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Global dynamics of a PDE model for Aedes aegypti

mosquitoe incorporating female sexual preference
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Abstract. In this paper we study the long time dynamics of a reaction diffu-

sion system, describing the spread of Aedes aegypti mosquitoes, which are the
primary cause of dengue infection. The system incorporates a control attempt
via the sterile insect technique. The model incorporates female mosquitoes
sexual preference for wild males over sterile males. We show global existence
of strong solution for the system. We then derive uniform estimates to prove
the existence of a global attractor in L2(Ω), for the system. The attractor is
shown to be L∞(Ω) regular and posess state of extinction, if the injection of
sterile males is large enough. We also provide upper bounds on the Hausdorff
and fractal dimensions of the attractor.
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1. Introduction

Dengue infection is a leading illness in the tropics and subtropics causing as
many as 100 million infections yearly [29]. Dengue is caused by any one of four
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related viruses transmitted by Aedes female mosquitoes. There are no available
vaccines yet to prevent infection with dengue virus and avoiding mosquito bites is
the most effective protective measures against infection. Thus all efforts must be
geared against proliferation of the mosquito population.

The sterile insect technique (SIT) is a biological control which disrupts the
natural reproductive process of insects. Male insects are first made sterile by gamma
radiation before releasing them in large numbers into the environment to mate with
the native wild insects. The native wild females that mates with these sterile male
will produce unviable eggs which will not hatch. This causes the native insects
populatin to decrease over time, resulting in the increase in the ratio of sterile to
normal insects increases, which then drives the native population to extinction [33].

In vector borne disease control it is important to include analyzing mating
behavior, which is an aspect of mosquito biology that is not fully understood [26].
The buzz of a flying female mosquito acts as a mating signal, for attracting males
[26]. Mate assessment interactions in swarming insects occurs when these insects
enter swarms and this happens very quickly in flight [27]. In mosquito mating
swarms, it is important to converge quickly to a mate harmonic signal before others,
this is to ensure that a desirable mate locks faster into its signal, than the signal
from a swarming competitor [31]. This is as indication that harmonic convergence
may be used in mate assessment. The female mosquito have the ability to react to
variation in flight tone, which further suggests that this signal may be used to assess
the males during precopulatory interactions [27]. Single females fly into the swarm
and are detected by their lower wing-beat frequency [24, 30]. It has been observed
that several males may arrive near the female, which departs with one of them
from the swarm in copula. Reports have it that larger males were more successful
in mating than smaller ones [35, 36]. Thus there is evidence that sexual selection
operates when these insects enter swarms, and hence should be incorporated into
any reasonable model.

The sterile insect technique, has been tried in a number of scenarios, as an
attempt to combat malaria and dengue with little success. In the current work,
we extend the model derived in [33], to include both spatial spread of the insect,
and sexual preference of the female mosquito for the wild males against modified
sterile males. To the best of our knowledge, this is a novel feature and has not
been incorporated earlier in reaction diffusion equations modelling mosquitoe dy-
namics and/or dengue control. Thus the question we ask is this, is it possible to
achieve finite time extinction in a reaction diffusion system describing the evolu-
tion of a mosquito species, where both the SIT and female sexual preference are
incorporated?

The answer lies in investigating the long time dynamics of our derived model. It
is well known that usually, under the action of diffusion, dynamical systems tend to
smooth out. This mechanism is commonly referred to as “dissipation” [1]. Thus we
are lead to believe that the diffusive system that we consider, should posess a global
attractor, that supports states of extinction. Our goal in the current manuscript is
to show this precisely. The global attractor which is the object that encompasses the
long-time dynamics, is by definition a compact invariant set in the phase space, to
which almost all trajectories eventually evolve. To study this object in the PDE case
often involves making detailed estimates of various functional norms. Heuristically,
the goal behind these is to show the existence of a bounded absorbing set in the
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phase space, and then to establish asymptotic compactness of the semigroup for
the system of equations. The opposite signs on the nonlinearities in (2.1) pose a
problem to show asymptotic compactness, and thus the uniform gronwall lemma
has to be resorted to.

There is a large literature on the global and asymptotic dynamics of PDE’s
arising in ecological modelling. Results for general cross diffusion systems were
reported in [18]. More recent work presenting general theory has been done by Shim
[19], [20]. Also of much interest have been systems with time delays [15], [9],[10],
[11]. More specific cross diffusion systems have been explored in [16], and systems
with stage structure in [14],[13]. [21] has explored diffusion in tri-trophic food
models. Zhang et al also investigated a cross diffusion PDE model with Holling type
III functional response. They investigated the long time dynamics via construction
of appropriate Lyapunov functions. Ko and Ryu have also investigated predator
prey models with Holling type II responses, including the long time dynamics. Here
there is scope of extensive prey refuge [17]. Questions of persistence and existence
in two species models have been explored in [8]. Much has also been done on
questions regarding stability and boundedness of solutions in long time of some
of these model systems (see [12]). Pao has investigated in some detail the global
dynamics of diffusive competition systems [6], [7]. Recently there is also work by
You on predator prey systems with Holling type response, where the dissipation
condition is not met, [22].

Our approach in the current manuscript is as follows. We begin by demonstart-
ing global existence of weak and strong solution to the system under consideration.
This is done via theorems 3.2, 4.2. We derive the existence of a bounded absorbing
sets in L2(Ω). We also derive the uniform estimates by means of which we tackle
the question of asymptotic compactness of the semigroup for the model in L2(Ω).
With these estimates at hand, we will demonstrate the existence of a global attrac-
tor for the model in L2(Ω). To this end we provide our main result, theorem 5.6.
We next show that this global attractor is actually L∞(Ω) regular via theorem 5.7.

We lastly show that the global attractor is finite dimensional, and derive upper
bounds on both it’s Hausdorff and fractal dimensions. Thus entailing our result,
theorem 6.4. We also make some concluding remarks.

2. Model Formulation

Our model is an extension of the model in [33] to included both spatial spread,
and preferential selection of the female mosquito for the wild males, against modified
sterile males. The mosquito population is divided into male and female classes. The
female classes are further divided into immature and adult depending on the insect
sexual preference. The class AI represents the immature phase of the mosquitoes
(eggs, larvae and pupae) from adults without sexual preference, while AP represents
the immature phase from adults with sexual preference. For the adult form, I

corresponds to mating singles without sexual preference, P corresponds to mating
singles with sexual preference. The class FI represents mating fertilized females
without sexual preference and FP represents mating fertilized females with sexual
preference. The class M correspond to the wild male insects population, while MS

corresponds to the sterile (irradiated or transgenic) insects. The parameter φ is
the oviposition rate per female mosquito which is proportional to female density,
but it is also regulated by a carrying capacity effect, C, which is related to the
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amount of available nutrients and space. The aquatic population becomes winged
mosquitoes at a rate γ, and a proportion r transforms into female, and (1− r), into
male. The parameters µA, µ, µF , µM and µ

MS
, denotes the mortality rates of the

immature form, unmating females, mating fertilized females, mating unfertilized
females, with and without sexual preference as well as wild males and sterile male
insects, respectively.

A female mosquito mates once in its life, and oviposits its eggs in different
places during its entire life [23]. The per capita mating rate of a unmating female

with a natural male mosquito are given by βIM
M+MS

and βP M
M+MS

, where βP < βI .
Since irradiated insects are placed artificially, and the effective mating rate could
be diminished due to the sterilization, the per capita mating rate of a female with
an irradiated male is given by βSM

M+MS
, where βS = pqβ, and 0 ≤ p; q ≤ 1. The

parameter p is related to the effectiveness of sterile male introduction regarded to
the spatial distribution of female insects, and q can be thought of as physiological
modifications induced by the sterilization technique. Since the mating rate of the
wild females with sexual preference is lower than mating rate of females without
sexual preference, we assume that the population of females with sexual preference
is maintained by mutation from female without sexual preference at the rate δ.
Finally the parameter α is the rate at which sterile males are released and sprayed.

It is a modelling assumption that the females with preference do not mate
with the sterile male (even in small probability). This we feel is a natural way to
incorporate selection in the model, and helps us clearly differentiate between the
classes I and P . Note, there is no conclusive evidence, that sexual selection exists in
mosquitoe mating, however there are a number of studies, [26, 27, 24, 30, 35, 36]
that suggest, this might be so.

Concerning the mutation, we assume what is known as a mutation-selection
balance, [25]. Essentially, we assume that females that display preference in mate
selection have a lower mating rate overall (e.g. due to time wasted searching for a
male). In the absence of a high number of fit males, these females are at a fitness
disadvantage, because they do not reproduce as quickly. As a result, over time,
they would eventually be driven extinct by competitive exclusion with the females
without preference. Thus preference can be thought of as a deletrious allele. In
many population biology models, deletrious alleles are assumed maintained in the
population by mutation. The deletrious alleles keep appearing as a result of muta-
tion, but because they are selected against, they are only maintained at low levels.
If preference/selection is not a deletrious allele maintained at low populations, then
only a few other options are possible.
(i) Preference confers a fitness advantage, even in the absence of SIT. In this case,
the population would consist almost entirely of females with preference and treat-
ment would not work even from the beginning. We have no evidence for this.
(ii) There is some alternate trade-off maintaining preference in the population.
While this may be possible, it would require a more complicated model with addi-
tional assumptions regarding the maintenance of preference in the population. In
the absence of any evidence for such a trade-off, we prefer to assume that preference
is maintained through mutation instead, since this will always be possible.
The model is described by the following system of partial differential equations:
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(2.1)

∂AI

∂t
= ∆AI + φ(1 − AI + AP

C
)FI − (γ + µA + δ)AI

∂AP

∂t
= ∆AP + φ(1 − AP + AI

C
)FP − (γ + µA)AP + δAI

∂I

∂t
= ∆I + rγAI − βIMI

M + MS

− βSMSI

M + MS

− µI

∂P

∂t
= ∆P + rγAP − βP MP

M + MS

− µP

∂FI

∂t
= ∆FI +

βIMI

M + MS

− µF FI

∂FP

∂t
= ∆FP +

βP MP

M + MS

− µF FP

∂M

∂t
= ∆M + (1 − r)γ(AI + AP ) − µMM

∂MS

∂t
= ∆MS + α − µ

MS
MS ,

The problem is posed on Ω ⊂ R
3. Ω is bounded, and ∂Ω is assumed to be smooth.

We consider Neumann boundary conditions

(2.2)
∇AI ·n = ∇AP ·n = ∇I ·n = ∇P ·n = ∇FI ·n = ∇FP ·n = ∇M ·n = ∇MS ·n = 0

on ∂Ω We also impose suitable initial conditions

(2.3) AI(x, 0) = AI0, AP (x, 0) = AP0, I(x, 0) = I0, P (x, 0) = P0,

(2.4) FI(x, 0) = FI0, FP (x, 0) = FP0, M(x, 0) = M0, MS(x, 0) = MS0

In all the estimates made henceforth C, C1, C3, C4 are generic constants that
can change in their value from line to line, and sometimes within the same line if
so required.

3. Existence of weak solution

In this section we show there exists a weak solution to the system (2.1).

Definition 3.1 (Weak solution). A given compartment u1 of system (2.1) is
said to posess a weak solution if the following equation is satisfied in the distribu-
tional sense for ∀v ∈ H1

0 (Ω).

(3.1)
d

dt
(u1, v) + (d1∇u1,∇v) + C1 〈u1, v〉 = 〈G(ui), v〉
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Variable Description

A(t) Immature phase of insect
I(t) Single females with male preference
P (t) Single females with wild male preference
F (t) Mating fertilized females
M(t) Wild males
MS(t) Sterile males

Parameter Description

C Carrying capacity related to the amount
of available nutrients and space

φ Intrinsic oviposition rate
β Mating rate of natural insects
βT = qpβ Mating rate of SIT
q Percentage of reduction of mating capacity
p Ability of dispersion
γ Mature rate to adulthood
rγ Female mature rate to adulthood
(1− r)γ Male mature rate to adulthood
µA, µ, µF , µM , µMS

Natural mortality rate
α Release rates of sterile male mosquitoes

Table 1. Description of the Variables and Parameters of the Model (2.1).

Here G(ui) is the nonlinear functional response which can depend on other
compartments. Also, 〈., .〉 = 〈., .〉2 is the standard inner product in L2(Ω). G(ui)
is a nonlinear term, possibly depending on other compartments. We introduce the
following spaces

(3.2) H = [L2(Ω)]8, V = [H1(Ω)]8, V ∗ = [H1(Ω)]
′

.

We demonstrate with AI . For this compartment the Galerkin truncation take
the form,

(3.3) AIn(t) =

n
∑

j=1

AInj
(t)wj .

Here wj are the eigenfunctions of the negative Laplacian, i.e., −∆wi = λiwi.
The goal is to then derive uniform estimates on these truncations and then use
the standard functional analysis theory to extract subsequences, weakly convergent
to a limiting function. This limiting function will satisfy (3.1), making it a weak
solution. The truncation solves the following equation,

(3.4)
∂AIn

∂t
= ∆AIn + φ

(

1 − AIn + APn

C

)

FIn − (γ + µA + δ)AIn,

(3.5) AIn(0) = AIn0.

In order to proceed we note FIn ≤ AIn. Hence we can write the equation for
AIn as
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(3.6)
∂AIn

∂t
= ∆AIn + φ

(

1 − AIn + APn

C

)

(AIn − g) − (γ + µA + δ)AIn

where g is a positive function, representing combination of eggs that hatched
into males and single females. Now we need only consider region where AIn+APn ≤
C, as when AIn+APn > C, the logistic term is negative, hence φ

(

1 − AIn+AP n

C

)

FIn <

0, hence the estimates are made easily. We multiply (3.6) by AIn and integrate by
parts to obtain

(3.7) |AIn|L∞(0,T ;L2(Ω)) ≤ C

(3.8) |AIn|L2(0,T ;H1(Ω)) ≤ C

We can now use the uniform bounds in (3.7) and (3.8) to extract a subsequence
AInj

such that

(3.9) AInj

∗
⇀ A∗

I in L∞(0, T ; L2(Ω))

(3.10) AInj
⇀ A∗

I in L2(0, T ; H1(Ω))

We need estimates on the time derivatives of solutions. To this end

∣

∣

∣

∣

∂An

∂t

∣

∣

∣

∣

V ∗

≤ |∆An + φFn|V ∗

≤ |∇An|2 + φ |Fn|2
≤ C(|An|H1(Ω) + |Fn|2)

(3.11)

Integrating the above in the time interval [0, T ] yields

∫ T

0

∣

∣

∣

∣

∂An

∂t

∣

∣

∣

∣

V ∗

dt

≤ C|An|L2(0,T ;H1(Ω)) + C|Fn|L∞(0,T ;L2(Ω))

≤ C(3.12)

The estimates on Fn are derived next. This yields the following estimate

(3.13) An ∈ H1(0, T ; L2(Ω)).

But via the embedding of

(3.14) H1(0, T ) →֒ C(0, T ),

it follows

(3.15) AIn ∈ C(0, T ; L2(Ω)).

Thus we have



318 RANA D. PARSHAD AND FOLASHADE B. AGUSTO

(3.16) AInj
→ A∗ in L2(0, T ; L2(Ω))

(3.17)
∂AInj

∂t
⇀

∂A∗

∂t
in L2(0, T ; L2(Ω))

We multiply the equation for FIn by FIn and integrate by parts to obtain

1

2

d

dt
|FIn|22 + |∇FIn|22 + µFI

|FIn|22 =

∫

Ω

(

βMnInFIn

Mn + MSn

)

dx

Using the L2(Ω) bounds on In, Pn, (which are easily obtainable after we have
the estimates on AI , AP ) we obtain

(3.18)
1

2

d

dt
|Fn|22 + C1|Fn|22 ≤ C2

we obtain via Gronwalls inequality

(3.19) |Fn(t)|22 ≤ e−(C1)t|Fn(0)|22| +
C2

C1

furthermore integration of (3.18) in the time interval [0, T ] yields

(3.20)

∫ T

0

|∇Fn|22dt ≤ C2 + |Fn(0)|22

These estimates via the standard functional analysis theory, [3] as earlier yield

(3.21) FInj
→ F∗ in L2(0, T ; L2(Ω))

(3.22)
∂FInj

∂t
⇀

∂F∗

∂t
in L2(0, T ; L2(Ω))

The main technical difficulty in proving convergence is to show convergence of
the nonlinear terms in the equations. To this end note for two distinct nonlinear
terms as they appear in model (2.1)

(3.23) G1(AIn, APn, FIn) = φ

(

1 − AIn + APn

C

)

FIn,

we have the following estimate holds

|G1(AIn, APn, Fn) − G2(A
∗
In, A∗

Pn, F ∗
n)|2

≤ C1|AIn − A∗
In|2 + C2|Fn − F ∗

n |2 + C3|APn − A∗
Pn|2

(3.24)
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With all the above a priori estimates at hand, we will pass to the weak limit.
We focus on the equation for AIn for demonstration.

(

d AInj

dt
, φ(t)wj

)

+
(

∇AInj
,∇wjφ(t)

)

+ (γ + µA + δ)
〈

AInj
, φ(t)wj

〉

=
〈

G1(FInj
, AInj

, APnj
), φ(t)wj

〉

,

(3.25)

Upon passing to the weak limit of (3.25) we will obtain

lim
j→∞

∫ T

0

(AInj
, φ

′

(t)wj)dt +

∫ T

0

(∇AInj
,∇wjφ)dt

+(γ + µA + δ)

∫ T

0

(AInj
, φwj)dt −

∫ T

0

(G1(FInj
, AInj

, APnj
), φwj)dt

=

∫ T

0

(A∗
I , φ

′

(t)wj)dt +

∫ T

0

(∇A∗
I ,∇wjφ)dt + (γ + µA + δ)

∫ T

0

(A∗
I , φwj)dt

−
∫ T

0

(G1(F∗, A
∗
I , A

∗
P ), φwj)dt

= 0

(3.26)

This implies that we have continuity with respect to wj . Thus we obtain that for
any v ∈ H1

0 (Ω) we have the existence of A∗
I , A

∗
P , F ∗ such that the following is true

(3.27)
d

dt
(A∗

I , v) + (∇A∗
I ,∇v) − (γ + µA + δ)(A∗

I , v) = (G1(F
∗, A∗

I , A
∗
P ), v)

A similar analysis for the remaining compartments tells us that (A∗
I , · · · , M∗

T ) solves
the system (2.1). Thus we can state the following theorem

Theorem 3.2. Consider the reaction diffusion system as described via (2.1).
For initial data in L2(Ω), and any time T > 0, there exists a unique weak solution

(A∗
I , · · · , M∗

T ) to the system such that

(3.28) (A∗
I , ..MT∗

) ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ C([0, T ]; L2(Ω))

and

(3.29)

(

∂A∗
I

∂t
, · · · ,

∂M∗
T

∂t

)

∈ L2(0, T ; V ∗),

If the initial data is in L∞(Ω)∩H1(Ω) then we have further regularity, that is,

(3.30) (A∗
I , · · · , MT∗

) ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω))

Furthermore (A∗
I , · · · , MT∗

) are continuous with respect to initial data.

We postpone the proof of further regularity till after global existence has been
proved. This is done in the following section. Note continuity with respect to initial
data can also be shown.
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4. Global existence of strong solution

In this section we prove global existence of strong solution to the model (2.1).
For the general theory of strong solutions the reader is referred to [4]. Consider the
operator A

(4.1) A : D(A) ⊂ [L2(Ω)]8 7→ [L2(Ω)]8,

with domain D(A),

(4.2) D(A) =
{

(AI , ..MS) ∈ H2(Ω),∇AI · n =, ...∇MS · n = 0 on ∂Ω
}

.

Now (2.1) can be recast in abstract form by the following equation

(4.3) u
′

(t) = Au(t) + f(t, u(t)), t ∈ [0, T ], u(0) = u0 ∈ D(A).

in the real Hilbert space H = [L2(Ω)]8. Here
Here u(t) =

{

u1, ...u8
}

= {AI , ...MT }, and f(t, u(t)) is the nonlinear map in
(2.1).

We first recall the following theorem from [28], In order to prove existence of
solution to the above abstract problem

Theorem 4.1. Let A be the infinitesimal generator of a C0 semigroup of linear

operators T (t), t ≥ 0, on a reflexive Banach space X. If f : [0, T ] × X → X is

Lipschitz continuous in (t, u) on [0, T ]×X and u0 ∈ D(A), then the problem (4.3)
admits a unique global strong solution u ∈ W 1,2(0, T ; X), with u ∈ L2(0, T ; D(A)).
If f : [0, T ]×X → X is only locally Lipschitz continuous on X, uniformly w.r.t t ∈
[0, T ], then for every u0 ∈ D(A), the initial value problem (4.3) has a strong solution

u defined on a maximal interval [0, δ). Moreover, if δ < T then limtրδ ||u(t)|| = ∞
We first state the following result concerning the reaction diffusion system we

have considered

Theorem 4.2. Consider the system (2.1). For initial data in H1(Ω) ∩L∞(Ω)
there exists a unique global strong solution to the system.

Proof. Note that the opposite signs on the holling type responses in the reac-
tion diffusion system prevent the nonlinearities from being Lipschitz continuous in
u uniformly w.r.t t. In order to circumvent this difficulty we consider the truncated
problem

(4.4) u
′

N(t) = AuN(t) + fN (t, uN (t)), t ∈ [0, T ], uN(0) = u0 ∈ D(A).

where N satisfies

(4.5) N ≥ Cmax

{

||ui
0||∞, 1 ≤ i ≤ 8

}

.

Where we define
{

f1
N (t, uN(t))..., f8

N (t, uN (t))
}

, which stand for the nonlineari-

ties in (2.1) in the following way, if u1
N(t)...u8

N (t), are greater than N or less than -N,
then we replace ui

N(t) by N or -N. Via this method
{

f1
N(t, uN (t))..., f8

N (t, uN (t))
}

,
become well defined on H× [0, T ], furthermore they are bounded and Lipschitz con-
tinuous in u ∈ H , uniformly w.r.t t ∈ [0, T ]. This way it can be shown that (4.4)
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posesses a strong solution uN . We will next focus on showing that u1
N (t)...u8

N (t)
are in L∞(Ω). We will demonstrate this for two critical components in our reaction
diffusion system, AN and FN .

denote

(4.6) KN = max
{
∣

∣f i
N

∣

∣

∞
,
∣

∣ui
0

∣

∣

∞
, 1 ≤ i ≤ 8

}

,

We now construct the following function

(4.7) Zi
N (t) = ui

N (t) − KN t +
∣

∣ui
0

∣

∣

∞
, t ∈ [0, T ], Zi

N (0) = ui
0 −

∣

∣ui
0

∣

∣

∞
.

By the classical theory there is a strong solution to this problem explicitly given
as

(4.8) Zi
N (t) = S(t)(ui

0 −
∣

∣ui
0

∣

∣

∞
) +

∫ t

0

S(t − s)(f i
N − KN )ds

where S(t) is the C0 semi group generated by the laplacian operator. However
ui

0 −
∣

∣ui
0

∣

∣

∞
≤ 0 and f i

N − KN ≤ 0. Therefore Zi
N ≤ 0. Similarly setting V i

N (t) =

ui
N(t) + KN t +

∣

∣ui
0

∣

∣

∞
, we can show V i

N ≥ 0. Thus

(4.9) |ui
N(t)| ≤ KN t +

∣

∣ui
0

∣

∣

∞
, in Q

Where Q = Ω × [0, T ]. Therefore

(4.10) |ui
N (t)|L∞(Q) ≤ C

We now prove positivity of the compartments. Consider the equation for AIN

(4.11)
∂AIN

∂t
= ∆AIN + φ

(

1 − AIN + APN

C

)

FIN − (γ + µA + δ)AIN ),

Recall the positive and negative parts of a function.

(4.12) (AIN )+ = sup(AIN , 0),

(4.13) (AIN )− = − inf(AIN , 0),

we multiply the above by (AIN )− and integrate by parts over Ω to obtain

d

dt
|(AIN )−|22 + (γ + µAIN

+ δ)|(AIN )−|22 + |∇(AIN )−|22

= φ

∫

Ω

(

1 − AIN + APN

C

)

FIN (AIN )−dx

(4.14)

Now using the uniform bounds on f1
N = φ

(

1 − AIN +APN

C

)

FIN − (γ + µA +
δ)AIN )
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∣

∣

∣

∣

φ

(

1 − AIN + APN

C

)

FIN − (γ + µA + δ)AIN )

∣

∣

∣

∣

∞

≤ C1 |AIN |∞ |FIN |∞ + C2 |AIN |∞(4.15)

we obtain

(4.16)
d

dt
|(AIN )−|22 ≤ C|(AIN )−|22

Integrating the above in the time interval (0, t) yields,

(4.17) |(AIN )−(t)|22 ≤ C

∫ t

0

|(AIN )−(s)|22ds,

Gronwalls inequality yields

(4.18) |(AIN )−(t)|22 ≤ 0,

or

(4.19) (AIN )−(t) = 0,

Thus AIN ≥ 0.
The analysis for FN is similar, we multiply the above by (FN )− and integrate

by parts over Ω to obtain

1

2

d

dt
|(FN )−|22 + |∇(FN )−|22 + (µF + v1)|(FN )−|22

=

∫

Ω

(

βMnIN (FN )−

Mn + MTn

)

dx +

∫

Ω

(

βT MNPNFN

Mn + MTn

)

dx

(4.20)

therefore we obtain

(4.21)
d

dt
|(FN )−|22 ≤

∣

∣

∣

∣

βMnIN

Mn + MSn

∣

∣

∣

∣

∞

|(FN )−|22 +

∣

∣

∣

∣

βMnPN

Mn + MSn

∣

∣

∣

∣

∞

|(FN )−|22

Now using the uniform bounds on compartments in

(4.22) f4
N =

βMNIN

MN + MSN

+
βMNPN

MN + MTN

− (µFN
)FN

to obtain

∣

∣

∣

∣

βMNIN

MN + MSN

+
βMNPN

MN + MTN

− (µFN
+ v1)FN

∣

∣

∣

∣

∞

≤
∣

∣

∣

∣

βMNIN

MN + MSN

∣

∣

∣

∣

∞

+

∣

∣

∣

∣

βMNPN

MN + MTN

− (µFN
+ v1)FN

∣

∣

∣

∣

∞

≤ C1 |IN |∞ + C2 |PN |∞ + C3 |FN |∞
(4.23)
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We integrate (4.21) in the time interval (0, t) to yield,

(4.24) |(FN )−(t)|22 ≤ C

∫ t

0

|(FN )−(s)|22ds,

Gronwalls inequality yields

(4.25) |(FN )−(t)|22 ≤ 0,

or

(4.26) (FN )−(t) = 0,

Thus FN ≥ 0. The estimates for the other compartments follow similarly.
If N is chosen as in (4.5) then we obtain

(4.27) AIN , FN ∈ [−N, N ],

This follows via the way AIN , FN have been constructed. Thus for t ∈ (0, s)
AIN = AI and FN = F . Thus AN , FN are a local solution to (2.1). Next we show

(4.28) |AIN |L∞(Ω×(0,s)) < K,

(4.29) |FN |L∞(Ω×(0,s)) < K.

we compare our solution to the solution of the following problem

(4.30)
∂W

∂t
= ∆W + rW, (t, x) ∈ Q

(4.31) ∇W · n = 0, on∂Ω,

(4.32) W (x, 0) = F0,

where

(4.33) r > KN max
(
∣

∣f i
N

∣

∣

∞

)

, 1 ≤ i ≤ 8.

We see that from the above

(4.34) F ≤ W (x, t), ∀ (t, x) ∈ Q

thus

(4.35) |F |L∞(Q) ≤ |W |L∞(Q) ≤ C, ∀ (t, x) ∈ Q

The similar method follows for AI .
�
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We now show that the strong solution to the system achieves further regularity
via the following lemma

Lemma 4.3. Consider the system (2.1). For initial data ∈ H1(Ω)∩L∞(Ω) the

strong solution to the system lies in

(4.36) H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω))

Proof. We consider the equation for AI

(4.37)
∂AI

∂t
− ∆AI = φ

(

1 − AI + AP

C

)

FI − (γ + µA + δ)AI ,

We square both sides to yield

(4.38)
∣

∣

∣

∣

∂AI

∂t

∣

∣

∣

∣

2

+ |∆AI |2 − 2
∂AI

∂t
∆AI =

[

φ

(

1 − AI + AP

C

)

FI − (γ + µA + δ)AI

]2

,

We now integrate the left hand side by parts, and use the supremum bounds
on the right hand side to yield

(4.39)

∣

∣

∣

∣

∂AI

∂t

∣

∣

∣

∣

2

2

+ |∆AI |22 + 2
d

dt
|∇AI |22 ≤ C

[∣

∣

∣

∣

(

1 − AI + AP

C

)

FI

∣

∣

∣

∣

∞

+ |AI |2∞
]

We now integrate the above in the time interval (0, T ) to obtain

(4.40)

∫ T

0

∣

∣

∣

∣

∂AI

∂t

∣

∣

∣

∣

2

2

dt +

∫ T

0

|∆AI |22dt + |∇AI(T )|22 ≤ Ct + |∇AI(0)|22

These estimates yield

(4.41) AI ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ H1(0, T ; L2(Ω))

�

5. Existence of Global Attractor

In this section we will prove the existence of a global attractor for the reaction
diffusion system (2.1). Recall the following definition

Definition 5.1. Consider a semi group S(t) acting on a reflexive Banach space
H , then the global attractor A ⊂ H for this semigroup is an object that has the
following properties,
i) A is compact in H .
ii) A is invariant, i.e, S(t)A = A, t ≥ 0
iii) If B is bounded in M then

distM (S(t)B,A) → 0, t → ∞.

Next various preliminaries are presented, detailing the phase spaces of interest
and recalling certain standard theory. Let us define our phase spaces of interest.

H = [L2(Ω)]8, V = [H1(Ω)]8
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In order to prove the existence of a global attractor we are required to show:
i) There exists a bounded absorbing set in the phase space.
ii) The asymptotic compactness property of the semigroup in question, [2], [4].
These are defined next

Definition 5.2 (Bounded absorbing set). A bounded set B in a reflexive Ba-
nach space H is called a bounded absorbing set if for each bounded subset U of H ,
there is a time T = T (U), such that S(t)U ⊂ B for all t > T . The number T = T (U)
is referred to as the compactification time for S(t)U . This is essentially the time
after which the semigroup compactifies.

Definition 5.3 (Asymptotic compactness). The semigroup {S(t)}t≥0 : H →
H associated with a dynamical system is said to be asymptotically compact in H

if for any {ui0,n}∞n=1 bounded in H , and a sequence of times {tn → ∞}, S(tn)ui0,n

possesses a convergent subsequence in H .

5.1. Bounded absorbing set in L2(Ω). In order to proceed we note FI ≤
AI . Hence we can write the equation for AI as

(5.1)
∂AI

∂t
= ∆AI + φ

(

1 − AI + AP

C

)

(AI − g) − (γ + µA + δ)AI

where g is a positive function, representing the combination of eggs that hatch
into males and single females. Now we need only consider region where AI ≤ C,
as when AI > C, the logistic term is negative, hence φ

(

1 − AI+AP

C

)

FI < 0, hence
the estimates are made easily. We multiply (5.1) by AI and integrate by parts to
obtain

1

2

d

dt
|AI |22 + |∇AI |22 +

φ

C
|AI |33

+(γ + µA + δ)|AI |22 = φ|AI |22
(5.2)

Using Young’s inequality, Cauchy with epsilon, along with Cauchy Schwartz
inequality yields

(5.3)
1

2

d

dt
|AI |22 +

φ

C
|AI |33 + (γ + µA + δ)|AI |22 ≤ (ǫ)2

4
|AI |33 + |Ω|

Now using the appropriate choice of epsilon, ǫ =
√

4φ
C

yields

(5.4)
d

dt
|AI |22 + (γ + µA + δ)|AI |22 ≤ |Ω|

Gronwalls inequality yields

(5.5) |AI |22 ≤ e−(γ+µA+δ)t|AI(0)|22 + |Ω|
Thus there exists a time

(5.6) t1 = max

(

0,
ln
(

|AI(0)|22
)

(γ + µA + δ)

)

,
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such that for times t > t1 the following uniform estimate holds

(5.7) |AI |22 ≤ 1 + |Ω| ≤ C

Here C is independent of time and initial data.
We can integrate (5.2) in the time interval [t1, t1 + 1] to obtain

(5.8)

∫ t1+1

t1

|∇AI |22dt ≤ |AI(t1)|22 +

∫ t1+1

t1

|Ω|dt

Now using the estimate on |AI |22, for t > t1 yields

(5.9)

∫ t1+1

t1

|∇AI |22dt ≤ C

Via the mean value theorem, there exists a time t2 ∈ [t1, t1 + 1] such that the
following estimate holds,

(5.10) |∇AI(t2)|22 ≤ C

We now multiply the equation for the I compartment by I and integrate by
parts over Ω to obtain

(5.11)
1

2

d

dt
|I|22 + |∇I|22 + (min(β, βS) + µ)|I|22 ≤ φ

∫

Ω

IAIdx

Now Cauchy with epsilon, Holders and Youngs inequalities, and the embedding
of H1(Ω) →֒ L2(Ω) yield

(5.12)
1

2

d

dt
|I|22 + C|I|22 + (min(β, βS) + µ)|I|22 ≤ C|I|22 +

φ2

C
|AI |22,

The application of Gronwalls lemma, and the prior estimate on |AI |22 yields

(5.13) |I|22 ≤ e−(min(β,βS)+µ)t|I(0)|22 +
φ2

C
(|Ω| + 1)

Thus there exists a time

(5.14) t3 = max

(

0,
ln
(

|AI(0)|22
)

φ2

C
(|Ω| + 1)

, t2

)

,

such that for times t > t3 the following uniform estimate holds

(5.15) |I|22 ≤ 1 + (1 + |Ω|) ≤ C

Here C is independent of time and initial data.
We can integrate (5.11) in the time interval [t3, t3 + 1] to obtain

(5.16)

∫ t3+1

t3

|∇I|22dt ≤ C

∫ t3+1

t3

|AI |22dt
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Now using the estimate on |AI |22 this yields

(5.17)

∫ t3+1

t3

|∇I|22dt ≤ C

Via the mean value theorem, there exists a time t4 ∈ [t3, t3 + 1] such that the
following estimate holds,

(5.18) |∇I(t4)|22dt ≤ C

Simialrly the estimates on the compartment P are made, and using these the
estimates on FI , FP follow. Thus we have

(5.19) |FI |22 ≤ C, ∀t > t5

(5.20)

∫ t5+1

t5

|∇FI |22dt ≤ C

(5.21) |∇FI(t6)|22dt ≤ C

These estimates enable us to state the following lemma concerning bounded
absorbing sets

Lemma 5.4. Consider the reaction diffusion system described via (2.1) with

initial data in L2(Ω) . There exists a time t∗∗ , and a constant C independent of

time and initial data, and dependent only on the parameters in the system, such

that for any t > t∗∗ the following uniform estimates hold:

|AI |22 ≤ C, |AP |22 ≤ C, |I|22 ≤ C, |P |22 ≤ C, |FI |22 ≤ C, |FP |22 ≤ C,

|M |22 ≤ C, |MS |22 ≤ C,

Remark 1. The t∗∗ in lemma 5.4 is chosen such that t∗∗ = max ti, where
ti range through all the explicit compactification times, for all the compartments,
calculated in the estimates of the bounded absorbing sets.

We demonstrate some further estimates on FI , AI for arbitary large times,
which will be used subsequently. Multiplying the equation for the FI compartment
by −∆FI and integarting by parts yields,

1

2

d

dt
|∇FI |22 + |∆FI |22 + µF |∇FI |22

= β

∫

Ω

I
M

M + MS

(−∆FI)dx

≤ β

∣

∣

∣

∣

M

M + MS

∣

∣

∣

∣

∞

∫

Ω

|I||∆FI |dx

≤ C1|I|22 +
1

2
|∆FI |22

(5.22)
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These follow by using Youngs inequality and Cauchy with epsilon. Thus we
have

(5.23)
d

dt
|∇FI |22 + |∆FI |22 ≤ C1|I|22

Integrating from [t, t + 1], where t > t∗∗ that appears in 5.4 we obtain,

(5.24)

∫ t+1

t

|∆FI |22dt ≤ |∇FI(t)|22 + C1

∫ t+1

t

|I|22dt ≤ C

This follows via readjustment for compactification times in (5.21) and (5.15),
as these can be chosen arbitarily large.

Furthermore via mean value theorems there exists a time t∗ ∈ [t, t + 1] such
that

(5.25) |∆FI(t∗)|22 ≤ C

Multiplying the equation for the AI compartment by −∆AI , integarting by
parts, and using product rule for differentiation yields,

1

2

d

dt
|∇AI |22 + |∆AI |22 + (γ + µA + δ)|∇AI |22

≤
∫

Ω

|∇FI ||∇AI |dx +

∫

Ω

|AI ||∇FI ||∇AI |dx

+

∫

Ω

|FI ||∇AI ||∇AP |dx +

∫

Ω

|AP ||∇FI ||∇AI |dx

(5.26)

Now integrating the above in time interval from [t, t + 1], where t > t∗∗ that
appears in lemma 5.4 yields

∫ t+1

t

|∆AI(s)|22ds

≤ |∇AI(t)|22 +

∫ t+1

t

|∇FI(s)|2|∇AI(s)|2ds + C

∫ t+1

t

|∇FI(s)|2|∇AI(s)|2ds

+

∫ t+1

t

|FI(s)||∇AI(s)||∇AP (s)|ds +

∫ t+1

t

|AP (s)||∇FI(s)||∇AI(s)|ds

≤ C1 + C2

(
∫ t+1

t

|∇FI(s)|22ds

)

1

2
(
∫ t+1

t

|∇AI(s)|22ds

)

1

2

+ C3

(
∫ t+1

t

|∇AP (s)|22ds

)

1

2
(
∫ t+1

t

|∇AI(s)|22ds

)

1

2

≤ C

(5.27)
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This follows via readjusting the estimate in (5.10), the estimate on |AI |2 and
the estimates in (5.20), (5.9), with readjustment for the compactification times,

as these can be chosen arbitarily large. The estimates on
∫ t+1

t
|∇AP (s)|22ds are

derived similarly to the estimates derived in (5.9). Furthermore via mean value
theorems there exists a time t∗ ∈ [t, t + 1] such that

(5.28) |∆AI(t∗)|22 ≤ C

5.2. Asymptotic compactness. We first recap the following lemma,

Lemma 5.5 (Uniform Gronwall Lemma). Let β, ζ and h be nonnegative func-

tions in L1
loc[0,∞; R). Assume that β is absolutely continuous on (0,∞) and the

following differential inequality is satisfied

(5.29)
dβ

dt
≤ ζβ + h, for t > 0.

If there exists a finite time t1 > 0 and some r > 0 such that

(5.30)

∫ t+r

t

ζ(τ)dτ ≤ A,

∫ t+r

t

β(τ)dτ ≤ B, and

∫ t+r

t

h(τ)dτ ≤ C,

for any t > t1, where A, B and C are some positive constants, then

(5.31) β(t) ≤
(

B

r
+ C

)

eA, for any t > t1 + r.

We begin by demonstarting the estimate for AI . We multiply the equation for
the AI compartment by −∆AI to obtain

1

2

d

dt
|∇AI |22 + |∆AI |22 + (γ + µA + δ)|∇AI |22

= φ

∫

Ω

∇FI · ∇AIdx − φ

∫

Ω

(

AI + AP

C

)

FI(−∆AI)dx

(5.32)

Differentiation yields

1

2

d

dt
|∇AI |22 + |∆AI |22 + (γ + µA + δ)|∇AI |22

=

∫

Ω

∇FI · ∇AIdx −
∫

Ω

|∇AI |2FIdx −
∫

Ω

AI∇FI · ∇AIdx

−
∫

Ω

FI∇AP · ∇AIdx −
∫

Ω

AP∇FI · ∇AIdx

(5.33)

Using Holders inequality this yields
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1

2

d

dt
|∇AI |22 + |∆AI |22 + (γ + µA + δ)|∇AI |22

≤ |∇AI |2|∇FI |2 + |∇AI |24|FI |2|∇AI |4 + |AI |4|∇FI |4|∇AI |2
+|FI |2|∇AP |4|∇AI |4 + |∇FI |4|AP |2|∇AI |4

≤ C1|∇FI |2|∇AI |22 + |∇AI |24|FI |2|∇AI |4 + |AI |4|∇FI |4|∇AI |2
≤ |FI |2|∇AP |4|∇AI |4 + |∇FI |4|AP |2|∇AI |4

(5.34)

Therefore we obtain

1

2

d

dt
|∇AI |22

≤ C1|∇FI |2|∇AI |22 + |∇AI |24|FI |2|∇AI |4 + |AI |4|∇FI |4|∇AI |2
+|FI |2|∇AP |4|∇AI |4 + |∇FI |4|AP |2|∇AI |4

(5.35)

we now set

(5.36) ζ(t) = C1|∇FI |2,

h(t)

= |∇AI |24|FI |2|∇AI |4 + |AI |4|∇FI |4|∇AI |2
+|FI |2|∇AP |4|∇AI |4 + |∇FI |4|AP |2|∇AI |4

(5.37)

Note via (5.28) we obtain that for t > t∗∗, integrating the above in [t, t + 1]

∫ t+1

t

|∇AI |24|FI |2|∇AI |4ds

≤ C

∫ t+1

t

|∇AI |34ds

≤ C

∫ t+1

t

|∆AI |22|∆AI |2ds

≤ C|∆AI(t∗)|2
∫ t+1

t

|∆AI |22
≤ C

(5.38)

Also note for t > t∗∗, integrating the above in [t, t + 1]
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∫ t+1

t

|AI |4|∇FI |4|∇AI |2ds

≤ C

(
∫ t+1

t

|AI |44ds

)

1

4
(
∫ t+1

t

|∇FI |44ds

)

1

4
(
∫ t+1

t

|∇AI |22ds

)

1

2

≤
(
∫ t+1

t

|∇AI |42ds

)

1

4
(
∫ t+1

t

|∆FI |42ds

)

1

4
(
∫ t+1

t

|∇AI |22ds

)

1

2

≤ C

(

|∇AI(t∗)|22
∫ t+1

t

|∇AI |22ds

)

1

4

(

|∆FI(t∗)|22
∫ t+1

t

|∆FI |22ds

)

1

4
(
∫ t+1

t

|∇AI |22ds

)

1

2

≤ C

(5.39)

This follows via (5.24), (5.25), (5.27) and (5.28), and the Sobolev embedding
of

(5.40) H2(Ω) →֒ W 1,4(Ω).

Furthermore for t > t∗∗, integrating the above in [t, t + 1]

∫ t+1

t

(|FI |2|∇AP |4|∇AI |4 + |∇FI |4|AP |2|∇AI |4) ds

≤ C

∫ t+1

t

|∇AP |4|∇AI |4ds

≤ C

(
∫ t+1

t

|∇AP |44ds

)

1

4
(
∫ t+1

t

|∇AI |44ds

)

1

4

≤ C

(

|∆AI(t∗)|22
∫ t+1

t

|∆AI |22ds

)

1

4
(

|∆AP (t∗)|22
∫ t+1

t

|∆AP |22ds

)

1

4

≤ C

(5.41)

This follows via (5.27) and (5.28), and the Sobolev embedding of

(5.42) H2(Ω) →֒ W 1,4(Ω).

The estimates for
∫ t+1

t
|∆AP |22ds are made easily, similarly to (5.27).

Thus via lemma 5.5 it follows that for t > t∗∗ + 1, we obtain,

(5.43) |∇AI |22 ≤ C.

The similar estimates can be made on the other compartments.
We now state the following Theorem,
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Theorem 5.6. Consider the reaction diffusion equation described via (2.1).
There exists a (H, H) global attractor A for the system. This is compact and in-

variant in H, and it attracts all bounded subsets of H in the H metric.

Proof. We have shown that the system is well posed via theorems 3.2, 4.2.
Thus there exists a well defined semigroup {S(t)}t≥0 : H → H . The estimates
derived in Lemma 5.4 demonstrate the existence of bounded absorbing sets in H .
Thus given a sequence {ui0,n}∞n=1, for 1 ≤ i ≤ 8 that is bounded in L2(Ω), we know
that for t > t∗∗,

(5.44) S(t)(ui0,n) ⊂ B ⊂ H1(Ω).

Here B is the bounded absorbing set in H1(Ω). Now for n large enough tn > t∗∗,
thus for such tn we have

(5.45) S(tn)(ui0,n) ⊂ B ⊂ H1(Ω).

This implies that we have the following uniform bound,

(5.46) |S(tn)(ui0,n)|H1(Ω) ≤ C1,

For explicit computations on AI compartment see (5.43).
This implies via standard functional analysis theory, see [3], [5], the existence

of a subsequence still labelled S(tn)(ui0,n) such that

(5.47) S(tn)(ui0,n) ⇀ ui in H1(Ω),

Which implies via the compact Sobolev embedding of

(5.48) V →֒ H,

that

(5.49) S(tn)(ui0,n) → ui in L2(Ω).

This yields the asymptotic compactness of the semigroup {S(t)}t≥0 in H . The
theorem is now proved. �

Remark 2. It is interesting to note that the attractor posesses states of ex-
tinction, despite female selection, if the influx of sterile males is large enough. We
can demonstarte this heuristically via the equation for FP .

Multiplying by FP and integrating by parts yields,

d

dt
|FP |22 + C1|FP |22

≤ β

∫

Ω

(

M

M + MS

)

PFP dx

≤ C

( |P |∞|M |∞
|MS |∞

)

|FP |22
(5.50)
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Clearly from the form of the equation for MS if α is chosen large enough we
can cause |MS|∞ to be large enough, so as to entail,

(5.51) C1 − C

( |P |∞|M |∞
|MS |∞

)

> 0.

Thus a simple application of Gronwall’s inequality leads to finite time extinc-
tion of the female with preference. Similar analysis can be performed on the FI

compartment. Clearly eradication of the females in finite time leads to subsequent
extinction of the population.

We next show that the global attractor A is more regular than [L2(Ω)]8. We
state the following theorem

Theorem 5.7. The global attractor A for the reaction diffusion system (2.1)
is a bounded subset in [L∞(Ω)]8.

Proof. We demonstarte with the AI compartment. Consider the analytic
semigroup

{

eA t
}

t≥0
, for the equation for AI in (2.1). By the (L2(Ω), L∞(Ω))

regularity of the semigroup eA t : L2(Ω) 7→ L∞(Ω), we have via theorem 38.10 in
[4], the following estimate

(5.52) ||eA t||L(L2,L∞) ≤ C(2) t−
3

4 , t > 0.

There exists a constant steady state, (A∗
I , ...M

∗
T ) to (2.1). This is easily found

via use of MATHEMATICA. Thus

(5.53) G(A∗
I , A

∗
P , F ∗

I ) = φ(1 − A∗
I + A∗

P

C
)F ∗

I − (γ + µA + δ)A∗
I = 0

We can use the variation of constant formula, which works for any strong
solution associated with (AI , AP , FI) ∈ A, to obtain

||S(t)AI ||L(L2,L∞)

= ||eA tAI +

∫ t

0

eA(t−s)G(S(s)AI)ds||L(L2,L∞)

= ||eA tAI +

∫ t

0

eA(t−s)(G(S(s)AI) − G(A∗
I))ds||L(L2,L∞)

≤ ||eA t||L(L2,L∞)||AI || +
∫ t

0

||eA(t−s)||L(L2,L∞)||G(S(s)AI) − G(A∗
I)||ds

≤ Ct−
3

4 ||g||

+

∫ t

0

C(t − s)−
3

4 L(
√

C1)(|AI − A∗
I |H1(Ω)

+|FI − F ∗
I |H1(Ω) + |AP − A∗

P |H1(Ω))ds

(5.54)

Here L(
√

C1) is the lipschitz constant of the nonlinear map in the equation for
AI in (2.1), on the closed bounded ball in H1(Ω) centered at the origin with radius√

C1. Since the attractor A is invariant, we have
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(5.55) {S(t)A : t ≥ 0} = A ⊂
{

ui ∈ L2(Ω) : |ui|22 ≤ C
}

⊂ H

(5.56) {S(t)A : t ≥ 0} = A ⊂
{

ui ∈ H1(Ω) : |ui|2H1(Ω) ≤ C1

}

⊂ V

Thus we have

||S(t)AI ||∞ ≤ Ct−
3

4 ||AI || +
∫ t

0

C(t − s)−
3

4 L(
√

C1)2
√

C1ds

which yields

(5.57) ||S(t)AI ||∞ ≤ C(2)(Ct−
3

4 + C2L(
√

C1)
√

C1t
1

4 ),

here C1 is given in (5.46), and C in lemma 5.4.
Now we can use the invariance of the attractor S(t)A = A, and t = 1 specifically

to obtain for any (AI , FI) ∈ A

(5.58) ||AI ||∞ ≤ C(2)(C + C2L(
√

C1)
√

C1) ≤ C.

This analysis can be carried out for all the compartments. Thus the global attractor
A is a bounded set in [L∞(Ω)]8.

�

6. Finite Dimensionality of the Global Attractor

In this section we show that the Hausdorff and fractal dimensions of the global
attractor for the reaction diffusion system (2.1), is finite. Recall

Definition 6.1 (Fractal dimension). Consider a subset X of a Banach space
H . If X̄ is compact, the fractal dimension of X , denoted df (X), is given by

(6.1) df (X) = lim sup
ǫ→0

logN(X, ǫ)

log(1
ǫ
)

.

Here N(X, ǫ) denotes the minimum number of closed balls of radius ǫ, required to
cover X . Note df (X) can take the value +∞.

Definition 6.2 (Hausdorff dimension). Consider a subset X of a Banach space
H . If X̄ is compact, the Hausdorff dimension of X , denoted dH(X), is given by

(6.2) dH(X) = inf
d>0

{

d : Hd(X) = 0
}

.

Here

(6.3) Hd(X) = lim
ǫ→0

µ(X, d, ǫ).

Where

(6.4) µ(X, d, ǫ) = inf

{

∑

i

rd
i : ri ≤ ǫ and X ⊆ ∪iB(xi, ri)

}

.
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and B(xi, ri) are balls with radius ri.

We will provide upper bounds on these dimensions in terms of parameters in
the model. There is a standard methodology to derive these estimates. We consider
a volume element in the phase space, and try and derive conditions that will cause
it to decay, as time goes forward. If A is the global attractor of the semigroup
{S(t)}t≥0 in H associated with (2.1) , we can define

qn(t) = sup
u0∈A

sup
gi∈H,||gi||=1,1≤i≤n

1

t

∫ t

0

Tr(∆U(τ) + δU(τ) + F
′

(S(τ)u0) ◦ Qn(τ)dτ

where

qn = lim sup
t→∞

qn(t)

Here F is the nonlinear map in (2.1), and δ the linear map. also Qn is the
orthogonal projection of the phase space H onto the subspace spanned by

U1(t), U2(t), · · · , Un(t),

with

Ui(t) = L(S(t)u0)ui, i = 1, 2, ..n.

L(S(t)u0) is the Frechet derivative of the map S(t) at u0. Also for this model,
L(S(t)u0)U0 = U(t) = (U1(t)...U8(t)), where u = (u1...u8) is a solution to (2.1),
φj = (φ1

j ...φ
8
j , ) are an orthonormal basis for the subspace Qn(τ)H and (U1(t)...U8(t))

are strong solutions to the variational equations for the reaction diffusion system
(2.1). These have been worked out explicitly in the appendix.

We recall the following Lemma from [2], which will be useful to derive the
requisite estimates.

Lemma 6.3. If there is an integer n such that qn < 0 then the Hausdorff and

fractal dimensions of A, denoted dH(A) and dF (A), satisfy the following estimates

dH(A) ≤ n

dF (A) ≤ 2n

Our aim is thus clear cut. We will derive exactly which conditions enforce that
qn < 0 for the diffusive model. We begin our estimates.
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Tr(∆U(τ) + F
′

(S(τ)u0) ◦ Qn(τ)

+(2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)U(τ)

=

n
∑

j=1

8 〈∆φj(τ), φj(τ)〉

+(2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)

n
∑

j=1

〈φj(τ), φj(τ)〉

+
〈

F
′

(S(τ)u0)φj(τ), φj(τ)
〉

= −8

n
∑

j=1

|∇φj(τ)|2

+(2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)

n
∑

j=1

|φj(τ)|2

+J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8

Here

J1

≤
n
∑

j=1

∫

Ω

φ(1 − u1 + u2

C
)φ1

j (τ)φ5
j (τ) − φ

(

|φ1
j(τ)|2 + φ1

j (τ)φ2
j (τ)

) u5

C
dx

≤
n
∑

j=1

C1(|φ1
j (τ)|22 + |φ5

j(τ)|22) + C2|φ1
j (τ)|24 + C3

(

|φ1
j (τ)|24 + |φ2

j (τ)|24
)

J2

≤
n
∑

j=1

∫

Ω

φ(1 − u2 + u1

C
)φ2

j (τ)φ6
j (τ) − φ

(

|φ2
j(τ)|2 + φ1

j (τ)φ2
j (τ)

) u6

C
dx

≤
n
∑

j=1

C1(|φ2
j (τ)|22 + |φ6

j(τ)|22) + C2|φ2
j (τ)|24 + C3

(

|φ1
j (τ)|24 + |φ2

j (τ)|24
)
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J3

=
n
∑

j=1

∫

Ω

−(µ)|φ3
j |2 + rγφ1

jφ
3
j

−β

[

(

u7

u7 + u8

)

u3 +

(

u8φ
7
j − u7φ

8
j

(u7 + u8)2

)

|φ3
j |2
]

−β

[

(

u8

u7 + u8

)

u3 +

(

u7φ
8
j − u8φ

7
j

(u7 + u8)2

)

|φ3
j |2
]

dx

≤
n
∑

j=1

C1(|φ3
j (τ)|22 + |φ1

j (τ)|22) + C2|φ3
j (τ)|24

J4

=

n
∑

j=1

∫

Ω

−(µ)|φ4
j |2 + rγφ2

jφ
4
j

−β

[

(

u7

u7 + u8

)

u4φ
4
j +

(

u8φ
7
j − u7φ

8
j

(u7 + u8)2
|φ4

j |2
)]

dx

≤
n
∑

j=1

C1(|φ4
j (τ)|22 + |φ2

j (τ)|22) + C2|φ4
j (τ)|24

J5

=

n
∑

j=1

∫

Ω

−(µF )|φ5
j |2

−β

[

(

u7

u7 + u8

)

u3φ
5
j +

(

u8φ
7
j − u7φ

8
j

(u7 + u8)2
φ3

jφ
5
j

)]

dx

≤
n
∑

j=1

C1(|φ5
j (τ)|22 + C2

(

|φ4
j(τ)|24 + |φ3

j (τ)|24
)
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J6

=

n
∑

j=1

∫

Ω

−(µF )|φ6
j |2

−β

[

(

u7

u7 + u8

)

u3φ
6
j +

(

u8φ
7
j − u7φ

8
j

(u7 + u8)2
φ4

jφ
6
j

)]

dx

≤
n
∑

j=1

C1(|φ4
j (τ)|22 + C2

(

|φ4
j(τ)|24 + |φ6

j (τ)|24
)

J7 =
n
∑

j=1

∫

Ω

−(µM )|φ7
j |2 + (1 − r)γ(φ1

j + φ2
j )φ

7
jdx

≤
n
∑

j=1

C1

(

|φ1
j (τ)|22 + |φ2

j (τ)|22 + |φ7
j (τ)|22

)

J8 ≤
n
∑

j=1

∫

Ω

C1|φ8
j |2dx

Recall the Gagliardo-Nirenberg interpolation inequality [4],

(6.5) |φ|W k,p(Ω) ≤ C|φ|θW k,p(Ω)|φ|1−θ
Lr(Ω), for φ ∈ Wm,q(Ω)

provided p, q, r ≥ 1, 0 < θ < 1, and

(6.6) k − n

p
≤ θ

(

m − n

q

)

− (1 − θ)
n

r
, where n = Ω.

Now we consider exponents such that,

(6.7) W k,p(Ω) = L4(Ω),

(6.8) Wm,q(Ω) = H1(Ω),

(6.9) Lr(Ω) = L2(Ω),

and

(6.10) θ =
3

4
.

Thus we obtain

(6.11) |φj(τ)|24 ≤ |∇φj(τ)|
3

4

2 |φj(τ)|
1

4

2 ≤ C|∇φj(τ)|
3

4

2 .
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Using Young’s inequality on the above we obtain,

(6.12) C|∇φj(τ)|
3

4

2 ≤ 7|∇φj(τ)|22 + Cn.

Where C depends on The various parameters above. Thus we obtain the esti-
mate,

Tr(∆U(τ) + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)U(τ)

+F
′

(S(τ)u0) ◦ Qn(τ)

≤ −8

n
∑

j=1

|∇φj(τ)|22 + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)|φj(τ)|22

+ 7|∇φj(τ)|22 + Cm

Now via the generalized Sobolev-Lieb-Thirring inequalities [2] we obtain

n
∑

j=1

|∇φj(τ)|22 ≥ K1
n

5

3

|Ω| 23

Here K1 depends only on the shape and dimension of Ω. Thus we obtain

Tr(∆U(τ) + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)U(τ)(6.13)

+F
′

(S(τ)u0) ◦ Qn(τ)

≤ −K1
n

5

3

|Ω| 23
+ (δU(τ))n + Cn,

(6.14)

for τ > 0, u0 ∈ A.
Where C = C(φ, C, γ, r, µi) hence forth. Where µi are the various µ’s for all

the compartments.
We now obtain

qn(t) = sup
u0∈A

sup
gi∈H,||gi||=1,1≤i≤n

1

t

∫ t

0

Tr(∆U(τ) − (2µA

+2µ + 2µF + µM + µMS
+ (1 − r)γ)U(τ)

+F
′

(S(τ)u0) ◦ Qn(τ)dτ

≤ −K1
n

5

3

|Ω| 23
+ (C(φ, C, γ, r, µi) +

(2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)n, ∀t > 0.

This yields

qn = lim sup
t→∞

≤ −K1
n

5

3

|Ω| 23
+ (C(φ, C, γ, r, µi))(6.15)

+(2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)n < 0
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If the integer n satisfies
(6.16)

n−1 <

(

(C(φ, C, γ, r, µi) + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ))

K1

)
3

2

|Ω| < n

We can now state the following result

Theorem 6.4. Consider the reaction diffusion equation described via, (2.1).
The global attractor A of the system is of finite dimension. Furthermore, explicit

upper bounds for its Hausdorff and fractal dimensions are given as follows

dH(A)

≤
(

(C(φ, C, γ, r, µi) + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ))

K1

)
3

2

|Ω| + 1

dF (A)

≤ 2

(

(C(φ, C, γ, r, µi) + (2µA + 2µ + 2µF + µM + µMS
+ (1 − r)γ)

K1

)
3

2

|Ω| + 2

Proof. The earlier derived estimates via (6.15), (6.16) along with Lemma 6.3
allow us to obtain the desired result �

7. Conclusion

In conclusion, we present a new deterministic model,(2.1), for Aedes aegypti
mosquitoes, (the vector that causes dengue) incorporating both spatial spread, and
preferential selection of the female mosquito for the wild males, against modified
sterile males. Some of the main theoretical findings of this study are summarized
below:
(i) The system posses strong solution, which is global in time.
(ii) For the system there exists a global attractor in [L2(Ω)]8.
(iii) Upper bounds on the Hausdorff and fractal dimensions of the attractor were
provided, in terms of parameters in the system.

These estimates become quite handy from the point of view of numerical com-
putation, specially if the object of interest is primarily long time dynamics. Es-
sentially our results show that if sexual selection is incorporated into a reaction
diffusion system, modelling the spread of Aedes Aegypti mosquitoes, the sterile
insect technique can still be a sucessfull control measure, if the injection of sterile
males is large enough. We agree, that the previous ODE models we cite, did obtain
eradication if injection of sterile males is large enough. However, we feel that the
reason for considering both diffusion, and selection in the current work, is not to
mimic the results of the ODE models considered earlier, but in fact to improve
them. Also we would like to comment that various modelling/biological assump-
tions we make seem natural to us as a first attempt to incorporate sexual selection
in modelling mosquito dynamics under SIT. However, these can be improved upon
in future works. For example it may be possible for the females with preference to
mate with sterile males in small probability. These and related questions are all
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under current investigation. All in all, we hope this work is a small step, in the
further understanding, and control of vector borne disease, such as dengue.
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[33] R.C.A. Thomé, H.M.Yang and L.Esteva, Optimal control of Aedes aegypti mosquitoes by the
sterile insect technique and insecticide Mathematical Biosciences, 223, pp.12-23, 2010.

[34] R.Wyttenbach and R.R.Hoy . Demonstration of the precedence effect in an insect J Acoust
Soc Am, 94, pp.777-784, 1993.

[35] B.Yuval and A.Bouskila, Temporal dynamics of mating and predation in mosquito swarms
Oecologia, 85,pp.65-69, 1993.

[36] B.Yuval, J.W. Wekesa and R.K. Washino. Effects of body size on swarming behavior and
mating success of male Anopheles freeborni (Diptera: Culicidae) J Insect Behav, 6, pp.333-342,
1993.

8. Appendix

Recall u = (u1...u8) is a solution to (2.1) and (U1(t)...U8(t)) are strong so-
lutions to the variational equations for the reaction diffusion system (2.1). These
have been worked out explicitly next.

∂U1

∂t
= ∆U1 − (γ + µA + δ)U1 + φ

(

1 − u1 + u2

C

)

U5 − φ

(

U1 + U2

C

)

u5

∂U2

∂t
= ∆U2 − (γ + µA)U2 + δU1 + φ

(

1 − u2 + u1

C

)

U6 − φ

(

U2 + U1

C

)

u6
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∂U3

∂t
= ∆U3 − (µ)U3 + rγU1

−β

[(

u7

u7 + u8

)

u3 +

(

u8U7 − u7U8

(u7 + u8)2

)

U3

]

−β

[(

u8

u7 + u8

)

u3 +

(

u7U8 − u8U7

(u7 + u8)2

)

U3

]

∂U4

∂t
= ∆U4 − (µ)U4 + rγU2

−β

[(

u7

u7 + u8

)

u4 +

(

u8U7 − u7U8

(u7 + u8)2

)

U4

]

∂U5

∂t
= ∆U5 − (µF )U5

+β

[(

u7

u7 + u8

)

u3 +

(

u8U7 − u7U8

(u7 + u8)2

)

U3

]

∂U6

∂t
= ∆U6 − (µF )U6

+β

[(

u7

u7 + u8

)

u4 +

(

u8U7 − u7U8

(u7 + u8)2

)

U4

]

∂U7

∂t
= ∆U7 + (1 − r)γ(U1 + U2) − (µM )U7

∂U8

∂t
= ∆U8 + v2 − (µMS

)U8

U1(0) = U10, U2(0) = U20, U3(0) = U30, U4(0) = U40, U5(0) = U50,

U6(0) = U60, U7(0) = U70, U8(0) = U80,
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