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Abstract. We consider the cubic Szegö equation with a small Toeplitz po-
tential and with soliton initial data

(

i∂tu = Π(|u|2u) + εTbu

u(0, x) = α0eiφ0µ0η(µ0(x − a0)).

We show that up to time ε−1/2 log(1/ε) and errors of size ε1/2, the solution
preserves the soliton shape u(t, x) = αeiφµη(µ(x−a)), and the time dependent
parameters a, α, φ, µ evolve according to the effective dynamics, up to small
corrections.
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1. Introduction

One of the most important properties in the study of the nonlinear Schrödinger
equations (NLS) is dispersion. It is often exhibited in the form of the Strichartz
estimates of the corresponding linear flow. In case of the cubic NLS:

(1.1) i∂tu + ∆u = |u|2u, (t, x) ∈ R × M,
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Gérard and Grellier [6] remarked that there is a lack of dispersion when M is a
sub-Riemannian manifold (for example, the Heisenberg group). In this situation,
many of the classical arguments used in the study of NLS no longer hold. As a con-
sequence, even the problem of global well-posedness of (1.1) on a sub-Riemannian
manifold still remains open. In [5, 6], Gérard and Grellier introduced a model of
a non-dispersive Hamiltonian equation called the cubic Szëgo equation. (See (1.2)
below.) The study of this equation is expected to give new tools to be used in
understanding existence and other properties of smooth solutions of NLS in the
absence of dispersion.

In this paper we will consider the Szegö equation on the real line. The space
of solutions in this case is the Hardy space L2

+(R) on the upper half-plane
C+ = {z; Imz > 0}, defined by

L2
+(R) = {f ∈ L2(R); supp f̂ ⊂ [0,∞)}.

The corresponding Sobolev spaces Hs
+(R), s ≥ 0 are defined by:

Hs
+(R) =

{

h ∈ L2
+(R); ‖h‖Hs

+
:=

(

1

2π

∫ ∞

0

(1 + |ξ|2)s|ĥ(ξ)|2dξ

)1/2

< ∞
}

.

The Szegö projector Π is the projector on the non-negative frequencies,
Π : L2(R) → L2

+(R)

Π(f)(x) =
1

2π

∫ ∞

0

eixξf̂(ξ)dξ.

For u ∈ L2
+(R), we consider the Szëgo equation on the real line:

(1.2) i∂tu = Π(|u|2u), (t, x) ∈ R × R.

This equation is globally well-posed in H
1
2

+(R).

On L2
+(R) we introduce the symplectic form

ω(u, v) = Im

∫

R

uv̄dx

and the real scalar product

〈u, v〉 = Re

∫

R

uv̄dx.

Let D ⊂ L2
+(R) be a dense subset of L2

+(R). We say that a function F : D → R

admits a Hamiltonian vector field XF : D → L2
+(R) if

duF (h) = ω(h, XF (u)),

for all u, h ∈ D. The function

H(u) =
1

4

∫

R

|u(x)|4dx

defined on L4
+(R), admits the Hamiltonian vector field

XH(u) = −iΠ(|u|2u),

Thus the Szegö equation is a Hamiltonian evolution. The most remarkable property
of this equation is the fact that it is completely integrable in the sense that it posses
a Lax pair structure [13]. The Lax pair is given in terms of Hankel and Toeplitz

operators.
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A Hankel operator Hu : L2
+ → L2

+ of symbol u ∈ H
1/2
+ is defined by

Hu(h) = Π(uh̄).

Hu is a Hilbert-Schmidt operator, it is C-anti-linear and satisfies

(1.3) (Hu(h1), h2) = (Hu(h2), h1).

A Toeplitz operator Tb : L2
+ → L2

+ of symbol b ∈ L∞(R) is defined by

Tb(h) = Π(bh).

Tb is C-linear and bounded. Moreover, Tb is self-adjoint if and only if b is real-
valued.

In what follows we consider the perturbed Szegö equation with a small Toeplitz
potential

(1.4) i∂tu = Π(|u|2u) + εTbu.

This is no longer a completely integrable equation. It is still globally well posed

in H
1
2

+(R) if b ∈ H1(R). This can be proved by following the lines of the proof of
Theorem 2.1 in [5] on the global well-posedness of the Szegö equation.

If instead of the Toeplitz potential we considered a multiplicative linear poten-
tial bu, then the corresponding equation would no longer be Hamiltonian. However,
if we project to L2

+, obtaining this way a Toeplitz potential Tbu = Π(bu), we con-
serve the Hamiltonian structure of the Szegö equation. For this reason, the Toeplitz
potential is the natural generalization of the linear multiplicative potential in the
case of the Szegö equation.

The Hamiltonian of equation (1.4) is

Hb(u) =
1

4

∫

R

|u(x)|4dx +
ε

2

∫

R

b(x)|u(x)|2dx.

This yields that the Hamiltonian Hb is formally conserved by the flow. Note also
that the fact that b is a real valued function, yields the conservation of the mass
Q(u) =

∫

|u|2dx.
The goal of the paper is to study the long time behavior of the solution of the

perturbed Szegö equation (1.4) having as initial condition a soliton of the unper-
turbed equation.

Definition 1. A soliton for the Szegö equation on the real line is a solution u
with the property that there exist c, ω ∈ R, c 6= 0 such that

u(t, x) = e−itωu0(x − ct).

In [13, Theorem 2] it was proved that all the initial data of solitons for the
Szegö equation on R are of the form

(1.5) u0 = eiφ0α0µ0η(µ0(x − a0)) =
eiφ0α0

x − a0 + i
µ0

,

where η(x) := 1
x+i , α0, µ0 ∈ (0,∞), and φ0, a0 ∈ R, and that the corresponding

solution is

(1.6) u(t, x) = eiφ(t)α0µ0η(µ0(x − a(t))) =
eiφ(t)α0

x − a(t) + i
µ0

,

where φ(t) = −
α2

0µ2
0

4 t + φ0 and a(t) =
α2

0µ0

2 t + a0.
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We show that the solution of the perturbed Szegö equation (1.4) with initial
data u0 = eiφ0α0µ0η(µ0(x − a0)) preserves the form u = eiφαµη(µ(x − a)) over a
large interval of time, and the time dependent parameters a, α, φ, µ evolve according
to the effective dynamics, up to small corrections. More precisely, the main result
of the paper is the following theorem.

Theorem 1.1. Let b : R → R be a function in H1(R) with the property that

b′ ∈ L1(R). Let 0 < ε ≪ 1 and 0 < δ < 1
2 . If u is a solution of the perturbed Szegö

equation with a small Toeplitz potential
{

i∂tu = Π(|u|2u) + εTbu

u(0, x) = α0e
iφ0µ0η(µ0(x − a0)),

(1.7)

where a0, φ0 ∈ R and α0, µ0 ∈ (0,∞), then

‖u(t) − α(t)eiφ(t)µ(t)η(µ(t)(x − a(t)))‖
H

1
2
+

≤ Cε
1
2
+ δ

3 ,

for times 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ), where c0 is a constant depending only on α0

and µ0, and a, α, φ, µ satisfy























ȧ = α2µ
2 − 2ε

πµ

∫

b′(a + x
µ )x

µ |η(x)|2dx + O(ε1+ 2δ
3 ),

α̇ = εα
πµ

∫

b′(a + x
µ )|η(x)|2dx + O(ε1+ 2δ

3 ),

φ̇ = −α2µ2

4 − ε
π

∫

b(a + x
µ)|η(x)|2dx − ε

π

∫

b′(a + x
µ)x

µ |η(x)|2dx + O(ε1+ 2δ
3 ),

µ̇ = − 2ε
π

∫

b′(a + x
µ)|η(x)|2dx + O(ε1+ 2δ

3 ).

(1.8)

In addition, if ā, ᾱ, φ̄, µ̄ satisfy






















˙̄a = ᾱ2µ̄
2 − 2ε

πµ̄

∫

b′(ā + x
µ̄ )x

µ̄ |η(x)|2dx,

˙̄α = εᾱ
πµ̄

∫

b′(ā + x
µ̄ )|η(x)|2dx,

˙̄φ = − ᾱ2µ̄2

4 − ε
π

∫

b(ā + x
µ̄)|η(x)|2dx − ε

π

∫

b′(ā + x
µ̄)x

µ̄ |η(x)|2dx,

˙̄µ = − 2ε
π

∫

b′(ā + x
µ̄)|η(x)|2dx,

(1.9)

with the same initial data a0, α0, φ0, µ0, then


















|a − ā| ≤ c̃0δε
1
2
+δ ln(1

ε ),

|α − ᾱ| ≤ c̃0δε
1
2
+δ ln(1

ε ),

|φ − φ̄| ≤ c̃0δε
2δ ln(1

ε )2,

|µ − µ̄| ≤ c̃0δε
1
2
+δ ln(1

ε ).

(1.10)

where c̃0 depends on α0, µ0.

As a consequence, if ε is small enough and 3
10 < δ < 1

2 , then for times

0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ) we have that

‖u(t) − ᾱ(t)eiφ̄(t)µ̄(t)η(µ̄(t)(x − ā(t)))‖
H

1
2
+

≤ Cε
1
2
+ δ

3 .(1.11)

The problem of studying the solution of a perturbed equation having as initial
condition a soliton of the unperturbed equation was first addressed in the setting of
the nonlinear Schrödinger equation by Bronski and Jerrard in [1] and their result
was improved by Keraani in [10, 11]. They considered the semiclassical regime
which is equivalent to adding a slowly varying potential V (εx). The method consists
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in using the orbital stability of the soliton and the result states that the center of
mass moves according to Newton’s equation a′′(t) = −DV (a). It seems difficult
to adapt this method to the setting of the Szegö equation since it extensively
exploits the relations between the densities of mass, energy, and momentum. These
identities have no correspondent for the Szegö equation.

This problem was also considered by Fröhlich, Tsai, and Yau and Fröhlich,
Gustafson, Jonsson, and Sigal in the settings of the Hartree equation and of the
nonlinear Schrödinger equation with a general nonlinearity in [4, 2, 3]. Some of
these results were improved in [7, 8] by Zworski and Holmer in the case of the
one dimensional nonlinear Schrödinger equation with a Dirac potential and with a
slowly varying potential. In this paper we adapt the method of Zworski and Holmer
to the case of the Szegö equation.

The starting point in proving Theorem 1.1 is to determine the vector field
corresponding to the restriction Hb|M of the Hamiltonian to the four-dimensional
manifold of solitons

M = {eiφαµη(x − a)), φ, a ∈ R, α > 0, µ > 0}.

Then, we determine the flow of this vector field, called the effective dynamics. In
the case of the Szegö equation with a small Toeplitz potential the effective dynam-
ics are given in the system (1.9). We then decompose the flow of the perturbed
Szegö equation (1.4) into a part belonging to the manifold M and a part which
is symplectically orthogonal to M . We show that the part of the solution which
is orthogonal to M is small. Thus, the flow of (1.4) is close to M . Then, the
heuristics pointed out by Holmer and Zworski suggest that the flow is close to the
flow of Hb|M , i.e. the effective dynamics. This can be rigorously proved and yields
the approximation (1.11).

In proving that the part of the flow which is orthogonal to M is small we con-
sider the Lyapunov functional and use the coerciveness of the linearized operator.

First we consider the functional E : H
1/2
+ → R,

(1.12) E(u) =
1

4

∫

|u|4dx +
i

4

∫

(∂xu)ūdx −
1

8

∫

|u|2dx.

Then η = 1
x+i is a critical point of E , i.e. dηE = 0 since

(1.13)
i

2
∂xη + Π(|η|2η) −

η

4
= 0.

The Lyapunov functional is defined by

L(w) = E(w + η) − E(w)

and the linearized operator L : H
1
2

+ → R is

(1.14) L(w) = E ′′
η w = −

i

2
∂xw − 2T|η|2w − Hη2w +

1

4
w.

In [7], Holmer and Zworski consider the case of the nonlinear cubic Schrödinger
equation with a Dirac potential, that can be generalized to the case of a multiplica-
tive linear potential. The maximal time for which the approximation holds is of
order 1√

ε
. Thus, the result we obtain for the Szegö equation with a Toeplitz poten-

tial (the natural extension of the multiplicative potential) is close to [7]. However,
working with the Lyapunov functional as it was done in [7] does not give the de-
sired result in the case of the Szegö equation, since we no longer have a Galilean
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invariance. Consequently, we use the linearized operator, as it was done by the
above cited authors in [8], in the case of a slowly varying potential.

Notice that the exact effective dynamics given by ā, ᾱ, φ̄, µ̄, are an approxima-
tion of the solution of the perturbed equation only for times

0 < t ≤
δ

6 ln c0
·

1

ε
1
2
−δ

ln(
1

ε
) ≤

δ

6 ln c0
·

1

ε
1
5

ln(
1

ε
),

where δ > 3
10 . (If we agree to have an approximation of order ε

1
2 , instead of

that of order ε
1
2
+ δ

3 that we have, we can actually go up to times 0 < t ≤ δ
6 ln c0

·
1

ε
1
4

ln(1
ε ).) For larger times, the approximation is only given by a, α, φ, µ, which

are perturbations of the effective dynamics. The fact that we cannot approximate
the solution by the exact effective dynamics for larger times (i.e. 0 < δ < 3

10 )

is due to the estimate on |φ − φ̄| which is only of order O(ε2δ−), while we need

an approximation of order O(ε
1
2
+ δ

3 ). This difficulty is caused by the complicated
form of the effective dynamics and by the fact that the perturbed equation does
not conserve the momentum ‖u‖2

Ḣ
1/2

+

. In the case of the nonlinear Schrödinger

equation with a Dirac or a slowly varying potential, the effective dynamics have
a simpler form and give a good approximation of the solution for all the range of
times considered in [7, 8].

The structure of the paper is as follows. In section 2 we briefly describe the
manifold of solitons. In section 3 we find the effective dynamics. In section 4 we
use the implicit function theorem to prove the orthogonal decomposition of the
flow and determine the equation of w, the part of the flow which is orthogonal to
M . In section 5 we prove the coerciveness of the linearized operator in directions
orthogonal to the manifold M . In section 6 we estimate w using a bootstrap
argument and in section 7 we conclude the proof of Theorem 1.1.

2. Manifold of solitons

We introduce below the manifold of solitons for the Szegö equation on the real
line.

For g = (a, α, φ, µ) ∈ R × R∗
+ × T × R∗

+, where T = R/2πZ, we define the

following map on L2
+(R)

u 7→ g · u, g · u(x) := eiφαµu(µ(x − a)).

This action gives a group structure on R × R
∗
+ × T × R

∗
+:

(a, α, φ, µ) · (a′, α′, φ′, µ′) = (a′′, α′′, φ′′, µ′′),

where


















a′′ = a + a′

µ

α′′ = αα′

φ′′ = φ + φ′

µ′′ = µµ′.

(2.1)
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We denote this group by G. In order to determine the Lie algebra g corresponding
to this Lie group, we compute

∂a[(a, 1, 0, 1) · u]
∣

∣

∣

a=0
= −∂xu

∂α[(0, α, 0, 1) · u]
∣

∣

∣

α=1
= u

∂φ[(0, 1, φ, 1) · u]
∣

∣

∣

φ=0
= iu

∂µ[(0, 1, 0, µ) · u]
∣

∣

∣

µ=1
= x∂xu + u = ∂x(x · u).

Then, the Lie algebra g is generated by

e1 = −∂x, e2 = 1, e3 = i, e4 = ∂x · x.

It acts on ∪N∈NM(N), where

M(N) :=

{

A(z)

B(z)
∈ L2

+

∣

∣

∣deg(B) = N, deg(A) ≤ N−1, B(0) = 1, pgcd(A, B) = 1

}

.

Notice that according to [12][Lemma 6.2.1], we have that ∪N∈NM(N) is dense in
L2

+(R).
The action g is conformally symplectic in the sense that

g∗ω = α2(g)µ(g)ω.(2.2)

Indeed, with the change of variables y = µ(x − a)

(g∗ω)(u, v) = Im

∫

R

eiφαµu(µ(x − a))e−iφαµv̄(µ(x − a))dx

= α2µIm

∫

R

u(y)v̄(y)dy = α2µω(u, v).

Definition 2. The manifold of solitons is the orbit of η, η(x) = 1
x+i , under

the action of the group G:

M = G · η = {eiφαµη(µ(x − a)), φ, a ∈ R, α > 0, µ > 0}.

We then make the following identifications:

M = G · η ≃ G, TηM = g · η ≃ g.(2.3)

For b = 0, the flow of H0 is tangent to the manifold of solitons M . This
corresponds to the fact that if u(0, x) ∈ M , then u(t, x) ∈ M for all t ∈ R. More
precisely, by equations (1.5) and (1.6), we have that if u(0, x) = eiφαµη(µ(x − a)),
then

u(t, x) = g(t) · η = eiφ(t)α(t)µ(t)η
(

µ(t)(x − a(t)
)

,

where


















ȧ(t) = α2µ
2

α̇(t) = 0

φ̇(t) = −α2µ2

4

µ̇(t) = 0.
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3. Effective dynamics

We will compute in this section the restriction to the manifold of solitons M of
the symplectic form ω|M and prove that (M, ω|M ) is a symplectic manifold. Then,
we compute the restriction of the Hamiltonian Hb|M , as well as the vector field
associated to Hb|M . This vector field yields a flow on the manifold of solitons M ,
that we refer to as the effective dynamics.

First we compute (ω|M )η on TηM , at the point η. Using

(ω|M )η(ei, ej) = Im

∫

R

(ei · η)(x)(ej · η)(x)dx,

and the residue theorem, we get

(ω|M )η(e1, e2) = − Im

∫

R

∂x(
1

x + i
)

1

x + i
dx = −

π

2
,

(ω|M )η(e1, e3) =0, (ω|M )η(e1, e4) = −
π

2
, (ω|M )η(e2, e3) = −π

(ω|M )η(e2, e4) =0, (ω|M )η(e3, e4) =
π

2
.

Hence

(ω|M )η =
π

2
(dα ∧ da + dµ ∧ da + 2dφ ∧ dα + dφ ∧ dµ).(3.1)

Let us now compute (ω|M )g·η for arbitrary g ∈ G. By (2.3) we can identify the
action of g on M with the action g : G → G given by (2.1). Then, we have that
the differential dηg : TηM → Tg·ηM is given by

dηg =
1

µ
da + αdα + dφ + µdµ.(3.2)

By equation (2.2), we have that

ωg·η
(

dηg(u), dηg(v)
)

= α2µωη(u, v).(3.3)

Then, equations (3.2), (3.3), and (3.1) yield

(ω|M )g·η
(

X1(
∂

∂a
)g·η + X2(

∂

∂α
)g·η + X3(

∂

∂φ
)g·η + X4(

∂

∂µ
)g·η,

Y1(
∂

∂a
)g·η + Y2(

∂

∂α
)g·η + Y3(

∂

∂φ
)g·η + Y4(

∂

∂µ

)

g·η

)

= α2µ(ω|M )η

(

µX1(
∂

∂a
)η +

X2

α
(

∂

∂α
)η + X3(

∂

∂φ
)η +

X4

µ
(

∂

∂µ
)η,

µY1(
∂

∂a
)η +

Y2

α
(

∂

∂α
)η + Y3(

∂

∂φ
)η +

Y4

µ
(

∂

∂µ

)

η

)

=
π

2
α2µ(

µ

α
dα ∧ da + dµ ∧ da +

2

α
dφ ∧ dα +

1

µ
dφ ∧ dµ)

(

X1(
∂

∂a
)η + X2(

∂

∂α
)η + X3(

∂

∂φ
)η + X4(

∂

∂µ
)η,

Y1(
∂

∂a
)η + Y2(

∂

∂α
)η + Y3(

∂

∂φ
)η + Y4(

∂

∂µ

)

η

)

.
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Thus,

ω|M = α2µ
π

2
(
µ

α
dα ∧ da + dµ ∧ da +

2

α
dφ ∧ dα +

1

µ
dφ ∧ dµ).(3.4)

One can easily verify that ω|M is a non-degenerate symplectic form and therefore,
(M, ω|M ) is a symplectic manifold.

Let f be a function defined on M ≃ G. Then, f admits a Hamiltonian vector
field Xf on M if

ω|M (·, Xf ) = df = fada + fαdα + fµdµ + fφdφ,

where fa = ∂f
∂a

and fα, fφ, and fµ are defined similarly. Denoting Xf = X1
∂
∂a +

X2
∂

∂α + X3
∂

∂φ + X4
∂

∂µ and using (3.4), the above equation is equivalent to

α2µ
π

2

(µ

α
(X1dα − X2da) + (X1dµ − X4da)

+
2

α
(X2dφ − X3dα) +

1

µ
(X4dφ − X3dµ)

)

= fada + fαdα + fµdµ + fφdφ.

Then, the components of the vector field Xf are























X1 = − 2
α2µ2π (−2µfµ + αfα),

X2 = 2
α2µ2π (αfa + αµfφ),

X3 = 2
α2µπ (µfµ − αfα),

X4 = − 2
α2µπ (µfφ + 2fa).

This allows us to determine the Hamiltonian flow associated to Xf , u̇ = Xf (u),

which is given by (ȧ, α̇, φ̇, µ̇) = (X1, X2, X3, X4).
Let us now compute Hb|M and find its Hamiltonian vector field.

Hb|M (g · η) =
1

4

∫

R

α4µ4|η(µ(x − a))|4dx +
ε

2

∫

R

b(x)α2µ2|η(µ(x − a))|2dx

=
α4µ3

4

∫

R

|η(x)|4dx +
εα2µ2

2

∫

R

b(x)|η(µ(x − a))|2dx

=
α4µ3π

8
+

εα2µ

2

∫

R

b
(

a +
x

µ

)

|η(x)|2dx.

Taking f = Hb|M , we have that























fa = εα2µ
2

∫

b′(a + x
µ)|η(x)|2dx,

fα = πα3µ3

2 + εαµ
∫

b(a + x
µ )|η(x)|2dx,

fφ = 0,

fµ = 3πα4µ2

8 + εα2

2

∫

b(a + x
µ )|η(x)|2dx − εα2

2

∫

b′(a + x
µ)x

µ |η(x)|2dx.
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As above, we determine the components of the Hamiltonian vector field associated
to f = Hb|M , and obtain that the flow of Hb|M is given by























ȧ = α2µ
2 − 2ε

πµ

∫

b′(a + x
µ)x

µ |η(x)|2dx,

α̇ = εα
πµ

∫

b′(a + x
µ)|η(x)|2dx,

φ̇ = −α2µ2

4 − ε
π

∫

b(a + x
µ)|η(x)|2dx − ε

π

∫

b′(a + x
µ )x

µ |η(x)|2dx,

µ̇ = − 2ε
π

∫

b′(a + x
µ )|η(x)|2dx.

4. Reparametrized evolution

Our goal is to show that the flow generated by Hb can be approximated by the
effective flow of Hb|M . In order to do so, we decompose the solution u(t) of the
Szegö equation with small Toeplitz potential (1.4), into a component belonging to
M and a component which is symplectically orthogonal to M in the sense that:

(4.1) u(t) = g(t) · (η + w(t)), ω(w(t), Xη) = 0, ∀X ∈ g.

The key point is to prove that the orthogonal component w is small.
Let us show that the above decomposition/reparametrization is indeed possible

at least for short time.

Lemma 4.1. For a compact subset Σ of R×R∗
+ ×T×R∗

+ and γ > 0, denote by

UΣ,γ =
{

u ∈ H
1
2+ ; inf

g∈Σ
‖u − g · η‖

H
1
2
+

< γ
}

.

a γ-tubular neighborhood of Σ.

There exists γ0 = γ0(Σ) such that if u ∈ UΣ,γ , with γ ≤ γ0, then there exists a

unique element g(u) ∈ Σ with the property

ω(g(u)−1 · u − η, X · η) = 0, ∀X ∈ g.

Proof. Consider the function F : H
1
2

+ × G → g
∗,

F (u, h)(X) = ω(h · u − η, X · η).

We want to solve F (u, h) = 0 for h = h(u). We verify that the function F satisfies
the hypotheses of the Implicit Function Theorem:
(i) F (u, h) is of class C1 in h,
(ii) F (g · η, g−1) = 0 for all g ∈ G,
(iii) dhF (g · η, g−1) : Tg−1G → g

∗ is invertible for all g ∈ G.
The first two properties can be checked directly. As for the third property, it

is enough to check it for g = e = (1, 0, 1, 0), the unity of the group G. Thus, since
TeG = g, it is enough to check that dhF (η, e) : g → g

∗ is invertible. But
dhF (η, e) = (ω|M )η which is non-degenerate because, in the basis {ej · η}4

j=1 of g,
it writes

π

2









0 −1 0 −1
1 0 −2 0
0 2 0 1
1 0 −1 0









,

whose determinant does not vanish. �

Thus, the orthogonal decomposition (4.1), with w(t) = g(t)−1 · u(t) − η, holds
as long as u(t) is close enough to M = G · η.

In order to find the equation that w satisfies, we need the following lemmas:
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Lemma 4.2. If t 7→ g(t) = (a(t), α(t), φ(t), µ(t)) is a C1 function and

u ∈ ∪N∈NM(N), then

d

dt
g(t) · u = g(t) · (Y (t)u),

where Y (t) = ȧ(t)µ(t)e1 + α̇(t)
α(t)e2 + φ̇(t)e3 + µ̇(t)

µ(t)e4.

Proof.

d

dt
g(t) · u =

d

dt
(eiφαµu(µ(x − a)))

=iφ̇eiφαµu(µ(x − a)) + eiφα̇µu(µ(x − a)) + eiφαµ̇u(µ(x − a))

+ eiφαµ∂xu(µ(x − a))µ̇x − eiφαµ∂xu(µ(x − a))(µ̇a + µȧ)

=φ̇g · (e3 · u) +
α̇

α
g · (e2 · u) +

µ̇

µ
g · (e4 · u) + ȧµg · (e1 · u)

=g · (Y (t)u).

�

We also need Lemma 2.1 from [8], that we restate in the context of our problem.

Lemma 4.3. Suppose that g : H
1
2

+ → H
1
2

+ is a diffeomorphism such that

g∗ω = ρ(g)ω, where ρ(g) ∈ C∞(H
1
2

+ , R∗). Then, for f ∈ C∞(H
1
2

+ , R) we have that

(g−1)∗Xf (g(ρ)) =
1

ρ(g)
Xg∗f (ρ), ρ ∈ H

1
2

+ .

In the next proposition we determine the equation satisfied by w.

Proposition 4.4. If the solution of the perturbed Szegö equation (1.7) can be

reparametrized as in Lemma 4.1, u(t) = g(t) · (η + w(t)), for all t in an interval

(t1, t2), then w satisfies the following equation:

∂tw = −Xη +
(

− iεΠ
(

b(a +
x

µ
)η

)

+ 2Be1 · η − Ce2 · η + (A + B)e3 · η + 2Ce4 · η
)

− Xw +
(

− iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w + (A + B)e3 · w + 2Ce4 · w
)

+ iα2µ2Lw − iα2µ2Nw,
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where

X :=
(

ȧµ −
α2µ2

2
+ 2B

)

e1 +
( α̇

α
− C

)

e2 +
(

φ̇ +
α2µ2

4
+ A + B

)

e3(4.2)

+
( µ̇

µ
+ 2C

)

e4,

Lw := −
i

2
∂xw − 2T|η|2w − Hη2w +

1

4
w,

Nw := Π
(

|w|2w + |w|2η + 2wRe(ηw̄)
)

,

A :=
ε

π

∫

b(a +
x

µ
)|η(x)|2dx,

B :=
ε

π

∫

b′(a +
x

µ
)x|η(x)|2

dx

µ
,

C :=
ε

π

∫

b′(a +
x

µ
)|η(x)|2

dx

µ
.

Proof. Denote ũ = w + η = g−1u. Then, by Lemma 4.2, we have that

∂tu = ∂t(g · (η + w)) = g · Y (η + w) + g · ∂tw.

Then, Lemma 4.3 yields

∂tw = −Y (η + w) + g−1∂tu

= −Y (η + w) + g−1XHb
(u) = −Y (η + w) + g−1XHb

(gũ)

= −Y (η + w) +
1

α2g
Xg∗Hb

(ũ).

Since

(g∗Hb)(ũ) = Hb(gũ) =
α4µ3

4

∫

|ũ|4dx +
εα2µ

2

∫

b
(

a +
x

µ

)

|ũ|2dx,

we have that

(Xg∗Hb
)(ũ) = −iΠ

(

α4µ3|ũ|2ũ + εα2µb(a +
x

µ
)ũ

)

and therefore,

∂tw = − Y (η + w) −
i

α2µ
Π

(

α4µ3|η + w|2(η + w) + εα2µb
(

a +
x

µ

)

(η + w)
)

(4.3)

=
(

− Y η − iεΠ(b(a +
x

µ
)η)

)

+
(

− Y w − iεΠ(b(a +
x

µ
)w)

)

− iα2µ2Π
(

2Re(ηw̄)η + |η|2w
)

− iα2µ2Π
(

|w|2w + 2Re(ηw̄)w + |w|2η
)

− iα2µ2Π(|η|2η).

Denoting

X = Y +
(

−
α2µ2

2
+ 2B

)

e1 − Ce2 +
(α2µ2

4
+ A + B

)

e3 + 2Ce4,(4.4)

and noticing that

−
α2µ2

2
e1 · η =

α2µ2

2
∂xη,

α4µ3

4
e3 · η =

i

4
α4µ3η,
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and similar relations hold for w, we obtain

∂tw = − Xη +
(

− iεΠ
(

b(a +
x

µ
)η

)

+ 2Be1 · η − Ce2 · η

+ (A + B)e3 · η + 2Ce4 · η
)

− Xw +
(

− iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w
)

− iα2µ2
(

Π
(

2|η|2w + η2w̄
)

+
i

2
∂xw −

w

4

)

− iα2µ2
(

Π(|η|2η) +
i

2
∂xη −

η

4

)

− iα2µ2Π
(

|w|2w + 2Re(ηw̄)w + |w|2η
)

.

Equation (1.13) and (1.14) yield the conclusion. �

Remark 4.5. Notice that X ≡ 0 is equivalent to a, α, φ, µ satisfying the effec-
tive dynamics (1.9).

Lemma 4.6. If the solution of the perturbed Szegö equation (1.7) can be

reparametrized as in Lemma 4.1, u(t) = g(t) ·(η+w(t)) at time t, then the L2-norm

of w(t) is equal to

‖w(t)‖2
L2 = π

( α2
0µ0

α2(t)µ(t)
− 1

)

.

Consequently, α2(t)µ(t) ≤ α2
0µ0.

Proof. By the conservation of the L2-norm of the solution of the Szegö equa-
tion with a Toeplitz potential, we have that

‖η + w(t)‖2
L2 = ‖g(t)−1u(t)‖2

L2 =
1

α2(t)µ(t)
‖u(t)‖2

L2 =
‖u(0)‖2

L2

α2(t)µ(t)
=

πα2
0µ0

α2(t)µ(t)
.

By the orthogonality of w and η, we have that ω(w, X · η) = 0, for all X ∈ g. In
particular, taking X = e3, we obtain

〈w, η〉 = Re

∫

wηdx = −Im

∫

wiηdx = −ω(w, e3 · η) = 0.

Then

‖η + w(t)‖2
L2 = ‖η‖2

L2 + ‖w(t)‖2
L2 = π + ‖w(t)‖2

L2 ,

and the conclusion follows. �

Next we define P , the symplectically orthogonal projection on the manifold of
solitons M . We also give two technical lemmas concerning some properties of P .

Definition 3. Define the projection onto TηM = g · η ≃ g by

P :
(

∪N∈N M(N)
)′

→ g,

ω(u − P (u)η, Y η) = 0, ∀Y ∈ g.
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Lemma 4.7. Let ‖ · ‖ be a norm on g obtained by using the standard R4 norm

in the basis {e1, e2, e3, e4}. Then, for all w ∈ H
1
2

+ and Y ∈ g, we have

‖P (Y w)‖ ≤ C‖Y ‖‖w‖L2,

‖P (iNw)‖ ≤ C‖w‖2

H
1
2
+

(‖w‖
H

1
2
+

+ 1).

Proof. Let P =
∑4

j=1 Pjej , Pj : H
− 1

2

+ → R. Then the definition of P yields

(ω|M )η(u −
4

∑

j=1

Pjej · η, a1e1 · η + a2e2 · η + a3e3 · η + a4e4 · η) = 0,

for all ai ∈ R. Then, it follows that

a1

(

ω(u, e1 · η) −
π

2
P2 −

π

2
P4

)

+ a2

(

ω(u, e2 · η) +
π

2
P1 − πP3

)

+ a3

(

ω(u, e3 · η) + πP2 +
π

2
P4

)

+ a4

(

ω(u, e4 · η) +
π

2
P1 −

π

2
P3

)

= 0,

for all ai ∈ R. Therefore,































P1(u) = 2
π

(

ω(u, e2 · η) − 2ω(u, e4 · η)
)

,

P2(u) = 2
π

(

− ω(u, e3 · η) − ω(u, e1 · η)
)

,

P3(u) = 2
π

(

ω(u, e2 · η) − ω(u, e4 · η)
)

,

P4(u) = 2
π

(

2ω(u, e1 · η) + ω(u, e3 · η)
)

.

The conclusion follows by using the Cauchy-Schwarz inequality and integration by
parts. For example, for P1 we have

‖P1(Y w)‖ ≤
∣

∣

∣

∫

Y wη̄
∣

∣

∣ + 2
∣

∣

∣

∫

Y w∂x(xη)
∣

∣

∣

=
∣

∣

∣

∫

(

− Y1∂xw + Y2w + iY3w + Y4∂x(xw)
)

η̄dx
∣

∣

∣

+ 2
∣

∣

∣

∫

(

− Y1∂xw + Y2w + iY3w + Y4∂x(xw)
)

∂x(xη)dx
∣

∣

∣

≤‖Y ‖
(∣

∣

∣

∫

w∂xη̄dx
∣

∣

∣ + 2
∣

∣

∣

∫

wη̄dx
∣

∣

∣ +
∣

∣

∣

∫

xw∂xη̄dx
∣

∣

∣ + 2
∣

∣

∣

∫

w∂2
x(xη̄)dx

∣

∣

∣

+ 4
∣

∣

∣

∫

w∂x(xη̄)dx
∣

∣

∣ + 2
∣

∣

∣

∫

xw∂2
x(xη̄)dx

∣

∣

∣

)

≤C‖Y ‖‖w‖L2

(

‖∂xη‖L2

+ ‖η‖L2 + ‖x∂xη‖L2 + ‖∂2
x(xη)‖L2 + ‖x∂2

x(xη)‖L2

)

≤C‖Y ‖‖w‖L2 .
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By using the Sobolev embedding H
1
2 (R) ⊂ Lp(R) for all 2 ≤ p < ∞, we have

‖P1(iNw)‖ =‖ω(iNw, η) − 2ω(iNw, ∂x(xη))‖

≤
∣

∣

∣

∫

|w|2wη̄dx +

∫

|w|2|η|2dx + 2

∫

wRe(ηw̄)η̄dx
∣

∣

∣

+ 2
∣

∣

∣

∫

|w|2w∂x(xη̄)dx +

∫

|w|2η∂x(xη̄)dx

+ 2

∫

wRe(ηw̄)∂x(xη̄)dx
∣

∣

∣

≤C(‖w2‖L2 + ‖w3‖L2) ≤ C‖w‖L4(‖w‖L4 + ‖w‖2
L8)

≤ ‖w‖2

H
1
2
+

(‖w‖
H

1
2
+

+ 1).

�

Lemma 4.8. If f : R → R is a function of class C1 such that f ′ ∈ L1(R)∩L2(R)
and f ∈ L∞(R), then

P (Π(ifη)) =
2

π

(

∫

f ′(x)x|η(x)|2dx
)

e1 −
1

π

(

∫

f ′(x)|η(x)|2dx
)

e2

+
1

π

(

∫

f(x)|η(x)|2dx +

∫

f ′(x)x|η(x)|2dx
)

e3

+
2

π

(

∫

f ′(x)|η(x)|2dx
)

e4.

Proof. Let Y =
∑4

j=1 ajej be an arbitrary vector in g. Then, integrating by
parts we have

ω(Π(ifη), Y · η) = ω(ifη, a1e1 · η + a2e2 · η + a3e3 · η + a4e4 · η)

= Im
(

− a1

∫

ifη∂xη̄dx + a2

∫

ifηη̄dx

+ a3

∫

ifη(−i)η̄dx + a4

∫

ifη∂x(xη̄)dx
)

= −
a1

2

∫

f∂x(|η|2)dx + a2

∫

f |η|2dx

+ a4Re

∫

f(x)η(x)
(

η̄(x) + x∂xη̄(x)
)

dx

=
a1

2

∫

f ′|η|2dx + (a2 + a4)

∫

f |η|2dx −
a4

2

∫

(

xf ′(x) + f(x)
)

|η(x)|2dx

=
a1

2

∫

f ′|η|2dx + (a2 +
a4

2
)

∫

f |η|2dx −
a4

2

∫

f ′(x)x|η(x)|2dx.

Using the formula for (ω|M )η we have

ω
( 2

π

(

∫

f ′(x)x|η(x)|2dx
)

e1 · η −
1

π

(

∫

f ′(x)|η(x)|2dx
)

e2 · η

+
1

π

(

∫

f(x)|η(x)|2dx +

∫

f ′(x)x|η(x)|2dx
)

e3 · η

+
2

π

(

∫

f ′(x)|η(x)|2dx
)

e4 · η, Y · η
)
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=
a1

2

∫

f ′|η|2dx + (a2 +
a4

2
)

∫

f |η|2dx −
a4

2

∫

f ′(x)x|η(x)|2dx.

By the definition of the projection P , the conclusion follows. �

Lemma 4.9.

P
(

− iεΠ
(

b(a +
x

µ
)η

)

+ 2Be1 · η − Ce2 · η + (A + B)e3 · η + 2Ce4 · η
)

= 0.

Proof. Take f(x) = εb(a + x
µ) in the above lemma. �

Remark 4.10. Lemma 4.9 and equation (4.4) show that

P
(

− Y η − iεΠ
(

b(a +
x

µ
)η

)

)

= −X −
α2µ2

2
e1 +

α2µ2

4
e3.

Thus, X is the orthogonal projection on the manifold of solitons of a significant
term of the right-hand side of the equation (4.3) satisfied by w.

In the following we intend to give an estimate for ‖X‖. We need the following
definition and Lemma that we cite from [8, Lemma 2.2].

Let f ∈ C∞(H
1
2

+ , R) and suppose df(ρ0) = 0. Then the Hessian of f at ρ0 is

well defined f ′′(ρ0) : Tρ0
H

1
2

+ → T ∗
ρ0

H
1
2

+ . We identify Tρ0
H

1
2

+ and T ∗
ρ0

H
1
2

+ using the

inner product and we define the Hamiltonian map F : Tρ0
H

1
2

+ → Tρ0
H

1
2

+ by

F = −if ′′(ρ0), 〈f ′′(ρ0)X, Y 〉 = ω(Y, FX).

Lemma 4.11. Let N ⊂ H
1
2

+ be a finite-dimensional symplectic submanifold of

H
1
2

+ and let f ∈ C∞(H
1
2

+ , R) such that

Xf (ρ) ∈ TρN ⊂ TρH
1
2

+ , ρ ∈ N.

If ρ0 ∈ N and df(ρ0) = 0, then the Hamiltonian map satisfies

F (TρN) ⊂ TρN.

Lemma 4.12. If the solution of the perturbed Szegö equation (1.7) can be

reparametrized as in Lemma 4.1, u(t) = g(t) · (η + w(t)), for all t in an inter-

val (t1, t2), ‖w(t)‖L2 is small enough, and µ0

2 ≤ µ(t) ≤ 3µ0

2 , then the vector X
defined by

X =
(

ȧµ −
α2µ2

2
+ 2B

)

e1 +
( α̇

α
− C

)

e2 +
(

φ̇ +
α2µ2

4
+ A + B

)

e3 +
( µ̇

µ
+ 2C

)

e4,

where the expressions of A, B, C can be found in equation (4.2), satisfies the in-

equality

‖X‖ ≤ C(ε‖w‖L2 + ‖w‖2

H
1
2
+

+ ‖w‖3

H
1
2
+

).

Remark 4.13. Lemma 4.12 yields that if ‖w‖
H

1/2

+

is small, then ‖X‖ is also

small. On the other hand, we noticed in Remark 4.5 that ‖X‖ measures how far
a, α, φ, µ are from the effective dynamics (1.9). Thus, the Lemma 4.12 shows that
if one can prove that w, the part of the flow which is orthogonal to the manifold of
solitons, is small, then a, α, φ, µ are perturbations of the effective dynamics.
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Proof. Note first that P (Y · η) = Y , for all Y ∈ g.
Since ω(w, Y ·η) = 0, for all Y ∈ g, it follows that Pw = 0 and P∂tw = ∂tPw =

0. Then, by Proposition 4.4 and Lemma 4.9, we have

0 = − X − P (Xw) + α2µ2P (iLw) − α2µ2P (iNw)

+ P
(

− iεΠ(b(a +
x

µ
)w) + 2Be1 · w − Ce2 · w + (A + B)e3 · w + 2Ce4 · w

)

.

By Lemma 4.7, we have that

‖P (Xw)‖ ≤ c‖X‖‖w‖L2,

‖P (iNw)‖ ≤ c‖w‖2

H
1
2
+

(‖w‖
H

1
2
+

+ 1).

We prove that P (−iLw) = 0. For E defined by equation (1.12), we have that XE is
tangent to M , which corresponds to the fact that if the initial data is in M , then
the flow of H0 stays in M . Then,

(XE)g·η ⊂ Tg·ηM ⊂ Tg·ηH
1
2

+ .

Then, by Lemma 4.11, we have that the Hamiltonian map of E , −iL, satisfies

(−iL)(TηM) ⊂ TηM.

Then, since w is orthogonal to TηM = g · η and T|η|2 , Hη2 are symmetric with
respect to the real scalar product, we obtain that

ω(−iLw, X · η) = Im

∫

−iLwX · ηdx = −Re

∫

LwX · ηdx = −〈Lw, X · η〉

= −〈w,L(X · η)〉 = Im

∫

w−iL(X · η)dx = ω
(

w, (−iL)(X · η)
)

= 0.

For the last term, we first notice that we have

|A| =
ε

π

∣

∣

∣

∫

b(a +
x

µ
)|η(x)|2dx

∣

∣

∣ ≤ cε‖b‖L∞‖η‖2
L2 ≤ cε,(4.5)

|B| =
ε

π

∣

∣

∣

∫

b′(a +
x

µ
)x|η(x)|2

dx

µ

∣

∣

∣ ≤ cε‖b′‖L1‖xη2(x)‖L∞ ≤ cε,

|C| =
ε

π

∣

∣

∣

∫

b′(a +
x

µ
)|η(x)|2

dx

µ

∣

∣

∣ ≤ cε‖b′‖L1‖η‖2
L∞ ≤ cε.

Using the expression of P we found in the proof of Lemma 4.7, we obtain that
∥

∥

∥P
(

− iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w + (A + B)e3 · w + 2Ce4 · w
)∥

∥

∥

≤ cε‖w‖L2 .

By Lemma 4.6 we have that α2µ ≤ α2
0µ0, and thus we have

‖X‖ ≤ c(‖X‖‖w‖L2 + µ‖w‖2

H
1
2
+

+ µ‖w‖3

H
1
2
+

) + cε‖w‖L2 .

If ‖w‖L2 is small enough so that c‖w‖L2 < 1, then we write

(1 − c‖w‖L2)‖X‖ ≤ c(ε‖w‖L2 + µ‖w‖2

H
1
2
+

+ µ‖w‖3

H
1
2
+

),

To conclude, we use the fact that µ(t) ≤ 3µ0

2 . �
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5. Coerciveness of the linearized operator L

In this section we prove that the linearized operator L, defined by equation
(1.14), is coercive in directions which are symplectically orthogonal to the manifold
of solitons M .

Lemma 5.1. For all f ∈ Ker(Hη2) ∩ H
1
2

+ , we have that

〈L(f), f〉 ≥
1

4
‖f‖2

H
1
2
+

.

Proof. Since η(x) = 1
x+i , we have that Ker(Hη2) =

(

x−i
x+i

)2

L2
+. Let

f ∈ Ker(Hη2) ∩ H
1
2

+ , f =
(

x−i
x+i

)2

h, where h ∈ H
1
2

+ . Then

T|η|2f = Π
( 1

(x + i)(x − i)
(
x − i

x + i
)2h

)

= Π
( x − i

(x + i)3
h
)

=
x − i

(x + i)3
h

and

L(f) = −
i

2
∂xf − 2T|η|2f − Hη2f +

1

4
f

= 2
x − i

(x + i)3
h −

i

2

(x − i

x + i

)2

∂xh − 2
x − i

(x + i)3
h +

1

4

(x − i

x + i

)2

h

=
(x − i

x + i

)2

(−
i

2
∂xh +

1

4
h),

and thus, using |x−i
x+i | = 1 and the Plancherel identity, we obtain

〈L(f), f〉 = 〈
(x − i

x + i

)2

(−
i

2
∂xh +

1

4
h),

(x − i

x + i

)2

h〉 = 〈−
i

2
∂xh +

1

4
h, h〉

=
1

2

∫ ∞

0

ξ|ĥ(ξ)|dξ +
1

4
‖f‖2

L2 ≥
1

4
‖f‖2

H
1
2
+

.

�

In what follows we need a Kronecker-type theorem characterizing the Hankel
operators of finite rank. We state this theorem bellow. For the proof we refer to
[13].

Theorem 5.2 ([13]). The Hankel operator Hu has finite rank N if and only if

u is a rational function which belongs to M(N), where

M(N) =

{

A(z)

B(z)
∈ L2

+

∣

∣

∣deg(B) = N, deg(A) ≤ N−1, B(0) = 1, p.g.c.d.(A, B) = 1

}

.

Moreover, if u ∈ M(N), u(z) = A(z)
B(z) , where B(z) =

∏J
j=1(z − pj)

mj , with
∑J

j=1 mj = N and Impj < 0 for all j = 1, 2, ..., J , then the range of Hu is given by

RanHu = spanC

{

1

(z − pj)m
, 1 ≤ m ≤ mj

}J

j=1

Proposition 5.3. If w ∈ H
1
2

+ is such that ω(w, X · η) = 0, for all X ∈ g, then

〈Lw, w〉 ≥
1

4
‖w‖2

H
1
2
+

.
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Proof. By the Kronecker-type theorem, we have that the range RanHη2 is
generated by all the fractions having as a numerator a complex number and as a
denominator a factor of η2. More precisely,

Ran(Hη2) = spanR

{ 1

x + i
,

i

x + i
,

1

(x + i)2
,

i

(x + i)2

}

= spanR{η, iη,−i∂xη, i∂x(xη)}

= spanR{ie1 · η, ie2 · η, ie3 · η, ie4 · η}.

On the other hand, we have that ω(w, X · η) = 0 for all X ∈ g, which is equivalent
to

0 = ω(w, ej · η) = Im

∫

wej · ηdx = Re

∫

wiej · ηdx = 〈w, iej · η〉,

for j = 1, 2, 3, 4. Thus w belongs to the orthogonal of Ran(Hη2) with respect to
the real scalar product. Since Hη2 is C-antilinear, w belongs also to the orthogonal
with respect to the Hermitian inner product in L2, which is Ker(Hη2 ). Hence

w ∈ Ker(Hη2) ∩ H
1
2

+ . By Lemma 5.1, the conclusion then follows. �

6. Main estimates

In this section we estimate w, the part of the flow which is symplectically
orthogonal to the manifold of solitons, and prove that it is small.

Lemma 6.1. If the solution of the perturbed Szegö equation (1.7) can be

reparametrized as in Lemma 4.1, u(t) = g(t) · (η + w(t)) on a time interval (t1, t2),
µ0

2 ≤ µ(t) ≤ µ0

2 , and w(t) is small enough in the H
1
2

+-norm, then the following

estimate holds

1

2

∣

∣∂t〈Lw, w〉
∣

∣ ≤ cε‖w‖
H

1
2
+

+ cε‖w‖2

H
1
2
+

+ c‖w‖3

H
1
2
+

+ c‖w‖5

H
1
2
+

,

where c is a constant depending on α0 and µ0.

Proof. We have that

1

2
∂t〈Lw, w〉 = 〈Lw, ∂tw〉

=〈Lw,−Xη〉

+ 〈Lw,−iεΠ
(

b(a +
x

µ
)η

)

+ 2Be1 · η − Ce2 · η + (A + B)e3 · η + 2Ce4 · η〉

+ 〈Lw,−Xw〉

+ 〈Lw,−iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w)〉

+ 〈Lw, iα2µ2Lw〉 − 〈Lw, iα2µ2Nw〉

=I + II + III + IV + V + VI

and we will estimate each of the six terms. The challenge is to deal with the terms

containing ∂xw since we only have w ∈ H
1
2

+(R). In what follows we focus on such
terms, the rest of the terms being easier to handle.
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We set X =
∑4

j=1 ajej . By Lemma 4.12, we have that

|aj | ≤ c(ε‖w‖L2 + ‖w‖2

H
1
2
+

+ ‖w‖3

H
1
2
+

).

For I, we integrate by parts

Re
(

ā1

∫

i

2
∂xwe1 · ηdx

)

= Re
(

ā1

∫

i

2
w∂2

xη̄dx
)

and apply the Cauchy-Schwarz inequality for each term. We obtain

|I| ≤ c‖X‖‖w‖L2 ≤ c(ε‖w‖2
L2 + ‖w‖3

H
1
2
+

+ ‖w‖4

H
1
2
+

).

For II, integrating by parts and using Cauchy-Schwarz, we have

Re
(

∫

i

2
∂xw · iεb(a +

x

µ
)η̄dx

)

=
ε

2
Re

(

∫

wb′(a +
x

µ
)
1

µ
η̄dx +

∫

wb(a +
x

µ
)η̄′dx

)

≤ cε‖w‖L2‖η‖L∞‖b′‖L2

µ1/2

µ
+ cε‖w‖L2‖η′‖L2‖b‖L∞

≤ cε(1 +
1

µ1/2
)‖w‖L2 .

Using the equation (4.5) for the rest of the terms, we obtain

|II| ≤ cε‖w‖L2 .

For III and IV we analyze each term. Besides integrating by parts and using
Cauchy-Schwarz or Hölder inequalities, a key ingredient is the fact that we deal
with the real scalar product.

III = 〈Lw,−Xw〉 = Re
(

4
∑

j=1

aj

∫

i

2
∂xwej · wdx + 2

4
∑

j=1

aj

∫

|η|2wej · wdx

+

4
∑

j=1

aj

∫

η2wej · wdx −
1

4

4
∑

j=1

aj

∫

wej · wdx
)

= (i) + (ii) + (iii) + (iv).

Then

(i) = Re
(

− a1
i

2

∫

|∂xw|2 + a2
i

2

∫

∂xwwdx +
a3

4

∫

∂x(|w|2)dx

+ a4
i

2

∫

∂xwwdx + a4
i

2

∫

x|∂xw|2dx
)

= −
a2 + a4

2

∫

1

i
∂xwwdx = −

a2 + a4

2

∫ ∞

0

ξ|ŵ(ξ)|2dξ

= −
a2 + a4

2
‖w‖2

Ḣ
1/2

+

≤ ‖X‖‖w‖2

H
1
2
+

,
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by the Hölder inequality we have

(ii) = 2Re
(

− a1

∫

|η|2w∂xwdx + a2

∫

|η|2|w|2dx − a3i

∫

|η|2|w|2dx

+ a4

∫

|η|2|w|2dx + a4

∫

|η|2xw∂xwdx
)

= −a1

∫

|η|2∂x(|w|2)dx + 2(a2 + a4)

∫

|η|2|w|2dx + a4

∫

|η|2x∂x(|w|2)dx

≤ c‖X‖‖w‖2
L2

similarly

(iii) = Re
(

−
a1

2

∫

η2∂x(w2)dx + a2

∫

η2w2dx − a3i

∫

η2w2dx

+ a4

∫

η2w2dx +
a4

2

∫

η2x∂x(w2)dx
)

≤ c‖X‖‖w‖2
L2,

and

(iv) = −
1

4
Re

(

− a1

∫

w∂xwdx + a2

∫

|w|2dx − a3i

∫

|w|2dx

+ a4

∫

|w|2dx +
a4

2

∫

xw∂xwdx
)

= −
1

4

(

−
a1

2

∫

∂x(|w|2)dx + (a2 + a4)

∫

|w|2dx +
a4

2

∫

x∂x(|w|2)dx
)

= −
1

4
(a2 +

a4

2
)

∫

|w|2dx ≤ c‖X‖‖w‖2
L2.

Hence

|III| ≤ c‖X‖‖w‖2

H
1
2
+

≤ c(ε‖w‖3

H
1
2
+

+ ‖w‖4

H
1
2
+

+ ‖w‖5

H
1
2
+

).

For IV we have

IV = Re

∫

i

2
∂xw

(

iεb(a +
x

µ
)w̄ + 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w
)

dx

+ 2Re

∫

|η|2w
(

iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w
)

dx

+ Re

∫

η2w̄
(

iεΠ
(

b(a +
x

µ
)w

)

+ 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w
)

dx

−
1

4
Re

∫

w
(

iεb(a +
x

µ
)w̄ + 2Be1 · w − Ce2 · w

+ (A + B)e3 · w + 2Ce4 · w
)

dx

= (i)+(ii)+(iii)+(iv).



22 OANA POCOVNICU

By the equations (4.5) and the Sobolev embedding H
1
2 (R) ⊂ Lp(R), 2 ≤ p < ∞,

we have

(i) = −
1

4

∫

εb(a +
x

µ
)∂x(|w|2)dx − BRe

∫

i|∂xw|2dx −
C

2
Re

∫

i∂xwwdx

+
A + B

4

∫

∂x(|w|2)dx + CRe

∫

i∂xwwdx

=
ε

4µ

∫

b′(a +
x

µ
)|w|2dx −

C

2
‖w‖2

Ḣ
1
2
+

≤
cε

µ1/2
‖b′‖L2‖w‖2

L4 + cε‖w‖2

Ḣ
1
2
+

≤cε
(

1 +
1

µ1/2

)

‖w‖2

H
1
2
+

,

For (ii) we only analyze the terms containing ∂xw. By the equations (4.5), we
obtain

− 4BRe

∫

|η|2w∂xwdx + 4CRe

∫

|η|2xw∂xwdx

= −2B

∫

|η|2∂x(|w|2)dx + 2C

∫

|η|2x∂x(|w|2)dx

= 2B

∫

∂x(|η|2)|w|2dx − 2C

∫

∂x(|η|2x)|w|2dx

≤ cε‖w‖2
L2 .

Thus

(ii) ≤ cε(1 +
1

µ1/2
)‖w‖2

L2

and similarly we obtain the same bound for (iii). Computing the last term, we
obtain that (iv)=0. Hence

|IV| ≤ cε(1 +
1

µ1/2
)‖w‖2

H
1
2
+

.

Since we work with the real scalar product, it follows immediately that V=0. For
VI again we only analyze the terms containing ∂xw. The important step is to group
together wη̄ + w̄η ∈ R.

− α2µ2〈
i

2
∂xw, i(|w|2w + 2|w|2η + w2η)〉

= −α2µ2
(1

4

∫

|w|2∂x(|w|2))dx +
1

2
Re

∫

|w|2∂xwηdx +
1

2
Re

∫

∂xww(wη̄ + wη)dx
)

= −α2µ2
(1

8

∫

∂x(|w|4)dx +
1

2
Re

∫

|w|2∂xwηdx +
1

2

∫

∂x(|w|2)2Re(wη)dx
)

= −α2µ2
(1

2
Re

∫

|w|2∂xwηdx −
1

2

∫

|w|22Re(η∂xw + w∂xη)dx
)

= α2µ2Re

∫

|w|2w∂xηdx ≤ cα2µ2‖w‖3

H
1
2
+

.

For the other terms it is enough to apply the Cauchy-Schwarz and Sobolev inequal-
ities. Using Lemma 4.6 we obtain

|VI| ≤ cα2µ2(‖w‖3

H
1
2
+

+ ‖w‖4

H
1
2
+

) ≤ cα2
0µ0µ(‖w‖3

H
1
2
+

+ ‖w‖4

H
1
2
+

).

�
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In the following, we combine the inequality in Lemma 6.1 with the coerciveness
properties of the linearized operator L, to obtain an estimate for ‖w‖

H
1
2
+

.

Proposition 6.2. Suppose the solution of the perturbed Szegö equation (1.7)
can be reparametrized as in Lemma 4.1, u(t) = g(t) · (η + w(t)) on a time interval

[t1, t2] and µ0

2 ≤ µ(t) ≤ µ0

2 . Let 0 < ε ≪ 1 and 0 < δ < 1
2 . If |t2 − t1| ≤

1

ε
1
2
−δ

and

‖w‖
L∞([t1,t2],H

1
2
+

)
≤ ε

1
2 ,

then

‖w‖
L∞([t1,t2],H

1
2
+

)
≤ c0‖w(t1)‖

H
1
2
+

+ c0ε
1+δ
2 ,

where c0 > 2 is a constant depending only on α0 and µ0.

Proof. Integrating from t1 to t2 the estimate in Lemma 6.1, we have that

〈Lw(t2), w(t2)〉 ≤〈Lw(t1), w(t1)〉 + c(t2 − t1)ε‖w‖
L∞([t1,t2],H

1
2
+

)

+ c(t2 − t1)ε‖w‖2

L∞([t1,t2],H
1
2
+

)
+ c(t2 − t1)‖w‖3

L∞([t1,t2],H
1
2
+

)

+ c(t2 − t1)‖w‖4

L∞([t1,t2],H
1
2
+

)
+ (t2 − t1)‖w‖5

L∞([t1,t2],H
1
2
+

)
.

On the other hand, we have

〈Lw(t1), w(t1)〉 =
1

2
Re

∫

1

i
∂xw(t1)w(t1)dx − 2

∫

|η|2|w(t1)|
2dx

− Re

∫

η2w(t1)
2dx +

1

4

∫

|w(t1)|
2dx

≤
1

2
‖w(t1)‖

2

H
1
2
+

+ 2‖η‖2
L∞‖w(t1)‖

2
L2 + ‖η‖2

L∞‖w(t1)‖
2
L2 +

1

4
‖w(t1)‖

2
L2

≤4‖w(t1)‖
2

H
1
2
+

.

Together with the coerciveness of the linearized operator L in Proposition 5.3, this
yields

1

4
‖w‖2

L∞([t1,t2],H
1
2
+

)
≤4‖w(t1)‖

2

H
1
2
+

+ c(t2 − t1)ε‖w‖
L∞([t1,t2],H

1
2
+

)

+ c(t2 − t1)ε‖w‖2

L∞([t1,t2],H
1
2
+

)
+ c(t2 − t1)‖w‖3

L∞([t1,t2],H
1
2
+

)

+ c(t2 − t1)‖w‖5

L∞([t1,t2],H
1
2
+

)
.

Since c(t2 − t1)ε = cε
1
2
+δ < 1

8 we can pass the term c(t2 − t1)ε‖w‖2

H
1
2
+

to the left

hand-side of the inequality and with the estimates in the hypothesis we obtain

1

8
‖w‖2

L∞([t1,t2],H
1
2
+

)
≤ 4‖w(t1)‖

2

H
1
2
+

+ 3cε1+δ.

This gives us the conclusion with the constant c0 = max(32, 24c) depending only
on α0, µ0. �

The proposition below is the main step in proving Theorem 1.1.
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Proposition 6.3. Let Σ be a compact subset of R×R∗
+ ×T×R∗

+, 0 < δ < 1
2 ,

and let ε > 0 be such that ε
1
2 < γ0, where γ0 was defined in Lemma 4.1. Suppose

infg∈Σ ‖u(0) − g · η‖
H

1
2
+

≤ ε
1
2
+ δ

2 . Then, for all

0 < t ≤
δ

6 ln c0
·

1

ε
1
2
−δ

ln(
1

ε
),

the solution of the perturbed Szegö equation (1.7) at time t can be parameterized as

in Lemma 4.1, u(t) = g(t)(η + w(t)). Moreover, we have

‖w‖
L∞([0,t],H

1
2
+

)
≤ε−

δ
6 ‖w(0)‖

H
1
2
+

+ ε
1
2
+ δ

3(6.1)

and

µ0

2
≤µ(t) ≤

3µ0

2
.

Proof. We use a bootstrap argument. Set

(6.2) T := sup
{

t > 0
∣

∣

∣ inf
g∈Σ

‖u(t) − g · η‖
L∞([0,t],H

1/2

+
)
≤ ε

1
2 ,

µ0

2
≤ µ(t) ≤

3µ0

2

}

.

We intend to show that T ≥ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ). Suppose by contradiction that

T <
δ

6 ln c0
·

1

ε
1
2
−δ

ln(
1

ε
).

Since infg∈Σ ‖u(t) − g(t) · η‖
L∞([0,t],H

1/2

+
)
≤ ε

1
2 < γ0 for all 0 < t < T , it fol-

lows by Lemma 4.1 that the solution of the perturbed Szegö equation (1.7) can
be reparametrized as u(t) = g(t) · (η + w(t)) for all 0 < t < T , and moreover

‖w(t)‖
L∞([0,t],H

1/2

+
)
≤ ε

1
2 . We apply the Proposition 6.2 successively on the in-

tervals [0, 1

ε
1
2
−δ

], [ 1

ε
1
2
−δ

, 2

ε
1
2
−δ

],..., [ k−1

ε
1
2
−δ

, k

ε
1
2
−δ

]. For t in the interval [0, 1

ε
1
2
−δ

], we

obtain

‖w(t)‖
H

1
2
+

≤ c0‖w(0)‖
H

1
2
+

+ c0ε
1+δ
2 .

Using this information for t = 1

ε
1
2
−δ

, we obtain for t ∈ [ 1

ε
1
2
−δ

, 2

ε
1
2
−δ

] that

‖w(t)‖
H

1
2
+

≤ c2
0‖w(0)‖

H
1
2
+

+ c0(1 + c0)ε
1+δ
2 .

Ultimately, we have that for all t ∈ [0, k

ε
1
2
−δ

]

‖w(t)‖
H

1
2
+

≤ ck
0‖w(0)‖

H
1
2
+

+ c0(

k−1
∑

j=0

cj
0)ε

1+δ
2 = ck

0‖w(0)‖
H

1
2
+

+ c0
ck
0 − 1

c0 − 1
ε

1+δ
2 .

Since c0 > 2, we have that c0
ck
0−1

c0−1 ≤ 2ck
0 . Take k such that ck

0 = ε−
δ
6 , which is

equivalent to

k =
δ

6 ln c0
ln(

1

ε
).

Then,

‖w‖
L∞([0, k

ε
1
2
−δ

],H
1
2
+

)
≤ ε−

δ
6 ‖w(0)‖

H
1
2
+

+ 2ε
1
2
+ δ

3 ≤ 3ε
1
2
+ δ

3 .



SOLITON INTERACTION WITH SMALL TOEPLITZ POTENTIALS 25

Therefore, we have for 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ) that

‖w(t)‖
L∞([0,t],H

1
2
+

)
≤ 3ε

1
2
+ δ

3 ,(6.3)

and by Lemma 4.12 it follows that

‖X‖ ≤ cε1+ 2δ
3 .

By the definition of X (4.2), it follows that
∣

∣

∣

µ̇

µ
+ 2C

∣

∣

∣ ≤ cε1+ 2δ
3 .

Thus
µ̇

µ
≤ −

2ε

π

∫

b′(a +
x

µ
)|η(x)|2

dx

µ
+ cε1+ 2δ

3 .

Integrating from 0 to t, where 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ), and using the change of

variables y = a + x
µ , we obtain that

ln
(µ(t)

µ0

)

≤ c(ε‖b′‖L1‖η‖2
L∞ + ε1+ 2δ

3 )t ≤
cδ

6 ln c0
· ε

1
2
+δ ln(

1

ε
).

Since around zero we have the Taylor expansion ln(1 + x) = x + O(x2), it follows
that

µ(t) − µ0

µ0
≤

cδ

6 ln c0
· ε

1
2
+δ ln(

1

ε
).

Hence, we obtain

|µ(t) − µ0| ≤ c̃0δε
1
2
+δ ln(

1

ε
),

where c̃0 is a constant depending on α0, µ0. Thus,

(6.4)
2µ0

3
≤ µ(t) ≤

4µ0

3
for 0 ≤ t ≤

δ

6 ln c0
·

1

ε
1
2
−δ

ln(
1

ε
).

Equations (6.3) and (6.4) show that the conditions in the definition of T (6.2)

hold with better bounds, i.e. 3ε
1
2
+ δ

3 instead of ε
1
2 , 4µ0

3 instead of 3µ0

2 , and 2µ0

3

instead of µ0

2 , for 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ). Since w(t) and µ(t) are continuous

with respect to time, it follows that there exists t0 > 0 such that the conditions
in the definition of T with exactly the same bounds as in that definition hold
for times 0 ≤ t ≤ δ

6 ln c0
· 1

ε
1
2
−δ

ln(1
ε ) + t0. This contradicts our assumption T <

δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ). Therefore, the conclusion of the proposition follows. �

7. Proof of Theorem 1.1

In this section we prove that Theorem 1.1 follows from Proposition 6.3.

Proof of Theorem 1.1. First we notice that u(0) = g(0) · η, where
g(0) = (a0, α0, φ0, µ0). Thus, by Proposition 6.3, it follows that u(t) can be
reparametrized as u(t) = g(t) · (η + w(t)) for times 0 ≤ t ≤ δ

6 ln c0
· 1

ε
1
2
−δ

ln(1
ε ),

and moreover

‖w(t)‖
L∞([0,t],H

1
2
+

)
≤ 3ε

1
2
+ δ

3 ,
µ0

2
≤ µ(t) ≤

3µ0

2
.
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By Lemma 4.12 we then obtain

(7.1) ‖X‖ ≤ cε1+ 2δ
3 .

Proceeding as in the last part of the proof of Proposition 6.3, we obtain that

|µ(t) − µ0| ≤ c̃0δε
1
2
+δ ln(

1

ε
).

for 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ). Similarly we have |µ̄(t)− µ0| ≤ c̃0δε

1
2
+δ ln(1

ε ). Then

|µ(t) − µ(t)| ≤ c̃0δε
1
2
+δ ln(

1

ε
).

By equation (7.1) and using the definition of X , it follows that
∣

∣

∣

α̇

α
− C

∣

∣

∣ ≤ cε1+ 2δ
3 .

Thus
α̇

α
≤

ε

π

∫

b′(a +
x

µ
)|η(x)|2

dx

µ
+ cε1+ 2δ

3 .

Proceeding as we did for µ(t) and possibly making the constant c̃0 larger, we obtain
that

|α(t) − α0| ≤ c̃0δε
1
2
+δ ln(

1

ε
),

|α(t) − α(t)| ≤ c̃0δε
1
2
+δ ln(

1

ε
),

for 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ).

We thus proved that for the above range of time, µ(t) and α(t) stay close to
µ0 and α0 respectively. The definition of X (4.2) and the estimate (7.1) then yield
that a, α, φ, µ satisfy the perturbed effective dynamics (1.8) in the statement of
Theorem 1.1.

By Lemma 4.6 we have that ‖w‖2
L2 = π

(

α2
0µ0

α2µ − 1
)

. Then, the equations

satisfied by ᾱ and µ̄ yield ∂t(ᾱ
2µ̄) = 0, and thus we obtain that

α2µ = α2
0µ0 + cε1+ 2δ

3 , ᾱ2µ̄ = α2
0µ0.

Subtracting the equations satisfied by φ and φ̄, we then obtain that

|φ̇ − ˙̄φ| =
∣

∣

∣
−

α2
0µ0

4
(µ − µ̄) −

ε

π

∫

(

b(a +
x

µ
) − b(ā +

x

µ̄
)
)

|η|2dx

−
ε

π

∫

(

b′(a +
x

µ
) − b′(ā +

x

µ̄
)
)

x|η(x)|2
dx

µ

∣

∣

∣ + cε1+ 2δ
3

≤ c|µ − µ̄| + cε ≤ (c̃0δ + c)ε
1
2
+δ ln(

1

ε
).

Integrating, we obtain the desired estimate for |φ − φ̄|. Similarly we obtain the
estimate for |a − ā|.

Let 0 < ρ ≪ 1. Suppose ε is small enough such that ερ ln(1
ε )2 ≤ 1. Then we

have that

|φ − φ̄| ≤ c̃0δε
2δ ln(

1

ε
)2 ≤ cε2δ−ρ.
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If 2δ − ρ ≥ 1
2 + δ

3 , which is equivalent to δ ≥ 3
10 + 3

5ρ > 3
10 , then one can easily see

that |φ− φ̄| ≤ ε
1
2
+ δ

3 . This together with the approximations for a, α, µ in equations
(1.10) yields

‖α(t)eiφ(t)µ(t)η(µ(t)(x − a(t))) − ᾱ(t)eiφ̄(t)µ̄(t)η(µ̄(t)(x − ā(t)))‖
H

1
2
+

≤ cε
1
2
+ δ

3 .

Thus, if δ ≥ 3
10 + 3

5ρ > 3
10 , we have that

‖u(t) − ᾱ(t)eiφ̄(t)µ̄(t)η(µ̄(t)(x − ā(t)))‖
H

1
2
+

≤ cε
1
2
+ δ

3 ,

for times 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln(1
ε ). �
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