
Dynamics of PDE, Vol.9, No.1, 29-62, 2012

Stability of parabolic-hyperbolic traveling waves
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Abstract. In this paper we investigate nonlinear stability of traveling waves
in general parabolic-hyperbolic coupled systems where we allow for a non-
strictly hyperbolic part.

We show that the problem is locally well-posed in a neighborhood of
the traveling wave and prove that nonlinear stability follows from stability of
the point spectrum and a simple algebraic condition on the coefficients of the
linearization. We also obtain rates of convergence that are directly related
to the spectral gap. The proof is based on a trick to reformulate the PDE

as a partial differential algebraic equation for which the zero eigenvalue is
removed from the spectrum. Then the Laplace-technique becomes applicable
and resolvent estimates are used to prove stability.

Our results apply to pulses as well as fronts and generalize earlier results
of Bates and Jones [2] and of Kreiss, Kreiss, and Petersson [13]. As an example
we present an application to the Hodgkin-Huxley model.
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1. Introduction

A prominent model from applications is the spatially extended Hodgkin-Huxley
system [11], which models the signaling of electric pulses along nerve axons. The
system is of reaction-diffusion type and has the feature that some of the components
model ion channels which are spatially located and, therefore, do not diffuse. This
leads to a parabolic equation coupled to a system of ordinary differential equations.
The equations are of the form

(1.1) ut = Auxx + f1(u, v), vt = f2(u, v), x ∈ R, t ≥ 0,

where u is a scalar function and v is R3-valued. For the Hodgkin-Huxley equations
the existence of traveling wave solutions is well-known. These are solutions of the
form u(x, t) = uo(x − λot), v(x, t) = vo(x − λot), where (uo, vo) is the profile and
λo the speed of the wave. When the equation is considered in a co-moving frame
with speed λo, that is, the new spatial variable ξ = x − λot is used, the equation
becomes the coupled parabolic-hyperbolic equation

(1.2) ut = Auξξ + λouξ + f1(u, v), vt = λovξ + f2(u, v),

for which (uo, vo) is a steady state.
In this paper we consider coupled parabolic-hyperbolic Cauchy problems of the

following form that includes (1.2):
(1.3)

ut = A11uxx + g(u, v)x + f1(u, v), vt = B22vx + f2(u, v), x ∈ R, t ≥ 0,

u(x, 0) = u0(x) ∈ R
n, v(x, 0) = v0(x) ∈ R

m.

By saying that (1.3) is parabolic-hyperbolic we understand that the following holds:

Assumption 1.1. (1) A11 ∈ Rn,n and A11 + AT
11 ≥ 2αI > 0 holds in the

sense of Hermitian matrices,
(2) B22 ∈ Rm,m and B22 = diag(b1, . . . , bm) is a diagonal matrix.

To include the Hodgkin-Huxley model, we allow B22 to have multiple eigen-
values, i.e. the v-equation is assumed to be hyperbolic but not necessarily strictly
hyperbolic. Compare this with [13], where strict hyperbolicity is assumed for the
second equation.

We are interested in the asymptotic stability of traveling waves. Therefore, as-
sume there exists a traveling solution of (1.3). We impose smoothness assumptions
which are satisfied for many problems from applications, including the Hodgkin-
Huxley model:

Assumption 1.2. The nonlinearities f1, f2, g are of class C3, the profile (uo, vo)
of the traveling wave satisfies uo ∈ C1

b (R,Rn), uo
x ∈ H2(R,Rn), and vo ∈ C1

b (R,Rm),
vo

x ∈ H2(R,Rm), and, moreover, f1(u
o, vo) ∈ L2(R,Rn) and f2(u

o, vo) ∈ L2(R,Rm).

Remark. The assumption implies fi(u
o, vo) ∈ H2 for i = 1, 2 and g(uo, vo)x ∈

H1.

Throughout the paper we use the following notations: We write Ck
b for the

space of k times continuously differentiable and bounded functions, L2 is the usual
space of square integrable functions and for k > 0, Hk is the Sobolev space of k
times weakly differentiable functions whose distributional derivatives up to order k
can be represented by square integrable functions. We write H−1 for the dual of
H1. To simplify notation we denote the evaluation of a function at (uo, vo) by a
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superscript o, e.g. go = g(uo, vo), go(x) = g(uo(x), vo(x)) etc. We also abbreviate
W (x, t) = (w1(x, t), w2(x, t))

T = (u(x, t), v(x, t))T and W o = (uo, vo).
Using these abbreviations, (1.3) reads

(1.4) Wt = AWxx +G(W )x + F (W ), W (x, 0) = W0(x) ∈ R
n+m,

where

A =

(
A11 0
0 0

)
, G(W ) =

(
g(W )
B22w2

)
, F (W ) =

(
f1(W )
f2(W )

)
, and W0 =

(
u0

v0

)
.

A major difficulty in the proofs of wave stability is the shift equivariance of the
equation. It is well-known that this leads to non-uniqueness because every solution
gives rise to a whole one-parameter family of solutions, obtained by spatial shifts.
Therefore, one cannot expect that a solution of the Cauchy problem converges to
“the” traveling wave, but only to some shifted version of it, and one has to consider
asymptotic stability with asymptotic phase. The equivariance also leads to a 0
eigenvalue of the linearized right hand side

PW = AWxx + (Go
WW )x + F o

WW,

which is a closed linear operator on L2 × L2 with domain H2 ×H1.

Assumption 1.3. For the point spectrum σpt(P ) of the operator P on L2 holds
σpt(P ) ∩ {Re s > −δ} = {0} and 0 is a simple eigenvalue of P .

Define the matrices

(1.5)

A =

(
A11 0
0 0

)
, B(x) =

(
B11(x) B12(x)

0 B22

)
=

(
go

u(x) go
v(x)

0 B22

)
,

C(x) =

(
C11(x) C12(x)
C21(x) C22(x)

)
=

(
go

ux(x) + fo
1,u(x) go

vx(x) + fo
1,v(x)

fo
2,u(x) fo

2,v(x)

)
,

where a subindex u (or v) denotes the partial derivative with respect to the u (or
v) variables. Then the operator P can be written as

(1.6) PW = AWxx +BWx + CW.

For the analysis of asymptotic stability of traveling waves we use the techniques
developed in [19] for first-order hyperbolic systems: Write W (x, t), the solution of
(1.4), as

(1.7) W (x, t) = W o(x − ϕ̃(t)) + W̃ (x, t).

This introduces new nonlinear coordinates (W̃ , ϕ̃) and increases the degrees of

freedom by one. To make this change of coordinates unambiguous, the function W̃

is assumed to lie in the kernel of some suitable linear functional Ψ, i.e. Ψ(W̃ (t)) = 0
for all t. This leads to the partial differential algebraic equation (PDAE)

(1.8)

W̃t = A
(
W 0(· − ϕ̃) + W̃

)
xx

+G
(
W 0(· − ϕ̃) + W̃

)
x

+ F
(
W 0(· − ϕ̃) + W̃

)
+W 0

x (· − ϕ̃)λ̃,

ϕ̃t = λ̃,

0 = Ψ(W )

for W̃ , ϕ̃, and λ̃. In Section 3 we show that the change of coordinates (1.7) is
indeed well-defined under very general assumptions on Ψ. Note that this approach
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is closely related to the technique used by Henry in [10, Ch. 5], but there the
theory of analytic semigroups is heavily used.

Another commonly used approach is to use Riesz projectors to project the
equation onto the subspace orthogonal to the eigenfunction, see for example [9,
13]. The projection approach seems to be more difficult to generalize when the
0–eigenvalue is part of the essential spectrum and it also seems to be less straight
forward to prove well-posedness for the projected equation when one is not in the
setting of analytic semigroups. Also note that the semigroup approach chosen in
[9] does not apply in our situation because of the nonlinear advection term g(u, v)x.

The plan for the rest of the paper is as follows. In Section 2 we show well-
posedness of an abstract formulation of Cauchy problem (1.3). The abstract for-
mulation allows to apply the result in Section 5 directly to a projected PDE. Of
course, there is a large amount of literature concerned with the problem of exis-
tence and well-posedness for coupled parabolic-hyperbolic systems. In particular,
we mention the results of Vol’pert and Hudjaev [23], the monograph [14] by Kreiss
and Lorenz, and results by Zheng and co–authors, e.g. the monograph [27] and the
references therein. But none of these results applies in our setting since they all are
concerned with perturbations of rest states so that initial data close to a traveling
front do not seem to be included.

Section 4 is concerned with the spectral properties of the linear operator P and
the linearization of the PDAE. We show uniform resolvent estimates for the PDAE
in an open half plane that includes the imaginary axis. We give a simple spectral
Assumption (see Assumption 4.1 3) which unifies the assumptions made on the
asymptotic coefficients of P as |x| → ∞. See also [13], Assumption 1 (parabolic
part) and Assumption 2 (hyperbolic part), which both have to be used in the proof
of Theorem 4.1 from that paper. An important tool for the derivation of estimates
from the spectral assumption is a perturbation result for invariant subspaces, which
is recalled in Appendix A for convenience.

In Section 5 we show exponential well-posedness of the PDAE problem which
justifies application of the Laplace transform. Then Plancherels Theorem is used
to translate resolvent estimates for the PDAE-problem to linear stability properties
of the PDAE. A bootstrapping argument then shows also nonlinear stability of the
PDAE.

In Section 6 we use the relation of the PDE to the PDAE problem, obtained
in Section 3, to prove our main stability result for traveling waves:

Theorem 1.4 (Asymptotic stability of traveling waves). Let (uo, vo) be a trav-
eling wave solution of (1.3) with speed λo. Assume that Assumptions 1.1, 1.2, 1.3,
4.1 hold for the co-moving equation

ut = A11uxx + g(u, v)x + f1(u, v) + λoux, u(0) = u0,

vt = B22vx + f2(u, v) + λovx, v(0) = v0.

Then for every 0 < η < δ there is ρ > 0 so that for all initial data u0 ∈ uo +H2 and

v0 ∈ vo +H2, with
(
‖u0 − uo‖2

H2 + ‖v0 − vo‖2
H2

)1/2
< ρ, exists a unique solution

(u, v) of (1.3) on [0,∞). The solution satisfies smoothness properties

u ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2).



STABILITY OF PARABOLIC-HYPERBOLIC TRAVELING WAVES 33

Moreover, there is ϕ∞ = ϕ∞(u0, v0) ∈ R and a constant C = C(η) > 0, indepen-
dent of (u0, v0), so that

|ϕ∞| ≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
, and

‖u(t) − uo(· − λot− ϕ∞)‖H1 + ‖v(t) − vo(· − λot− ϕ∞)‖H1

≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
e−ηt ∀t ≥ 0.

We finish this paper with an application of our results to the important Hodgkin-
Huxley model from biology in Section 7. For the application to a traveling front
in the FitzHugh-Nagumo equation and numerical experiments, where the predicted
rates can be observed numerically, we refer to [21].

Acknowledgment: The author would like to thank Prof. Wolf-Jürgen Beyn
for many helpful discussions and the supervision of the PhD thesis [18] in which
many of the results from this paper were obtained.

2. Local Existence and Continuation

In this section we consider (global) existence and uniqueness of solutions to
the nonlinear problem (1.3) with the general result given in the Theorem 2.5 and
its application to traveling waves in Theorem 2.8. As mentioned above, various
parabolic-hyperbolic problems have been analyzed in the literature. But because
none of the results applies to our situation, we present some results obtained in
the author’s PhD thesis [18]. Since the techniques used are quite standard, we
concentrate on the ideas and refer to [18] for the details.

By considering the equation in a co-moving frame, we may assume λo = 0
without loss of generality. Moreover, instead of (1.3) we consider the following
generalized problem which makes the results easily applicable also to a projected
problem in Section 5:

ut = A11uxx + g̃(u, v)x + f̃1(u, v), u(0) = u0 ∈ H1,(2.1a)

vt = B22vx + f̃2(u, v), v(0) = v0 ∈ H1.(2.1b)

Here g̃, f̃1, f̃2 are (abstract) nonlinear operators on which we impose

Assumption 2.1. For all 0 ≤ t0 < T , u, u′ ∈ L2(t0, T ;H1(R,Rn))∩L∞(t0, T ;H1)

and v, v′ ∈ L2(t0, T ;H1(R,Rm))∩L∞(t0, T ;H1) the operators g̃, f̃1, and f̃2 satisfy:

(1) g̃(u, v), f̃1(u, v) ∈ L2(t0, T ;H1(R,Rn)) and f̃2(u, v) ∈ L2(t0, T ;H1(R,Rm)),
(2) there is C = C(T ) > 0, independent of t0, so that (0 ∈ L2(t0, T ;H1) ∩

L∞(t0, T ;H1))

‖f̃1(0, 0)‖L2(t0,T ;H1) + ‖g̃(0, 0)‖L2(t0,T ;H1) + ‖f̃2(0, 0)‖L2(t0,T ;H1) ≤ C,

(3) for all T,K > 0 exists C > 0, independent of t0, so that if ‖∗‖L∞(t0,T ;H1) ≤
K for all ∗ ∈ {u, u′, v, v′} holds for h̃ ∈ {g̃, f̃1, f̃2}

(2.2) ‖h̃(u, v)− h̃(u′, v′)‖2
L2(t0,T ;H1) ≤ C

(
‖u−u′‖2

L2(t0,T ;H1) +‖v−v′‖2
L2(t0,T ;H1)

)
.

Lemma 2.2. (1) Let Assumption 1.2 hold and gl, f1,l, f2,l ∈ L2
loc([0,∞);H1).

Then the following Nemytskii operators satisfy Assumption 2.1:

g̃(u, v) = g(uo + u, vo + v) − g(uo, vo) + gl(x, t),

f̃i(u, v) = fi(u
o + u, vo + v) − fi(u

o, vo) + fi,l(x, t), i = 1, 2.
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(2) Let B11, C11 ∈ C1
b (R,Rn,n), B12, C12 ∈ C1

b (R,Rn,m), B1j,x ∈ H1, C21 ∈
C1

b (R,Rm,n), C22 ∈ C1
b (R,Rm,m), gl, f1,l, f2,l ∈ L2

loc([0,∞);H1). Then
Assumption 2.1 holds for

g̃(u, v) = B11(x)u +B12(x)v + gl(x, t),

f̃i(u, v) = Ci1(x)u + Ci2(x)v + fi,l(x, t), i = 1, 2.

Because we are interested in perturbations of steady states, we use the new
dependent variables ũ = u−uo and ṽ = v−vo to rewrite equation (1.3) in the form
(2.1)

(2.3)
ũt = A11ũxx + g̃(ũ, ṽ)x + f̃1(ũ, ṽ), ũ(0) = u0 − uo ∈ H1,

ṽt = B22ṽx + f̃2(ũ, ṽ), ṽ(0) = v0 − vo ∈ H1.

Here g̃(ũ, ṽ) = g(uo+ũ, vo+ṽ)−g(uo, vo) and f̃i(ũ, ṽ) = fi(u
o+ũ, vo+ṽ)−fi(u

o, vo)
for i = 1, 2. By Lemma 2.2 equation (2.3) satisfies Assumption 2.1.

We use the following solution concept, adapted from [8, §7.1, 7.3 and 9.2] to
our situation.

Definition 2.3 (Weak solution). We call (u, v) a weak solution of (2.1) on
[0, T ] if

(0) u ∈ L2(0, T ;H1(R,Rn)) ∩ L∞(0, T ;H1) with ut ∈ L2(0, T ; (H1)′),
v ∈ L2(0, T ;H1(R,Rm)) ∩ L∞(0, T ;H1) with vt ∈ L2(0, T ;L2),

(1) u(0) = u0 and for all φ ∈ H1(R,Rn) and a.e. t ∈ [0, T ] holds

〈ut, φ〉 +

∫

R

(A11ux)Tφx − (g̃(u, v)x)Tφ− (f̃1(u, v))
Tφdx = 0,

here 〈·, ·〉 denotes the duality pairing of H1 and H−1 = (H1)′,
(2) v(0) = v0 and for all φ ∈ H1(R,Rm) and a.e. t ∈ [0, T ] holds

〈vt, φ〉L2 −
∫

R

(B22vx)Tφ+ (f̃2(u, v))
Tφdx = 0.

It is called a weak solution on [0, T ∗), T ∗ ∈ (0,∞], if it is a weak solution on [0, T ]
for all 0 < T < T ∗.

The assumption u, v ∈ L∞(0, T ;H1) is needed for the Lipschitz bound (2.2)
of the nonlinear operators in (2.3), which turns out to be to be important for
uniqueness of weak solutions, see [18, §4.1].

Note that the initial conditions are reasonable because of Sobolev embedding.
In fact, one can prove that the weak solution even is a strong solution in the
following sense:

Definition 2.4 (Strong solution). A strong solution of (2.1) on [0, T ] is a
weak solution satisfying u ∈ L2(0, T ;H2) ∩ H1(0, T ;L2) and v ∈ L2(0, T ;H1) ∩
H1(0, T ;L2) so that (2.1a) and (2.1b) hold as equalities in L2(0, T ;L2). It is called
a strong solution on [0, T ∗), T ∗ ∈ (0,∞], if it is a strong solution on [0, T ] for all
0 < T < T ∗.

Now we can state the local existence and uniqueness result.

Theorem 2.5 (Existence and uniqueness). Impose Assumptions 1.1 and 2.1.
Then there is T ∗ ∈ (0,∞] and a strong solution (u∗, v∗) of the Cauchy problem
(2.1) on [0, T ∗). If (u, v) is a weak solution of (2.3) on [0, T ] for some T > 0, then
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T < T ∗ and u = u∗|[0,T ], v = v∗|[0,T ], where the equalities hold in L∞(0, T ;H1).
Moreover,

(2.4)
u∗ ∈ C([0, T ];H1) ∩H1(0, T ;L2) ∩ L2(0, T ;H2),

v∗ ∈ C([0, T ];H1) ∩H1(0, T ;L2)

for all 0 < T < T ∗ and it holds the dichotomy

(2.5) either T ∗ = +∞ or T ∗ <∞ and lim
tրT∗

‖u(t)‖H1 + ‖v(t)‖H1 = +∞.

Outline of the proof. We do not give a full proof of the theorem, which
can be found in [18, §4.1]. Instead we only outline the basic steps.

The principal idea is to treat the parabolic and hyperbolic parts separately and
to couple them by an iteration process. This idea also appears in [25], where it
is used to show existence for a biologically motivated system, with a wave type
hyperbolic part.

To formalize the idea, let UT = C([0, T ];H1(R,Rn)), ‖u‖UT
:= ‖u‖L∞(0,T ;H1),

and VT = C([0, T ];H1(R,Rm)), ‖v‖VT
:= ‖v‖L∞(0,T ;H1), and define the operator

(which will be iterated)

(2.6) S : UT × VT → UT × VT , (uk, vk) 7→ S(uk, vk) := (uk+1, vk+1).

Here uk+1 is the unique weak solution of the linear parabolic Cauchy problem

(2.7) ut = A11uxx + g̃(uk, vk)x + f̃1(u
k, vk), u(0) = u0,

and vk+1 is given as the unique weak solution of the linear hyperbolic Cauchy
problem

(2.8) vt = B22vx + f̃2(u
k+1, vk), v(0) = v0.

The proof of Theorem 2.5 then proceeds in the following steps

(1) Show well-posedness and derive solution estimates for (2.7) in terms of
uk, vk.

(2) Show well-posedness and derive solution estimates for (2.8) in terms of
uk+1, vk.

(3) Couple these estimates to show that the solution operator S is well-defined
and a contraction for sufficiently small T > 0. Because a fixed point of
S is a solution of the coupled parabolic-hyperbolic PDE (2.1), solvability
follows.

(4) Show uniqueness of the weak solution.
(5) Extend the solution as long as it stays bounded to obtain (2.5).

�

The following energy estimate can be used to prove global well-posedness for
linear equations and will also be applied in the stability estimates. Note that the
estimate is in integral form. This is important because we will be able to bound time
integrals of the solution by time integrals of the data, using the Laplace technique
(see 5.1.2).

Lemma 2.6 ([18, Lemma E.2]). Let Assumption 1.1 hold and impose the as-
sumptions from Lemma 2.2 2. Then for every η0 ≥ 0 there exists C > 0 so that
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for all η ≤ η0 and all u0 ∈ H1, v0 ∈ H1 the strong solution of (2.1) with g̃ and f̃i

from Lemma 2.2 2., given by Theorem 2.5, satisfies for all t ≥ 0

(2.9)

e2ηt
(
‖u(t)‖2

H1 + ‖v(t)‖2
H1

)

≤ ‖u0‖2
H1 + ‖v0‖2

H1 + C

∫ t

0

e2ητ
(
‖u(τ)‖2

H1 + ‖v(τ)‖2
H1

)
dτ

+ C

∫ t

0

e2ητ
(
‖gl(τ)‖2

H1 + ‖f1,l(τ)‖2
L2 + ‖f2,l(τ)‖2

H1

)
dτ.

The assertion of the lemma easily follows for smooth functions and inhomo-
geneities. The general case is obtained by approximation. A proof, using a mollifi-
cation trick, is given in [18, Appendix E].

Theorem 2.5 combined with the energy estimate from Lemma 2.6 shows global
existence and exponential well-posedness for the inhomogeneous linear case:

Corollary 2.7 (Linear well-posedness of parabolic-hyperbolic coupled PDEs).
Let the assumptions of Lemma 2.6 hold. Then for every u0, v0 ∈ H1 there is a
unique strong solution (u, v) on [0,∞) of (2.1), which is unique also in the class of
weak solutions. Furthermore, for every η0 ≥ 0 there are constants k, c ∈ R so that
for every η ∈ R with η ≤ η0 and all 0 ≤ t <∞ the solution is bounded by
∥∥∥∥
(
u(t)
v(t)

)∥∥∥∥
2

H1

≤ kect
[∥∥∥∥
(
u0

v0

)∥∥∥∥
2

H1

+

∫ t

0

e2ητ
(
‖gl(τ)‖2

H1 +‖f1,l(τ)‖2
L2 +‖f2,l(τ)‖2

H1

)
dτ
]
.

Another immediate consequence of Theorem 2.5 is unique solvability of (1.3)
in a neighborhood of the traveling wave (uo, vo), note that we still require λo = 0
without loss of generality.

Theorem 2.8 (Existence and uniqueness). Impose Assumptions 1.1 and 1.2
with λo = 0.

Then for every initial data u0 ∈ uo +H1(R,Rn), v0 ∈ vo +H1(R,Rm), there is
a unique global solution of (1.3), i.e. there is T ∗ ∈ (0,∞] and (u∗, v∗) so that for
all 0 < T < T ∗ holds

(2.10)
u∗ ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v∗ ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2),

and (u∗, v∗) is the unique solution of (1.3) on [0, T ], where (1.3) holds as an equality
in L2(R,Rn) × L2(R,Rm) for almost every t ∈ [0, T ]. Moreover,

either T ∗ = +∞ or

0 < T ∗ < +∞ and lim
tրT∗

‖u∗(t) − uo‖H1 + ‖v∗(t) − vo‖H1 = +∞.(2.11)

3. PDAE Reformulation

Let the setting be as in the introduction. By considering (1.3) in a co-moving
frame we may assume λo = 0 throughout this section. In this section we rigorously
justify the change of coordinates (1.7) and give a precise meaning to the nonlinear
PDAE (1.8). In particular, we show how solutions of the original problem (1.4)
are related to solutions of the PDAE (1.8) and vice versa. To make the change of
coordinates (1.7) unambiguous we impose on Ψ:
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Assumption 3.1. The functional Ψ acts on H−1(R,Rn) × H−1(R,Rm), is of
the form Ψ(u, v) = ψ1(u) + ψ2(v), and there is CΨ > 0 so that

(3.1)
∣∣Ψ(u, v)

∣∣ ≤ CΨ

(
‖u‖H−1 + ‖v‖H−1

)
, ∀u ∈ H−1(R,Rn), v ∈ H−1(R,Rm).

Furthermore, Ψ satisfies the non-degeneracy condition

(3.2) Ψ(uo
x, v

o
x) = ψ1(u

o
x) + ψ2(v

o
x) 6= 0.

Of course, by linear continuation, Ψ can also be considered as a linear functional
on the respective complex-valued Sobolev-spaces. Note that two functions η1 ∈
H1(R,Rn) and η2 ∈ H1(R,Rm) define a linear functional on H−1×H−1 with (3.1)
via Ψ(u, v) := (u, η1)L2 + (v, η2)L2 . Here (−,−)L2 denotes the L2–inner product.

The following lemma, which easily follows from (3.2) with the inverse function
theorem, is the key to local well-definedness of (1.7).

Lemma 3.2. Let Ψ be given as above. Then there are open neighborhoods U, V
of 0 in R so that the mapping E : U → V defined by E(ϕ̃) = Ψ

(
W o(· − ϕ̃) −W o

)

is a C2–diffeomorphism.

For E : U → V as in Lemma 3.2 define Φ by Φ := E−1 : V → U , and let Ξ and
Υ denote the following nonlinear changes of coordinates:

(3.3) Ξ

(
W̃

ϕ̃

)
:= W̃ +W o(· − ϕ̃), Υ(W ) :=

(
W −W o

(
· − Φ(Ψ(W −W o))

)

Φ(Ψ(W −W o))

)
.

A simple computation shows that Ξ with domain DΞ and Υ with domain DΥ are
inverse to each other, where

DΞ :=
{

(W̃ , ϕ̃) ∈ L2(R,Rn+m) × R : ϕ̃ ∈ U,Ψ(W̃ ) = 0
}
, and(3.4)

DΥ :=
{
W ∈W o + L2(R,Rn+m) : Ψ(W −W o) ∈ V

}
.(3.5)

Now we apply the change of coordinates Υ to solutions of (1.3).

Lemma 3.3. Let the setting be as above and let W = (u, v) be the unique global
solution of (1.3) on [0, T ∗), given by Theorem 2.8. Assume there is 0 < T < T ∗ so
that µ(t) := Ψ

(
W (t) −W o

)
∈ V for all t ∈ [0, T ]. Then (ũ, ṽ, ϕ̃) = Υ(W ) satisfies

(3.6)

ũ ∈ C([0, T ];H1) ∩H1(0, T ;L2) ∩ L2(0, T ;H2),

ṽ ∈ C([0, T ];H1) ∩H1(0, T ;L2),

ϕ̃ ∈ C1([0, T ]; R),

and Ψ(ũ(t), ṽ(t)) = 0 for all t ∈ [0, T ].

Proof. By Theorem 2.8, t 7→ W (t) −W o is an element of C([0, T ];H1), so
that µ ∈ C([0, T ]; R) and the assumption µ(t) ∈ V is reasonable for W (0) close
to W o. Moreover, t 7→ W (t) −W o ∈ H1(0, T ;L2), so that µ ∈ L2(0, T ; R) and
Ψ(Wt) ∈ L2(0, T ; R) by properties of the Bochner integral (e.g. [26, Ch. 5]) since
Ψ is also a continuous linear functional on L2. It easily follows µt = Ψ(Wt) in the
sense of Distributions, so that µ ∈ H1(0, T ; R).

Because (u, v) solves (1.3),

µt = ψ1(A11uxx + g(u, v)x + f1(u, v)) + ψ2(B22vx + f2(u, v))
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holds as an equality in L2(0, T ; R). In fact, it follows that there is a continuous
representative of µt, i.e. µ ∈ C1, since Theorem 2.8 implies (see also Corollary B.3)

(u− uo)xx ∈ C([0, T ];H−1), (v − vo)x ∈ C([0, T ];H−1),
(
g(u, v) − go

)
x
∈ C([0, T ];L2),

f1(u, v) − fo
1 , f2(u, v) − fo

2 ∈ C([0, T ];L2).

This proves ϕ̃ = Φ ◦ µ ∈ C1([0, T ]; R). To see that ũ is of the asserted class, write
it as ũ = (u − uo) + (uo − uo(· − ϕ̃)). By Theorem 2.8 the first summand is of
the correct class. The second summand belongs to C1([0, T ];H1) ∩ C0([0, T ];H2)
by Assumption 1.2. The same arguments work for ṽ.

Finally, W̃ = (ũ, ṽ) ∈ N (Ψ) follows from the definintion of ϕ̃:

Ψ(W̃ ) = Ψ(W−W o(·−ϕ̃)) = Ψ(W−W o)+Ψ(W o−W o(·−ϕ̃)) = µ−G(Φ(µ)) = 0.

�

Now assume that W = (u, v) solves (1.3) and satisfies Ψ(W (t) −W o) ∈ V for

all t ∈ [0, T ]. Let (W̃ , ϕ̃) = Υ(W ), i.e. W = W̃ + W o(· − ϕ̃), and define λ̃ = ϕ̃t.
Then

G(W ) −G(W o(· − ϕ̃))

= Go
W W̃ +

(
Go

W (· − ϕ̃) −Go
W

)
W̃+

∫ 1

0

(1 − s)GWW

(
W o(· − ϕ̃) + sW̃

)
ds [W̃ , W̃ ]

= Go
W W̃ +

∫ 1

0

(1 − s)GWW

(
W o(· − ϕ̃) + sW̃

)
[W̃ , W̃ ]

−Go
WW (· − sϕ̃)[W o

x (· − sϕ̃)ϕ̃, W̃ ] ds

holds as an equality in H1 for almost every t ∈ [0, T ] (see Lemma B.1). The same

calculation holds true for F so that (W̃ , ϕ̃, λ̃) satisfies the nonlinear PDAE

(3.7a)

W̃t = PW̃ + λ̃W o
x +

(
(G1 +G2)x + F11 + F12

F21 + F22

)
+R,

ϕ̃t = λ̃,

0 = Ψ(W̃ ),

with initial data
(3.7b)

W̃ (0) = W̃0 = (ũ, ṽ)(0) =
(
(W0 −W o(· − ϕ̃(0))

)
, ϕ̃(0) = ϕ̃0 := Φ

(
Ψ(W0 −W o)

)
.

Here P in (3.7a) is given by (1.6). The first equality of (3.7a) holds in L2(R,Rn+m)
for a.e. t ∈ [0, T ], the other two equalities hold pointwise in R. The nonlinearities
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in (3.7a) read

G1 = G1(W̃ , ϕ̃) = −
∫ 1

0

D2g
(
W o(· − sϕ̃)

) [
W o

x (· − sϕ̃), ϕ̃W̃
]
ds,(3.8a)

G2 = G2(W̃ , ϕ̃) =

∫ 1

0

(1 − s)D2g
(
W o(· − ϕ̃) + sW̃

) [
W̃ , W̃

]
ds,(3.8b)

R = R(ϕ̃, λ̃) = −
∫ 1

0

W o
xx(· − sϕ̃) ds ϕ̃λ̃,(3.8c)

and with g replaced by fi for Fij . These are quadratic functions of their arguments.
We started the above discussion with a solution of the original PDE (1.3) and

obtained a solution of the PDAE reformulation (3.7). Since we also need the other
direction, we define the notion of a solution of (3.7).

Definition 3.4. A solution of (3.7) on [0, T ] is a quadruple (ũ, ṽ, ϕ̃, λ̃) =

(W̃ , ϕ̃, λ̃) with

ũ ∈ C([0, T ];H1(R,Rn)) ∩H1(0, T ;L2(R,Rn) ∩ L2(0, T ;H2(R,Rn),

ṽ ∈ C([0, T ];H1(R,Rm)) ∩H1(0, T ;L2(R,Rm),

ϕ̃ ∈ C1([0, T ]; R), λ̃ ∈ C([0, T ]; R),

so that (3.7b) is satisfied, and the first equality in (3.7a) holds in L2(0, T ; Rn+m)
and the last two equalities hold in R for all 0 ≤ t ≤ T . It is called a solution on
[0, T ∗) with 0 < T ∗ ≤ ∞ if it is a solution on [0, T ] for all 0 < T < T ∗.

As usual, initial data for the PDAE cannot be chosen arbitrarily, but are re-

stricted to some manifold by the algebraic condition 0 = Ψ(W̃ ) and the hidden

constraint 0 = Ψ(W̃t). For small (W̃0, ϕ̃0) the hidden constraint uniquely deter-

mines λ̃.
Now, if (W̃ , ϕ̃, λ̃) is a solution of (3.7) in the sense of Definition 3.4, the discus-

sion that leads to the PDAE can be reversed. We summarize this in the following
theorem.

Theorem 3.5. Let the setting be as above, i.e. λo = 0 and Assumptions 1.1,
1.2, 3.1 hold.

If W = (u, v) is the unique solution of (1.3) in [0, T ] and satisfies

(3.9) Ψ(W −W o) ∈ V for all t ∈ [0, T ],

then (W̃ , ϕ̃, λ̃) with (W̃ , ϕ̃) = Υ(W ) and λ̃ = ϕ̃t, is a solution of (3.7) and

(3.10) ϕ̃(t) ∈ U for all t ∈ [0, T ].

Conversely, if (W̃ , ϕ̃, λ̃) is a solution of (3.7), satisfying (3.10), then W = Ξ(W̃ , ϕ̃)

solves (1.3) with initial data W0 = W̃0 +W o(· − ϕ̃0) and satisfies (3.9).
Furthermore, the two transitions Υ and Ξ are inverse to each other, i.e.

(
PDE-solution

with (3.9)

)
Υ7→
(

PDAE-solution

with (3.10)

)
,

(
PDAE-solution

with (3.10)

)
Ξ7→
(

PDE-solution

with (3.9)

)
.

Proof. That solutions W of (1.3) with (3.9) lead to solutions of the PDAE

(3.7) has been shown above. For the other direction note that if (W̃ , ϕ̃, λ̃) is a
solution of (3.7) with (3.10), then u = ũ + uo(· − ϕ̃) and v = ṽ + vo(· − ϕ̃) satisfy
the smoothness (2.10). Therefore, the discussion leading to (3.7) can be reversed,
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so that (u, v) is a solution of (1.3) with initial data u0 = ũ0 + uo(· − ϕ̃0) and
v0 = ṽ0 + vo(· − ϕ̃0).

It remains to show that W̃ +W o(· − ϕ̃) satisfies (3.9), but this follows because

W̃ ∈ N (Ψ) and Ψ
(
W̃ +W o(· − ϕ̃)−W o

)
= Ψ

(
W o(· − ϕ̃)−W o

)
= E(ϕ̃) ∈ V . �

4. Spectral Properties of Linearizations

We use the Laplace-technique to prove stability for the PDAE reformulation
(3.7). The approach of using the Laplace-transform to obtain stability results for
time-dependent problems is well-known, see for example [13, 15] and references
therein. To use the technique for the PDAE reformulation has been first used in
[19, 20] in the case of traveling waves in hyperbolic PDEs. The method works
as follows: Higher order terms of the nonlinear equation are considered as part of
the forcing and the equation is considered as linear but inhomogeneous. Global
existence and stability follow from local existence of the nonlinear problem plus
stability of the linear inhomogeneous problem. Therefore, a major step is the proof
of linear stability for inhomogeneous problems.

The linear but inhomogeneous problem for (3.7) has the structure

(4.1)

Wt = PW + λW o
x +

(
Gx(x, t) + F1(x, t)

F2(x, t)

)
,

ϕt = λ,

0 = Ψ(W ),

with P given by (1.6). To keep the notation simple, we use the same letters as in
the nonlinear problem to highlight the terms they are related to in (3.7).

Because the ϕ-equation decouples, it suffices to consider the reduced system

(4.2)
Wt = PW + λW o

x +

(
Gx(x, t) + F1(x, t)

F2(x, t)

)
,

0 = Ψ(W ).

Assuming W (0) = 0, application of the Laplace transform, leads to the resolvent
equation which we write in operator-matrix form

(4.3) A(s)

(
Ŵ

λ̂

)
:=

(
(sI − P ) −W o

x

Ψ 0

)(
Ŵ

λ̂

)
=




(
Ĝx + F̂1

F̂2

)

0


 .

The operator A(s) acts on L2(R,Cn+m×C) with domain H2(R,Cn)×H1(R,Cm)×
C. Of course, the spectral properties of A are closely related to the spectral proper-
ties of P and we begin with the analysis of the latter. Note that the well-posedness
result from Proposition 5.6 below, justifies the use of Laplace transform.

4.1. Spectral Properties of the PDE Operator P. Beside Assumptions
1.1 and 1.3 we impose on the coefficients of P :

Assumption 4.1. (1) The real diagonal matrix B22 is invertible,
(2) B,C ∈ C1

b (R,Cn+m,n+m) and their derivatives are asymptotically con-
stant, i.e.

∃ lim
x→±∞

B(x) =: B±, ∃ lim
x→±∞

Bx(x),

∃ lim
x→±∞

C(x) =: C±, ∃ lim
x→±∞

Cx(x),
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(3) there is δ > 0 so that for all ω ∈ R, s ∈ σ(−ω2A+iωB++C+)∪σ(−ω2A+
iωB− + C−) implies Re s ≤ −δ < 0.

Recall that 1. is satisfied in the Hodgkin-Huxley case for every traveling wave
solution with nonzero speed. In view of Assumption 1.2, linearizations immediately
satisfy 2. We refer to the last assumption as spectral assumption. Consider the
resolvent equation

(4.4)
(
sI − P

)(u
v

)
=

(
F̂1 + Ĝx

F̂2

)
in L2 × L2.

Using z = (z1, z2, z3)
T = (u,Aux + Ĝ, v)T , we rewrite (4.4) as L(s)z = h with

(4.5) L(s)z = zx −M(x, s)z and h =




−A−1
11 Ĝ

−F̂1 +B12B
−1
22 F̂2 +B11A

−1
11 Ĝ

−B−1
22 F̂2


 ,

where the matrix M(x, s) is given by

(4.6)




0 A−1
11 0

B12B
−1
22 C21 + sI − C11 −B11A

−1
11 −C12 −B12B

−1
22 (sI − C22)

−B−1
22 C21 0 B−1

22 (sI − C22)


 .

Let M±(s) := limx→∞M(x, s). In [6] we have shown

Lemma 4.2 ([6, Lemma 3.4]). The operator sI − P on L2 × L2 with domain
H2×H1 is Fredholm if and only if L(s) on H1×L2×L2 with domain H2×H1×H1

is Fredholm. In this case their indices coincide and dimN (sI −P ) = dimN (L(s)).

Proof. The last assertion is not stated in the original lemma, but is part of
its proof. �

A result of Palmer [16, Lemma 4.2] relates the Fredholm properties of L(s) to
exponential dichotomies and with this to the spectral properties of the limitsM±(s),
see also [6, Cor. A.5] for a version that directly applies here. For convenience we
recall the definition of an exponential dichotomy and several needed properties in
Appendix C.

Lemma 4.3. The operator L(s) on H1 × L2 × L2 with domain H2 ×H1 ×H1

is Fredholm if and only if the limits M±(s) are hyperbolic. In this case the index
of the operator is ind(L(s)) = dimEs

+(s) − dimEs
−(s), where Es

±(s) are the stable
subspaces of M±(s).

The next lemma shows that the third part of Assumption 4.1 implies that L(s)
and therefore also sI − P are Fredholm operators for all Re s > −δ.

Lemma 4.4 ([6, Lemma 3.2]). For every s, κ ∈ C holds s ∈ σ
(
κ2A+ κB± + C±

)

if and only if det(κI −M±(s)) = 0.

Because of Lemma 4.4 and 4.3 the index of L(s) is constant in {Re > −δ}. By
Proposition A.2 dimEs

+(s) = dimEs
−(s) for some s ∈ R, sufficiently large. Using

Lemma C.4 this proves

Proposition 4.5. The operator sI −P is Fredholm of index 0 for every s ∈ C

with Re s > −δ.
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4.1.1. Resolvent estimates for large |s|. To obtain resolvent estimates for large
|s| we consider the “parabolic part” and “hyperbolic part” separately. Resolvent
estimates for the parabolic part in this regime can easily be obtained. They are
based on the fact that A11 is positive definite and, therefore, the essential spectrum
lies to the left of a parabola in the left half plane. No further spectral assumption
is needed. Solution estimates for this part of the problem, i.e. for

(4.7) (sIn −A11∂
2
x −B11∂x − C11)u = f + gx in L2

are proved in [13]. Since the operator is also Fredholm of index zero (see [4]), holds

Lemma 4.6 ([13, Lem. 2.1,2.2],[4]). There are ρ1,K1 > 0, so that for all
s ∈ C, Re s > −δ, |s| ≥ ρ1}, and f ∈ L2(R,Cn), g ∈ H1(R,Cn), (4.7) has a unique
solution u ∈ H2(R,Cn). This satisfies

(4.8) |s|2‖u‖2 + |s|‖ux‖2 ≤ K1

(
‖f‖2 + |s|‖g‖2

)
.

The analysis of the hyperbolic part is more involved. Here the essential spec-
trum is (asymptotically) parallel to the imaginary axis and it is not possible to
obtain uniform estimates without deeper knowledge of its asymptotics. To derive
information about the essential spectrum from the Assumption 4.1 3, we use the
following lemma which is a consequence of a perturbation result from linear algebra.
For convenience its proof is given in Appendix A.

Lemma 4.7. Impose Assumption 4.1 3. Then for all δ0 < δ exists ω0 so that

s ∈ σ
(
iωB22± + C22±

)
implies Re s < −δ0 for all ω ∈ R with |ω| > ω0.

Let 0 < δ0 < δ be arbitrary. By Lemma 4.7 there is ω0 so that for s ∈
σ(iωB22± + C22±) with ω ∈ R, |ω| > ω0 follows Re s < −δ0. Therefore, s ∈
σ(iωB22± +C22±), with |s| ≥ ω0 max(|B22−|∞, |B22+|∞)+max(|C22−|∞, |C22+|∞)
and ω ∈ R, implies Re s < −δ0. This discussion shows that [19, Prop. 3.8] applies
to the hyperbolic part of our problem:

Lemma 4.8 ([19, Prop. 3.8]). Let 0 < δ0 < δ be arbitrary. Then there are
ρ0,K0 > 0 so that for all Re s > −δ0, |s| ≥ ρ0, and every f ∈ H1(R,Cm), the
resolvent equation

(4.9) (sIm −B22∂x − C22)v = f

has a unique solution v ∈ H1 and

(4.10) ‖v‖2
L2 ≤ K0‖f‖2

L2, ‖v‖2
H1 ≤ K0‖f‖2

H1 .

For the coupled problem let (u, v)T be a solution of (4.4), i.e.

(sIn − A11∂
2
x −B11∂x − C11)u =

(
F̂1 + C12v −B12,xv

)
+
(
Ĝ+B12v

)
x
,

(sIm −B22∂x − C22)v = F̂2 + C21u,

so that by (4.10) and (4.8) follow

‖v‖2 ≤ K0‖F̂2 + C21u‖2 ≤ c
(
‖F̂2‖2 + ‖u‖2

)
, and

|s|2‖u‖2 + |s|‖ux‖2 ≤ K1

(
‖F̂1 + C12v −B12,xv‖2 + |s|‖Ĝ+B12v‖2

)

≤ c
(
‖F̂1‖2 + |s|‖Ĝ‖2 + |s|‖F̂2‖2 + |s|‖u‖2

)
.
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Therefore, for sufficiently large |s| with Re s > −δ0 we can bring the u- and v-terms
to the left hand side and using the H1-estimate from Lemma 4.8 yields

(4.11) |s|‖u‖2 + ‖ux‖2 + ‖v‖2
H1 ≤ K

( 1

|s| ‖F̂1‖2 + ‖Ĝ‖2 + ‖F̂2‖2
H1

)
.

Because of Fredholm’s alternative, Proposition 4.5, this also implies solvability:

Proposition 4.9. Let 0 < δ0 < δ be arbitrary. Then there are ρ,K > 0 so

that for all s ∈ {s ∈ C : Re s > −δ0, |s| ≥ ρ} and all right hand sides F̂1 ∈ L2,

Ĝ ∈ H1, F̂2 ∈ H1 there is a unique solution W = (u, v)T ∈ H2 ×H1 of (4.4). The
solution satisfies (4.11).

4.1.2. Resolvent estimates for bounded |s|. Assume s0 ∈ ρ(P ), ρ(P ) the resol-
vent set of P . Then there is no nontrivial bounded solution of (s0I − P )W = 0
and by Lemma 4.2 there is no nontrivial bounded solution of L(s0)z = 0, which
implies that L(s0) has an exponential dichotomy (ED) on the whole real line, see
[7]. The Roughness Theorem C.3 shows that the exponent β and constant K of the
dichotomy data can locally be chosen independently of s. Therefore, it is possible
to chose the same exponent and constant for the dichotomy data for all s from a
compact subset of ρ(P ).

Proposition 4.10. Let Ω ⊂ {Re s > −δ} ∩ ρ(P ) be compact. Then there is

K > 0 so that for all s ∈ Ω and all right hand sides F̂1 ∈ L2, Ĝ ∈ H1, F̂2 ∈ H1

there is a unique solution W = (u, v)T ∈ H2 ×H1 of (4.4). The solution satisfies

(4.12) ‖u‖2
H1 + ‖v‖2

H1 ≤ K
(
‖F̂1‖2 + ‖Ĝ‖2 + ‖F̂2‖2

)
.

Proof. Let s ∈ Ω be arbitrary and rewrite the problem (4.3) with z =

(u,Aux + Ĝ, v)T as the first order equation L(s)z = h (4.5). This operator has
an exponential dichotomy on R with data (K,β, π(s)), where K and β can be cho-
sen independently of s ∈ Ω. Theorem C.2 proves unique solvability of L(s)z = h

and the estimate ‖z‖2 ≤ 5K2β−2‖h‖2. With the differential equation follows
‖z‖2

H1 ≤ c‖h‖2, where C does not depend on s ∈ Ω. Recalling the definition of z and

(4.5), one obtains ‖u‖2
H1 + ‖v‖2

H1 ≤ c‖z‖2
H1 and ‖h‖2 ≤ c

(
‖Ĝ‖2 + ‖F̂1‖2 + ‖F̂2‖2

)
.

Combination proves the assertion. �

4.2. Spectral Properties of the PDAE Operator A. The estimates for
sI − P are now used to derive solution estimates for (4.3). First we note that
Proposition 4.5 implies together with the bordering Lemma [3, Lem. 2.3]:

Proposition 4.11. The operator A(s) : H2×H1×C → L2×L2×C is Fredholm
of index 0 for every s ∈ C with Re s > −δ.

It also proves useful to define the linear projector Π on L2 × L2,

(4.13) Π : (u, v)T 7→
(
uo

x

vo
x

)
Ψ(u, v)

Ψ(uo
x, v

o
x)
.

This operator projects (u, v)T ∈ L2×L2 along N (Ψ) onto N (P ) = {c(uo
x, v

o
x)T : c ∈

C}. The following lemma is a simple consequence of the assumptions on (uo
x, v

o
x)

and on Ψ.

Lemma 4.12. The linear operator Π : L2 × L2 → L2 × L2 is bounded and
continuously extends to Π : H−1 × H−1 → H2 × H2. In particular, the mapping
Π◦P : H2×H1 → H2×H2 has a continuous extension to Π◦P : H1×L2 → H2×H2.
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4.2.1. Large |s|. For large absolute values of s in a right half plane we have the
following resolvent estimate.

Proposition 4.13. For 0 < δ0 < δ exist C0,KL > 0 so that for all s ∈ C,

Re s ≥ −δ0, |s| > C0 and all right hand sides F̂1 ∈ L2(R,Cn), Ĝ ∈ H1(R,Cn), F̂2 ∈
H1(R,Cm), exists a unique solution (Ŵ , λ̂) of (4.3). It holds Ŵ ∈ H2(R,Cn) ×
H1(R,Cm) and

(4.14) ‖Ŵ‖H1 + |λ̂| ≤ KL

(
‖F̂1‖L2 + ‖Ĝ‖L2 + ‖F̂2‖H1

)
.

Idea of proof. By Lemma 4.9 there are K,C0 > 0 so that for all s ∈ C there
exists a unique solution w0 = (u0, v0)

T ∈ H2(R) ×H1(R) of

(sI − P )w =

(
F̂1 + Ĝx

F̂2

)
in L2(R) × L2(R).

This satisfies the estimate (4.11). Then Ŵ := (I − Π)w0 and λ̂ := −sΨ(w0)
Ψ(wo

x) solve

(4.3) and satisfy estimate (4.14). �

For the details we refer to [19, Lem. 4.3], which easily adapts to the current
situation.

4.2.2. Compact subsets of the resolvent set. For s from a compact set Ω ⊂ {s ∈
C : Re s > −δ, s 6= 0} we generalize (4.3) to

(4.15) A(s)

(
Ŵ

λ̂

)
=




(
Ĝx + F̂1

F̂2

)

σ


 ,

where σ ∈ C is arbitrary. In compact regions we have

Proposition 4.14. For every Ω as above there is a constant KC > 0 so that for

all s ∈ Ω and all right hand sides F̂1 ∈ L2(R,Cn), Ĝ ∈ H1(R,Cn), F̂2 ∈ H1(R,Cm),

σ ∈ C, there exists a unique solution (Ŵ , λ̂) of (4.15). It holds Ŵ ∈ H2(R,Cn) ×
H1(R,Cm) and

(4.16) ‖Ŵ‖H1 + |λ̂| ≤ KC

(
‖F̂1‖L2 + ‖Ĝ‖L2 + ‖F̂2‖L2

)
.

We do not give the proof because it is basically the same as that of Proposition

4.13, but this time define Ŵ := (I − Π)w0 + σ
W o

x

Ψ(W o
x ) and λ̂ := −sΨ(w0)−σ

Ψ(W o
x ) .

4.2.3. Small |s|. Finally, we prove solution estimates for (4.3) in a small neigh-
borhood of zero. Here the algebraic constraint is crucial because it removes zero
from the spectrum of the operator.

Proposition 4.15. There are c0,KS > 0 so that for all s ∈ C with |s| < c0

and all right hand sides F̂1 ∈ L2(R), Ĝ ∈ H1(R), and F̂2 ∈ L2(R) there is a unique

solution (Ŵ , λ̂), Ŵ = (û, v̂) ∈ H2 ×H1, of (4.3) and

(4.17) ‖û‖H2 + ‖v̂‖H1 + |λ̂| ≤ KS

(
‖F̂1‖ + ‖Ĝ‖H1 + ‖F̂2‖

)
.

Proposition 4.15 easily follows with a perturbation argument from the next
lemma.
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Lemma 4.16. There is c > 0 so that for every F̂1 ∈ L2(R), Ĝ ∈ H1(R),

F̂2 ∈ L2(R), and σ ∈ C there is a unique solution (w, λ), w = (u, v) ∈ H2 ×H1, of
(4.15) and

(4.18) ‖u‖H2 + ‖v‖H1 + |λ| ≤ c
(
‖F̂1‖ + ‖Ĝ‖H1 + ‖F̂2‖ + |σ|

)
.

Proof. Consider A(0) as a bounded linear operator from H2 × H1 × C to
L2 × L2 × C. Assume that H2 ×H1 × C ∋ (w, λ)T = (u, v, λ)T ∈ N

(
A(0)

)
. This

implies

P

(
u

v

)
= −λ

(
uo

x

vo
x

)
,

which is only possible if λ = 0 since 0 is a simple eigenvalue of P by Assump-
tion 1.3. Therefore, (u, v) ∈ N (P ), i.e. (u, v) = ν(uo

x, v
o
x) for some ν ∈ C. But

A(0)(νuo
x, νv

o
x, 0)T = 0 implies νΨ(uo

x, v
o
x) = 0, what is equivalent to ν = 0 because

of Assumption 3.1.
Moreover, by Proposition 4.11, A(0) is Fredholm of index 0, what implies that

A(0) : H2 × H1 × C → L2 × L2 × C is a linear homeomorphism. Therefore, the
solution (u, v, λ) of (4.15) satisfies for some constant c the estimate

‖u‖H2 + ‖v‖H1 + |λ| ≤ const
(
‖F̂1‖L2 + ‖Ĝx‖L2 + ‖F̂2‖L2 + |σ|

)
.

�

Proof of Proposition 4.15. Lemma 4.16 shows that A(0) : H2×H1×C →
L2 × L2 × C is a linear homeomorphism. Then for small |s| the assertion follows
from a simple perturbation argument. �

With a von Neumann series argument we also obtain analytic dependence of
A(s)−1 on s from the results of Lemma 4.16 and Proposition 4.14:

Corollary 4.17. For every s ∈ C with Re s > −δ the operator A(s) from
(4.3) is a linear homeomorphism and its inverse A(s)−1 depends holomorphically
on s for Re s > −δ.

5. PDAE Stability

Now we prove stability for the PDAE reformulation (3.7). We begin with linear
stability (Theorem 5.1) and then use the linear result to prove nonlinear stability
(Theorem 5.9). Without mentioning it again, we always impose Assumptions 1.1,
1.2, and 3.1. We again denote by W the vector (u, v)T , consisting of the functions
u and v, corresponding to the “parabolic part” and “hyperbolic part”, respectively.

5.1. Linear PDAE Stability. We begin with the analysis of (4.2). First we
show exponential well-posedness of the linear PDAE problem to justify application
of the Laplace transform. In the second step we use the resolvent estimates from
Section 4 to deduce linear stability. The linear result is the following theorem. The
precise meaning of a solution is given in Definition 5.2 below.

Theorem 5.1 (Linear PDAE Stability). For all F1, F2, G ∈ L∞
loc(J ;H1), J =

[0, T ] with T > 0 or J = [0,∞), and all consistent initial data W0 = (u0, v0)
T ∈

H2(R,Rn+m), λ0 ∈ R, there is a unique weak solution (W,λ)T = (u, v, λ)T of (4.2)
in J .
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The solution is a strong solution. Moreover, for every η0 < δ, δ from As-
sumptions 1.3 and 4.1, exists Cl, independent of F1, F2, G, u0, v0, λ0, so that for all
η ≤ η0 and all t ∈ J ,

(5.1) ‖W (t)‖2
H1 + e−2ηt

∫ t

0

e2ητ
{
‖W (τ)‖2

H1 + |λ(τ)|2
}
dτ

≤ Cle
−2ηt

[
‖W0‖2

H2 +

∫ t

0

e2ητ
{
‖G(τ)‖2

H1 + ‖F1(τ)‖2
L2 + ‖F2(τ)‖2

H1

}
dτ
]
.

Finally, if F1, F2, G ∈ C(J ;L2), then also λ ∈ C([0,∞)).

5.1.1. Exponential Well-Posedness of the PDAE. Consider (4.2) subject to con-
sistent initial data

(5.2) W (0) = (u(0), v(0))T = (u0, v0)
T ∈ H1 ×H1, λ(0) = λ0 ∈ R

i.e. Ψ(u0, v0) = 0 and the hidden constraint Ψ(ut, vt)|t=0 = 0 is satisfied. This
determines λ0 in terms of u0, v0. For the inhomogeneities of (4.2) we assume

(5.3) G ∈ L2
loc([0,∞);H1), F1 ∈ L2

loc([0,∞);H1), F2 ∈ L2
loc([0,∞);H1).

Definition 5.2. The triple (u, v, λ) is called a weak solution of (4.2), (5.2) in
[0, T ] if

u ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1) ∩H1(0, T ; (H1)′),

v ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1) ∩H1(0, T ;L2),

λ ∈ L2(0, T ; R),

such that (u, v) is a weak solution of the PDE part in the sense of Definition 2.3
and 0 = Ψ(u, v) holds for a.e. t ∈ [0, T ].

A strong solution in [0, T ] is a weak solution (u, v, λ) in [0, T ] with

u ∈ C([0, T ];H1)∩L2(0, T ;H2)∩H1(0, T ;L2) and v ∈ C([0, T ];H1)∩H1(0, T ;L2),

so that (4.2) holds in L2 × L2 × R for almost every t ∈ [0, T ].
The triple (u, v, λ) is a weak (respectively strong) solution of the PDAE in

[0, T ∗), T ∗ ∈ (0,∞], if it is a weak (respectively strong) solution in [0, T ] for all
0 < T < T ∗.

For the proof of well-posedness, we project the differential equation part of
(4.2) onto the manifold given by the algebraic constraint. The resulting linear
PDE problem is exponentially well-posed, see Proposition 5.4. Its solution leads
to a solution of the original linear PDAE (4.2). We also obtain exponential well-
posedness for (4.2).

Applying the projector (I − Π), Π from (4.13), to the PDE part of (4.2) leads
to

(5.4) Wt =
(
I − Π

)
PW +

(
I − Π

)(F1 +Gx

F2

)
, t ≥ 0,

subject to W (0) = W0 = (u0, v0)
T = (I − Π)(u0, v0)

T ∈ N (Ψ).
Use Π1 = uo

xΨ(W o
x )−1Ψ(·) and Π2 = vo

xΨ(W o
x )−1Ψ(·) to define the operators

(5.5)

g̃ : W 7→ DgoW +G,

f̃1 : W 7→ Dfo
1W − Π1PW + F1 − Π1(Gx + F1),

f̃2 : W 7→ Dfo
2W − Π2PW + F2 − Π2(F2).
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Then equation (5.4) can be written in the form analyzed in Theorem 2.5:

(5.6)

(
u

v

)

t

=

(
A11uxx + g̃(u, v)x + f̃1(u, v)

B22vx + f̃2(u, v)

)
.

Lemma 5.3. If F1, G, F2 satisfy (5.3), the operators g̃, f̃1, f̃2 satisfy Assumption
2.1.

Proof. By Assumption 1.2,Dgo, Dfo
1 , andDfo

2 are elements of C1
b . Therefore,

g̃ satisfies the properties from Assumption 2.1 because of (5.3) and Lemma 2.2 2.

For the analysis of f̃1 and f̃2 note that Π1 and Π2 can be considered as bounded
linear operators from L2(t0, T ;H−1) × L2(t0, T ;H−1) into L2(t0, T ;H1) for 0 ≤
t0 < T . By Lemma 4.12, their norm is bounded by a constant CΠ independent
of 0 ≤ t0 < T . Thus, F1 − Π1(Gx + F1) ∈ L2

loc([0,∞);H1) and F2 − Π2(F2) ∈
L2

loc([0,∞);H1).
By Lemma 4.12, also the operators Πi ◦ P : L2(t0, T ;H1) × L2(t0, T : H1) →

L2(t0, T ;H1), i = 1, 2, are bounded by a constant CΠP , independent of t0 and T .

This and Dfo
1 , Df

o
2 ∈ C1

b imply that f̃i, i = 1, 2, maps L2(t0, T ;H1)∩L∞(t0, T ;H1)
into L2(t0, T ;H1). Moreover, for i = 1, 2, and all

W,W ′ ∈ L2(t0, T ;H1) ∩ L∞(t0, T ;H1),

hold

‖f̃i(W ) − f̃i(W
′)‖L2(t0,T ;H1) ≤

(
‖Dfo

1‖W 1,∞ + CΠP

)
‖W −W ′‖L2(t0,T ;H1).

�

Now exponential well-posedness of the projected PDE (5.4) is an easy conse-
quence of Theorem 2.5. Here we greatly benefit from the abstract formulation of
Theorem 2.5.

Proposition 5.4 (Well-posedness of the projected Cauchy problem). For all
F1, G, F2 of the form (5.3), the Cauchy problem for (5.4) with u0, v0 ∈ H1, Π(u0, v0) =
0, has a unique weak solution (u, v)T on [0,∞), this even is a strong solution. More-
over, for every η0 ≥ 0 exists C, so that for all η ≤ η0 and all t ≥ 0 holds

(5.7) ‖u(t)‖2
H1 + ‖v(t)‖2

H1 ≤ CeCt
(
emax(−2ηt,0)

(
‖u0‖2

H1 + ‖v0‖2
H1

)

+ e−2ηt

∫ t

0

e2ητ
{
‖G(τ)‖2

H1 + ‖F1(τ)‖2
L2 + ‖F2(τ)‖2

H1

}
dτ
)
.

Remark 5.5. If there is η ∈ R so that the integral term in (5.7) is uniformly
bounded for all t ≥ 0, then also the solution is exponentially bounded.

Proof. Because of Lemma 5.3, Theorem 2.5 applies and shows the existence
and uniqueness part. To prove (5.7) rewrite (5.4) as

Wt = PW +
[
−ΠPW + (I − Π)

(
Gx + F1

F2

)]
, W (0) = W0.

The term −ΠPW satisfies ‖ΠPW‖L2(0,T ;H1) ≤ C‖W‖L2(0,T ;H1), for some C > 0,
because of Lemma 4.12, and we consider it as part of the forcing. Then the energy
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estimate, Lemma 2.6, yields for every η0 ≥ 0: There is C > 0 so that for all η ≤ η0
holds

e2ηt‖W (t)‖2
H1 ≤ e2ηt‖W0‖2

H1 + C

∫ t

0

e2ητ‖W (τ)‖2
H1 dτ

+ C

∫ t

0

e2ητ
(
‖G(τ)‖2

H1 + ‖F1(τ)‖2
L2 + ‖F2(τ)‖2

H1

)
dτ, ∀t ≥ 0.

With Gronwall’s inequality [12, Lemma 6.3.6], applied to e2ηt‖W (t)‖2
H1 , follows for

all t ≥ 0

e2ηt‖W (t)‖2
H1 ≤ CeCt

(
emax(2ηt,0)‖W0‖2

H1

+

∫ t

0

e2ητ
{
‖G(τ)‖2

H1 + ‖F1(τ)‖2
L2 + ‖F2(τ)‖2

H1

}
dτ
)
.

This implies (5.7) and finishes the proof. �

Well-posedness of the projected equation leads to well-posedness of the linear
PDAE:

Proposition 5.6 (Well-posedness of the linear PDAE). For all F1, G, F2,
satisfying (5.3), and all consistent initial data u0 ∈ H1, v0 ∈ H1, λ0 ∈ R, there is
a unique weak solution (u, v, λ) of (4.2) on [0,∞), which in fact is a strong solution.
Furthermore, if

(5.8)

∫ ∞

0

e2ηLt
(
‖F1(t)‖2

L2 + ‖G(t)‖2
H1 + ‖F2(t)‖2

H1

)
dt <∞,

for some ηL ∈ R, there are k, c ≥ 0, so that

(5.9) ‖u(t)‖2
H1 + ‖v(t)‖2

H1 ≤ kect, for all t ≥ 0, and

∫ ∞

0

e−cτ |λ(τ)|2 dτ <∞.

Finally, if there are ηe,Ke ∈ R so that
(
‖F1(t)‖2

L2 + ‖G(t)‖2
L2 + ‖F2(t)‖2

L2

)
≤

Kee
−ηet for a.e. t ≥ 0, then also λ satisfies |λ(t)|2 ≤ kect, for a.e. t ≥ 0, for some

constants k and c.

Proof. Step 1: [Uniqueness] Let (u, v, λ)T be a weak solution of (4.2) in
[0, T ]. By definition, W = (u, v)T is a weak solution in the sense of Definition 2.3
in [0, T ] of

(5.10)

(
u

v

)

t

= P

(
u

v

)
+

(
Gx + F1

F2

)
+ λW o

x , u(0) = u0, v(0) = v0.

The assumptions imply, G,F1 + λuo
x, F2 + λvo

x ∈ L2([0, T ];H1), so that (u, v)T is
the unique strong solution of (5.10) by Corollary 2.7. In particular,

(5.11)
u ∈ C([0, T ];H1) ∩ L2(0, T ;H2) ∩H1(0, T ;L2),

v ∈ C([0, T ];H1) ∩H1(0, T ;L2),

and every weak solution of (4.2) already is a strong solution.
By assumption, Ψ(W ) = 0 for a.e. t ∈ [0, T ]. Moreover, t 7→ Ψ(W (t)) ∈

H1([0, T ]) by (5.11). As in the proof of Lemma 3.3 its distributional derivative is

d

dt
Ψ

(
u

v

)
= Ψ

(
P

(
u

v

)
+

(
F1 +G1,x

F2

))
+ λΨ(W o

x ) = 0, for a.e. t ∈ [0, T ].
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This equality can be solved for λ,

(5.12) λ = −Ψ(W o
x )−1Ψ

(
P

(
u

v

)
+

(
F1 +Gx

F2

))
, for a.e. t ∈ [0, T ].

Inserting (5.12) into (5.10) and recalling the definition (4.13) of Π shows
(
u

v

)

t

= (I − Π)P

(
u

v

)
+ (I − Π)

(
F1 +Gx

F2

)
,

where the equality holds in L2(R,Rp) × L2(R,Rm) for a.e. t ∈ [0, T ]. Therefore,
(u, v)T solves (5.4) and is uniquely determined by Proposition 5.4.

Step 2: [Existence] Let W := (u, v)T solve (5.4) and define λ by (5.12). By
Proposition 5.4 u and v satisfy (5.11). Moreover, because of Lemma 4.12, for a.e.
t ∈ [0,∞),

(5.13)
∣∣Ψ(PW )

∣∣+
∣∣Ψ
(
(Gx +F1, F2)

T
)∣∣ ≤ c

(
‖W‖H1 + ‖F1‖L2 + ‖G‖L2 + ‖F2‖L2

)
,

for some c ∈ R. Therefore, λ ∈ L2
loc([0,∞); R) follows from (5.12). Since (u, v)T

solves (5.4) and λ is given by (5.12), the computation from Step 1 can be reversed
and yields that (u, v, λ) satisfies (5.10) and Ψ((u, v)T ) = 0 holds.

Step 3: [Estimates] Let (u, v, λ) be the unique solution. If (5.8) holds,
Proposition 5.4 implies the exponential estimates (5.9) for u and v. For λ, given
by (5.12), follows

(5.14)

∫ ∞

0

e−c′τ |λ(τ)|2 dτ ≤ const

∫ ∞

0

e−c′τ
(
‖u(τ)‖2

H1 + ‖v(τ)‖2
H1

+ ‖G(τ)‖2
L2 + ‖F1(τ)‖2

L2 + ‖F2(τ)‖2
L2

)
dτ,

from the boundedness of Ψ and Ψ ◦P . The integral converges for sufficiently large
c′ so that the estimate (5.9) for λ follows. In the case of exponentially bounded
inhomogeneities, the exponential boundedness of λ again follows from (5.12) and
the properties of Ψ and P . �

Remark 5.7. (1) The proof shows that λ is uniquely given by (5.12).
This implies λ ∈ C([0,∞)) for F1 ∈ C([0,∞); (H1)′), G ∈ C([0,∞);L2),
F2 ∈ C([0,∞);L2).

(2) Note that we did not make use of the spectral structure of P , i.e. Assump-
tions 1.3 and 4.1, in the above proofs.

5.1.2. Proof of Linear Stability, Theorem 5.1. The stability proof now proceeds
as in the purely hyperbolic case [19, Thm. 5.3]. Therefore we refer to that arti-
cle and to [18] for the details and restrict here to the ideas and some differences
originating from the parabolic-hyperbolic structure.

That the Laplace transform in combination with resolvent estimates can be use
for the proof of stability is well known. We adapt several ideas from [13] to the
PDAE problem considered here. Note that in that reference no PDAE problem was
considered and also no justification for the Laplace transform is given. We justify
its use in the following Step 1.

Step 1: Start with consistent initial data u0 = 0, v0 = 0, and λ0. Assume that
F1, G, F2 satisfy (5.8) for ηL = δ, and

(
‖F1(t)‖2

L2+‖G(t)‖2
L2+‖F2(t)‖2

L2

)
≤ Kee

−ηet

for some Ke, ηe ∈ R. Proposition 5.6 shows exponential boundedness of the unique
solution (u, v, λ)T of (4.2). Thus, its Laplace transform exists for all s ∈ C with
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Re s > α for some α ∈ R. As in the proof of [19, Thm. 5.3] the Laplace-transformed

functions (û, v̂, λ̂)T holomorphically extend to the half plane {Re s > −δ} and are
given by the solution of the resolvent equation (4.3).

Propositions 4.13-4.15 show that for every η0 < δ there is a constant Kη0
,

independent of F1, G, F2, so that for all s ∈ C with Re s ≥ −η0 holds

(5.15) ‖û(s)‖2
H1 + ‖v̂(s)‖2

H1 + |λ̂(s)|2 ≤ Kη0

(
‖F̂1(s)‖2

L2 + ‖Ĝ(s)‖2
L2 + ‖F̂2(s)‖2

H1

)
.

By assumption the right hand side is uniformly bounded for all Re s ≥ −η0 and,
therefore, by [1, Thm. 4.4.13] the Laplace transforms of u, v, λ exist for all Re s >

−δ and coincide with û, v̂, λ̂. This can be interpreted as a justification to shift
the contour for the inverse Laplace transform into the left half plane. Therefore,
Plancherel’s Theorem [1, Thm. 1.8.2] shows for all η ≤ η0,

(5.16)

∫ ∞

0

e2ητ
(
‖u(τ)‖2

H1 + ‖v(τ)‖2
H1 + |λ(τ)|2

)
dτ

≤ Kη0

∫ ∞

0

e2ητ
(
‖F1(τ)‖2

L2 + ‖G(τ)‖2
L2 + ‖F2(τ)‖2

H1

)
dτ.

Step 2: Consider consistent initial data (u0, v0) = 0, λ0, and F1 ∈ L∞
loc([0,∞);L2),

G ∈ L∞
loc([0,∞);H1), F2 ∈ L∞

loc([0,∞);H1). A “future does not influence the past”
argument similar to the one used in [19], proves with η and Kη0

from Step 1 for all
t ≥ 0

∫ t

0

e2ητ
(
‖u(τ)‖2

H1 + ‖v(τ)‖2
H1 + |λ(τ)|2

)
dτ

≤ Kη0

∫ t

0

e2ητ
(
‖F1(τ)‖2

L2 + ‖G(τ)‖2
L2 + ‖F2(τ)‖2

H1

)
dτ.

By only considering the PDE part of (4.2) with λW o
x as part of the forcing, we

obtain from the last estimate with the energy estimate, Lemma 2.6, for all t ≥ 0,

(5.17) ‖W (t)‖2
H1 + e−2ηt

∫ t

0

e2ητ
(
‖W (τ)‖2

H1 + |λ(τ)|2
)
dτ

≤ e−2ηtCη0

∫ t

0

e2ητ
(
‖G(τ)‖2

H1 + ‖F1(τ)‖2
L2 + ‖F2(τ)‖2

H1

)
dt.

The constant Cη0
does not depend on the choice of η ≤ η0.

Step 3: In case W0 = (u0, v0)
T 6= 0 ∈ H2 × H2, transform (4.2) via W̃ :=

W − e−2δtW0 to homogeneous initial data. Then the inhomogeneities become

F̃1(·, t) = F1(·, t) + 2δe−2δtu0 + e−2δt
(
(DgoW0)x +Dfo

1W0

)
,

G̃(·, t) = G(·, t) + e−2δtA11u0,x,

F̃2(·, t) = F2(·, t) + 2δe−2δtv0 + e−2δt
(
B22v0,x +Dfo

2W0

)
,
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and have the same smoothness properties as F1, G, F2. The result from Step 2 now
applies to the transformed variables and shows for all t ≥ 0

‖W (t)‖2
H1 + e−2ηt

∫ t

0

e2ητ (‖W (τ)‖2
H1 + |λ(τ)|2) dτ

≤ 2
{
‖W̃ (t)‖2

H1 + e−2ηt

∫ t

0

e2ητ (‖W̃ (τ)‖2
H1 + |λ(τ)|2) dτ

+ e−4δt‖W0‖2
H1 + e−2ηt

∫ t

0

e(2η−4δ)τ‖W0‖2
H1 dτ

}

≤ 2
{
e−2ηtCη0

∫ t

0

e2ητ
(
‖F̃1(τ)‖2

L2 + ‖G̃(t)‖2
H1 + ‖F̃2(τ)‖2

H1

)
dτ

+ e−2ηt(1 +
1

2δ
)
[
‖u0‖2

H1 + ‖v0‖2
H1

]}
.

Furthermore, there is C̃, independent of W0, λ0, F1, G, F2, so that for all t ≥ 0 holds

‖G̃(t)‖H1 ≤ ‖G(t)‖H1 + C̃e−2δt‖u0‖H2 ,

‖F̃1(t)‖L2 ≤ ‖F1(t)‖L2 + C̃e−2δt (‖u0‖H1 + ‖v0‖H1) ,

‖F̃2(t)‖H1 ≤ ‖F2(t)‖H1 + C̃e−2δt (‖u0‖H1 + ‖v0‖H2) .

Inserting these estimates finish the proof of Theorem 5.1. �

Remark 5.8. Note that in the last step of the proof we had to useH2 estimates
of the initial data to obtain an H1 estimate for the solution.

5.2. Nonlinear Stability of the PDAE. In this section we prove stability
for the nonlinear parabolic-hyperbolic PDAE (3.7a) subject to consistent initial

data W̃ (0) = (ũ0, ṽ0)
T , ϕ̃(0) = ϕ̃0, λ̃(0) = λ̃0.

Theorem 5.9. Impose Assumptions 1.1, 1.2, 1.3, 3.1, 4.1. Then for every
0 < η < δ, δ from Assumptions 1.3 and 4.1, there are ρ0, θ0 > 0 so that for all

consistent initial data ũ0, ṽ0 ∈ H2, ϕ̃0, λ̃0 ∈ R, with ‖ũ0‖2
H2 + ‖ṽ0‖2

H2 ≤ ρ2
0 and

|ϕ̃0| ≤ θ0, there is a unique solution (ũ, ṽ, ϕ̃, λ̃) of (3.7) on [0,∞). The solution
satisfies ϕ̃(t) ∈ U for all t ≥ 0, U given by Lemma 3.2. Moreover, there is ϕ̃∞ ∈ R

so that with Cl from Theorem 5.1 hold for all t ≥ 0,

|ϕ̃∞| ≤ |ϕ̃0| +
(
Cl

η

)1/2 (
‖ũ0‖2

H2 + ‖ṽ0‖2
H2

)1/2
,(5.18a)

|ϕ̃(t) − ϕ̃∞|2 ≤ Cl

η

(
‖ũ0‖2

H2 + ‖ṽ0‖2
H2

)
e−2ηt,(5.18b)

‖ũ(t)‖2
H1 + ‖ṽ(t)‖2

H1 ≤ Cl

(
‖ũ0‖2

H2 + ‖ṽ0‖2
H2

)
e−2ηt,(5.18c)

∫ t

0

e2ητ |λ̃(τ)|2 dτ ≤ 2Cl

(
‖ũ0‖2

H2 + ‖ṽ0‖2
H2

)
.(5.18d)

The techniques are closely related to those used in [20] for the purely hyperbolic
case. Therefore we refer to that article and to [18] at some places of the proof.

Proof. Step 0: [Rescaling] Let ε > 0, ε will be chosen below, and consider

the rescaled variables εū = ũ, εv̄ = ṽ, εϕ̄ = ϕ̃, ελ̄ = λ̃. Also define for i, j = 1, 2
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the rescaled nonlinearities

ε2F ε
ij(ϕ̄, ū, v̄) := Fij(εϕ̄, εū, εv̄), ε

2Gε
i (ϕ̄, ū, v̄) := Gi(εϕ̄, εū, εv̄),

ε2Rε
i (ϕ̄, λ̄) := Ri(εϕ̄, ελ̄).

where Fij , Gi, Ri are given in (3.8). This yields the rescaled PDAE
(5.19a)

ūt = A11ūxx +
{
Dgo

(
ū

v̄

)}
x

+Dfo
1

(
ū

v̄

)
+ λ̄uo

x

+ ε
{
Gε

1(ϕ̄, ū, v̄) +Gε
2(ϕ̄, ū, v̄)

}
x

+ εF ε
11(ϕ̄, ū, v̄) + εF ε

12(ϕ̄, ū, v̄) + εRε
1(ϕ̄, ū),

v̄t = B22v̄x +Dfo
2

(
ū

v̄

)
+ λ̄vo

x + εF ε
21(ϕ̄, ū, v̄) + εF ε

22(ϕ̄, ū, v̄) + εRε
2(ϕ̄, λ̄),

ϕ̄t = λ̄,

0 = Ψ(ū, v̄),

subject to the, again consistent, initial conditions
(5.19b)

ū(0) = ū0 :=
1

ε
ũ0, v̄(0) = v̄0 :=

1

ε
ṽ0, ϕ̄(0) = ϕ̄0 :=

1

ε
ϕ̃0, λ̄(0) = λ̄0 :=

1

ε
λ̃0.

Then (ũ, ṽ, ϕ̃, λ̃) is a solution of (3.7) if and only if (ū, v̄, ϕ̄, λ̄) is a solution of
(5.19). Hence, it suffices to show that for every 0 < η < δ there are ε0, ω0 > 0
so that for all 0 < ε ≤ ε0 and all initial data ū0 ∈ H2, v̄0 ∈ H2, ϕ̄0, λ̄0 ∈ R

with ‖ū0‖2
H2 + ‖v̄0‖2

H2 ≤ ω0 and |ϕ̄0| ≤ 1, (5.19) has a unique classical solution
(ū, v̄, ϕ̄, λ̄) on [0,∞), |ϕ̄(t)| ≤ 2 for all t ≥ 0 and, moreover, there is ϕ̄∞ ∈ R so that
for all t ≥ 0, (5.18) with˜ replaced by ¯ holds.

From now on let U , V , E, Φ be as in Section 3. Let 0 < η < δ be given
and let Cl be the constant from Theorem 5.1. Let ε1 > 0 with ε1 ≤ (2Cl)

−1/2,
B3ε1

(0) ⊂ U .
Step 1: [A priori estimates] Let 0 < ε < ε1 and assume there is a solution

(ū, v̄, ϕ̄, λ̄) of (5.19) on [0, T ], T > 0, satisfying

|ϕ̄(t)| ≤ 2,
(
‖ū(t)‖2

H1 + ‖v̄(t)‖2
H1

)1/2 ≤ 2 ∀0 ≤ t ≤ T.

By Lemmas B.4, B.5, and B.6 the functions F ε
ij(ϕ̄, ū, v̄), G

ε
i (ϕ̄, ū, v̄), and Rε

i (ϕ̄, λ̄)

are elements of C([0, T ];H1) and there is a constant Cn, independent of T , so that
for all 0 ≤ t ≤ T :

(5.20)

‖Gε
i (ϕ̄, ū, v̄)‖2

H1 ≤ Cn(‖ū‖2
H1 + ‖v̄‖2

H1), i = 1, 2,

‖F ε
ij(ϕ̄, ū, v̄)‖2

H1 ≤ Cn(‖ū‖2
H1 + ‖v̄‖2

H1), i, j = 1, 2,

‖Rε
i (ϕ̄, λ̄)‖2

H1 ≤ Cn|λ̄|2, i = 1, 2.

Consider the nonlinearities as inhomogeneities in the linear PDAE (4.1), i.e.

G = ε(Gε
1 +Gε

2), F1 = ε
(
F ε

11 + F ε
12 +Rε

1

)
, F2 = ε

(
F ε

21 + F ε
22 +Rε

2

)
.

Then Theorem 5.1 applies and, together with (5.20), yields for all 0 ≤ t ≤ T ,

‖ū(t)‖2
H1 + ‖v̄(t)‖2

H1 + e−2ηt

∫ t

0

e2ητ
(
‖ū(τ)‖2

H1 + ‖v̄(τ)‖2
H1 + |λ̄(τ)|2

)
dτ

≤ Cle
−2ηt

[
‖ū0‖2

H2 +‖v̄0‖2
H2 +5ε2Cn

∫ t

0

e2ητ
(
‖ū(τ)‖2

H1 +‖v̄(τ)‖2
H1 +|λ̄(τ)|2

)
dτ
]
.
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If 0 < ε ≤ ε0 =: min(ε1, (10ClCn)−1/2), it follows for all 0 ≤ t ≤ T the bound

(5.21) ‖ū(t)‖2
H1 + ‖v̄(t)‖2

H1 +
1

2
e−2ηt

∫ t

0

e2ητ
(
‖ū(τ)‖2

H1 + ‖v̄(τ)‖2
H1 + |λ̄(τ)|2

)
dτ

≤ Cle
−2ηt

[
‖ū0‖2

H2 + ‖v̄0‖2
H2

]
.

Because of ϕ̄t = λ̄, this also yields an estimate for the algebraic variable:
(5.22)

|ϕ̄(t)| ≤ |ϕ̄0+

∫ t

0

λ̄(τ) dτ | ≤ |ϕ̄0|+
(
Cl

η

)1/2 [
‖ū0‖2

H2+‖v̄0‖2
H2

]1/2
, for all 0 ≤ t ≤ T.

Step 2: [Local Existence and Uniqueness] Let 0 < ε ≤ ε0 with ε0 from
Step 1. Then (ū, v̄, ϕ̄, λ̄) is a solution of (5.19) in [0, T ] if an only if (εū, εv̄, εϕ̄, ελ̄)
solves (3.7) in [0, T ] with the corresponding initial data. Therefore, if εϕ̄(t) ∈ U

for all t ∈ [0, T ], Theorem 3.5 shows that (ū, v̄, ϕ̄, λ̄) is a solution of (5.19) if
and only if (u, v) = Ξ(εϕ̄, εū, εv̄) solves the Cauchy problem (1.3) in [0, T ] with
u(0) = εū0 + uo(· − εϕ̄0) and v(0) = εv̄0 + vo(· − εϕ̄0).

Let (u∗, v∗) denote the unique global solution of (1.3) with these initial data.
Let [0, T ∗), T ∗ ∈ (0,∞], denote its interval of existence (Theorem 2.8). The con-
sistency assumption, ε ≤ ε1, and |ϕ̄0| ≤ 1, imply

Ψ(u∗(0) − uo, v∗(0) − vo) ∈ V.

Because (u∗, v∗) is continuous into H1, there is 0 < T1 < T ∗, such that Ψ(u∗(t) −
u, v∗(t) − v) ∈ V for all 0 ≤ t ≤ T1. This proves local existence and uniqueness.

Step 3: [Global Existence] Global existence follows by a simple bootstrap-
ping argument. We refer to [20] where a similar argument was used for a purely
hyperbolic problem.

Step 4: [Rate of convergence] The estimates (5.18) follow from the a priori
bounds (5.21) and (5.22). �

6. Nonlinear Stability of Traveling Waves

In this section we prove our main stability result. We begin with asymptotic
stability with asymptotic phase for steady states. Stability of traveling waves is a
simple corollary.

Theorem 6.1 (Asymptotic stability with asymptotic phase). Consider (1.3)
and impose Assumptions 1.1, 1.2, 1.3, 4.1. Then for every 0 < η < δ there is ρ > 0
so that for all u0 ∈ uo +H2(R,Rn) and v0 ∈ vo +H2(R,Rm), with

(
‖u0 − uo‖2

H2 +

‖v0 − vo‖2
H2

)1/2
< ρ, exists a unique solution (u, v) of (1.3) on [0,∞), and for all

0 < T <∞,

u ∈ C([0, T ];uo +H1) ∩H1(0, T ;uo + L2) ∩ L2(0, T ;uo +H2),

v ∈ C([0, T ]; vo +H1) ∩H1(0, T ; vo + L2).

Moreover, there is ϕ∞ = ϕ∞(u0, v0) ∈ R and C = C(η) > 0, so that

|ϕ∞| ≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
, and(6.1)

‖u(t) − uo(· − ϕ∞)‖H1 + ‖v(t) − vo(· − ϕ∞)‖H1

≤ C
(
‖u0 − uo‖H2 + ‖v0 − vo‖H2

)
e−ηt ∀t ≥ 0.(6.2)
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For the proof we rewrite the system in the form (1.8), using the nonlinear
change of coordinates (1.7) which was analyzed in Section 3. This method of proof
was first presented in [20] for the pure hyperbolic case. Because it is not difficult
to adapt the proof from that paper to the current situation, we only show that
Theorem 5.9 applies to system (1.8).

Proof. Let 0 < η < δ be given. Choose some Ψ which satisfies Assumption
3.1 and let E,U, V,Φ be given as in Section 3. Let ρ0, θ0 > 0 be the constants from
Theorem 5.9. Then the mapping (u, v) 7→ Φ ◦ Ψ(u − uo, v − vo) is continuously
differentiable in an open neighborhood of (uo, vo) in (uo + H2) × (vo + H2). In
particular, there are ρ1, Clip > 0 and Clip > 0 so that for all ‖u − uo‖2

H1 + ‖v −
vo‖2

H1 ≤ ρ2
1 holds

(6.3)
∣∣Φ
(
Ψ(u− uo, v − vo)

)∣∣ ≤ Clip

(
‖u− uo‖2

H1 + ‖v − vo‖2
H1

)1/2
.

Let

ρ = min
(
ρ1,

θ0

Clip
,

ρ2
0

2(1 + C2
lip(‖uo

x‖2
H2 + ‖vo

x‖2
H2))

)
.

By Theorem 3.5 the initial data of the PDAE reformulation are given by (3.7b),
i.e. ϕ̃0 = Φ

(
Ψ(u0 − uo, v0 − vo)

)
, ũ0 = u0 − uo(· − ϕ̃0), and ṽ0 = v0 − vo(· − ϕ̃0).

Therefore, if ‖u0 − uo‖2
H2 + ‖v0 − vo‖2

H1 ≤ ρ2 it follows from (6.3)

(6.4) |ϕ̃0| ≤ Clip

(
‖u0 − uo‖2

H1 + ‖v0 − vo‖2
H1

)1/2 ≤ θ0.

Inserting (6.4) into the formulas for ũ0 and ṽ0, shows

(6.5) ‖ũ0‖2
H2 + ‖ṽ0‖2

H2

≤ 2
(
‖u0 − uo‖2

H2 + ‖v0 − vo‖2
H2 + ‖uo − uo(· − ϕ̃0)‖2

H2 + ‖vo − vo(· − ϕ̃0)‖2
H2

)

≤ 2
(
1 +

(
‖uo

x‖2
H2 + ‖vo

x‖2
H2

)
C2

lip

)(
‖u0 − uo‖2

H2 + ‖v0 − vo‖2
H2

)
≤ ρ2

0.

Therefore, Theorem 5.9 applies.
The assertion then easily follows from Theorem 3.5 and the convergence results

(5.18a)–(5.18d). For the details we refere to the analysis of the hyperbolic case in
[20]. �

By going into a co-moving frame, a traveling wave becomes a steady state.
Therefore, Theorem 6.1 immediately imples the stability result for traveling waves,
Theorem 1.4.

7. Application to the Hodgkin-Huxley Model

The nerve axon equations, as presented by Hodgkin and Huxley in [11], read

(7.1)

CMVt =
a

2R
Vxx − ḡKn

4(V − VK) − ḡNam
3h(V − VNa) − ḡl(V − Vl),

nt = αn(V ) (1 − n) − βn(V )n,

mt = αm(V ) (1 −m) − βm(V )m,

ht = αh(V ) (1 − h) − βh(V )h,
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where

αn =
1

100
(V + 10)

(
exp(V +10

10 ) − 1
)−1

, βn =
1

8
exp( V

80 ),

αm =
1

10
(V + 25)

(
exp(V +25

10 ) − 1
)−1

, βm = 4 exp( V
18 ),

αh =
7

100
exp( V

20 ), βh =
(
exp(V +30

10 ) + 1
)−1

.

The values of the constants in (7.1) are

CM = 1, VNa = −115, VK = 12, Vl = −10.613, ḡNa = 120, ḡK = 36, ḡl = 0.3,

and a,R are assumed to be larger than zero. Denote u(x, t) = V (x, t) ∈ R and
v(x, t) = (n(x, t),m(x, t), h(x, t))T ∈ R

3 and define the functions

f1(u, v) =
1

CM

(
−ḡKn

4(V − VK) − ḡNam
3h(V − VNa) − ḡl(V − Vl)

)
,

f2(u, v) =



αn(u)(1 − v1) − βn(u)v1
αm(u)(1 − v2) − βm(u)v2
αh(u)(1 − v3) − βh(u)v3


 .

Then (7.1) can be written in the form (1.1):

(7.2) ut =
a

2RCM
uxx + f1(u, v), vt = f2(u, v).

It is well-known, that the system has a traveling wave solution, whose profile and
speed we denote by (uo, vo) and λo, respectively. In the co-moving frame with speed
λo (7.2) reads

(7.3) ut =
a

2RCM
uxx + λoux + f1(u, v), vt = λovx + f2(u, v).

By numerical calculation one finds a rest state for (7.3) at

(7.4) (u∞, v∞) = (V∞, n∞,m∞, h∞) = (−0.00362, 0.31773, 0.05295, 0.59599),

and (uo(x), vo(x)) → (u∞, v∞) as x → ±∞. We check the Assumptions 1.1, 1.2,
1.3 and 4.1 which are needed for Theorem 1.4:

Assumption 1.1 obviously holds and also 4.1 1 is satisfied since λo 6= 0.
Consider part 3 of Assumption 4.1. Note that the coefficients of the linearized

operator P at x = ±∞ read (we drop the index ± for readability reasons)

A =

(
A11 0
0 0

)
=




a
2RCM

0 · · · 0
0

0
...
0


 ,

B =

(
B11 0
0 B22

)
=




λo 0 · · · 0
0

λ
o
I

...
0


 ,

C = (cij) =

(
f ′
1

f ′
2

)(
u∞
v∞

)
=




−0.6775 55.44 −69.19 −2.049
−0.002808 −0.1832 0 0
−0.02637 0 −4.223 0
0.004107 0 0 −0.1174
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=

(
C11 C12

C21 C22

)
,

where we rounded C to four digits. (Capital letters denote block matrices and small
letters denote the matrix entries).

Let H = diag(1, h2, h3, h4) = diag(1,− c12

c21
, 2000,− c14

c41
) > 0. Then for every

v ∈ C
4 holds

v∗(HC + C∗H)v

= 2c11|v1|2 + 2h2c22|v2|2 + 2h3c33|v3|2 + 2h4c44|v4|2 + 2(c13 + h3c31)Re(v1v3)

≤
[
2c11−

c13h3c31

100

]
|v1|2 +2h2c22|v2|2 +

[
2h3c33−100(c13h3c31)

]
|v3|2 +2h4c44|v4|2

≤ 2 · (−0.05)v∗Hv,

where we used |Re(v1v3)| ≤ ε
2 |v1|2 + 1

2ε |v2|2 with ε = 1
100 . Now assume s ∈

σ(−ω2A+ iωB+C) for some ω ∈ R and let v ∈ C4 \ {0} be a corresponding eigen-
vector, i.e. (−ω2A+ iωB+C)v = sv. Therefore, 2 Re s = 2 Re

(
(sv∗Hv)(v∗Hv)−1

)
,

but

2 Re(sv∗Hv) = v∗H(−ω2A+ iωB + C)v + v∗(−ω2A∗ − iωB + C∗)Hv

= −ω2 a

RCM
|v1|2 + v∗

(
HC + C∗H

)
v ≤ 2 · (−0.05)v∗Hv

implies Re s ≤ −0.05, so that Assumption 4.1 3 holds with δ = 0.05.
To verify Assumption 1.2 and part 2 of Assumption 4.1, we consider the profile

of the traveling wave. First of all, the coefficients f1, f2 and g are sufficiently
smooth. The profile (uo, vo) is a steady state of (7.3) and we write the resulting
infinite boundary value problem as a first order system by using the transformation
U = (U1, U2, U3:5) = (u, ux, v). This yields

(7.5) U ′ =




U2

−λo2RCM

a U2 − 2RCM

a f1(U1, U3:5)
− 1

λo f2(U1, U3:5)




and linearization at the fixed point (u∞, 0, v∞)T yields

U ′ =




0 1 0
−A−1

11 C11 −A−1
11 λ

o −A−1
11 C12

− 1
λoC21 0 − 1

λoC22


U =: M∞U.

The above analysis implies that M∞ is hyperbolic: Assume (u,w, v)T ∈ C1+1+3 is
an eigenvector of M∞ to the eigenvalue κ, i.e. M∞(u,w, v)T = κ(u,w, v)T . This
leads to (

κ2

(
A11 0
0 0

)
+ κ

(
B11 0
0 B22

)
+

(
C11 C12

C21 C22

))(
u

v

)
= 0.

Therefore, 0 ∈ σ(κ2A+ κB + C), so that Reκ 6= 0 since Assumption 4.1 3. holds.
Therefore, M∞ is hyperbolic and the solution (uo, uo

x, v
o) approaches the rest state

(u∞, 0, v∞) exponentially fast. Hence (uo, vo) ∈ C1
b and (uo

x, v
o
x) ∈ H2 follows, so

that Assumption 1.2 and part 2 of 4.1 hold. Thus, all Assumptions of Theorem 1.4
except for Assumption 1.3 are verified.

Theorem 7.1. A traveling pulse solution of the Hodgkin-Huxley model (7.1)
with the asymptotic states (u∞, v∞) is asymptotically stable if Assumption 1.3 holds.
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Note that Assumption 1.3 can checked numerically by approximation with a
finite interval boundary value problem (see for example [17]).

Appendix A. A Perturbation Result from Linear Algebra

We recall a well-known result about the perturbation of invariant subspaces.
A reference is [22, §V Thm. 2.1]. Here we use ‖ · ‖ to denote the euclidean vector
norm and its corresponding matrix norm. Consider a matrix written in block form:

(A.1) W =

(
W11 W12

W21 W22

)
∈ C

n+m,n+m,

where W11 ∈ Cn,n, W12 ∈ Cn,m, W21 ∈ Cm,n, W22 ∈ Cm,m.

Theorem A.1. Let W be given as above. Assume

δ = sep(W11,W22) := inf
P∈Cm,n,‖P‖=1

‖PW11 −W22P‖ > 0.

If ‖W12‖‖W21‖
δ2 < 1

4 there is a unique solution P ∈ Cm,n of

(A.2) PW11 −W22P + PW12P = W21,

satisfying

(A.3) ‖P‖ ≤ 2‖W21‖
δ

.

Using P , the solution of (A.2), W is similar to the upper triangular block
matrix

(A.4)

(
I 0

−P I

)
W

(
I 0
P I

)
=

(
W11 +W12P W12

0 W22 − PW12

)
.

Proof of Lemma 4.7. For convenience we suppress ± in the proof. Let Wij

be defined by
(
W11(ω) W12(ω)
W21(ω) W22(ω)

)
:=

(
−ω2A11 + iωB11 + C11 iωB12 + C12

C21 iωB22 + C22

)
.

For the separation of the matrices W11(ω) and W22(ω) holds

sep
(
W11(ω),W22(ω)

)
:= inf

‖P‖=1
‖PW11(ω) −W22(ω)P‖

≥ inf
‖P‖=1

‖ω2PA‖ − |ω|‖B11‖ − ‖C11‖ − |ω|‖B22‖ − ‖C22‖

≥ ω2

‖A−1‖ − |ω|
(
‖B11‖ + ‖B22‖

)
−
(
‖C11‖ + ‖C22‖

)
≥ ω2

2‖A−1‖ ∀|ω| > ω1.

Therefore,

sep
(
W11(ω),W22(ω)

)2

4‖W21(ω)‖ >
ω4

8|ω|‖A−1‖2
(
‖B12‖ + ‖C12‖

) ∀ω ∈ R, |ω| > ω1,

so that there is ω2 ≥ ω1 such that for all ω ∈ R with |ω| > ω2

‖C21‖ = ‖W21(ω)‖ < sep
(
W11(ω),W22(ω)

)2

4‖W21(ω)‖ .

Then Theorem A.1 shows that for all such ω there is P = P (ω) so that
(
W11 W12

W21 W22

)(
I 0
P I

)
=

(
I 0
P I

)(
W11 +W12P W12

0 W22 − PW12

)
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what implies for the spectrum

σ

(
W11(ω) W12(ω)
W21(ω) W22(ω)

)
= σ

(
W11(ω) +W12(ω)P (ω)

)
∪ σ
(
W22(ω) − P (ω)W12(ω)

)
.

Furthermore, the matrix P satisfies

(A.5) ‖P (ω)‖ < 2
‖C21‖

sep
(
W11(ω),W22(ω)

) ≤ 4‖A−1‖‖C21‖
ω2

,

and P (ω)W12(ω) is a perturbation of order 1
|ω| of iωB22 + C22. This implies the

assertion (see for example [19, Lem. A.1]. �

We also use the perturbation result Theorem A.1 to obtain statements about
the asymptotics of the matrices M±(s) from (4.6) for s → +∞. For simplicity we
suppress ±.

Let s ∈ R and s >> 0. For ρ =
√
s let

Sρ =



I 0 0
0 ρI 0
0 0 I


 and TB12

=



I 0 0
0 I B12

0 0 I


 ∈ C

n+n+m,n+n+m,

obviously S−1
ρ = Sρ−1 , T−1

B12
= T−B12

. The matrix M(s) is equivalent to

M̃(s) =

(
M̃11(s) M̃12(s)

M̃21(s) M̃22(s)

)
:= Sρ−1TB12

M(s)T−B12
Sρ

=




0 ρA−1
11 −A−1

11 B12
1
ρ(sI − C11) −B11A

−1
11

1
ρ (B11A

−1
11 B12 − C12)

−B−1
22 C21 0 B−1

22 (sI − C22)


 .

It is easy to see for sufficiently large s ∈ R that the separation of the diagonal
blocks satisfies

δ = sep(M̃11(s), M̃22(s)) ≥ inf
‖P‖=1

‖sB−1
22 P‖ − ρc‖P‖ ≥ cρ2‖P‖,

where c is a generic constant. Moreover, ‖M̃12(s)‖, ‖M̃21(s)‖ ≤ c, so that

‖M̃12(s)‖‖M̃21(s)‖
δ2

≤ cρ−4 <
1

4
,

for s sufficiently large. By Theorem A.1 there is a unique solution P (s) of

P (s)M̃11(s) − M̃22(s)P (s) + P (s)M̃12(s)P (s) = M̃21(s), with

(A.6) ‖P‖ ≤ 2ρ−2‖M21(s)‖ ≤ cρ−2.

This transforms M̃(s) into upper block triangular form M̃ ′(s) via (A.4). Hence, it
suffices to consider the spectra of

M̃11(s) + M̃12(s)P (s) = M̃11(s) + O( 1
ρ) =

(
0 ρA−1

11

ρI 0

)
+ O(1),

M̃22(s) − P (s)M̃12(s) = B−1
22 (sI − C22) + O( 1

ρ ) = sB−1
22 + O(1),
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which are the diagonal blocks of M̃ ′(s). Let A11T = TJ , where J is a Jordan
matrix. By Assumption 1.1 all eigenvalues of J have positive real part and the

positive square root J
1

2 is well defined. Then
(

0 A

I 0

)(
TJ

1

2 −TJ 1

2

T T

)
=

(
TJ

1

2 −TJ 1

2

T T

)(
J

1

2 0

0 −J 1

2

)
=: T̃

(
J

1

2 0

0 −J 1

2

)
,

so that

T̃−1(

(
0 ρA−1

ρI 0

)
+ O(1))T̃ = ρ

(
J

1

2 0

0 −J 1

2

)
+ O(1).

For s sufficiently large, Gershgorin’s Theorem (e.g. [24, p. 71]) implies that M̃11(s)+

M̃12(s)P (s) has n eigenvalues with real part larger than 0 and n eigenvalues with
real part less than 0, counted with multiplicity. The invertibility of B22 shows that
the real diagonal matrix B−1

22 is hyperbolic. Let r denote the number of negative

eigenvalues. Hence Gershgorin’s Theorem implies for s sufficiently large for sB−1
22 +

O(1) that there are r eigenvalues with negative real part and m − r eigenvalues

with positive real part. Since M̃ ′
±(s) and M±(s) are similar, this discussion proves:

Proposition A.2. There is s0 so that for all s ∈ R, s ≥ s0 the dimension of
the stable subspaces of M+(s) and M−(s) coincide.

Appendix B. Properties of Nonlinear Terms

For reference purpose, we first collect some well-known facts about Nemytskii
operators. Proofs can be found in [18, App. D].

Lemma B.1. Let f ∈ C3(Rl,Rm), uo ∈ C2
b (R,Rl) with uo

x ∈ H1. Then u ∈ H1

implies

(1) f(uo + u) − f(uo) ∈ H1,
(2) the well-known Taylor formula holds as an equality in H1:

(B.1) f(uo + u) − f(uo) = fu(uo) +

∫ 1

0

(1 − s)fuu(uo + su) ds u2,

(3) f(uo) ∈ L2 implies f(uo + u) ∈ H1.

Corollary B.2. If u ∈ L2(0, T ;H1) ∩ L∞(0, T ;H1), then Taylor’s formula
(B.1) holds in L2(0, T ;H1) and in particular it holds for a.e. t ∈ [0, T ] as an equality
in H1.

Corollary B.3. If u ∈ C([0, T ];H1(R,Rl)), then

f(uo + u) − f(uo) ∈ C([0, T ];H1(R,Rm)).

We now give some properties for the nonlinear terms (3.8), appearing in (5.19a).
These are used to establish (5.20). Without mentioning it again, we assume in the
following lemmas

(u, v) ∈ C([0, T ];H1(R,Rn+m)), ϕ ∈ C([0, T ]; R), λ ∈ C([0, T ]; R).

The results can be proved by showing the asserted estimates for C∞
0 -functions and

then using the fact that u and v can be approximated by such functions. For details
we refer to [18].
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Lemma B.4. For ε > 0 the functions R ∋ t 7→ H(ϕ(t), u(t), v(t)), H ∈
{Gε

1, F
ε
11, F

ε
21}, are elements of C([0, T ];H1). Moreover, there is C > 0, depend-

ing on g, f1, f2, u
o, vo, but independent of ε, so that

‖H(ϕ(t), u(t), v(t))‖2
∗ ≤ C|ϕ(t)|2

(
‖u(t)‖2

∗ + ‖v(t)‖2
∗

)
, ∗ ∈ {L2(R,Rm), H1(R,Rm)},

The following lemma looks very similar, but note that here the (u, v) terms
appear quadratic in the function.

Lemma B.5. Assume 0 < ε ≤ ε1 and u, v as above with ‖(u, v)‖L∞([0,T ];H1) ≤
K. Then the functions R ∋ t 7→ H

(
ϕ(t), v(t)

)
∈ H1, H ∈ {Gε

2, F
ε
12, F

ε
22}, are ele-

ments of C([0, T ];H1). Furthermore, there is C > 0, depending on g, f1, f2, u
o, vo, ε1,

but independent of ε, so that

‖H(ϕ(t), v(t))‖2
∗ ≤ C

(
‖u(t)‖2

H1 + ‖v(t)‖2
H1

)(
‖u(t)‖2

∗ + ‖v(t)‖2
∗

)
, ∗ ∈ {L2, H1}.

Lemma B.6. For every ε > 0 the function t 7→ Rε(ϕ(t), λ(t)) is an element of
C([0, T ];H1) and there is C > 0, independent of ϕ, λ, ε so that

‖Rε(ϕ(t), λ(t))‖2
H1 ≤ C|ϕ(t)|2|λ(t)|2.

Appendix C. Exponential Dichotomies

In this appendix we recall the definition and some properties of exponential
dichotomies (ED). Basic references are [7] and [16]. Let L denote an ordinary
differential operator

(C.1) Lz = zx −M(x)z, x ∈ J,

M ∈ C(J,Cl,l) is continuous on the closed (but possibly unbounded) interval J . Let
S(·, ·) denote the solution-operator for L.

Definition C.1. The operator L has an exponential dichotomy on J if there
are K,β > 0, and for every x ∈ J there is a projector π(x) ∈ Cl,l such that

S(x, y)π(y) = π(x)S(x, y) ∀x, y ∈ J,

|S(x, y)π(y)| ≤ Ke−β(x−y) ∀x ≥ y ∈ J,

|S(x, y) (I − π(y))| ≤ Ke−β(y−x) ∀x < y ∈ J.

The triple (K,β, π) is called the data of the dichotomy.

Linear boundary value problems where the differential operator has an ED
satisfy solution estimates in terms of the dichotomy data.

Theorem C.2 ([4, Theorem A.1]). Let L have an ED on J with data (K,β, π).
Define the Green’s function G with respect to π for all x, y ∈ J by

(C.2) G(x, y) =

{
S(x, y)π(y), y ≤ x,

S(x, y)
(
π(y) − I

)
, x < y.

Then for every r ∈ L2(J,Cl), γ− ∈ R
(
π(x−)

)
, γ+ ∈ R

(
I − π(x+)

)
, there is a

unique solution z ∈ H1(J,Cl) of the boundary value problem

(C.3)
Lz = r, in L2(J,Cl),

π(x−)z(x−) = γ−,
(
I − π(x+)

)
z(x+) = γ+.
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The solution is given by z = zsp + zhom, where

zsp(x) =

∫

J

G(x, y)r(y) dy is a solution of (C.3) with γ± = 0, and(C.4)

zhom(x) = S(x, x−)γ− + S(x, x+)γ+.(C.5)

Moreover, the function z satisfies the estimates

β2‖zsp‖2 + β(|zsp(x−)|2 + |zsp(x+)|2) ≤ 5K2‖r‖2,(C.6)

β‖zhom‖2 + (|zhom(x−)|2 + |zhom(x+)|2) ≤ (2 + 3K2)(|γ−|2 + |γ+|2).(C.7)

In the case of unbounded J , the boundary conditions at ±∞ are part of the function
space and not stated explicitly. In particular, the corresponding γ± are zero in (C.5)
and (C.7).

An important property of EDs is its roughness under perturbations, which is
stated in the next Theorem (cf. [4, Thm. A.3]).

Theorem C.3 (Roughness). Let L have an (ED) on J with data (K,β, π).
Assume ∆ ∈ C(J,Cl,l) can be estimated by 3K‖∆‖∞ < β.

Then the operator L̃z = zx − (M + ∆)z has an (ED) on J , too. The data

(K̃, β̃, π̃) can be chosen so that

K̃ = K
(
2 +

4‖∆‖∞K
β − 3‖∆‖∞K

)
, β̃ = β − 2‖∆‖∞K,

∣∣π̃(x) − π(x)
∣∣ ≤ KK̃

∫

J

e−(β+eβ)|x−y|
∣∣∆(y)

∣∣ dy.

The next lemma relates Fredholm properties to properties of the ED.

Lemma C.4 ([16, 5]). Let M ∈ Cb(R, Cl,l) such that for L from (C.1) has EDs
on (−∞, 0] and [0,∞) with data (K±, β±, π±). Then L : H1(R,Cl) → L2(R,Cl) is
Fredholm of index dim

(
span(π+(0))

)
+ dim

(
N (π−(0))

)
− l.
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