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Multiple bifurcations and spatiotemporal patterns for a

coupled two-cell Brusselator model

Wenjie Zuo and Junjie Wei

Communicated by Yuncheng You, received August 31, 2010.

Abstract. A coupled two-cell Brusselator model with diffusion effect subject
to Neumann boundary condition is considered. Hopf bifurcations and global
steady state bifurcations which bifurcate from the unique positive constant
equilibrium point are investigated in detail. Meanwhile, Turing instability
occurs when diffusion is present. Particularly, we show the existence of spa-
tially inhomogeneous periodic solutions and non-constant steady state solu-
tions, which exhibit rich spatiotemporal patterns in this coupled Brusselator
system. Some numerical simulations are presented to illustrate the theoretical
results obtained.
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1. Introduction

It is well-known that the reaction-diffusion system with autocatalytic such
as the Brusselator equations and the Gray-Scott equations [1, 2] can exhibit rich
spatial patterns (including but not restricted to Turing patterns)[3, 4, 5, 6, 7].
One of the most widely studied models is the Brusselator system, which describes
the following chemical reactions:

A→ U, B + U → V +D, 2U + V → 3U, U → E,
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where A, B, D, E, U and V are chemical reactants or products. Let u(x, t) and
v(x, t) be the concentrations of U and V , and assume that the concentrations of the
input compounds A and B are held constants during the reaction process, denoted
by a and b, respectively. Thus one can obtain (diffusive) Brusselator equations:

(1.1)

{

∂u
∂t = d1△u− (b+ 1)u+ u2v + a,
∂v
∂t = d2△v + bu− u2v.

The model (1.1) has been studied by several researchers (see[8, 9, 10, 11]) in view
of bifurcation.

The study of two-cell model of two coupled components is a substantial advance
from one-cell model of two-component reaction-diffusion systems [12, 13]. Coupled
cells with diffusive reaction and mutual exchange are often adopted to describe the
processes in living cells and tissues, or in distributed chemical reactions [14, 15].

In the present paper, we mainly consider a coupled Brusselator model, i.e.
(1.2)







































∂u1

∂t = d1△u1 + c(u3 − u1) + a− (b+ 1)u1 + u2
1u2, (x, t) ∈ Ω × (0,+∞),

∂u2

∂t = d2△u2 + bu1 − u2
1u2, (x, t) ∈ Ω × (0,+∞),

∂u3

∂t = d1△u3 + c(u1 − u3) + a− (b+ 1)u3 + u2
3u4, (x, t) ∈ Ω × (0,+∞),

∂u4

∂t = d2△u4 + bu3 − u2
3u4, (x, t) ∈ Ω × (0,+∞),

∂νui = 0, on (x, t) ∈ ∂Ω × (0,+∞), i = 1, 2, 3, 4,

ui(x, 0) = ui(x) ≥ 0, i = 1, 2, 3, 4,

where Ω ⊂ RN , N ≥ 1 is a bounded domain with smooth boundary ∂Ω, d1, d2, a, b, c

are positive constants, ν is outward unit normal vector on ∂Ω, and no flux boundary
condition is imposed, which implies that the system (1.2) is a closed one and has
no flux across the boundary ∂Ω. The system (1.2) has been studied by several
researchers. For example, You [16] proved the existence of a global attractor of
solution semi-flow of system (1.2) with Dirichlet boundary condition.

Recently, Zhou and Mu [17] considered the existence and non-existence of
positive non-trivial solutions of system (1.2) by utilizing the bifurcation theory
and degree theory. Their theoretical analysis shows that the diffusion rate of this
reaction and the size of the reactor play decisive roles in leading to the formation
of stationary patterns.

Yi, Wei and Shi [18, 19] have investigated the Hopf and steady state bifurca-
tions in a diffusion predator-prey model, and the multiple bifurcations in a diffusive
bimolecular model, respectively.

Intriguing by the above work, for system (1.2), we shall choose the parameter
b as the main bifurcation parameter to study Hopf bifurcation and global steady
state bifurcations, which bifurcate from the unique constant positive equilibrium
(a, b

a , a,
b
a ) of the system. Turing instability occurs when d1, d2 are in some certain

region. These results suggest the existence of spatially inhomogeneous periodic
orbits and the non-constant steady state solutions, which implies rich spatiotem-
poral patterns of a coupled Brusselator model. Finally, we discuss the interaction
between Hopf bifurcation and steady state bifurcation. In the different parameter
ranges, the intertwining of the two type of bifurcations is delicate. This provides
some theoretical evidences for the complex dynamical behavior.

The rest of the paper is organized as follows. In Section 2, the stability and Hopf
bifurcation analysis of the system (1.2) are considered. The Hopf bifurcation for
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general reaction-diffusion system(R-D system) consisting of m equations is derived
in Section 2.1, and these results are applied to Hopf bifurcation analysis of (1.2). In
Section 3, global steady state bifurcation and interaction between Hopf bifurcation
and steady state bifurcation are investigated. One longer proof is given in Appendix.

2. Hopf bifurcation

For convenience, we restrict ourselves to one-dimensional spatial domain (0, lπ),
for which the structure of the eigenvalues is clear.

2.1. Hopf bifurcation for general R-D system. We consider a general
R-D system subject to the homogeneous Neumann boundary condition:

(2.1)



















∂ui(x,t)
∂t = di△ui(x, t) + f (i)(b, u1, · · · , um), x ∈ (0, lπ), t > 0,

∂ui(x,t)
∂x = 0, x = 0, lπ, t > 0,

ui(x, 0) = ui(x) > 0, x ∈ (0, lπ),

i = 1, 2, · · · ,m,

where d1, d2, · · · , dm are positive constants, and f (i) : R×Rm → R are Ck (k ≥ 3)
with f (i)(b, 0, · · · , 0) ≡ 0, i = 1, 2, · · · ,m.
Denote

U = (u1, u2, · · · , um)T , D =











d1

d2

. . .

dm











,

and F (b, U) = (f (1), f (2), · · · , f (m)). Then (2.1) can be rewritten as

(2.2)
dU

dt
= D△U + F (b, U).

Define the real-value Sobolev space
(2.3)

X := {(u1, · · · , um) ∈ (H2(0, lπ))m|∂ui

∂x
(0, t) =

∂ui

∂x
(lπ, t) = 0, i = 1, · · · ,m},

and let the complexification of X be Xc := X ⊕ iX = {x1 + ix2 | x1, x2 ∈ X}.
The linearized operator of the steady state system of (2.1) evaluated at (b,0) is

(2.4) L(b) = D
∂2

∂x2
+ J(F )|U≡0,

where J(F ) denotes the Jacobi matrix of F .
To consider Hopf bifurcation, we assume that the following condition holds for

some b0 ∈ R.
(H1) There exists a neighborhood O of b0 such that for b ∈ O, L(b) has a

pair of conjugate eigenvalues α(b) ± iω(b), continuously differentiable in b, with
α(b0) = 0, ω(b0) = ω0 and α′(b0) 6= 0, and all other eigenvalues of L(b) have
non-zero real parts for b ∈ O.

It is well-known that the eigenvalue problem
{

−ϕ′′ = µϕ, x = (0, lπ),

ϕ′(0) = ϕ′(lπ) = 0,
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has eigenvalues µn = n2

l2 (n = 0, 1, 2, · · · ), with corresponding eigenfunctions cos n
l x.

Let

(2.5) Φ := (φ1, φ2, · · · , φm)T =

∞
∑

n=0

cos
n

l
x(a1n, a2n, · · · , amn)T

be an eigenfunction for L(b) with eigenvalue β(b), that is, L(b)Φ = β(b)Φ. Then
from a straightforward computation, we obtain

(2.6) Ln(b)(a1n, a2n, · · · , amn)T = β(b)(a1n, a2n, · · · , amn)T ,

where Ln(b) = D(−n2

l2 ) + J(F )|U≡0. We adopt the framework of [18, 20], and
rewrite (2.2) in the abstract form:

(2.7)
dU

dt
= L(b)U +G(b, U),

where G(b, U) = F (b, U) − J(F )|U≡0. At b = b0, the system (2.7) is reduced to

(2.8)
dU

dt
= L(b0)U +G(b0, U).

Let 〈·, ·〉 be the complex-valued L2 inner product on Hilbert space Xc, defined as

〈U1, U2〉 =

∫ lπ

0

(ū1v1 + ū2v2 + · · · + ūmvm)dx

with U1 = (u1, u2, · · · , um)T , U2 = (v1, v2, · · · , vm)T ∈ Xc. Denote by L∗(b0) the
adjoint operator of L(b0), from (H1), we can choose

q := cos
nx

l
(a1n, a2n, · · · , amn)T , q∗ := cos

nx

l
(a∗1n, a

∗
2n, · · · , a∗mn)T ∈ Xc,

so that

(2.9) L(b0)q = iω0q, L
∗(b0)q

∗ = −iω0q
∗, 〈q∗, q〉 = 1, and 〈q∗, q̄〉 = 0.

We decompose X = Xc ⊕Xs with Xc := {zq+ z̄q̄|z ∈ C}, Xs := {v ∈ X |〈q∗, v〉 =
0}. For any U ∈ X , there exist z ∈ C and W = (w1, w2, · · · , wm) ∈ Xs such that

(2.10) U = zq + z̄q̄ +W,

or

(2.11) ui = zain cos
nx

l
+ z̄āin cos

nx

l
+ wi, i = 1, 2, · · · ,m.

Thus (2.7) is reduced to the following system:

(2.12)

{

dz
dt = iω0z + 〈q∗, G0〉,
dW
dt = L(b0)W +H(z, z̄,W ),

where G0 = G(b0, U),

(2.13) H(z, z̄,W ) := G0 − 〈q∗, G0〉q − 〈q∗, G0〉q̄.
As in [18, 20], we write G0 in the following form:

(2.14) G0(U) =
1

2
Q(U,U) +

1

6
C(U,U, U) +O(|U |4),

where Q and C are symmetric multilinear forms. Denote QXY = Q(X,Y ) and
CXY Z = C(X,Y, Z). For later uses, we calculate Qqq, Qqq̄ and Cqqq̄ as follows.

Qqq = cos2
nx

l
(b1n, b2n, · · · , bmn)T , Qqq̄ = cos2

nx

l
(c1n, c2n, · · · , cmn)T ,
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Cqqq̄ = cos3
nx

l
(d1n, d2n, · · · , dmn)T ,

where

bin =

m
∑

k=1

f (i)
ukuk

(b0,0)a2
kn + 2

m−1
∑

k=1

m
∑

j=k+1

f (i)
ukuj

(b0,0)aknajn,

cin =

m
∑

k=1

f (i)
ukuk

(b0,0)|akn|2 +

m−1
∑

k=1

m
∑

j=k+1

f (i)
ukuj

(b0,0)(aknājn + āknajn),

din =
m

∑

k=1

f (i)
ukukuk

(b0,0)|akn|2akn +
m−1
∑

k=1

m
∑

j=k+1

f (i)
ukukuj

(b0,0)(a2
knājn + 2|akn|2ajn)

+ 2

m−2
∑

k=1

m−1
∑

j=k+1

m
∑

l=j+1

f (i)
ukujul

(b0,0)(aknajnāln + aknājnaln + āknajnaln),

i = 1, 2, · · · ,m.
Let

(2.15) H(z, z̄,W ) = H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · · .

Then by (2.13) and (2.14), we have

(2.16)

{

H20 = Qqq − 〈q∗, Qqq〉q − 〈q̄∗, Qqq〉q̄,
H11 = Qqq̄ − 〈q∗, Qqq̄〉q − 〈q̄∗, Qqq̄〉q̄.

Let

(2.17) W = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · .

By (2.15) and together with L(b0)W +H(z, z̄,W ) = dW
dt = ∂W

∂z
dz
dt + ∂W

∂z̄
dz̄
dt , we have

(2.18) W20 = [2iω0I − L(b0)]
−1H20 and W11 = −[L−1(b0)]H11.

We notice
∫ lπ

0
cos3 nx

l dx = 0, ∀n ∈ N = {1, 2, · · · }, and by calculation,

(2.19) 〈q∗, Qqq〉 = 〈q∗, Qqq̄〉 = 〈q̄∗, Qqq〉 = 〈q̄∗, Qq̄q̄〉 = 0.

Then by (2.16), (2.18) and (2.19), we have

W20 =











1
2 [2iω0I − L(b0)]

−1[(cos 2nx
l + 1)(b1n, b2n, · · · , bmn)T ], if n ∈ N,

[2iω0I − L(b0)]
−1[(b10, b20, · · · , bm0)

T

−2Re(〈q∗, Qqq〉(a10, a20, · · · , am0)
T )], if n = 0,

W11 =











− 1
2L

−1(b0)[(cos 2nx
l + 1)(c1n, c2n, · · · , cmn)T ], if n ∈ N,

−L−1(b0)[(c10, c20, · · · , cm0)
T

−2Re(〈q∗, Qqq̄〉(a10, a20, · · · , am0)
T )], if n = 0.

(2.20)

Therefore the reaction-diffusion system restricted to the center manifold is given
by

dz

dt
= iω0z + 〈q∗, G0〉 = iω0z +

∑

2≤i+j≤3

gij

i!j!
ziz̄j + · · · ,
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where g20 = 〈q∗, Qqq〉, g11 = 〈q∗, Qqq̄〉, g02 = 〈q∗, Qq̄q̄〉, and

g21 = 2〈q∗, QW11q〉 + 〈q∗, QW20q̄〉 + 〈q∗, Cqqq̄〉,

c1(b0) =
i

2ω0
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g21

2
,

which determine the properties of bifurcating periodic solutions at the critical value
b0.We have the following Hopf bifurcation theorem for the general R-D system (2.1).

Theorem 2.1. Suppose (H1)is satisfied. Then (2.1) possesses a family of real-
valued T (s)−periodic solutions (b(s), u1(s)(x, t), · · · , um(s)(x, t)), for s sufficiently
small,

(u1(s)(x, t), · · · , um(s)(x, t))

can be parameterized in the following form:

(2.21)











u1 = s(a1ne
2πit/T (s) cos nx

l + ā1ne
−2πit/T (s) cos nx

l ) + o(s),

· · ·
um = s(amne

2πit/T (s) cos nx
l + āmne

−2πit/T (s) cos nx
l ) + o(s).

Furthermore:
1.The Hopf bifurcation is forward (backward) if

(2.22) µ2 = −Re(c1(b0))
α′(b0)

> 0 (< 0).

2.The bifurcating periodic solutions on the center manifold are orbitally asymp-
totically stable (unstable) if Re(c1(b0)) < 0 (> 0). Particularly, if all other eigen-
values of L(b0) have negative real parts, then the bifurcating periodic solutions are
orbitally asymptotically stable (unstable) if Re(c1(b0)) < 0 (> 0).

2.2. Stability and Hopf bifurcation analysis in a coupled Brusselator
model. Straightforward calculation shows that the system (1.2) has a unique
constant fixed point U∗ = (a, b

a , a,
b
a ). To cast our discussion into the framework of

Section 2.1, we translate (1.2) into the following system by the translation

ū1 = u1 − a, ū2 = u2 −
b

a
, ū3 = u3 − a, ū4 = u4 −

b

a
,

and still let ui (i = 1, 2, 3, 4) replace ūi (i = 1, 2, 3, 4), respectively.

(2.23)































∂u1

∂t = d1△u1 + (b− c− 1)u1 + a2u2 + cu3 + u2
1u2 + b

au
2
1 + 2au1u2,

∂u2

∂t = d2△u2 − bu1 − a2u2 − u2
1u2 − b

au
2
1 − 2au1u2,

∂u3

∂t = d1△u3 + cu1 + (b− c− 1)u3 + a2u4 + u2
3u4 + b

au
2
3 + 2au3u4,

∂u4

∂t = d2△u4 − bu3 − a2u4 − u2
3u4 − b

au
2
3 − 2au3u4,

∂ui

∂x (0, t) = ∂ui

∂x (lπ, t) = 0, t > 0, i = 1, 2, 3, 4.

Denote the linearized operator of the steady state of (2.23) evaluated in (0, 0, 0, 0)
by

L(b) :=











d1
∂2

∂x2 + b− c− 1 a2 c 0

−b d2
∂2

∂x2 − a2 0 0

c 0 d1
∂2

∂x2 + b− c− 1 a2

0 0 −b d2
∂2

∂x2 − a2











,
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and

Ln(b) =











− d1n2

l2 + b− c− 1 a2 c 0

−b − d2n2

l2 − a2 0 0

c 0 − d1n2

l2 + b− c− 1 a2

0 0 −b − d2n2

l2 − a2











.

The characteristic equation of Ln(b) is given by

(2.24) [λ2 − Tn(b)λ+Dn(b)][λ2 − Pn(b)λ+Qn(b)] = 0,

where

(2.25)























Tn(b) = − (d1+d2)n
2

l2 − a2 + b− 1,

Dn(b) = (d2n2

l2 + a2)(d1n2

l2 − b+ 1) + ba2,

Pn(b) = − (d1+d2)n
2

l2 − a2 + b− 2c− 1,

Qn(b) = (d2n2

l2 + a2)(d1n2

l2 − b+ 2c+ 1) + ba2.

Obviously, λi is an eigenvalue of Ln(b) on X if and only if λi is a root of the
following equations (2.26) or (2.27).

(2.26) λ2 − Tn(b)λ+Dn(b) = 0,

(2.27) λ2 − Pn(b)λ+Qn(b) = 0.

Now we shall identify all the possible Hopf bifurcation values b0 which satisfy
the condition (H1). We carry it out in three steps.
Step 1. We shall find these b0, such that at b = b0, Eq.(2.26) has a pair of simple,
pure imaginary roots, and all other roots of Eq.(2.26) have non-zero real parts.
That is, there exists n ∈ N ∪ {0}, such that

Tn(b0) = 0, Dn(b0) > 0, Tj(b0) 6= 0, Dj(b0) 6= 0, for ∀j 6= n.

If Tn(b) = 0, we have bHn,+ = (d1+d2)n
2

l2 + a2 + 1, and

Dn(bHn,+) = −d2
2(
n2

l2
)2 + a2(d1 − d2)

n2

l2
+ a2.

In order that Dn(bHn,+) > 0, we need to prove the following inequality

d2
2(
n2

l2
)2 − a2(d1 − d2)

n2

l2
− a2 < 0,

or equivalently,

a2(d1 − d2) −
√
A

2d2
2

<
n2

l2
<
a2(d1 − d2) +

√
A

2d2
2

,

where A = a4(d1 − d2)
2 + 4a2d2

2, that is,

0 ≤ n2 <
a2(d1 − d2) +

√

a4(d1 − d2)2 + 4a2d2
2

2d2
2

l2.

Obviously,

(2.28) Tj(b
H
n,+) = −d1 + d2

l2
(j2 − n2) 6= 0, ∀j 6= n.
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To let Dj(b
H
n,+) 6= 0, ∀j 6= n, we need

(2.29)
(d1 + d2)n

2

l2
+ a2 6= d1j

2

l2
+
a2l2

d2j2
+
d1a

2

d2
, n 6= j, ∀j ∈ N.

In this case, all the possible parameters b can be labeled as

ΛH
1 = {bHn,+, n = 0, 1, · · · , N, and n satisfies (2.29)},

for some N ∈ N ∪ {0}, satisfying

(2.30) a2 + 1 = bH0,+ < bH1,+ < · · · < bHN,+ < +∞,

such that

0 ≤
bHN,+ − 1 − a2

d1 + d2
<
a2(d1 − d2) +

√

a4(d1 − d2)2 + 4a2d2
2

2d2
2

.

Step 2. We shall find these b0 at which Eq.(2.27) has a pair of simple, pure
imaginary roots, and all other roots of Eq.(2.27) have non-zero real parts.

If Pn(b) = 0, we have bHn,− = (d1+d2)n
2

l2 + a2 + 2c+ 1.

To Qj(b
H
n,−) 6= 0, we have

(2.31)
(d1 + d2)n

2

l2
+ a2 6= d1j

2

l2
+
a2l2(2c+ 1)

d2j2
+
d1a

2

d2
, n 6= j, ∀j ∈ N.

Similar to Step 1, we can derive the following results.
In this case, all the possible parameters b can be labeled as

ΛH
2 = {bHn,−, and n = 0, 1, · · · , N ′, and n satisfies (2.31)},

for some N ′ ∈ N ∪ {0}, satisfying

(2.32) a2 + 2c+ 1 = bH0,− < bH1,− < · · · < bHN ′,− < +∞,

such that

0 ≤
bHN ′,− − a2 − 2c− 1

d1 + d2
<
a2(d1 − d2) +

√

a4(d1 − d2)2 + 4a2d2
2(2c+ 1)

2d2
2

.

Step 3. The transversality condition holds.
Eq.(2.26) has a pair of conjugate roots α1(b) ± iω1(b), near b = bHn,+, where

α1(b) = − (d1 + d2)n
2

2l2
− 1

2
(a2 + 1) +

b

2
, ω1(b) =

√

Dn(b) − α2
1(b).

Clearly, α′
1(b)|b=bH

n,+
= 1

2 > 0.

Eq.(2.27) has a pair of conjugate roots α2(b) ± iω2(b), near b = bHn,−, where

α2(b) = − (d1 + d2)n
2

2l2
− 1

2
(a2 + 2c+ 1) +

b

2
, ω2(b) =

√

Qn(b) − α2
2(b).

Clearly, α′
2(b)|b=bH

n,−
= 1

2 > 0. For convenience, we denote

(2.33) ΛH = ΛH
1 ∪ ΛH

2 = {bHn,+|Nn=0} ∪ {bHn,−|N
′

n=0} , {bHn }.

In addition, from Dj(b) = 0, we have bj,+ = d1j2

l2 + a2l2

d2j2 + d1a2

d2
+ 1. Then,

Dj(b) > 0, when b < bj,+ and Dj(b) < 0, when b > bj,+.

Furthermore,

(2.34) Dj(b) > 0, ∀j ∈ N = {1, 2, · · · } when b < min
j∈N

{bj,+}.
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Meanwhile, min
j∈N

{bj,+} =







(1 +
√

d1

d2
a)2, if ∃k ∈ N, s.t. k2 = al2√

d1d2
.

min{bk, bk+1}, if ∃k ∈ N, s.t. k2 < al2√
d1d2

< (k + 1)2.

From the above analysis, we draw the following conclusions.

Theorem 2.2. For the system (1.2), the following results are true:
(i) If min

j∈N
{bj,+} > 1+a2, then the equilibrium point (a, b

a , a,
b
a ) is asymptotically

stable when b ∈ (0, a2 + 1), and unstable when b ∈ (a2 + 1,+∞).
(ii) If min

j∈N
{bj,+} < 1 + a2, then the equilibrium point (a, b

a , a,
b
a ) is asymptoti-

cally stable when b ∈ (0,min
j∈N

{bj,+}), and unstable when b ∈ (min
j∈N

{bj,+},+∞). Thus

Turing instability occurs.
(iii) The system (1.2) undergoes a Hopf bifurcation at b = bHn ∈ ΛH (defined

above), and the bifurcating periodic solutions can be parameterized in the form of
(2.21).

Moreover,
1. The bifurcating periodic solutions from b = bH0,+ = a2 + 1 are spatially

homogenous, which coincides with the periodic solutions of the corresponding ODE
system.

2. The bifurcating periodic solutions from b = bHn ∈ ΛH\{bH0,+} are spatially
inhomogeneous.

In what follows, we concentrate on the direction of bifurcation and stability of
the bifurcating periodic solutions.

Theorem 2.3. For the system (1.2), the Hopf bifurcation at b = bH0,+ =

a2 + 1 is forward, and the bifurcating periodic solutions are asymptotically stable if
min
j∈N

{bj,+} > 1 + a2, and unstable if min
j∈N

{bj,+} < 1 + a2.

Proof. By Theorem 2.1, in order to determine the stability and direction of
the bifurcating periodic solutions, we need to calculate Rec1(b

H
0,+).

ω0 =
√

D0(bH0,+) =
√
a2 = a > 0, if b = bH0,+ = a2 + 1.

Let q := (a10, a20, a30, a40)
T = (− 1

bH
0,+

(a2 + ia), 1,− 1
bH
0,+

(a2 + ia), 1)T , and

q∗
′

:= (a∗
′

10, a
∗′

20, a
∗′

30, a
∗′

40)
T = (

1

a
(a− i), 1,

1

a
(a− i), 1)T .

Let q∗ = D( 1
a (a− i), 1, 1

a (a− i), 1)T , where D̄ = [ 4lπ
a2+1 (1 − ai)]−1.

Recall

f (1)(b, u1, u2, u3, u4) = u2
1u2 +

b

a
u2

1 + 2au1u2 = −f (2)(b, u1, u2, u3, u4),

f (3)(b, u1, u2, u3, u4) = u2
3u4 +

b

a
u2

3 + 2au3u4 = −f (4)(b, u1, u2, u3, u4).
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By Section 2.1, we can obtain

b10 = −b20 = b30 = −b40 =
2bH0,+

a
a2
10 + 4aa10a20 = −2a,

c10 = −c20 = c30 = −c40 =
2bH0,+

a
|a10|2 + 2a(a10ā20 + ā10a20) =

2a(1 − a2)

1 + a2
,

d10 = −d20 = d30 = −d40 = 2(a2
10ā20 + 2|a10|2a20) =

6a4 + 2a2 + 4a3i

(1 + a2)2
,

and

g20 = 〈q∗, Qqq〉 = −4D̄lπi = a− i,

g11 = 〈q∗, Qqq̄〉 =
1 − a2

1 + a2
(−a+ i),

〈q∗, Cqqq̄〉 =
−3a2 + ai

1 + a2
.

By simple calculation, we can obtain



















H20 = (b10,−b10, b10,−b10)T − 2Re(〈q∗, Qqq〉(a10, a20, a30, a40)
T )

= (0, 0, 0, 0)T ,

H11 = (c10,−c10, c10,−c10)T − 2Re(〈q∗, Qqq̄〉(a10, a20, a30, a40)
T )

= (0, 0, 0, 0)T ,

which implies that W20 = W11 = 0. So

(2.35) 〈q∗, QW11q〉 = 〈q∗, QW20 q̄〉 = 0.

Therefore

Rec1(b
H
0,+) = Re{ i

2ω0
g20g11 +

1

2
〈q∗, Cqqq̄〉}

= Re{ i

2a
(a− i)

1 − a2

1 + a2
(−a+ i) +

−3a2 + ai

2(1 + a2)
}

=
i

2a

1 − a2

1 + a2
(2ai) +

−3a2

2(1 + a2)

=
−a2 − 2

2(1 + a2)
< 0.

Since α′
1(b

H
0,+) = 1

2 > 0, and then by Theorem 2.1, the Hopf bifurcation is forward.

On the other hand, from (2.28) and (2.34), if min
j∈N

{bj,+} > 1 + a2, Tj(b
H
0,+) <

0, Dj(b
H
0,+) > 0, for any j ∈ {1, 2, · · · }, and Pj(b

H
0,+) < 0, Qj(b

H
0,+) > 0 for any

j ∈ {0, 1, 2, · · · }, so the bifurcating periodic solutions are asymptotically stable. If

min
j∈N

{bj,+} < 1+a2, set min
j∈N

{bj,+} , bk,+, there exists k ∈ N such thatDk(bH0,+) < 0,

that is, (2.24) has at least a positive root. So the bifurcating periodic solutions are
unstable. �
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Figure 1. The positive equilibrium is asymptotically stable when
b < a2 + 1

.
= 10, where a = 3, b = 9, and initial data is

(4, 2.8, 4, 2.8).

Figure 2. Spatially homogenous periodic solutions appear and
are asymptotically stable when b crosses through the first Hopf
bifurcation value b = a2 + 1, where a = 3, b = 11, and initial data
is (4, 2.8, 4, 2.8).

For the spatially non-homogeneous periodic solutions in Theorem 2.2, we have

Theorem 2.4. For the system (1.2), the Hopf bifurcation at b = bHn ∈ ΛH\{bH0,+}
(defined above), is forward (backward) if Rec1(b

H
n ) < 0 (> 0), and the bifurcating
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(spatially non-homogeneous) periodic solutions are unstable. Particularly, the bifur-
cating periodic solutions on the center manifold are orbitally asymptotically stable
(unstable) if Rec1(b

H
n ) < 0 (> 0).

Proof. The bifurcating periodic solutions are clearly unstable since the char-
acteristic equations(2.24) have positive real-part roots for b ∈ (a2 + 1,+∞). The
calculation of Rec1(b

H
n ) is lengthy, and we will give it in Appendix. �

3. Steady state bifurcation

In this section, by applying the results due to Shi and Wang [22] and Yi,
Wei and Shi [18], we shall give the sufficient conditions for the global steady state
bifurcation in the general R-D system (2.1). Then, by employing the technique
introduced in Zhou and Mu [17], we investigate the steady state bifurcation for the
coupled Brusselator model (1.2).

3.1. Steady state bifurcation for general R-D system. In the following,
we consider the general R-D system (2.1) with Neumann boundary condition on
spatial domain Ω = (0, lπ), where d1, d2, a, c, l, b are positive constants, f i : R ×
Rm → R, (i = 1, 2, · · · ,m) are Ck (k ≥ 2), f i(b,0) ≡ 0, (i = 1, 2, · · · ,m).
X, L(b), Ln(b) are defined in Section 2.1, but the domain of linear operators is X
not Xc. Our main assumption is as follows.

(H2) There exists a neighborhood O of b0, such that for b ∈ O, L(b) has a
simple real eigenvalue γ(b), continuously differentiable in b, with γ(b0) = 0, and
γ′(b0) 6= 0, and all other eigenvalues of L(b) have non-zero real parts for b ∈ O. Let

(3.1) G(b, U) = D△U + F (b, U).

From (H2), we can show that G satisfies the conditions of saddle-node bifur-
cation theorem of [21]. The proof is omitted, (see [18]). Therefore, under the
assumption of (H2), saddle-node bifurcation occurs at b = b0.

From Shi and Wang [22], we have the following global bifurcation theorem
regarding the steady state bifurcation of system (2.1).

Theorem 3.1. (Global bifurcation theorem) Let I be a closed interval which
contains b0 ∈ R. Suppose that (H2) holds at b = b0. Then there is a smooth curve
Γ of the steady state solutions of (2.1) bifurcating from (b0,0), and Γ is contained
in a connected component C of the set of non-zero steady state solutions of (2.1)
in I ×X. Either C is unbounded in I ×X, or C ∩ (∂I ×X) 6= ∅, or C contains a
further bifurcation point (b∗,0) with b0 6= b∗ such that 0 is an eigenvalue of L(b∗).
Γ can be expressed as Γ = {(b(s), u1(s), · · · , um(s)) : s ∈ (−ǫ,+ǫ)}, where ui(s) =
sain cos nx

l + sψi(s), (i = 1, · · · ,m) for s ∈ (−ǫ,+ǫ), and b : (−ǫ,+ǫ) → R, ψi(s) :

(−ǫ,+ǫ) → Z are C1 functions, such that b(0) = b0, ψi(0) = 0, (i = 1, · · · ,m).
Here a1n, a2n, · · · , amn satisfy Ln(a1n, a2n, · · · , amn)T = (0, 0, · · · , 0)T .

3.2. Steady state bifurcation for a coupled Brusselator model. In
this subsection, we consider the steady state bifurcation for the coupled Brusselator
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model (1.2). The steady state solutions of (1.2) satisfy the following elliptic system:

(3.2)































−d1△u1 = c(u3 − u1) + a− (b+ 1)u1 + u2
1u2, x ∈ (0, lπ),

−d2△u2 = −bu1 − u2
1u2, x ∈ (0, lπ),

−d1△u3 = c(u1 − u3) + a− (b+ 1)u3 + u2
3u4, x ∈ (0, lπ),

−d2△u4 = −bu3 − u2
3u4, x ∈ (0, lπ),

∂ui

∂x (0, t) = ∂ui

∂x (lπ, t) = 0, t > 0, i = 1, 2, 3, 4.

System (3.2) has a unique constant equilibrium point (a, b
a , a,

b
a ). Now we start

to analyze the steady state bifurcation. We also choose b as the main bifurcation
parameter with a, c, d1, d2, l fixed and positive. With the same translation as that
of Section 2.2, system (3.2) can be reduced to the following system:

(3.3)































−d1△u1 = (b− c− 1)u1 + a2u2 + cu3 + u2
1u2 + b

au
2
1 + 2au1u2,

−d2△u2 = −bu1 − a2u2 − u2
1u2 − b

au
2
1 − 2au1u2,

−d1△u3 = cu1 + (b − c− 1)u3 + a2u4 + u2
3u4 + b

au
2
3 + 2au3u4,

−d2△u4 = −bu3 − a2u4 − u2
3u4 − b

au
2
3 − 2au3u4,

∂ui

∂x (0, t) = ∂ui

∂x (lπ, t) = 0, t > 0, i = 1, 2, 3, 4.

The origin (0, 0, 0, 0) is the unique constant equilibrium solution. By the same way
as Section 2.2, the characteristic equation of the linearization of (3.3) at (0, 0, 0, 0)
is

(3.4) (λ2 − Tn(b)λ+Dn(b))(λ2 − Pn(b)λ +Qn(b)) = 0,

where Tn(b), Dn(b), Pn(b), Qn(b) are defined in Section 2.2. Obviously, λi is the
root of (3.4) if and only if λi is the root of the following equations (3.5) or (3.6):

(3.5) λ2 − Tn(b)λ+Dn(b) = 0,

(3.6) λ2 − Pn(b)λ+Qn(b) = 0.

Now we identify all the possible steady state bifurcation values b0, which satisfy
the condition (H2). We achieve it in three steps.

Step 1. We shall find out these b0, such that at b = b0, Eq.(3.5) has a simple
zero root, and all other roots of (3.5) have non-zero real parts. That is, there exists
n ∈ N0 = N ∪ {0} such that

(3.7) Dn(b0) = 0, Tn(b0) 6= 0, Tj(b0) 6= 0, Dj(b0) 6= 0 for ∀j 6= n.

To determine such b0, we rewrite

Dn(b) =(
d2n

2

l2
+ a2)(

d1n
2

l2
− b+ 1) + ba2,

Qn(b) =(
d2n

2

l2
+ a2)(

d1n
2

l2
− b+ 2c+ 1) + ba2.

(3.8)

Obviously, D0(b) = a2 6= 0, Q0(b) = a2(2c+ 1) 6= 0, since a > 0. If Dn(b) = 0, we

have bSn,+ = d1n2

l2 + a2l2

d2n2 + a2d1

d2
+ 1, n = 1, 2, · · · , and Tn(bSn,+) = a2l2

d2n2 − d2n2

l2 +
a2d1

d2
− a2, n = 1, 2, · · · .
To let Tn(bSn,+) 6= 0, we need to prove the following inequality.

d2(
n2

l2
)2 + a2(1 − d1

d2
)
n2

l2
− a2

d2
6= 0,
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or equivalently,

(3.9) n2 6= l2

2d2
2

[(d1 − d2)a
2 +

√

(d2 − d1)2a4 + 4d2
2a

2].

To let Dm(bSn,+) 6= 0, for ∀m 6= n, we have

(3.10) mn 6= al2√
d1d2

, ∀m 6= n.

To let Tj(b
S
n,+) 6= 0, for ∀j 6= n, we have

(3.11)
d1n

2

l2
+
a2l2

d2n2
+
a2d1

d2
6= (d1 + d2)j

2

l2
+ a2, ∀j 6= n.

In this case, all the possible parameters b0 can be expressed as

ΛS
1 := {bSn,+ =

d1n
2

l2
+
a2l2

d2n2
+
a2d1

d2
+ 1, n = 1, 2, · · · , and n satisfies (3.9) − (3.11)}.

(3.12)

Step 2. We shall find out these b0, such that at b = b0, Eq.(3.6) has a simple zero
root, and all other roots of (3.6) have non-zero real parts.

Similarly, if Qn(b) = 0, we have bSn,− = d1n2

l2 +(2c+1) a2l2

d2n2 +(2c+1+ a2d1

d2
), n =

1, 2, · · · . To let Pn(bSn,−) 6= 0, we have

(3.13) n2 6= l2

2d2
2

[(d1 − d2)a
2 +

√

(d2 − d1)2a4 + 4d2
2a

2(2c+ 1)].

To let Qm(bSn,−) 6= 0, for ∀m 6= n, we have

(3.14) mn 6= al2
√

2c+ 1

d1d2
, ∀m 6= n.

To let Pj(b
S
n,−) 6= 0, for ∀j 6= n, we have

(3.15)
d1n

2

l2
+
a2l2(2c+ 1)

d2n2
+
a2d1

d2
6= (d1 + d2)j

2

l2
+ a2, for ∀j 6= n.

In this case, such b0 can be labeled as

(3.16) ΛS
2 := {bSn,−, n = 1, 2, · · · , and n satisfies (3.13) − (3.15)}.

Step 3. The transversality condition holds.
From (3.8), it follows that

(3.17)
dDn(b)

db
|b=bS

n,+
= −d2n

2

l2
6= 0, (n = 1, 2, · · · ),

and

(3.18)
dQn(b)

db
|b=bS

n,−
= −d2n

2

l2
6= 0, (n = 1, 2, · · · ).

For convenience, we denote

(3.19) ΛS = ΛS
1 ∪ ΛS

2 , {bSn}.
Since bSn,+ → +∞ and bSn,− → +∞, as n → ∞, the sequences {bSn,+} and {bSn,−}
have no accumulation points. Therefore, ΛS = {bSn} has no accumulation points
and can be sequenced as

(3.20) bS1 < bS2 < · · · < bSn < · · · → +∞.
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From the above analysis, we know that the local steady state bifurcation occurs at
b = bSn ∈ ΛS .

In order to consider global steady state bifurcation, we recall some prior esti-
mates for every solution of system (3.2). We make a simple scaling to system (3.2)
as follows,

(3.21) d
′

1 = d1, d
′

2 =
d2

a2
, u =

u1

a
, v =

au2

b
, w =

u3

a
, z =

au4

b
,

then (3.2) becomes

(3.22)







































−d′

1△u = 1 − (b + 1)u+ bu2v + c(w − u), x ∈ (0, lπ),

−d′

2△v = u− u2v, x ∈ (0, lπ),

−d′

1△w = 1 − (b+ 1)w + bw2z + c(u− w), x ∈ (0, lπ),

−d′

2△z = w − w2z, x ∈ (0, lπ),
∂u
∂x (0, t) = ∂v

∂x (0, t) = ∂w
∂x (0, t) = ∂z

∂x(0, t) = 0,
∂u
∂x (lπ, t) = ∂v

∂x (lπ, t) = ∂w
∂x (lπ, t) = ∂z

∂x (lπ, t) = 0,

which is the system (4) of Zhou and Mu [17]. Applying the Corollary 3 of [17]),
we have the following prior estimates.

Lemma 3.2. Let B,D,D1 and D2 be given positive numbers. Then there exists
a positive constant K

′

, which depends on B,D,D1, D2 and Ω, such that if 0 < b ≤
B, d

′

1 ≥ D and D1 ≤ d
′

2 ≤ D2, any solution (u, v, w, z) of system (3.22) satisfies

(3.23) ‖u‖1,2 + ‖v‖1,2 + ‖w‖1,2 + ‖z‖1,2 ≤ K
′

.

Then it follows from the change of variables (3.21) that

‖u1‖1,2 + ‖u2‖1,2 + ‖u3‖1,2 + ‖u4‖1,2

≤ a‖u‖1,2 +
b

a
‖v‖1,2 + a‖w‖1,2 +

b

a
‖z‖1,2

≤ max{a, b
a
}[‖u‖1,2 + ‖v‖1,2 + ‖w‖1,2 + ‖z‖1,2]

≤ max{a, b
a
}K ′

, K.

Consequently, we have the following prior estimates.

Lemma 3.3. Let B, d1, d2, a, c, l be given positive numbers, there exists a
positive constant K, which depends only on B, d1, d2, a, c, l such that if 0 < b < B,
any solution (u1, u2, u3, u4) of system (3.2), satisfies

(3.24) ‖u1‖1,2 + ‖u2‖1,2 + ‖u3‖1,2 + ‖u4‖1,2 ≤ K.

We claim that there are only countably many l > 0, such that bSi,+ = bSj,+, (i 6=
j), or bSi,+ = bSj,− or bSi,− = bSj,−, (i 6= j) or bSi,+ = bHj,+ or bHi,+ = bHj,− or bSi,− = bHj,+
or bSi,+ = bHj,− for these l and some i, j ∈ N .

In fact, bSi,+ = bSj,+, (i 6= j) is equivalent to l4 = d1d2

a2 i2j2, for some i, j ∈ N .
Therefore, l is at most countable since i, j are at most countable. Other equalities
are discussed similarly. We define

LE = {l > 0, bSi,+ = bSj,+, (i 6= j) or bSi,+ = bSj,−or bSi,− = bSj,−, (i 6= j) or bSi,+ = bHj,+

or bHi,+ = bHj,− or bSi,− = bHj,+ or bSi,+ = bHj,− for some i, j ∈ N}.

(3.25)
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Then the points in LE can be arranged as a sequence whose only limit point is ∞.
By Theorem 1.2 of Zhou and Mu [17], we know that, there exists b0 > 0,

such that the system (3.22) has no non-constant solutions for b ∈ (0, b0). Then for
system (3.2), we have the following results.

Lemma 3.4. Let d1, d2 be fixed. Then there exists b0 > 0, which depends only
on d1, d2 and Ω, such that (3.2) has no non-constant solution provided that 0 <
b ≤ b0,i.e. the only solution for (3.2) is (u, v, w, z) = (a, b

a , a,
b
a ).

Summarizing the preparation above, we are now ready to state the main results
of this subsection on the global bifurcation of steady state solutions of (3.2).

Theorem 3.5. Suppose that d1, d2, a, c and l are positive constants. Then for
l 6∈ LE, {bSn} (defined above) is a sequence of steady state bifurcation values of
system (3.2). Moreover, there is a smooth curve Γn of positive solutions of (3.2)

bifurcating from (bSn , a,
bS

n

a , a,
bS

n

a ), with Γn contained in a global branch Cn of the
positive solutions of (3.2). Furthermore,

1. Near (bSn , a,
bS

n

a , a,
bS

n

a ), Γn = {(b(s), u1(s), u2(s), u3(s), u4(s)) : s ∈ (−ǫ,+ǫ)},
where

u1(s) = a+ san cos
nx

l
+ sψ1(s), u2(s) =

bSn
a

+ sbn cos
nx

l
+ sψ2(s),

u3(s) = a+ scn cos
nx

l
+ sψ3(s), u4(s) =

bSn
a

+ sdn cos
nx

l
+ sψ4(s),

for s ∈ (−ǫ,+ǫ) for some C∞ smooth functions. b, ψi (i = 1, 2, 3, 4) such that
b(0) = bSn and ψi(0) = 0 (i = 1, 2, 3, 4). Here an, bn, cn and dn satisfy

(3.26) Ln(bSn)(an, bn, cn, dn)T = (0, 0, 0, 0)T .

2. Either Cn contains another bifurcation point (bSj , a,
bS

j

a , a,
bS

j

a ) with bSj 6= bSn, or

the projection of Cn onto b-axis contains the interval (bSn ,+∞).

Proof. From the discussion above, the conditions in Theorem 3.1 are satisfied
at b = bSn ∈ ΛS. We can apply the global bifurcation theorem 3.1, and confine the
interval b ∈ (b0,+∞), (b0 is given in Lemma 3.4). From Lemma 3.3, all solutions
of (3.2) are uniformly bounded in X if b ∈ (b0,+∞). Hence, the global branch
Cn is bounded in X if b ∈ (b0,+∞). From Lemma 3.4, there are no non-constant
solution of (3.2) if b ∈ (0, b0]. Hence Cn can’t intersect the boundary {b = b0}×X .
Therefore, the conclusion is derived. �

Finally, we discuss the interaction between the Hopf and steady state bifurca-
tions. For a countably set of values l ∈ LE, bHj,+ and bHi,−, or bSi,+ and bSj,−, or bHi
and bSj can be identical for some i, j, so that system (3.2) has a higher-dimensional

center manifold near (a, b
a , a,

b
a ) at such b. Bifurcations from these points with

higher-dimensional degeneracy are still possible, but we don’t consider them here.
For other l 6∈ LE , we have shown that in some necessary conditions, Hopf bifurca-
tions and steady state bifurcations could occur at these points (see Theorems 2.2,
2.3, 3.5). In fact, the occurrence of Hopf bifurcation and steady state bifurcation
depends only on the specific eigen-mode cos nx

l , the bifurcation related to this mode
has the following possible scenarios:
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Case 1. Both of bHn,+, b
H
j,− (n = 0, 1, · · · , N ; j = 0, 1, · · · , N ′

) and bSn,± exist,
then there are two steady state bifurcations and two Hopf bifurcations for this
mode;

Case 2. bSn,± exist but not bHn,+ or bHj,− (n = 0, 1, · · · , N ; j = 0, 1, · · · , N ′

), then
there are two steady state bifurcations and no Hopf bifurcations for this mode;

Case 3. bSn,± and bHj,− (j = 0, 1, · · · , N ′

) exist but not bHn,+ (n = 0, 1, · · · , N),
then there are two steady state bifurcations and one Hopf bifurcation for this mode;

Case 4. bHn,+ and bHj,+ exist but not bSn , then there are two Hopf bifurcation
points and no steady state bifurcation points.
Example 3.1. In Figure 3, for 1 ≤ n ≤ 12 and n ∈ N , Case 1 occurs, and
there exist 24 Hopf bifurcation points and 24 steady state bifurcation points. For
n = 13, Case 3 occurs, and there exist 1 Hopf bifurcation point and 2 steady state
bifurcation points. For n = 0, Case 4 occurs, and there exist 2 Hopf bifurcations and
no steady state bifurcations. For n ≥ 14, Case 2 occurs, and there exist 2(n− 13)
steady state bifurcation points and no Hopf bifurcation points.

0 50 100 150 200
0

5

10

15

20

25

b

p

Figure 3. Graph of Tn(b, p)Pn(b, p) = 0 andDn(b, p)Qn(b, p) = 0.

Here d1 = 3, d2 = 1, a = 3, c = 3. The horizontal lines are p = n2

l2 ,
where n ∈ {0, 1, 2, · · · }.
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Appendix. Bifurcation direction of the spatially non-homogeneous
periodic solutions

In the appendix, we determine the bifurcation direction of spatially non-homogeneous
periodic solutions and stability of the bifurcation periodic solutions on the center
manifold. Recall that the bifurcating periodic solution is forward (backward) if
Re(c1(b))

α′(b) |b=bH
n
< 0 (> 0). Since

α′
1(b)|b=bH

n,+
> 0 (n = 1, · · · , N), α′

2(b)|b=bH′

n,−
> 0 (n = 0, · · · , N ′),

we only need to calculate Rec1(b
H
n ). Since {bHn } = {bHn,+}∪{bHn,−}, for convenience,

we only calculate Rec1(b
H
n,+). When b = bHn,+, n = 1, 2, · · · , N , we set

q := cos
n

l
x(a1n, a2n, a3n, a4n)T

=cos
n

l
x(− 1

bHn,+

(
d2n

2

l2
+ a2 + iωn), 1,− 1

bHn,+

(
d2n

2

l2
+ a2 + iωn), 1)T ,

q∗
′

:= cos
n

l
x(a∗1n, a

∗
2n, a

∗
3n, a

∗
4n)T

=cos
n

l
x(

1

a2
(
d2n

2

l2
+ a2 − iωn), 1,

1

a2
(
d2n

2

l2
+ a2 − iωn), 1)T ,

where bHn,+ = (d1+d2)n
2

l2 + a2 + 1, ωn =
√

−d2
2(

n2

l2 )2 + a2(d1 − d2)
n2

l2 + a2.

Let

q∗ = Dq∗
′

= D cos
n

l
x(

1

a2
(
d2n

2

l2
+ a2 − iωn), 1,

1

a2
(
d2n

2

l2
+ a2 − iωn), 1)T ,

where D̄ = {[1 − 1
a2bH

n,+

(d2n2

l2 + a2 + iωn)2]lπ}−1. By calculation, we know that q

and q∗ satisfy the following conditions:

L(bHn,+)q = iωnq, L
∗(bHn,+)q∗ = −iωnq

∗, 〈q∗, q〉 = 1.

By (2.19), when n ∈ N , it follows that

(3.27) 〈q∗, Qqq〉 = 〈q∗, Qqq̄〉 = 0.

Thus, in order to calculate Rec1(b
H
n,+), it remains to calculate

(3.28) 〈q∗, QW11q〉, 〈q∗, QW20 q̄〉, and 〈q∗, Cqqq̄〉.
It is straightforward to compute that

(3.29) [2iωnI − L2n(bHn,+)]−1 =

[

A1 B1

B1 A1

]

,

where

A1 =







E
E2−c2

Ea2

(E2−c2)(2iωn+
4d2n2

l2
+a2)

−EbH
n,+

(E2−c2)(2iωn+
4d2n2

l2
+a2)

(E2−c2)(2iωn+
4d2n2

l2
+a2)−Ea2bH

n,+

(E2−c2)(2iωn+
4d2n2

l2
+a2)2






,

and

B1 =







c
E2−c2

a2c

(E2−c2)(2iωn+
4d2n2

l2
+a2)

−cbH
n,+

(E2−c2)(2iωn+
4d2n2

l2
+a2)

−a2cbH
n,+

(E2−c2)(2iωn+
4d2n2

l2
+a2)2






,
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E =
a2bHn,+

2iωn + 4d2n2

l2 + a2
+ 2iωn +

4d1n
2

l2
− bHn,+ + c+ 1,

and

(3.30) [2iωnI − L0(b
H
n,+)]−1 =

[

A2 B2

B2 A2

]

,

with

A2 =

[

F
F 2−c2

Fa2

(F 2−c2)(2iωn+a2)
−FbH

n,+

(F 2−c2)(2iωn+a2)

(F 2−c2)(2iωn+a2)−Fa2bH
n,+

(F 2−c2)(2iωn+a2)2

]

,

and

B2 =

[

c
F 2−c2

a2c
(F 2−c2)(2iωn+a2)

−cbH
n,+

(F 2−c2)(2iωn+a2)

−a2cbH
n,+

(F 2−c2)(2iωn+a2)2

]

,

F =
a2bHn,+

2iωn + a2
+ 2iωn − bHn,+ + c+ 1.

Then, we have by (2.20), when n ∈ N ,

W20 =[
[2iωnI − L2n(bHn,+)]−1

2
cos

2n

l
x+

[2iωnI − L0(b
H
n,+)]−1

2
](b1n, b2n, b3n, b4n)T

=(ξ, η, ξ, η)T cos
2n

l
x+ (ξ̃, η̃, ξ̃, η̃)T ,

(3.31)

where

ξ =
4d2n

2 + 2iωnl
2

(E − c)(4d2n2 + a2l2 + 2iωnl2)
b1n,

η =[
−(4d2n

2 + 2iωnl
2)bHn,+l

2

(E − c)(4d2n2 + a2l2 + 2iωnl2)2
− l2

4d2n2 + a2l2 + 2iωnl2
]b1n,

ξ̃ =
2iωn

(F − c)(a2 + 2iωn)
b1n,

η̃ =[
−2iωnb

H
n,+

(F − c)(a2 + 2iωn)2
− 1

a2 + 2iωn
]b1n.

Likewise, when n ∈ N ,

W11 = − [L−1
2n (bHn,+) cos

2n

l
x+ L−1

0 (bHn,+)](c1n, c2n, c3n, c4n)T

=(τ, χ, τ, χ)T cos
2n

l
x+ (τ̃ , χ̃, τ̃ , χ̃)T ,

(3.32)

where

τ =
4d2n

2

(M + c)(4d2n2 + a2l2)
c1n,

χ =[
−4d2b

H
n,+n

2l2

(M + c)(4d2n2 + a2l2)2
+

l2

4d2n2 + a2l2
]c1n,

τ̃ =0, χ̃ =
1

a2
c1n,

M =
−a2bHn,+

4d2n2

l2 + a2
− 4d1n

2

l2
+ bHn,+ − c− 1.
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Recall f (1)(b, u1, u2, u3, u4) = u2
1u2 + b

au
2
1 + 2au1u2 = −f (2)(b, u1, u2, u3, u4),

f (3)(b, u1, u2, u3, u4) = u2
3u4 +

b

a
u2

3 + 2au3u4 = −f (4)(b, u1, u2, u3, u4).

By Section 2.1, we can obtain

b1n = − b2n = b3n = −b4n =
2bHn,+

a
a2
1n + 4aa1na2n

=
2

abHn,+

(
d2
2n

4

l4
− ω2

n − a4 +
2d2ωn

l2
n2i),

c1n = − c2n = c3n = −c4n =
2bHn,+

a
|a1n|2 + 2a(a1nā2n + ā1na2n)

=2a− 4a

bHn,+

(a2 +
d2n

2

l2
),

d1n = − d2n = d3n = −d4n = 2(a2
1nā2n + 2|a1n|2a2n)

=
2

(bHn,+)2
(a2 +

d2n
2

l2
+ iωn)2 +

4a2

bHn,+

.

(3.33)

Here and in the following we always assume that all the partial derivatives of
f (i) (i = 1, 2, 3, 4) are evaluated at (bHn,+, 0, 0, 0, 0). Then we have

QW20 q̄ =(1,−1, 1,−1)TQ
(1)
W20 q̄,

QW11q =(1,−1, 1,−1)TQ
(1)
W11q,

Cqqq̄ =(1,−1, 1,−1)Td1n cos3
nx

l
,

(3.34)

where

Q
(1)
W20q̄ =f (1)

u1u1
(ξ cos

2n

l
x+ ξ̃)ā1n cos

n

l
x

+ f (1)
u1u2

[(ξ cos
2n

l
x+ ξ̃) cos

n

l
x+ (η cos

2n

l
x+ η̃)ā1n cos

n

l
x]

=(
2bHn,+

a
ξā1n + 2aξ + 2aηā1n) cos

2n

l
x cos

n

l
x

+ (
2bHn,+

a
ξ̃ā1n + 2aξ̃ + 2aη̃ā1n) cos

n

l
x.

Q
(1)
W11q =f (1)

u1u1
(τ cos

2n

l
x+ τ̃)a1n cos

n

l
x

+ f (1)
u1u2

[(τ cos
2n

l
x+ τ̃ ) cos

n

l
x+ (χ cos

2n

l
x+ χ̃)a1n cos

n

l
x]

=(
2bHn,+

a
τa1n + 2aτ + 2aχa1n) cos

2n

l
x cos

n

l
x

+ (
2bHn,+

a
τ̃a1n + 2aτ̃ + 2aχ̃a1n) cos

n

l
x.

(3.35)

Notice that for any n ∈ N ,
∫ lπ

0

cos2
n

l
xdx =

lπ

2
,

∫ lπ

0

cos
2n

l
x cos2

n

l
xdx =

lπ

4
,

∫ lπ

0

cos4
n

l
xdx =

3

8
lπ.
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We have

〈q∗, QW20 q̄〉 =(ā∗1n − ā∗2n + ā∗3n − ā∗4n)

∫ lπ

0

Q
(1)
W20 q̄dx

=
lπ

2a2
(
d2n

2

l2
+ iωn)(

2bHn,+

a
ξā1n + 2aξ + 2aηā1n)

+
lπ

a2
(
d2n

2

l2
+ iωn)(

2bHn,+

a
ξ̃ā1n + 2aξ̃ + 2aη̃ā1n),

〈q∗, QW11q〉 =
lπ

2a2
(
d2n

2

l2
+ iωn)(

2bHn,+

a
τa1n + 2aτ + 2aχa1n)

+
lπ

a2
(
d2n

2

l2
+ iωn)(

2bHn,+

a
τ̃a1n + 2aτ̃ + 2aχ̃a1n),

〈q∗, Cqqq̄〉 =
3

4
lπ(

d2n
2

l2
+ iωn)d1n,

(3.36)

and

Rec1(b
H
n ) =Re{ i

2ωn
(g20g11 − 2|g11|2 −

1

3
|g02|2)} +Re

g21

2

=Re〈q∗, QW11q〉 +
1

2
Re〈q∗, QW20 q̄〉 +

1

2
Re〈q∗, Cqqq̄〉.

(3.37)

Since α′
1(b

H
n,+) > 0, the bifurcation is forward (backward) and the bifurcating peri-

odic solutions on the center manifold are orbitally asymptotically stable (unstable)
if Rec1(b

H
n,+) < 0 (> 0).
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