67%7% d/tv<< (Kﬂo)tié
0

provided d; > 24; we have used Cauchy-Schwarz with respect to p. This com-
pletes estimating the contribution of the second term of (3.13), and the remaining
contributions from (3.14), (3.15) are handled similarly.

O

O
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