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Stable self-similar blow up for energy subcritical wave

equations
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Abstract. We consider the semilinear wave equation

∂2
t ψ − ∆ψ = |ψ|p−1ψ

for 1 < p ≤ 3 with radial data in R
3. This equation admits an explicit spatially

homogeneous blow up solution ψT given by

ψT (t, x) = κp(T − t)
− 2

p−1

where T > 0 and κp is a p-dependent constant. We prove that the blow up

described by ψT is stable against small perturbations in the energy topology.
This complements previous results by Merle and Zaag. The method of proof
is quite robust and can be applied to other self-similar blow up problems as
well, even in the energy supercritical case.
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1. Introduction

We study the Cauchy problem

(1.1)

{

∂2
t ψ − ∆ψ = |ψ|p−1ψ
ψ[0] = (f, g)

for ψ : [0,∞) × R
3 → R and 1 < p ≤ 3. The associated energy reads

E(ψ(t, ·), ψt(t, ·)) =
1

2

∫

R3

(

|ψt(t, x)|2 + |∇xψ(t, x)|2
)

dx− 1

p+ 1

∫

R3

|ψ(t, x)|p+1dx.

Furthermore, Eq. (1.1) is invariant under the scaling transformation

ψ(t, x) 7→ ψλ(t, x) := λ−
2

p−1ψ(t/λ, x/λ)

for λ > 0 and the energy scales according to

E(ψλ(t, ·), ∂tψλ(t, ·)) = λ−
5−p

p−1E(ψ(t/λ, ·), ψt(t/λ, ·)).
Thus, Eq. (1.1) is energy subcritical if 1 < p < 5, critical if p = 5 and supercritical
if p > 5. Note, however, that the usual blow up heuristics (energy conservation
prevents the solution from shrinking to ever smaller scales in the subcritical case)
do not apply here since the energy is not positive definite.

Local well-posedness of Eq. (1.1) in H1(R3) × L2(R3) follows by standard ar-
guments (use Duhamel’s formula and Sobolev embedding to set up a contraction
scheme). However, Eq. (1.1) is not globally well-posed and it is well-known that
initial data with negative energy lead to singularity formation in finite time [10].
More explicitly, one may look for self-similar solutions which are by definition in-
variant under the natural scaling. A particularly simple example of this type is
obtained by neglecting the Laplacian altogether and solving the remaining ODE in
t which yields the solution

ψT (t, x) = κ
1

p−1

0 (T − t)−
2

p−1

where T > 0 and κ0 = 2(p+1)
(p−1)2 . We refer to ψT as the fundamental self-similar

solution. Although ψT is homogeneous in space, by finite speed of propagation it
can still be used to construct compactly supported smooth initial data that lead to
blow up at time t = T . In fact, one expects that Eq. (1.1) admits many self-similar
blow up solutions, even in the radial case. At least for p = 3 this was proved
by Bizoń et. al. [1] (there are similar results for p ≥ 7 [3]). We remark that the
situation for the corresponding problem in one space dimension is fundamentally
different since in this case there exists a unique (up to symmetries) self-similar blow
up solution.

In order to understand the dynamics of Eq. (1.1) it is important to analyse
possible blow up scenarios. In two remarkable papers [11], [12] Merle and Zaag

proved that any blow up solution of Eq. (1.1) blows up at the rate (T − t)−
2

p−1 .
However, the precise shape of the blow up profile depends on the data. Numerical
work by Bizoń, Chmaj and Tabor [2] suggests that the blow up described by ψT

is the “generic” one. To be more precise, they observe in their simulations that
the future development of “generically” chosen radial blow up data converges to
ψT locally near the center of spherical symmetry. In the present paper we analyse
the stability of ψT and obtain the following result, see Theorem 1.2 below for the
precise formulation.
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Theorem 1.1 (main result, qualitative formulation). There exists an open set
(in the energy topology) of radial data that lead to blow up via ψT . In other words,
the blow up described by ψT is stable.

Here, “energy topology” refers to the topology generated by the energy of the
free wave equation. In fact, we use a slight modification thereof which has better
local behavior, see below. Before going into more details, let us briefly comment on
possible extensions of our result. First of all, the restriction to radial data is only
technical and can be quite easily removed. However, since the nonradial case is not
expected to reveal any new interesting phenomena, we stick to radial data so as
not to obscure the exposition by too many technicalities. A more important aspect
concerns the admissible values of p. It should be possible to extend our result to
the full subcritical regime 1 < p < 5 with some modifications. For instance, it is
necessary to require slightly more regularity (e.g. of Strichartz type) if 3 < p < 5 in
order to control the nonlinearity. This is reminiscent of the standard well-posedness
theory for semilinear wave equations and we will pursue this matter elsewhere. We
even claim that the stability of ψT holds true in the full supercritical regime p ≥ 5
albeit in a topology significantly stronger than the energy, cf. [7], [6] for analogous
results on supercritical wave maps.

In a certain sense our work is complementary to the results of Merle and Zaag
[12]. In their approach they consider any blow up solution whereas our method is
perturbative near ψT . Consequently, the strength of their result lies in its general-
ity: it is a statement about all possible blow up scenarios. However, it is not true
that every blow up solution converges to ψT since there exist many self-similar pro-
files. We remark that the situation in the one dimensional case is entirely different
due to the uniqueness of the self-similar solution. As a consequence, the Merle-Zaag
method even yields profile convergence for the problem in R1+1 [13]. Furthermore,
a number of beautiful results emerged from this approach, see, e.g. [15], [14], [16],
[4].

Our method of proof follows essentially our work on the wave maps problem [7],
[6]. However, there are important differences. First of all, the problem at hand is
energy subcritical and this allows us to work in the energy topology whereas for the
wave maps problem we had to require more regularity. Furthermore, the present
result is completely rigorous and there is no need for any numerical input as was the
case in [6]. This is because the nonself-adjoint spectral problem associated to the
linear stability of ψT can be solved explicitly in terms of hypergeometric functions.
Finally, we have improved the method in order to avoid one additional degree
of differentiability which was still necessary in [6]. Consequently, the motivation
for this paper is in fact twofold: First, our result is intended to complement the
work of Merle and Zaag in order to obtain a fairly satisfactory description of the
blow up behavior of Eq. (1.1). Second, and somewhat more important, we wanted
to demonstrate the wide applicability of our methods developed in [7] and [6].
Thus, the paper at hand is also supposed to have an expository character where
our method is presented in the simplest possible setting, avoiding most of the
technicalities which one has to deal with in more complicated situations.

Our approach is functional analytic. We first introduce new coordinates adapted
to self-similarity and linearize the equation around the solution ψT . The resulting
linear problem involves a highly nonself-adjoint operator (due to the change of co-
ordinates) and it is therefore studied by semigroup methods. This yields the linear
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stability of ψT . In fact, this stability is modulo the time translation symmetry of
the problem which manifests itself in the form of an unstable mode of the linearized
operator. We remove this instability by a Riesz projection. The nonlinear stability
is then proved by a fixed point argument where we have to take into account the
instability caused by the symmetry. In order to deal with this problem we employ
an infinite-dimensional version of the Lyapunov-Perron method from dynamical
systems theory: we force nonlinear stability by modifying the data. In a last step
we undo this modification by shifting the blow up time.

1.1. Formulation of the Cauchy problem and the main result. We
restrict ourselves to radial solutions and study the initial value problem in the
backward lightcone CT of the blow up point (T, 0) which is defined by

CT := {(t, r) : t ∈ (0, T ), r ∈ [0, T − t]}.
More precisely, we consider

(1.2)

{

ψtt(t, r) − ψrr(t, r) − 2
rψr(t, r) − |ψ(t, r)|p−1ψ(t, r) = 0 for (t, r) ∈ CT

ψ(0, r) = f(r), ψt(0, r) = g(r) for r ∈ [0, T ]

with given initial data (f, g). We are interested in the stability of ψT under small
perturbations ϕ. Thus, we insert the ansatz ψ = ψT +ϕ into Eq. (1.2) and expand
the nonlinearity according to

|ψT + ϕ|p−1(ψT + ϕ) = |ψT |p−1ψT + p|ψT |p−1ϕ+NT (ϕ),

where NT denotes the nonlinear remainder. Since ψT (t, r) > 0 for all (t, r) ∈ CT

we obtain

(1.3)

{

ϕtt − ϕrr − 2
rϕr − p(ψT )p−1ϕ−NT (ϕ) = 0 in CT

ϕ(0, r) = f(r) − ψT (0, r), ϕt(0, r) = g(r) − ψT
t (0, r) for r ∈ [0, T ].

1.2. Energy norm. We want to study the Cauchy problem in a backward
lightcone and, since our approach is perturbative, we need a local energy norm
derived from the conserved energy associated to the free equation

(1.4) ϕtt − ϕrr −
2

r
ϕr = 0,

which is given by
∫ ∞

0

r2[ϕt(t, r)
2 + ϕr(t, r)

2]dr.

However, this does not define such a norm due to the lack of a boundary condition
for ϕ at r = 0. By integration by parts (and assuming sufficient decay at infinity)
it can be easily seen that the above expression for the energy is equivalent to

(1.5) E(ϕ) =

∫ ∞

0

r2ϕt(t, r)
2 + [rϕr(t, r) + ϕ(t, r)]2dr.

Another way of motivating this is to define ϕ̃ := rϕ, such that Eq. (1.4) transforms
to the 1 + 1 wave equation

ϕ̃tt − ϕ̃rr = 0

with conserved energy
∫ ∞

0

ϕ̃t(t, r)
2 + ϕ̃r(t, r)

2dr.
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Writing this expression in terms of the original field yields (1.5). For (f, g) ∈
C1[0, R] × C[0, R], R > 0 we define

(1.6) ‖(f, g)‖2
E(R) :=

∫ R

0

|rf ′(r) + f(r)|2dr +

∫ R

0

r2|g(r)|2dr.

rf ′(r) + f(r) = 0 implies f(r) = c
r and the requirement f ∈ C1[0, R] yields c = 0

such that ‖ · ‖E(R) defines a norm on C1[0, R] × C[0, R]. We consider the expres-
sion (1.6) in the backward lightcone of the blow up point (T, 0) and insert the
fundamental self–similar solution to obtain

(1.7) ‖(ψT (t, ·), ψT
t (t, ·))‖E(T−t) = Cp(T − t)−

5−p

2(p−1)

where Cp > 0 denotes a p-dependent constant. Evidently, as t→ T−, this quantity
blows up in the energy subcritical case, i.e., for 1 < p < 5.

Theorem 1.2 (main result, quantitative version). Fix 1 < p ≤ 3 and ε > 0.
Let (f, g) be radial initial data with

‖(f, g) − (ψ1(0, ·), ψ1
t (0, ·))‖E( 3

2 )

sufficiently small. Then there exists a T > 0 close to 1 such that the Cauchy problem

(1.8)

{

∂2
t ψ − ∆ψ = |ψ|p−1ψ
ψ[0] = (f, g)

has a unique radial solution ψ : CT → R which satisfies

(T − t)
5−p

2(p−1) ‖(ψ(t, ·), ψt(t, ·)) − (ψT (t, ·), ψT
t (t, ·))‖E(T−t) ≤ Cε(T − t)|ωp|−ε

for all t ∈ [0, T ) where ωp := max
{

−1, 1
2 − 2

p−1

}

and Cε > 0 is a constant which

depends on ε.

2. Transformation to a first order system and similarity coordinates

2.1. First–order formulation. By setting ϕ̃(t, r) := rϕ(t, r), Eq. (1.3) trans-
forms into

(2.1)

{

ϕ̃tt − ϕ̃rr − p(ψT )p−1ϕ̃− rNT ( ϕ̃
r ) = 0 in CT

ϕ̃(0, r) = r[f(r) − ψT (0, r)], ϕ̃t(0, r) = r[g(r) − ψT
t (0, r)] for r ∈ [0, T ]

together with the boundary condition ϕ̃(t, 0) = 0 for all t. We rewrite Eq. (2.1) as
a first–order system by introducing new variables

ϕ1 = (T − t)
2

p−1 ϕ̃t, ϕ2 = (T − t)
2

p−1 ϕ̃r.

Thanks to the boundary condition we have ϕ̃(t, r) = (T − t)−
2

p−1
∫ r

0
ϕ2(t, r

′)dr′.
Note that the nonlinearity transforms according to

NT

(

(T − t)−
2

p−1 r−1 ∫ ϕ2

)

= (T − t)−
2p

p−1N(r−1 ∫ ϕ2)

where
∫

ϕ2 is shorthand for
∫ r

0
ϕ2(t, r

′)dr′ and

(2.2) N(x) = |κ
1

p−1

0 + x|p−1(κ
1

p−1

0 + x) − κ
p

p−1

0 − pκ0x.
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Thus, Eq. (2.1) reads


























∂tϕ1 = ∂rϕ2 − 2
p−1 (T − t)−1ϕ1 + pκ0(T − t)−2

∫

ϕ2

+r(T − t)−2N(r−1
∫

ϕ2)
∂tϕ2 = ∂rϕ1 − 2

p−1 (T − t)−1ϕ2







in CT

ϕ1(0, r) = T
2

p−1 r
[

g(r) − ψT
t (0, r)

]

ϕ2(0, r) = T
2

p−1 [rf ′(r) + f(r) − ψT (0, r)]

}

for r ∈ [0, T ]

2.2. Similarity coordinates. We transform the system to similarity coordi-
nates (τ, ρ), which are given by

τ = − log(T − t), ρ =
r

T − t
.

The cone CT gets mapped to the infinite cylinder ZT := {(τ, ρ) : τ > − logT, ρ ∈
[0, 1]} and by setting

φj(τ, ρ) := ϕj(T − e−τ , e−τρ)

for j = 1, 2 we obtain

(2.3)



































∂τφ1 = −ρ∂ρφ1 + ∂ρφ2 − 2
p−1φ1 + pκ0

∫ ρ

0 φ2(τ, s)ds

+ρN(ρ−1
∫ ρ

0
φ2(τ, s)ds)

∂τφ2 = −ρ∂ρφ2 + ∂ρφ1 − 2
p−1φ2







in ZT

φ1(− logT, ρ) = ρ

[

T
p+1
p−1 g(Tρ)− 2

p−1κ
1

p−1

0

]

φ2(− logT, ρ) = T
2

p−1 [Tρf ′(Tρ) + f(Tρ)]− κ
1

p−1

0











for ρ ∈ [0, 1].

Tracing back the above transformations, the original field ψ as well as its time-
derivative can be reconstructed according to

(2.4)
ψ(t, r) = ψT (t, r) + (T − t)−

2
p−1 r−1

∫ r

0

φ2(− log(T − t), r′

T−t )dr
′,

ψt(t, r) = ψT
t (t, r) + (T − t)−

2
p−1 r−1φ1(− log(T − t), r

T−t ).

Note that most of the expressions we are going to define below will depend on p.
However, for the sake of readability we will not indicate this dependence explicitly,
but consider p to be fixed, where we restrict ourselves to 1 < p ≤ 3.

3. Linear Perturbation Theory

In this section we consider the linearized problem

(3.1)































∂τφ1 = −ρ∂ρφ1 + ∂ρφ2 − 2
p−1φ1 + pκ0

∫ ρ

0
φ2(τ, s)ds

∂τφ2 = −ρ∂ρφ2 + ∂ρφ1 − 2
p−1φ2

}

in ZT

φ1(− logT, ρ) = ρ

[

T
p+1
p−1 g(Tρ) − 2

p−1κ
1

p−1

0

]

φ2(− logT, ρ) = T 2/(p−1) [Tρf ′(Tρ) + f(Tρ)]− κ
1

p−1

0











for ρ ∈ [0, 1]

which has already been studied in [5]. Nevertheless, in order to present a consistent
picture we summarize known results and supplement them by some new aspects
which will be important for the nonlinear theory (see Lemma 3.7).
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3.1. Well-posedness of the linearized equation. Let H := L2(0, 1) ×
L2(0, 1) with the usual inner product. We define operators (L̃0,D(L̃0)) and L′ ∈
B(H) by

D(L̃0) := {u ∈ C1[0, 1] × C1[0, 1] : u1(0) = 0},

L̃0u(ρ) :=

(

u′2(ρ) − ρu′1(ρ) − 2
p−1u1(ρ)

u′1(ρ) − ρu′2(ρ) − 2
p−1u2(ρ)

)

and

L′u(ρ) :=

(

pκ0

∫ ρ

0
u2(s)ds
0

)

where u = (u1, u2)
T . It is easy to see that L′ is a compact operator, which will

play an important role later on.

Lemma 3.1. The operator L̃0 is closable and its closure L0 generates a strongly
continuous one–parameter semigroup S0 : [0,∞) → B(H) satisfying ‖S0(τ)‖ ≤ eω̃pτ

for all τ ≥ 0 and ω̃p := 1
2 − 2

p−1 .

Proof. The claim is a consequence of the Lumer-Phillips Theorem (see [8],
p. 83, Theorem 3.15). Indeed, a simple integration by parts yields the estimate

Re(L̃0u|u) ≤
(

1
2 − 2

p−1

)

‖u‖2

and 1
2 − 2

p−1 < 0. Furthermore, for λ := 1− 2
p−1 > ω̃p the range of λ− L̃0 is dense

in H. This follows from the very same calculation as in the proof of Lemma 2 in
[5]. Since L̃0 is densely defined, the Lumer-Phillips Theorem applies. �

Corollary 3.2. The spectrum of L0 is contained in a left half plane,

σ(L0) ⊂ {λ ∈ C : Reλ ≤ ω̃p} ,
with ω̃p = 1

2 − 2
p−1 and the resolvent of L0 satisfies

‖RL0(λ)‖ ≤ 1

Reλ− ω̃p

for all λ ∈ C with Reλ > ω̃p.

Proof. The structure of the spectrum as well as the resolvent estimate follow
by standard results of semigroup theory (see [8], p. 55, Theorem 1.10). �

The next corollary is a consequence of the Bounded Perturbation Theorem (see
[8], p. 158).

Corollary 3.3 (well-posedness of the linearized equation). The operator L :=
L0 + L′, D(L) := D(L0) generates a strongly continuous one–parameter semigroup
S : [0,∞) → B(H) satisfying

‖S(τ)‖ ≤ e(ω̃p+pκ0)τ

for all τ ≥ 0 and ω̃p = 1
2 − 2

p−1 . In particular, the Cauchy problem
{

d
dτ Φ(τ) = LΦ(τ) for τ > − logT
Φ(− logT ) = u

has a unique solution given by

Φ(τ) = S(τ + logT )u

for u ∈ D(L0) and all τ ≥ − logT .
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3.2. Properties of the generator. We obtain a more explicit characteriza-
tion of D(L) in order to be able to describe the spectrum of L.

Lemma 3.4. Let u ∈ D(L). Then u ∈ C[0, 1) × C[0, 1) and u1(0) = 0. Fur-
thermore, for f ∈ H the equation (λ− L)u = f implies

u1(ρ) = ρu2(ρ) + (λ + 2
p−1 − 1)

∫ ρ

0

u2(s)ds−
∫ ρ

0

f2(s)ds

and
(3.2)

−(1 − ρ2)u′′(ρ) + 2
(

λ+ 2
p−1

)

ρu′(ρ) +
((

λ+ 2
p−1

)(

λ+ 2
p−1 − 1

)

− pκ0

)

u(ρ)

= f1(ρ) + ρf2(ρ) + (λ+ 2
p−1 )

∫ ρ

0

f2(s)ds

in a weak sense, where u ∈ H2
loc(0, 1) ∩ C[0, 1] ∩ C1[0, 1) is defined by u(ρ) :=

∫ ρ

0 u2(s)ds.

Proof. Let u ∈ D(L) = D(L0). By definition there exists a sequence (uj) ⊂
D(L̃0) ⊂ C1[0, 1]×C1[0, 1] such that uj → u and L̃0uj → L0u in H. By combining
the expressions for the individual components in an appropriate way we infer that
(1 − ρ2)u′1j and (1 − ρ2)u′2j are convergent sequences in L2(0, 1). Thus u1, u2 ∈
H1(0, 1−ε) →֒ C[0, 1−ε] for any ε ∈ (0, 1). This guarantees the boundary condition
u1(0) = 0.

Let f ∈ H and λ ∈ C. Then (λ− L)u = f implies

(λ+ 2
p−1 )u1(ρ) + ρu′1(ρ) − u′2(ρ) − pκ0

ρ

∫
0
u2(s)ds = f1(ρ)

(λ+ 2
p−1 )u2(ρ) + ρu′2(ρ) − u′1(ρ) = f2(ρ)

in a weak sense. Thanks to the boundary condition we obtain from the second
equation that

u1(ρ) = ρu2(ρ) + (λ+ 2
p−1 − 1)

∫ ρ

0

u2(s)ds−
∫ ρ

0

f2(s)ds.

Inserting this into the first equation yields

−(1 − ρ2)u′2(ρ) + 2
(

λ+ 2
p−1

)

ρu2(ρ) +
((

λ+ 2
p−1

)(

λ+ 2
p−1 − 1

)

− pκ0

) ρ

∫
0
u2(s)ds

= f1(ρ) + ρf2(ρ) +
(

λ+ 2
p−1

) ρ

∫
0
f2(s)ds.

We set u(ρ) :=
∫ ρ

0 u2(s)ds and obtain Eq. (3.2). Finally, u2 ∈ L2(0, 1) implies

u ∈ H1(0, 1) →֒ C[0, 1] and u ∈ D(L) yields u ∈ H2
loc(0, 1) ∩ C1[0, 1). �

In order to improve the rough growth estimate given in Corollary 3.3, we analyse
the spectrum of the generator. The next two Lemmas characterize the spectral
properties of the generator L sufficiently accurate.

Lemma 3.5. For the spectrum σ(L) of the generator L we have

σ(L) ⊂ {λ ∈ C : Reλ ≤ max{ω̃p,−1}} ∪ {1}
where ω̃p = 1

2 − 2
p−1 .
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Proof. Set M := {λ ∈ C : Reλ ≤ max{ω̃p,−1}} ∪ {1}. Let λ ∈ σ(L). If
Reλ ≤ ω̃p then λ ∈ M . So let us assume that Reλ > ω̃p. Then, by Corollary 3.2,
λ ∈ σ(L) \ σ(L0) and the identity λ − L = [1 − L′RL0(λ)](λ − L0) together with
the spectral theorem for compact operators imply that λ ∈ σp(L). Thus, there
exists a nontrivial u ∈ D(L) such that (λ − L)u = 0. By Lemma 3.4 this implies
the existence of a weak solution u of Eq. (3.2) with right hand side equal to zero.
Recall that u ∈ H1(0, 1) and u(0) = 0. We transform Eq. (3.2) by substituting

ρ 7→ z := ρ2 to obtain the hypergeometric equation (recall that κ0 = 2(p+1)
(p−1)2 )

(3.3) z(1 − z)v′′(z) + [c− (a+ b+ 1)z]v′(z) − abv(z) = 0

where v(z) := u(
√
z) and the parameters are given by a = 1

2 (λ−2), b = 1
2 (λ+ p+3

p−1 ),

c = 1
2 . For λ 6= 1 − 2

p−1 a fundamental system around z = 1 is given by {v1, ṽ1},
v1(z) = 2F1(a, b; a+ b+ 1 − c; 1 − z) and ṽ1(z) = (1 − z)c−a−b

2F1(c − a, c− b; c+
1 − a− b; 1 − z) where 2F1 is the standard hypergeometric function, see e.g., [17].
The exponent c − a − b = 1 − 2

p−1 − λ vanishes for λ = 1 − 2
p−1 and in this case

one solution is still given by v1 and the second one diverges logarithmically for
z → 1. Since we assume Reλ > 1

2 − 2
p−1 , v must be a multiple of v1 for u to be

in H1(0, 1). Around z = 0 there is a fundamental system given by {v0, ṽ0}, where
v0(z) := z1−c

2F1(a+1−c, b+1−c; 2−c; z) and ṽ0(z) := 2F1(a, b; c; z). Thus, there
exist constants c1, c2 such that v1 = c1ṽ0 + c2v0. In order to satisfy the boundary
condition v(0) = 0, the coefficient c1, which can be given in terms of the Gamma
function [17]

c1 =
Γ(a+ b+ 1 − c)Γ(1 − c)

Γ(a+ 1 − c)Γ(b + 1 − c)
,

must vanish. Consequently, c1 = 0 if and only if a + 1 − c or b + 1 − c is a pole,
which yields 1

2 (λ − 1) = −k or λ
2 + p+1

p−1 = −k for a k ∈ N0. This implies that λ is

real and

λ ∈
{

ω ∈ R : ω > ω̃p ∧
(

ω = 1 − 2k ∨ ω = −2k − 2p+2
p−1

)

, k = 0, 1, . . .
}

.

Since 1 < p ≤ 3 we have ω̃p ≤ − 1
2 . If ω̃p ≥ −1 then the only possibility is λ = 1.

If ω̃p < −1 then either λ = 1 or λ ≤ −1. In any case we conclude that λ ∈M . �

Lemma 3.6. The eigenvalue 1 ∈ σp(L) has geometric multiplicity equal to one.
The associated geometric eigenspace is spanned by

(3.4) g(ρ) :=

( p+1
p−1ρ

1

)

.

In the following g will be referred to as the symmetry mode.

Proof. Note that g ∈ D(L) and a straightforward calculation yields (1−L)g =
0. In particular by Lemma 3.4 and the definition of κ0 we infer that

(3.5) g1(ρ) = ρg2(ρ) + 2
p−1

∫ ρ

0

g2(s)ds

and

(3.6) −(1 − ρ2)g′′(ρ) + 2(p+1)
p−1 ρg′(ρ) − 2(p+1)

p−1 g(ρ) = 0



72 ROLAND DONNINGER AND BIRGIT SCHÖRKHUBER

for g(ρ) :=
∫ ρ

0
g2(s)ds = ρ. Suppose there is another eigenfunction g̃ for λ = 1.

Then this corresponds to another (weak) solution g̃(ρ) :=
∫ ρ

0
g̃2(s)ds of Eq. (3.6).

A fundamental system of Eq. (3.6) is given by {h0, h1}, where h0(ρ) = ρ and

h1(ρ) = (1 − ρ2)−
2

p−1 h̃1(ρ)

with h̃1(ρ) = 2F1(1,
1
2 − p+1

p−1 ; 1
2 ; ρ2) and h̃1(1) 6= 0 for 1 < p ≤ 3. However, by

Lemma 3.4, g̃ ∈ C[0, 1] and thus it must be a multiple of h0 = g. Therefore, there
exists a constant c ∈ C such that

∫ ρ

0

g̃2(s)ds = c

∫ ρ

0

g2(s)ds

and we infer that g̃2 = cg2. Eq. (3.5) implies g̃1 = cg1 and we conclude that
g̃ = cg. �

3.3. Spectral projection and linear time evolution restricted to the
stable subspace. The symmetry mode is an explicit example of an exponentially
growing solution of the linearized equation. However, its origin will only become
clear in the course of the nonlinear perturbation theory. We will see that it is due
to the time translation invariance of the problem and thus, we do not consider this
instability as a “physical” one. The aim of this section is to remove the symmetry
eigenvalue λ = 1 via a Riesz projection and to obtain a growth estimate for the
solution of the linearized equation on the stable subspace. We define a projection
operator

(3.7) P =
1

2πi

∫

γ

RL(λ)dλ,

where γ is a circle that lies entirely in ρ(L) and encloses the eigenvalue 1 in such
a way that no other spectral points of L lie inside γ. The projection P commutes
with L in the sense that PL ⊂ LP and as a consequence, P also commutes with
the semigroup generated by L, i.e., PS(τ) = S(τ)P for τ ≥ 0. We define subspaces
M = PH and N = (1−P )H which decompose the operator L into parts living on
M and N , respectively. Let LN be defined by LNu := Lu with D(LN ) = D(L)∩N
(LM is then defined analogously). Since N and M are closed subspaces we can
regardLN and LM as linear operators on the Hilbert spaces N and M, respectively,
with spectra σ(LM) = {1} and σ(LN ) = σ(L)\{1}. In the following we call M
the “unstable subspace”. The operator L is not self–adjoint and therefore, the next
result is nontrivial and crucial for the nonlinear perturbation theory.

Lemma 3.7. The unstable subspace M is spanned by the symmetry mode, i.e.,
PH = 〈g〉 and the algebraic multiplicity of 1 ∈ σp(L) is one.

Proof. The case dimM = ∞ can be ruled out by an abstract argument: if
dimM = ∞ then, by [9], p. 239, Theorem 5.28, 1 would belong to the essential
spectrum of L which is stable under compact perturbations (see [9] p. 244, Theorem
5.35). However, 1 6∈ σ(L0) and this yields a contradiction. We conclude that LM is
in fact a finite-dimensional operator. Since 1 is an eigenvalue of LM and, according
to to Lemma 3.6, the corresponding geometric eigenspace is spanned by g, we obtain
g ∈ M and thus, 〈g〉 ⊂ M.

It remains to prove the reverse inclusion. Note that (1−LM) is nilpotent since
0 is the only eigenvalue, i.e., there exists an m ∈ N such that (1 − LM)mu = 0 for
arbitrary u ∈ M. If m = 1 then M ⊂ ker(1−LM) = 〈g〉 and we are done. Suppose
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thatm ≥ 2. Then there exists a nontrivial v ∈ rg(1−LM) such that (1−LM)v = 0,
i.e., v ∈ ker(1 − LM) and v must therefore be a multiple of the symmetry mode.
This shows that there exists a u ∈ D(LM) with (1 − LM)u = cg. We will show
that this leads to a contradiction. We set c = 1 without loss of generality. Suppose
there exists a function u in D(L) such that (1 − L)u = g. Then, by Lemma 3.4,

(3.8) −(1 − ρ2)u′′(ρ) + 2(p+1)
p−1 ρu′(ρ) − 2(p+1)

p−1 u(ρ) = g(ρ)

for u(ρ) :=
∫ ρ

0 u2(s)ds and g(ρ) := g1(ρ) + ρg2(ρ) + p+1
p−1 ∫

ρ
0 g2(s)ds = 3p+1

p−1 ρ. For

the homogeneous equation we have the fundamental system {h0, h1} introduced in

the proof of Lemma 3.6, where h0(ρ) = ρ and h1(ρ) = (1 − ρ2)−
2

p−1 h̃1(ρ) with h̃1

continuous on [0, 1] and h̃1(0) 6= 0. The Wronskian is given by

W (h0, h1) = −(1 − ρ2)
− p+1

p−1

and thus, a solution of the inhomogeneous equation must be of the form

u(ρ) = c0h0(ρ) + c1h1(ρ) − h0(ρ)

∫ ρ

ρ0

h1(s)g(s)(1 − s2)
2

p−1 ds

+h1(ρ)

∫ ρ

ρ1

h0(s)g(s)(1 − s2)
2

p−1 ds

for some constants c0, c1 ∈ C and ρ0, ρ1 ∈ [0, 1]. The boundary condition at ρ = 0

implies c1 = −
∫ 0

ρ1
h0(s)g(s)(1−s2)

2
p−1 ds and inserting the definitions of h0, h1 and

g yields

u(ρ) = c0ρ− 3p+1
p−1 ρ

∫ ρ

ρ0

sh̃1(s)ds+ 3p+1
p−1 (1 − ρ2)−

2
p−1 h̃1(ρ)

∫ ρ

0

s2(1 − s2)
2

p−1 ds.

Since u belongs to C[0, 1] (Lemma 3.4), we must have
∫ 1

0
s2(1 − s2)

2
p−1 ds = 0.

However, this is impossible since the integrand is strictly positive for all s ∈ (0, 1).
�

In order to improve the growth estimate in Lemma 3.3 we apply a well-known
theorem by Gearhart, Prüss and Greiner. To this end we need the following result,
which states that the resolvent is uniformly bounded in some right half plane. In
the following we set Ha := {λ ∈ C : Reλ ≥ a} for a ∈ R.

Lemma 3.8. For any ε > 0 there exist constants c1, c2 > 0 such that

‖RL(λ)‖ ≤ c1

for all λ ∈ Hω̃p+ε with |λ| ≥ c2.

Proof. Fix ε > 0 and let λ ∈ Hω̃p+ε where λ 6∈ {1 − 2
p−1 , 1}. We use the

identity

RL(λ) = RL0(λ)[1 − L′RL0(λ)]
−1

to obtain uniform bounds on the resolvent for |λ| large. By definition of L′ we have

L′RL0(λ)f =

(

pκ0K[RL0(λ)f ]2
0

)
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where K : L2(0, 1) → L2(0, 1) is defined by Ku(ρ) =
∫ ρ

0
u(s)ds. For f ∈ H consider

the equation (λ − L0)u = f . Its solution is given by u = RL0(λ)f . Lemma 3.4
yields

[RL0(λ)f ]1(ρ) = (λ− 1 + 2
p−1 )K[RL0(λ)f ]2(ρ) + ρ[RL0(λ)f ]2(ρ) −Kf2(ρ).

The estimate in Lemma 3.2 implies

‖[RL0(λ)f ]j‖L2(0,1) ≤ ‖RL0(λ)f‖ ≤ ‖f‖
|Reλ− ω̃p|

for j = 1, 2 and we obtain

‖K[RL0(λ)f ]2‖L2(0,1) .
‖f‖

|λ− 1 + 2
p−1 |

.

Thus, for |λ| sufficiently large, the Neumann series

[1 − L′RL0(λ)]
−1 =

∞
∑

k=0

[L′RL0(λ)]
k

converges and the claim follows. �

We conclude the linear perturbation theory with an estimate of the linear evo-
lution on the stable subspace.

Proposition 3.9. Let P be the spectral projection defined in Eq. (3.7) and set

ωp := max
{

−1, 1
2 − 2

p−1

}

.

Then, for any ε > 0, there exists a constant Cε > 0 such that the semigroup S(τ)
given in Corollary 3.3 satisfies

(3.9) ‖S(τ)(1 − P )f‖ ≤ Cεe
(−|ωp|+ε)τ‖(1 − P )f‖

for all τ ≥ 0 and f ∈ H. Furthermore, S(τ)P f = eτP f .

Proof. The operator LN is the generator of the subspace semigroup S(τ)|N
and its resolvent is given by RL(λ)|N . The first estimate follows from the uniform
boundedness of the resolvent in Hωp

(Lemma 3.8) and the theorem by Gearhart,
Prüss and Greiner (see for example [8], p. 302, Theorem 1.11). The second assertion
follows from PH = 〈g〉 and the fact that g is an eigenfunction of the linear operator
L with eigenvalue 1. �

4. Nonlinear perturbation theory

4.1. Preliminaries. Now we turn to the full nonlinear problem. The follow-
ing two lemmas will be used frequently.

Lemma 4.1. If u ∈ L2(0, 1) then ũ, defined by ũ(ρ) := 1√
ρ

∫ ρ

0
u(s)ds, belongs to

L∞(0, 1) and satisfies
‖ũ‖L∞(0,1) ≤ ‖u‖L2(0,1).

Proof. First note that ρ 7→
∫ ρ

0
u(s)ds is a continuous function on [0, 1] for

u ∈ L2(0, 1). Using the Cauchy-Schwarz inequality we esimate

|ũ(ρ)| =

∣

∣

∣

∣

1√
ρ

ρ

∫
0
u(s)ds

∣

∣

∣

∣

≤ ‖u‖L2(0,1)

for ρ ∈ (0, 1]. Taking the essential supremum yields the claim. �
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We will also use Hardy’s inequality in the following form.

Lemma 4.2. For u ∈ L2(0, 1) we have

∫ 1

0

|
∫ ρ

0
u(s)ds|2
ρ2

dρ .

∫ 1

0

|u(ρ)|2dρ.

4.2. Estimates for the nonlinearity. From now on we restrict ourselves to
real–valued functions. We introduce a function n : R × [0, 1] → R defined by

n(x, ρ) := ρ

(

|κ
1

p−1

0 + x|p−1(κ
1

p−1

0 + x) − pκ0x− κ
p

p−1

0

)

,

cf. Eq. (2.2). It is easy to see that

|n(x, ρ)| .

{

ρ|x|2 |x| < 1
ρ|x|p |x| ≥ 1.

A convenient way to write this is |n(x, ρ)| . ρ|x|2〈x〉p−2 with the “japanese bracket”

〈x〉 :=
√

1 + |x|2. In the following we denote by B1 and B1 the open unit balls in
L2(0, 1) and H, respectively. To (formally) define the nonlinearity we introduce an
operator A : L2(0, 1) → L2(0, 1),

Au(ρ) :=
1

ρ

∫ ρ

0

u(s)ds.

An application of Hardy’s inequality shows that A is bounded. We set

N(u)(ρ) := n(Au(ρ), ρ).

Lemma 4.3. The operator N maps L2(0, 1) into L2(0, 1). Furthermore, there
exist constants c1, c2 > 0 such that for u, v ∈ B1

‖N(u)‖L2 ≤ c1‖u‖2
L2

and

‖N(u) −N(v)‖L2 ≤ c2(‖u‖L2 + ‖v‖L2)‖u− v‖L2 .

Proof. Note that for 1 < p ≤ 3 the function n defined as above is at least
once continuously differentiable with respect to x and we have the bound

|∂1n(x, ρ)| . ρ|x|〈x〉p−2

for all x ∈ R and ρ ∈ [0, 1] which, in particular, implies ∂1n(0, ρ) = 0 and hence,
N(0) = 0. By the fundamental theorem of calculus we infer that for x, y ∈ R

|n(x, ρ) − n(y, ρ)| ≤ |x− y|
∫ 1

0

|∂1n(y + h(x− y), ρ)|dh

. ρ|x− y|
∫ 1

0

|y + h(x− y)|〈y + h(x− y)〉p−2dh

. ρ|x− y|
{

|x| + |y| p ∈ (1, 2]
|x|〈x〉p−2 + |y|〈y〉p−2 p ∈ (2, 3]

.

Now we prove the estimate for the nonlinear operator N . The following argu-
ment works only for 1 < p ≤ 3, since for higher exponents the singular factors at
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ρ = 0 can no longer be controlled. For u, v ∈ L2(0, 1) we write ũ(ρ) :=
∫ ρ

0
u(s)ds

and ṽ(ρ) :=
∫ ρ

0
v(s)ds. We distinguish two cases. If p ∈ (1, 2] we readily estimate

‖N(u) −N(v)‖2
L2 =

∫ 1

0

|n(Au(ρ), ρ) − n(Av(ρ), ρ)|2dρ

.

∫ 1

0

ρ2|Au(ρ) −Av(ρ)|2(|Au(ρ)|2 + |Av(ρ)|2)dρ

. (‖ũ‖2
L∞ + ‖ṽ‖2

L∞)

∫ 1

0

|Au(ρ) +Av(ρ)|2dρ

. (‖u‖2
L2 + ‖v‖2

L2)‖u− v‖2
L2

by Lemma 4.1 and Hardy’s inequality. On the other hand, if p ∈ (2, 3], we proceed
similarly and obtain

‖N(u) −N(v)‖2
L2 .

∫ 1

0

ρ2|Au(ρ) −Av(ρ)|2(|Au(ρ)|2〈Au(ρ)〉2(p−2)

+ |Av(ρ)|2〈Av(ρ)〉2(p−2))dρ

.

∫ 1

0

ρ3−p|Au(ρ) −Av(ρ)|2

×
(

|ρ− 1
2 ũ(ρ)|2〈ρ− 1

2 ũ(ρ)〉2(p−2) + |ρ− 1
2 ṽ(ρ)|2〈ρ− 1

2 ṽ(ρ)〉2(p−2)
)

dρ

.
(

‖u‖2
L2〈‖u‖L2〉2(p−2) + ‖v‖2

L2〈‖v‖L2〉2(p−2)
)

‖u− v‖2
L2

again by Lemma 4.1 and Hardy’s inequality. Since N(0) = 0 we immediately
conclude the boundedness of N on L2(0, 1). In particular, we have ‖N(u)‖L2 .

‖u‖2
L2 for u ∈ B1. For u, v ∈ B1 the above estimates yield

‖N(u) −N(v)‖L2 . (‖u‖L2 + ‖v‖L2)‖u− v‖L2

as claimed. �

Finally for u = (u1, u2)
T ∈ H we define the vector valued nonlinearity by

N(u) :=

(

N(u2)
0

)

.

Lemma 4.4. The nonlinearity N maps H into H, N(0) = 0 and there exist
constants c1, c2 > 0 such that for u,v ∈ B1

‖N(u)‖ ≤ c1‖u‖2

and

‖N(u) − N(v)‖ ≤ c2(‖u‖ + ‖v‖)‖u− v‖.
Furthermore, N is Fréchet differentiable at 0 and DN(0) = 0.

Proof. For u,v ∈ B1 we apply the result of Lemma 4.3 to obtain

‖N(u) − N(v)‖2 = ‖N(u2) −N(v2)‖2
L2

. (‖u2‖2
L2 + ‖v2‖2

L2)‖u2 − v2‖2
L2

. (‖u‖2 + ‖v‖2)‖u− v‖2.
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This implies

‖N(u) − N(v)‖ . (‖u‖2 + ‖v‖2)
1
2 ‖u− v‖ . (‖u‖ + ‖v‖)‖u− v‖.

We have N(0) = 0 which implies ‖N(v)‖ . ‖v‖2. In particular, there exists a
constant c independent of v such that

‖N(v)‖
‖v‖ ≤ c‖v‖.

Since the left hand side vanishes in the limit v → 0, we infer that N is Fréchet
differentiable at zero with DN(0)=0. �

4.3. Abstract formulation of the nonlinear equation. We turn to the
full nonlinear problem and write Eq. (2.3) as an ordinary differential equation on
H. With the nonlinearity defined as above it reads

(4.1)

{

d
dτ Φ(τ) = LΦ(τ) + N(Φ(τ)) for τ > − logT
Φ(− logT ) = u

for Φ : [− logT,∞) → H and inital data u ∈ H. We rewrite the above system as
an integral equation,

Φ(τ) = S(τ + logT )u +

∫ τ

− log T

S(τ − τ ′)N(Φ(τ ′))dτ ′ for τ ≥ − logT,

i.e., we are looking for mild solutions of Eq. (4.1). In order to remove the dependence
of the equation on the blow up time T we introduce a new variable Ψ : [0,∞) → H
defined by

Ψ(τ) := Φ(τ − logT )

such that the above integral equation is now equivalent to

(4.2) Ψ(τ) = S(τ)u +

∫ τ

0

S(τ − τ ′)N(Ψ(τ ′))dτ ′ for τ ≥ 0.

We study this equation on a Banach space X defined as

X :=

{

Ψ ∈ C([0,∞),H) : sup
τ>0

eµpτ‖Ψ(τ)‖ <∞
}

with norm

‖Ψ‖X := sup
τ>0

eµpτ‖Ψ(τ)‖

where

µp := |ωp| − ε = min{1, 2
p−1 − 1

2} − ε,

cf. Proposition 3.9, where ε > 0 is arbitrary but fixed and without loss of generality
we assume ε so small that µp > 0. In the following, estimate (3.9) will be used
frequently, hence most of the constants will depend on ε. However, for notational
convenience we will only indicate this dependence in the proof of the main result.
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4.4. Global existence for corrected (small) initial data. We follow the
strategy of [6]. First we study the following equation,

(4.3) Ψ(τ) = S(τ)(1−P )u−
∫ ∞

0

eτ−τ ′

PN(Ψ(τ ′))dτ ′+
∫ τ

0

S(τ−τ ′)N(Ψ(τ ′))dτ ′.

This is the original equation modified by a correction term in order to suppress
the instability coming from the symmetry mode. We use a fixed point argument
to show existence of solutions of Eq. (4.3). In a further step we account for the
time translation symmetry of the problem and show that the correction can be
annihilated by adjusting the blow up time T (which is now encoded in the initial
data) such that we end up with a solution of Eq. (4.2). For δ > 0 we define Xδ ⊂ X
by

Xδ := {Ψ ∈ X : ‖Ψ‖X ≤ δ}.
Lemma 4.5. For 0 < δ < 1 there exist constants c1, c2 > 0 such that

‖N(Ψ(τ))‖ ≤ c1δ
2e−2µpτ

and

‖N(Ψ(τ)) − N(Φ(τ))‖ ≤ c2δe
−µpτ‖Ψ(τ) − Φ(τ)‖

for Φ,Ψ ∈ Xδ and τ > 0.

Proof. Let Ψ ∈ Xδ. Then ‖Ψ(τ)‖ ≤ δe−µpτ < 1 for all τ > 0 and δ < 1.
Lemma 4.4 implies that there exists a constant c1 > 0 such that

‖N(Ψ(τ))‖ ≤ c1‖Ψ(τ)‖2 ≤ c1δ
2e−2µpτ .

Let Φ ∈ Xδ. Then there exists a constant c2 > 0 such that

‖N(Ψ(τ)) − N(Φ(τ))‖
≤ c2

2
(‖Ψ(τ)‖ + ‖Φ(τ)‖)‖Ψ(τ) − Φ(τ)‖

≤ c2δe
−µpτ‖Ψ(τ) − Φ(τ)‖

which implies the second estimate. �

We abbreviate the right hand side of Eq. (4.3) by defining the operator
(4.4)

K(Ψ,u)(τ) := S(τ)(1−P )u−
∫ ∞

0

eτ−τ ′

PN(Ψ(τ ′))dτ ′ +
∫ τ

0

S(τ −τ ′)N(Ψ(τ ′))dτ ′.

Lemma 4.6. For δ > 0 sufficiently small and fixed u ∈ H, with ‖u‖ ≤ δ2, the
operator K maps Xδ into itself and is contracting, in particular

‖K(Φ,u) − K(Ψ,u)‖X ≤ 1

2
‖Φ − Ψ‖X

for Φ,Ψ ∈ Xδ.

Proof. For fixed (Ψ,u) with Ψ ∈ Xδ and u ∈ H the integrals occuring in the
operator K can be viewed as Riemann integrals over continuous functions, which
exist since ‖PN(Ψ(τ))‖ . 1 by Lemma 4.5. To see that K(Ψ,u) ∈ Xδ for δ small
enough we decompose the operator according to

K(Ψ,u) = PK(Ψ,u) + (1 − P )K(Ψ,u).
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We apply the results of Proposition 3.9 and Lemma 4.5. Let ‖u‖ ≤ δ2. Then for
τ ≥ 0 we obtain

‖PK(Ψ,u)(τ)‖ =
∥

∥

∥

∥

−
∫ ∞

0

eτ−τ ′

PN(Ψ(τ ′))dτ ′ +

∫ τ

0

S(τ − τ ′)PN(Ψ(τ ′))dτ ′
∥

∥

∥

∥

≤
∫ ∞

τ

eτ−τ ′‖PN(Ψ(τ ′))‖dτ ′ ≤ c1δ
2

∫ ∞

τ

eτ−τ ′(1+2µp)dτ ′ . δ2e−2µpτ ,

and

‖(1 − P )K(Ψ,u)(τ)‖ ≤

‖S(τ)(1 − P )u‖ +

∫ τ

0

‖S(τ − τ ′)(1 − P )N(Ψ(τ ′))‖ dτ ′

. e−µpτ‖u‖ +

∫ τ

0

e−µp(τ−τ ′)‖N(Ψ(τ ′))‖dτ ′

. δ2e−µpτ + δ2
∫ τ

0

e−µp(τ+τ ′)dτ ′

. δ2e−µpτ .

We infer that there exist constants c1, c2 > 0 such that

‖PK(Ψ,u)(τ)‖ ≤ c1δ
2e−µpτ ,

and

‖(1 − P )K(Ψ,u)(τ)‖ ≤ c2δ
2e−µpτ .

Thus for δ ≤ min{1, 1
2c1
, 1

2c2
} we obtain

‖K(Ψ,u)(τ)‖ ≤ ‖PK(Ψ,u)(τ)‖ + ‖(1 − P )K(Ψ,u)(τ)‖

≤ δ

2
e−µpτ +

δ

2
e−µpτ ≤ δe−µpτ .

Continuity of K(Ψ,u)(τ) as a function of τ follows essentially from strong continuity
of the semigroup (cf. Lemma 3.10 in [6]). It is left to show that K is contracting.
Let Ψ,Φ ∈ Xδ. Then

‖PK(Φ,u)(τ) − PK(Ψ,u)(τ)‖

≤
∫ ∞

τ

eτ−τ ′‖PN(Φ(τ ′)) − PN(Ψ(τ ′))‖dτ ′

. δ

∫ ∞

τ

eτ−τ ′(1+µp)‖Φ(τ ′) − Ψ(τ ′)‖dτ ′

. δ sup
σ>τ

eµpσ‖Φ(σ) − Ψ(σ)‖
∫ ∞

τ

eτ−τ ′(1+2µp)dτ ′

. δe−2µpτ‖Φ − Ψ‖X .
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Similarly,

‖(1 − P )K(Φ,u)(τ) − (1 − P )K(Ψ,u)(τ)‖

≤
∫ τ

0

‖S(τ − τ ′)(1 − P )(N(Φ(τ ′)) − N(Ψ(τ ′)))‖dτ ′

.

∫ τ

0

e−µp(τ−τ ′)‖N(Φ(τ ′)) − N(Ψ(τ ′))‖dτ ′

. δ

∫ τ

0

e−µpτ‖Φ(τ ′) − Ψ(τ ′)‖dτ ′

. δ sup
σ∈(0,τ)

eµpσ‖Φ(σ) − Ψ(σ)‖
∫ τ

0

e−µp(τ+τ ′)dτ ′

. δe−µpτ‖Φ − Ψ‖X .
This shows that for δ sufficiently small,

sup
τ>0

eµpτ‖PK(Φ,u)(τ) − PK(Ψ,u)(τ)‖ ≤ 1

4
‖Φ − Ψ‖X ,

and

sup
τ>0

eµpτ‖(1 − P )K(Φ,u)(τ) − (1 − P )K(Ψ,u)(τ)‖ ≤ 1

4
‖Φ− Ψ‖X ,

which implies the claim. �

Theorem 4.7. For u ∈ B1 ⊂ H sufficiently small, there exists a unique solution
Ψ(·;u) ∈ X of

(4.5) Ψ(·;u) = K(Ψ(·;u),u).

Moreover, the map Ψ : U ⊂ B1 → X defined by Ψ(u) = Ψ(·;u) is continuous and
Fréchet differentiable at u = 0 where U denotes a sufficiently small open neighbour-
hood of zero in H.

Proof. Lemma 4.6 and the fact that Xδ is a closed subset yield a unique fixed
point of Eq. (4.5) in Xδ. That this is indeed the unique solution in the whole space
X follows by standard arguments (see also the proof of Theorem 4.11). Note that
for u,v ∈ U we have Ψ(u),Ψ(v) ∈ Xδ and

‖Ψ(u) − Ψ(v)‖X = ‖K(Ψ(u),u) − K(Ψ(v),v)‖X
≤ ‖K(Ψ(u),u) − K(Ψ(v),u)‖X + ‖K(Ψ(v),u) − K(Ψ(v),v)‖X .

By Lemma 4.6,

‖K(Ψ(u),u) − K(Ψ(v),u)‖X ≤ 1

2
‖Ψ(u) − Ψ(v)‖X .

Inserting the definition of K yields

‖K(Ψ(v),u)(τ) − K(Ψ(v),v)(τ)‖ = ‖S(τ)(1 − P )(u − v)‖ ≤ e−µpτ‖u− v‖
and we conclude that

(4.6) ‖Ψ(u) − Ψ(v)‖X . ‖u− v‖,
which implies continuity. We claim that the solution map Ψ is Fréchet differentiable
at u = 0. We define an auxiliary operator D̃Ψ(0) : H → X by [D̃Ψ(0)v](τ) :=
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S(τ)(1 − P )v for v ∈ H. It is obvious that this defines a bounded linear operator
from H into X . We show that it is indeed the Fréchet derivative, i.e.,

lim
v→0

1

‖v‖‖Ψ(v) − Ψ(0) − D̃Ψ(0)v‖X = 0.

Recall that N(0) = 0, hence Ψ(0) = 0 is a solution of Eq. (4.5) for u = 0. We
assume that v ∈ U , such that Ψ(v) = K(Ψ(v),v). Inserting the definition of K
we compute

Ψ(v)(τ) − S(τ)(1 − P )v

=

∫ τ

0

S(τ − τ ′)N(Ψ(v)(τ ′))dτ ′ −
∫ ∞

0

eτ−τ ′

PN(Ψ(v)(τ ′))dτ ′

=: G(Ψ(v))(τ).

Again we write G(Ψ(v))(τ) = P [G(Ψ(v))(τ)] + (1 − P )[G(Ψ(v))(τ)]. Estimate
(4.6) and calculations similar to those in the proof of Lemma 4.6 yield

‖P [G(Ψ(v))(τ)]‖ ≤
∫ ∞

τ

eτ−τ ′‖PN(Ψ(v)(τ ′))‖dτ ′ ≤
∫ ∞

τ

eτ−τ ′‖Ψ(v)(τ ′)‖2dτ ′

. ‖v‖2

∫ ∞

τ

eτ−τ ′(1+2µp)dτ ′ . ‖v‖2e−2µpτ .

Similarly,

‖(1 − P )[G(Ψ(v))(τ)]‖ ≤
∫ τ

0

‖S(τ − τ ′)(1 − P )N(Ψ(v)(τ ′))‖dτ ′

.

∫ τ

0

e−µp(τ−τ ′)‖N(Ψ(v)(τ ′))‖dτ ′ . ‖v‖2e−µpτ .

We infer that ‖G(Ψ(v))‖X . ‖v‖2 and thus limv→0
1

‖v‖‖G(Ψ(v))‖X = 0, which

implies the claim. �

4.5. Global existence for arbitrary (small) initial data. The aim of
this section is to use the existence result of Theorem 4.7 to obtain a solution of
the original wave equation for arbitrary initial data (close to ψT ). Up to now we
implicitly assumed the blow up time T to be fixed. However, arbitrary perturbations
of the initial data will change the blow up time and we account for this fact by
allowing T to vary. Recall that the initial data we want to prescribe are of the form

(4.7) Ψ(0)(ρ) =





ρT
p+1
p−1 g(Tρ) − 2ρ

p−1κ
1

p−1

0

T
2

p−1 (Tρf ′(Tρ) + f(Tρ)) − κ
1

p−1

0



 ,

see Eq. (2.3). We separate the dependence on T and the free data (f, g) by intro-
ducing

(4.8) v(ρ) :=





ρg(ρ) − 2ρ
p−1κ

1
p−1

0

ρf ′(ρ) + f(ρ) − κ
1

p−1

0



 , κ(ρ) := κ
1

p−1

0

( 2ρ
p−1

1

)

,

which are the initial data relative to the fundamental self–similar solution for T = 1.
We rewrite the right hand side of (4.7) and define

U(v, T )(ρ) := T
2

p−1 [v(Tρ) + κ(Tρ)] − κ(ρ).
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The data have to be prescribed on the interval [0, T ] and we are confronted with
the problem that we do not know T in advance. As in [6] the argument will be
perturbative around T = 1 and therefore it suffices to restrict T to the interval
I = (1

2 ,
3
2 ). In the following we set

H̃ := L2(0, 3
2 ) × L2(0, 3

2 ).

Lemma 4.8. The function U : H̃ × I → H is continuous and U(0, 1) = 0.
Furthermore U(0, ·) : I → H is Fréchet differentiable and

[DTU(0, T )|
T=1

λ](ρ) = 2λ
p−1κ

1
p−1

0 g(ρ),

where λ ∈ R and g denotes the symmetry mode (cf. Eq. (3.4)).

Proof. The proof of continuity is similar to the proof of Lemma 3.14 in [6].
We define J : L2(0, 3

2 )× I → L2(0, 1) by J(v, T )(ρ) := v(Tρ). For fixed T the map

J(·, T ) : L2(0, 3
2 ) → L2(0, 1) is Lipschitz-continuous since

‖J(v, T ) − J(ṽ, T )‖2
L2(0,1) =

∫ 1

0

|v(Tρ) − ṽ(Tρ)|2dρ =

1

T

∫ T

0

|v(ρ) − ṽ(ρ)|2dρ ≤ 2‖v − ṽ‖2
L2(0, 32 )

and the continuity is uniform with respect to T . It is therefore sufficient to show
that for fixed v ∈ L2(0, 3

2 ) the function J(v, ·) : I → L2(0, 1) is continuous. This

can be seen by noting that for all v, ṽ ∈ L2(0, 3
2 ) and T, T̃ ∈ I

‖J(v, T ) − J(v, T̃ )‖L2(0,1) ≤ ‖J(v, T )− J(ṽ, T )‖L2(0,1) + ‖J(ṽ, T ) − J(ṽ, T̃ )‖L2(0,1)

+ ‖J(ṽ, T̃ ) − J(v, T̃ )‖L2(0,1)

. ‖v − ṽ‖L2(0, 32 ) + ‖J(ṽ, T ) − J(ṽ, T̃ )‖L2(0,1).

Thus, for any given ǫ > 0 we can find a ṽ ∈ C[0, 3
2 ] such that

(4.9) ‖J(v, T ) − J(v, T̃ )‖L2(0,1) <
ǫ

2
+ c

(∫ 1

0

|ṽ(Tρ) − ṽ(T̃ ρ)|2dρ
)

1
2

for some constant c > 0 since C[0, 3
2 ] is dense in L2(0, 3

2 ). By the continuity of ṽ,

the integral vanishes in the limit T → T̃ . The above results imply continuity of
J : L2(0, 3

2 ) × I → L2(0, 1) and thus,

U(v, T ) =

(

T
2

p−1 (J(v1, T ) + J(κ1, T )) − κ1

T
2

p−1 (J(v2, T ) + J(κ2, T )) − κ2

)

is continuous for v = (v1, v2)
T ∈ H̃ and κ = (κ1, κ2)

T as defined in Eq. (4.8).
To show differentiability we set v = 0 and consider U(0, ·) : I → H, which is

given by

U(0, T )(ρ) = T
2

p−1κ(Tρ) − κ(ρ) = κ
1

p−1

0

(

2ρ
p−1

(

T
p+1
p−1 − 1

)

T
2

p−1 − 1

)
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The map is obviously differentiable for all T ∈ I. Recalling the definition of the
symmetry mode in Lemma 3.5 we obtain

[DTU(0, T )|
T=1

λ](ρ) =
2λ

p− 1
κ

1
p−1

0

(

(p+1)
p−1 ρ

1

)

=
2λ

p− 1
κ

1
p−1

0 g(ρ)

for λ ∈ R. �

With these technical results at hand we now turn to the original problem. In the
previous section we showed existence of solutions for the modified integral equation
(4.3) with initial data u ∈ U , where U denotes a sufficiently small neighbourhood
of 0 ∈ H. We rewrite the initial data in terms of T and v as defined in Eq. (4.8).
Inserting in the definition yields U(0, 1) = 0. By continuity U(v, T ) ∈ U provided

that (v, T ) ∈ V × Ĩ where V and Ĩ are sufficiently small neighbourhoods of 0 ∈
H̃ and 1 ∈ I, respectively. By Theorem 4.7 there exists a solution U(v, T ) 7→
Ψ(U(v, T )) ∈ X . Recall that Eq. (4.3) is Eq. (4.2) modified by an expontential

factor times the function F : V × Ĩ → 〈g〉 defined by

F(v, T ) := P

(

U(v, T ) −
∫ ∞

0

e−τ ′

N(Ψ(U(v, T ))(τ ′))dτ ′
)

.

Evaluation yields F(0, 1) = 0, i.e., for v = 0 and T = 1 the correction vanishes and
Ψ(U(0, 1)) = 0 is also a solution of Eq. (4.2). In the following we show that for
every small v there exists a T close to one, such that this still holds true. We need
the next lemma as a prerequisite.

Lemma 4.9. F : V× Ĩ ⊂ H̃×I → 〈g〉 is continuous. Moreover F(0, ·) : Ĩ → 〈g〉
is Fréchet differentiable at T = 1 and

DTF(0, T )|
T=1

λ = 2λ
p−1κ

1
p−1

0 g

for λ ∈ R.

Proof. To rewrite F in a more abstract way we introduce the integral operator
B : X → H,Ψ 7→ −

∫∞
0 e−τ ′

Ψ(τ ′)dτ ′, which is linear and bounded since

‖BΨ‖ ≤
∫ ∞

0

e−τ ′‖Ψ(τ ′)‖dτ ′ ≤ sup
τ ′>0

‖Ψ(τ ′)‖ ≤ ‖Ψ‖X .

We define Ñ : X → X by Ñ(Ψ)(τ) := N(Ψ(τ)). We claim that Ñ is Fréchet

differentiable at 0 ∈ X and the Fréchet derivative at zero is given by DÑ(0)Ψ = 0

for Ψ ∈ X . This follow from Ñ(0) = 0 and

‖Ñ(Ψ)‖X = sup
τ>0

eµpτ‖N(Ψ(τ))‖ . sup
τ>0

eµpτ‖Ψ(τ)‖2 . ‖Ψ‖2
X for Ψ ∈ Xδ.

Thus
‖Ñ(Ψ)‖X
‖Ψ‖X

. ‖Ψ‖X
with a constant independent of Ψ, which implies the claim. Now

F(v, T ) = P
[

U(v, T ) + BÑ(Ψ(U(v, T )))
]

.

By Lemma 4.8 and the continuity of Ñ and Ψ, respectively, we see that F is
continuous. To show differentiability we set v = 0 and obtain

F(0, T ) = P
[

U(0, T ) + BÑ(Ψ(U(0, T )))
]

.
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The right hand side is differentiable at T = 1 by Theorem 4.7, Lemma 4.8 and the
above considerations. We conclude that

DTF(0, T )|
T=1

λ = PDTU(0, T )|
T=1

λ+ PBDÑ(0)DΨ(0)DT U(0, T )|
T=1

λ

= PDTU(0, T )|
T=1

λ = 2λ
p−1κ

1
p−1

0 g.

�

Lemma 4.10. Let Ṽ ⊂ H̃ be a sufficiently small neighbourhood of 0. For every
v ∈ Ṽ there exists a T ∈ Ĩ ⊂ (1

2 ,
3
2 ), such that F(v, T ) = 0.

Proof. The range of F is contained in 〈g〉, which is a one dimensional vector
space. Thus, there exists an isomorphism i : 〈g〉 → R such that i(cg) = c for

c ∈ R. We set f := i ◦ F, where f : V × Ĩ → R is continuous and F(0, 1) = 0

implies f(0, 1) = 0. Lemma 4.9 shows that f(0, ·) : Ĩ → R is differentiable at T = 1

and DT f(0, T )|
T=1

6= 0. Consequently, there exist values T1, T2 ∈ Ĩ such that
f(0, T1) > 0 and f(0, T2) < 0. Continuity of f with respect to the first variable

implies that there exists an open neighbourhood Ṽ ⊂ V such that f(v, T1) > 0

and f(v, T2) < 0 for v ∈ Ṽ. For v ∈ Ṽ consider f(v, ·) : Ĩ → R. By continuity
of f(T,v) with respect to T and the intermediate value theorem we conclude that
there exists a T ∗ ∈ (T1, T2) such that f(v, T ∗) = 0. �

This yields the next result.

Theorem 4.11. Let v ∈ H̃ be sufficiently small. Then there exists a T close
to 1 such that

(4.10) Ψ(τ) = S(τ)U(v, T ) +

∫ τ

0

S(τ − τ ′)N(Ψ(τ ′))dτ ′, τ ≥ 0

has a continuous solution Ψ : [0,∞) → H satisfying

‖Ψ(τ)‖ ≤ δe−µpτ

for all τ ≥ 0 and some δ ∈ (0, 1). Moreover, this solution is unique in C([0,∞),H).

Proof. The existence of a solution Ψ ∈ Xδ follows from the above considera-
tions. Let Φ ∈ C([0,∞),H) be another solution satisfying the same equation. We
assume that Ψ 6= Φ. By continuity, there exists an ε ∈ (0, 1−δ

2 ) and a τ0 > 0 such
that

ε < ‖Ψ(τ0) − Φ(τ0)‖
and

‖Ψ(τ) − Φ(τ)‖ < 2ε, τ ∈ [0, τ0],

which yields ‖Φ(τ)‖ < 1. For τ ∈ [0, τ0] we obtain

‖Ψ(τ) − Φ(τ)‖ ≤ c

∫ τ

0

eτ−τ ′‖N(Ψ(τ ′)) − N(Φ(τ ′))‖dτ ′

≤ C(τ0)(e
τ − 1) sup

τ ′∈[0,τ ]

‖Ψ(τ ′) − Φ(τ ′)‖

by applying Lemma 4.4. We infer that there exists a τ1 ∈ (0, τ0] such that

sup
τ∈[0,τ1]

‖Ψ(τ) − Φ(τ)‖ ≤ 1

2
sup

τ∈[0,τ1]

‖Ψ(τ) − Φ(τ)‖
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which implies Ψ(τ) = Φ(τ) for all τ ∈ [0, τ1]. Iterating this argument yields Ψ(τ) =
Φ(τ) for τ ∈ [0, τ0], which contradicts ‖Ψ(τ0) − Φ(τ0)‖ > ε. �

Proposition 4.12. (Global existence for arbitrary, small initial data) Let ε > 0
be small enough such that µp = |ωp| − ε > 0. Let v ∈ L2(0, 3

2 ) × L2(0, 3
2 ) be

sufficiently small. Then there exists a T close to 1 such that

(4.11) Φ(τ) = S(τ + logT )U(v, T ) +

∫ τ

− log T

S(τ − τ ′)N(Φ(τ ′))dτ ′, τ ≥ − logT

has a continuous solution Φ : [− logT,∞) → H satisfying

‖Φ(τ)‖ ≤ Cεe
−µpτ

for all τ ≥ − logT and a constant Cε > 0 depending on ε. Moreover, this solution is
unique in C([− log T,∞),H). Thus, Φ is the unique global mild solution of Eq. (4.1)
with initial data Φ(− logT ) = U(v, T ).

4.6. Proof of Theorem 1.2.

Proof. We translate the result of Proposition 4.12 back to the original coordi-
nates (t, r). Let (f, g) satisfy the assumption of Theorem 1.2. For the fundamental
self–similar solution with T = 1 we have

ψ1(0, r) = κ
1

p−1

0 , ψ1
t (0, r) = 2

p−1κ
1

p−1

0 .

We define

v1(ρ) := ρg(ρ) − 2ρ
p−1κ

1
p−1

0 , v2(ρ) := f(ρ) + ρf ′(ρ) − κ
1

p−1

0 ,

such that v = (v1, v2)
T ∈ L2(0, 3

2 ) × L2(0, 3
2 ) and

‖v‖H̃ = ‖(f, g) − (ψ1(0, ·), ψ1
t (0, ·))‖E( 3

2 )

We may assume v small enough to satisfy the assumptions of Proposition 4.12 and
we infer that there exists a unique global mild solution Φ ∈ C([− logT,∞),H) of
Eq. (4.11) for T close to 1 with initial data Φ(− logT ) = U(v, T ) and

‖Φ(τ)‖ ≤ Cεe
−(|ωp|−ε)τ

for all τ ≥ − logT . By definition

Φ(τ)(ρ) = (φ1(τ, ρ), φ2(τ, ρ))
T

is a solution of Eq. (2.3) and Eq. (2.4) yields

ψ(t, r) = ψT (t, r) + (T − t)−
2

p−1 r−1

∫ r

0

φ2(− log(T − t), r′

T−t )dr
′

and

ψt(t, r) = ψT
t (t, r) + (T − t)−

2
p−1 r−1φ1(− log(T − t), r

T−t ).
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For ϕ = ψ − ψT we obtain

‖(ϕ(t, ·), ϕt(t, ·)‖
2
E(T−t) =

(T − t)−
4

p−1

„

Z T−t

0

|φ2(− log(T − t), r

T−t
)|2dr +

Z T−t

0

|φ1(− log(T − t), r

T−t
)|2dr

«

= (T − t)
p−5
p−1

„

Z 1

0

|φ2(− log(T − t), ρ)|2dρ +

Z 1

0

|φ1(− log(T − t), ρ)|2dρ

«

= (T − t)
p−5
p−1 ‖Φ(− log(T − t))‖2 ≤ C

2
ε (T − t)

p−5
p−1

+2(|ωp|−ε)
.

Thus,

‖(ψ(t, ·), ψt(t, ·)) − (ψT (t, ·), ψT
t (t, ·))‖E(T−t) ≤ Cε(T − t)

p−5
2(p−1)

+|ωp|−ε.

�
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