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ABSTRACT. Motivated by the fact that in nature almost all phenomena be-
have randomly in some scales and deterministically in some other scales, we
build up a framework suitable to tackle both deterministic and stochastic ho-
mogenization problems simultaneously, and also separately. Our approach,
the stochastic ¥-convergence, can be seen either as a multiscale stochastic ap-
proach since deterministic homogenization theory can be seen as a special case
of stochastic homogenization theory (see Theorem 3), or as a conjunction of
the stochastic and deterministic approaches, both taken globally, but also each
separately. One of the main applications of our results is the homogenization
of a model of rotating fluids.
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1. Introduction

A wide range of scientific and engineering problems involve multiscale phe-

nomena. Roughly speaking, each matter is characterized by its own geometric
dimensions which are very often several order of magnitude larger. The study and
the understanding of these issues demand the development of new mathematical
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tools and methods. Homogenization theory is such a tool which now occupies a
central place in contemporary mathematical research.

Deterministic problems in the periodic setting prominently featured in the first
decade of the development of the theory till the pioneering works of Kozlov [24, 25],
Papanicolaou and Varadhan [37] in stochastic homogenization in the late 1970s.
Since then intense research activities have been undertaken with a great wealth of
results as shown by the vast existing literature to date, see e.g., [4, 8, 9, 10, 16,
17, 33, 34, 40, 41, 49, 50, 51, 53, 54, 55, 56]. It is worth noting the interesting
work on stochastic homogenization in the framework of viscosity solutions by several
prominent mathematicians [11, 12, 23, 29, 30].

In order to deal with deterministic homogenization theory beyond the periodic
setting, Nguetseng [31], following Zhikov and Krivenko [55], introduced the con-
cept of homogenization algebras. This theory relies heavily on ergodic theory (but
not the ergodicity!) because in applications, the assumption of ergodicity of the ho-
mogenization algebra considered is fundamental. It is important to note that there
was a gap between the periodic homogenization theory and the stochastic homoge-
nization theory, gap which was filled by Nguetseng’s deterministic homogenization
theory. However as we will see in the present work, this recent deterministic theory
can be viewed as a special case of a generalized version of the stochastic homog-
enization theory of Bourgeat et al. [10] which we construct. Indeed, Theorem 3
(see Section 2) allows to build on the spectrum of an algebra with mean value, a
dynamical system whose invariant measure is precisely the measure related to the
mean value defined on the algebra. As a result of the above-mentioned theorem,
we get a generalization of all the results presented in [31, 32], those in [31, 32]
being the special case corresponding to ergodic algebras; see Section 4.

The two theories mentioned above have the specificity to be used to solve
either stochastic homogenization problems only (for the first one) or deterministic
homogenization problems only (for the second one). Unfortunately, as we know,
in nature, very few phenomena behave, either just randomly or deterministically;
most of these phenomena behave randomly in some scales, and deterministically in
other scales.

Motivated by this vision of the physical nature, we rely on these two theories
and hence on their associated convergence methods (the stochastic two scale con-
vergence in the mean [10] and the X-convergence [31, 47]) to propose a general
method of solving coupled - deterministic and stochastic - homogenization prob-
lems. Our method, the stochastic X-convergence, combines the macroscopic and
microscopic [random and deterministic] scales, and has therefore the advantage of
taking both the simplicity and the efliciency of the macroscopic models, as well
as the accuracy of the coupled random-deterministic microscopic models. More-
over our multiscale approach is motivated by the fact that the usual monoscale
approach has proven to be inadequate because of prohibitively large number of
variables involved in each physical problem. One can also give at least two reasons
quite natural. Firstly, a scale can not be at the same time deterministic and ran-
dom. Secondly, the application of our results to natural phenomena; see Sections
5 and 6. To be more precise, our method permits henceforth to treat deterministic
homogenization problems without resorting to the ergodicity assumption on one
hand, and on the other hand allow viewing the stochastic two-scale convergence in
the mean [10] in a more general angle as generalizing the Y-convergence [31, 32].
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We hope that the theory developed in the present paper will find applications
in the emerging field of homogenization of stochastic partial differential equations
undertaken in the papers [2], [43] in the periodic case and in [38] in the case of
non periodically perforated domains.

The paper is organized as follows. In Section 2 we give some preliminary results
related to the theory of dynamical systems on abstract probability spaces. We
also define and give some fundamental properties of generalized Besicovitch spaces.
Section 3 is devoted to the study of the concept of stochastic ¥-convergence. We
prove therein some compactness results. In Sections 4, 5 and 6, we give several
applications of the earlier results. We begin in Section 4 by showing how the
results of Section 3 apply and how they generalize the existing results; this is
illustrated by the study of a rather simple linear operator in divergence form. We
then compare our results with the already existing ones. In Section 5 we study
the homogenization problem for the well-known nonlinear Reynolds equation. One
important achievement of our results is obtained in Section 6 where we solve the
coupled stochastic-deterministic homogenization problem related to the following
Stokes equation:

7,j=1

6%1» (aij(:ﬂ, T(x/e1)w, x/ag)gzj) +h® x u. +gradp. =f in Q
divu, =0 in Q
u. = 0 on 0Q.

We get the following homogenization result which is, to our knowledge, new.

THEOREM 1. Assume
(1) aij(z,w,-) € A for all (z,w) € Qx N, 1<4,j <N, and h € L>=(Q; A)N.
For each 0 < e < 1 and for a.e. w € Q let u.(-,w) = (u(-,w)) € HY(Q) be the

€
(unique) solution of the above Stokes equation. Then ase — 0,

u. — ug stoch. in L*(Q x Q)N -weak

and

ok ouf . Oub
~— 94D, 2
8Ij - 8Ij + Jwti + 8yj

where u = (ug, uy, uz) is the unique solution to the following variational problem:

a(u,v) + // (h x ug) - vodzdu = (£,vo) for all v = (vo,vi,v2) € Fy
Q%9

stoch. in L*(Q x Q)-weak ¥ (1 < j,k < N)

with:
N 8uk —
a(u,v) = Z // a;j(z,w, s) <8—0 +Dj.,wulf +3ju§>
i1 ? JQxaxA(4) Lj

x (‘%g + D, vk+a-vA’€) dadpdp:
i,wU1 i Ug H 67
8:@»
Bw) = [ Bw.s)as
A(A)

(£v0) = [ (8): o)) s sy
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and
djul = G1(0uk /y;) (and a same definition for 9;v5 ).

Unless otherwise specified, vector spaces throughout are assumed to be complex
vector spaces, and scalar functions are assumed to be complex valued. We shall
always assume that the numerical spaces R™ and their open sets are each equipped
with the Lebesgue measure.

2. Preliminaries on dynamical systems and generalized Besicovitch
spaces

2.1. Stochastic vector calculus. We begin by recalling the definition of
the notion of a dynamical system. Let (Q, M, u) denote a probability space. An
N-dimensional dynamical system on 2 is a family of invertible mappings T () :
Q0 — Q, 2 € RV, such that the following conditions hold:

(i) (Group property) T (0) = idg and T (z +y) = T(x) o T(y) for all z,y €
RY;
(ii) (Inwvariance) The mappings T (z) :  — Q are measurable and p-measure
preserving, i.e., p (T (z) F) = p (F) for each 2 € RY and every F € M;
(iii) (Measurability) For each F € M, the set {(z,w) € RN x Q: T (z)w € F}
is measurable with respect to the product o-algebra £ ® M, where L is
the o-algebra of Lebesgue measurable sets.

We recall that in (i) above, the symbol o denotes the usual composition of
mappings, and in (iii), £ ® M is the o-algebra generated by the family {L x M :
Le £ and M € M}, L x M being the Cartesian product of the sets L and M.

If Q is a compact topological space, by a continuous N-dimensional dynamical
system on €2 is meant any family of mappings T'(z) : Q — Q, x € RY, satisfying the
above group property (i) and the following condition: The mapping (z,w) +— T'(z)w
is continuous from RY x Q to .

Let 1 < p < oco. An N-dimensional dynamical system T (x) : Q — £ induces a
N-parameter group of isometries U (z) : LP(2) — LP(Q) defined by

U () f) () = f(T(@)w), feLP(Q)
which is strongly continuous, i.e., U (z) f — f in LP(Q2) as z — 0; see [22, p. 223]
or [33, p. 131]. We denote by D;, (1 < i < N) the generator of U(z) along the

ith coordinate direction, and by D; , its domain. Thus, for f € LP(Q), f isin D;,
if and only if the limit D; j,f defined by

f(T(rei)w) — f(w)

T

Dipf(w) = limo

exists strongly in LP(§2), where e; denotes the vector (di), ;<. 0i; being the
Kronecker 6. One can naturally define higher order derivatives by setting Dy =
DY}, -+ DR, for a = (aq, ..., an) € NV, where D' = D;p0--- 0D, aj-times.

Now we need to define the stochastic analog of the smooth functions on R¥.
To this end, we set D,(Q) = NY;D; , and define

D () ={f € LP(Q): Dy f € Dp(Q) for all « € NV}

It is a fact that each element of D () possesses stochastic derivatives of any
order that are bounded. So as in [1] we denote it by the suggestive symbol C* (),
and also as in [1] it can be shown that C*(Q2) is dense in LP(Q2), 1 < p < oo.
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At this level, one can naturally define the concept of stochastic distribution: by a
stochastic distribution on € is meant any continuous linear mapping from C*>(£2)
to the complex field C. We recall that C*°((2) is endowed with its natural topology
defined by the family of seminorms N, (f) = supj, <, Sup,cq [D% f(w)| (where
la] = a1 + ... + an for a = (ay,...,ay) € NV). We denote the space of stochastic
distributions by (C>°(£2))’. One can also define the stochastic weak derivative of f €
(C>(Q))" as follows: For any o € NV, D stands for the stochastic distribution
defined by
(Df)(¢) = (1)1 f (DL¢) Vo € C™(9).

As C*°(Q) is dense in LP(Q) (1 < p < o0), it is immediate that LP(Q) C (C=(Q2))’
so that one may define the stochastic weak derivative of any f € LP(Q), and it
verifies the following functional equation:

(D7) () = (1) [ D2 for al g € €= (@),

In particular, for f € D; ), we have — [ fD; so@pdp = [ ¢D; p fdp for all ¢ € C=(Q)
so that we may identify D; ,f with D% f, where o; = (5ij)1SjSN' Conversely, if
f € LP(Q) is such that there exists f; € L? (Q) with (D f) (¢) = — [, fipdp for
all ¢ € C*(), then f € D, , and D; , f = f;. Therefore, endowing D, (£2) with the

natural graph norm

N
115, ) = £y + S 1D f iy (f € Dy()
=1

we obtain a Banach space representing the stochastic generalization of the Sobolev
spaces W1 (RY), and so, we denote it by WP(Q).

Now, returning to the general setting of dynamical systems, we recall that a
function f € LP (Q) is said to be invariant for T (relative to ) if for any xz € RV,
foT(x) = f pae on Q. We denote by I?, () the set of functions in LP ()
that are invariant for 7. The set I?, () is a closed vector subspace of L? (). The
dynamical system T is said to be ergodic if every T-invariant function f € I? (£2)
is constant. We have the following very useful properties for functions in L* (Q).

(P1) For f € Dg° (), and for p-a.e. w € Q, the function x — f(T'(z)w) is in

C>®(RY) and further D2 f(T(x)w) = (D$ f) (T(x)w) for any a € NV,

(P2) For f € L'(2), we have f € I}, (Q) if and only if D;1f = 0 for each

1<i<N.

Let 1 < p < co. Thanks to (P2) above, one can easily check that, for f € L? (Q),
fisin IZ, () if and only if D, ,,f = 0 for all 1 <4 < N, since D, , is the restriction
to LP(Q) of D; 1. So if we endow C*°(2) with the seminorm

N
(2.1) lall, = > IDipullloy  (u€C®(Q)
i=1

we obtain a locally convex space which is generally non separated and non complete.
We denote by WP(Q) the separated completion of C>°({2) with respect to the
seminorm |[-[|, , and we denote by I, the canonical mapping of C>°(Q2) into its
separated completion WP (). Tt is to be noted that WP () is also the separated
completion of C*° () /(IE, ()NC>(£2)) with respect to the same seminorm since for
u € C>(Q2) we have [|u||,, , = 0 if and only if u € IF, (), that is u € I£,(2)NC>(12).
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The following property is obtained through the theory of completion of uniform
spaces; see, e.g., [7, Chap. II, Sect. 3, no 7].

The gradient operator Dy, = (D1, ..., Dnp) : C(€2) — LP ()" extends by
continuity to a unique mapping Dy, , = (D1 p, ..., Dy p) : W"P() — L? (Q)Y with
the properties

D;p=D;,01,
and

N 1/p
HUHWLP(Q) = llully, = (Z HE'LJ’UHZP(Q)) for u € WHP(Q).
i=1

Moreover, the mapping D,, , is an isometric embedding of W'P(Q2) into a closed
subspace of LP (Q)N, so that the Banach space WP (Q) is reflexive. By duality we
define the operator div,, , : L ()N — (Wl’p(Q))/ (' =p/(p—1)) by

(divy pru, w) = — (u, Dy, pw) for all w € WHP (Q) and u = (u;) € LY ()N,

where (u, D, pw) = Eﬁl Jo wiDi pwdp. The operator div,, , just defined extends
the natural divergence operator defined in C*°(£2) since for all f € C>°(2) we have
Di,pf = Dz,p(Ip(f))

The following result will be of great interest in the next sections.

PROPOSITION 1. Letv € LP (Q)N satisfying
/ v-gdu=0 for allg € Vg, = {f € COO(Q)N s divy, o f = 0}.
Q

Then there exists u € WHP(QQ) such that v = D, pu.

PROOF. We need to check the following: (1) div,, , is closed; (2) (divy p)* =
—D,, p where (div,, ,)* is the adjoint operator of div,, ,; (3) Ran(D,, ) is closed
in L7 (Q)" and finally, (4) v is orthogonal to the kernel of div,, . Indeed (1)-(3)
will yield Ran(D,, ,) = (ker(div,, ,))* by a well-known result (see, e.g., [36, Chap.
13, p. 352, Thm 13.8]) where (ker(div,, ,))* denote the orthogonal complement of
ker(div,, ), and finally the proposition will follow at once from (4). So let us check
them.

(1) is trivial, (2) is a mere consequence of the definition of div,, ,r. As for (3), if
Vn = Dy pun € Ran(D,, ;) is such that v,, — v in LP(Q)", then (u,), is a Cauchy
sequence in WP(Q) and so, converges in W1P({2) towards some u € WHP(Q), that
is, Dy ptin — Do pu in LP ()Y, hence v = D, pu. Finally for (4) it suffices to
show that Vgiy is dense in ker(div,, ). To see this, let g € ker(div,, ,); arguing as
in the proof of [10, Lemma 2.3 (b)] there exists a sequence (gy)n C Vaiv such that
g, — gin LP (Q)N The proof is complete. O

We end this subsection with some definitions. Let f be a measurable function
in Q; for a fixed w € Q the function x — f(T(z)w), z € RV is called a realization
of f and the mapping (z,w) — f(T'(z)w) is called a stationary process. The process
is said to be stationary ergodic if the dynamical system T is ergodic. We will also
use the notation div,, instead of div,, ,/, accordingly.

In the forthcoming sections we will adopt the following notation: D,, will stand
for Ew,p, and, El-ﬁp (resp. D; ) will be denoted by D, (resp. D, ) if there is no
danger of confusion.
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2.2. Homogenization supralgebras. We use a new concept of homogeniza-
tion algebras. This concept has just been defined in a more recent paper [32]. It is
more general than those defined in the papers [31, 55] because we do not need the
algebra to be separable (as in [31]), or to consist of functions that are uniformly
continuous (as in [55]). Before we go any further, we need to give some prelimi-
naries. Let H = (H.)c>0 be the action of R* (the multiplicative group of positive
real numbers) on the numerical space RY defined as follows:

(2.2) H.(z) = g (z € RY)

where g7 is a positive function of € tending to zero with €. For given £ > 0, let
uf(z) = w(H.(z)) (z eRY).

For u € L, (R)) (as usual, RY denotes the numerical space RY of variables
y = (y1,...,yn)), u® lies in L} _(RY). More generally, if u lies in L (R™) (resp.
LP(RN)), 1 < p < +o0, then so also does u®.

A function u € B(R])) (the C*-algebra of bounded continuous complex func-
tions on Rfjv ) is said to have a mean value for H, if there exists a complex number
M (u) such that u® — M (u) in L>®(RY)-weak * as ¢ — 0. The complex number
M (u) is called the mean value of u (for H). It is evident that this defines a mapping
M which is a positive linear form (on the space of functions u € B(R]) with mean
value) attaining the value 1 on the constant function 1 and verifying the inequality
|M (u)] < |lull,, = supyern |u(y)] for all such u. The mapping M is called the mean
value on RN for H. Tt is also a fact, as the characteristic function of all relatively
compact set in RY lies in L*(RY), that

1
(2.3) M(u) = lim —/ u(y)dy
r——4o00 |Br| B,
where B, stands for the bounded open ball in RY with radius r, and | B,.| denotes
its Lebesgue measure. Expression (2.3) also works for u € L{ (RY) provided that

the above limit makes sense. In connection with the dynamical systems, we have
the following Birkhoff ergodic theorem (see [18]).

THEOREM 2 (Birkhoff ergodic theorem). Let T be a dynamical system acting
on the probability space (2, M, pn). Let f € LP(Q), p > 1. Then for almost all
w € Q the realization x — f(T(x)w) possesses a mean value in the sense of (2.3).
Furthermore, the mean value M (f(T(-)w)) is invariant and

F@dp= | M(F(T()w))dn.
Q Q

Moreover if the dynamical system T is ergodic, then
M(f(T()w)) = / fdu for p-a.e. w € Q.
Q

DEFINITION 1. By a homogenization supralgebra (or H-supralgebra, in short)
on RY for H we mean any closed subalgebra of B(R") which contains the constants,
is closed under complex conjugation and whose elements possess a mean value for

H.
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REMARK 1. From the above definition we see that the concept of H-supralgebra
is more general than those of H-algebra [35] and of algebra with mean value [55].
In fact any separable H-supralgebra is an H-algebra while any algebra with mean
value is an H-supralgebra as any uniformly continuous function is continuous.

Let A be an H-supralgebra on RY (for H). It is known that A (endowed with
the sup norm topology) is a commutative C*-algebra with identity. We denote by
A(A) the spectrum of A and by G the Gelfand transformation on A. We recall
that A(A) (a subset of the topological dual A’ of A) is the set of all nonzero mul-
tiplicative linear functionals on A, and G is the mapping from A to C(A(A)) such
that G(u)(s) = (s,u) (s € A(A)), where (,) denotes the duality pairing between
A’ and A. We endow A(A) with the relative weak* topology on A’. Then using
the well-known theorem of Stone (see e.g., either [26] or more precisely [18, The-
orem IV.6.18, p. 274]) one can easily show that the spectrum A(A) is a compact
topological space, and the Gelfand transformation G is an isometric isomorphism
identifying A with C(A(A)) (the continuous functions on A(A)) as C*-algebras.
Next, since each element of A possesses a mean value, this yields a map u — M (u)
(denoted by M and called the mean value) which is a nonnegative continuous lin-
ear functional on A with M (1) = 1, and so provides us with a linear nonnegative
functional v — M;(¢) = M (G~ (%)) defined on C(A(A)) = G(A), which is clearly
bounded. Therefore, by the Riesz-Markov theorem, M (¢)) is representable by in-
tegration with respect to some Radon measure 3 (of total mass 1) in A(A), called
the M-measure for A [31]. It is evident that we have

(2.4) M(u) = /A(A) G(u)dg for u € A.

The spectrum of a Banach algebra is a very abstract concept. We give in
the following result a characterization of the spectrum of some particular Banach
algebras.

PRrROPOSITION 2. Let A be an H-supralgebra. Assume A separates the points
of RN. Then A(A) is the Stone-Cech compactification of RY.

PROOF. For each y € RY define an element ¢, € A(A) by ¢,(u) = u(y),
u € A. Then the mapping ¢ : y — ¢, from RY into A(A) is continuous and
has dense range. In fact since the topology in A(A) is the weak* one and further
the mappings y — ¢, (u) = u(y), u € A, are continuous on RY, it follows that
¢ is continuous. Now supposing that ¢(RY) is not dense in A(A) we derive the
existence of a nonempty open subset U of A(A) such that U N ¢(RY) = (. Then
by Urysohn’s lemma there exists v € C(A(A)) with v # 0 and v[5(4))\p = 0. By
the Gelfand representation theorem, v = G(u) for some u € A. But then

u(y) = ¢y(u) = G(u)(¢y) = v(dy) =0
for all y € RN, contradicting u # 0. Thus ¢(RY) is dense in A(A).

Next, every f in A (viewed as element of B(R")) extends continuously to A(A)
in the sense that there exists f € C(A(A)) such that f(qﬁ(y)) = f(y) for ally € RN
(just take f=g (f)). Finally assume that A separates the points of RY. Then
the mapping ¢ : RY — ¢(R") is a homeomorphism. In fact, we only need to
prove that ¢ is injective. For that, let y, 2z € RY with y # z; since A separates the
points of RY| there exists a function u € A such that u(y) # u(z), hence ¢, # ¢.,



STOCHASTIC X-CONVERGENCE 269

and our claim is justified. We therefore conclude that the couple (A(A), @) is the
Stone-Cech compactification of RV . (I

The following result is classically known.

PROPOSITION 3. (1) Assume A = Cper(Y') is the algebra of Y -periodic contin-
uous functions on RY (Y = (=3,3)N). Then its spectrum is the N-dimensional
torus TN = RN /ZN . (2) Assume A = AP(RY) is the algebra of all almost periodic
continuous functions on Rflv defined as the vector space consisting of all functions
defined on R;JJV that are uniformly approximated by finite linear combinations of the
functions in the set {exp(2ink - y) : k € RN}. Then its spectrum A(AP(RL)) is a

compact topological group homeomorphic to the Bohr compactification of RV .

Next, the partial derivative of index i (1 < i < N) on A(A) is defined to
be the mapping 9; = G 0 d/dy; o G~ (usual composition) of DY(A(A)) = {p €
C(A(A)) : G L(p) € A} into C(A(A)), where Al = {yp € CL(RYN) : 4, 0¢/0y; € A
(1 < i < N)}. Higher order derivatives are defined analogously, and one also
defines the space A™ (integers m > 1) to be the space of all ¢» € C™(R]) such that

lol .
Doy = 2"V ¢ Afor every a = (ai,...,an) € NV with |a| < m, and we set
Yy ayl ...ayN

A% = N,;,>1A™. At the present time, let D(A(A)) = {¢ € C(A(A)) : G (y) €
A*°}. Endowed with a suitable locally convex topology, A% (resp. D(A(A))) is a
Fréchet space and further, G viewed as defined on A is a topological isomorphism
of A% onto D(A(A)). It is worth recalling that A is the deterministic analog of
the space C*(12) defined in Subsection 2.1.

Analogously to the space D’(R”), we now define the space of distributions on
A(A) to be the space of all continuous linear form on D(A(A)). We denote it by
D'(A(A)) and we endow it with the strong dual topology. It is an easy exercise to
see that if A is dense in A (this is the case when, e.g., A is translation invariant
and moreover each element of A is uniformly continuous; see [45, Proposition 2.3]
for the justification. We will also see at the end of this subsection that this density
result is a fact when dealing with such kind of H-supralgebras since one may connect
their spectrums to a dynamical system, and then recover the said density result by
just using the results of Subsection 2.1) then LP(A(A)) (1 < p < o0) is a subspace of
D'(A(A)) (with continuous embedding), so that one may define the Sobolev spaces
on A(A) as follows.

WHP(A(A)) = {u € LP(A(A)) : du e LP(A(A)) (1 <i<N)}(1<p<oo)

where the derivative O;u is taken in the distribution sense on A(A). We equip
WLP(A(A)) with the norm

|

[[ullwrracay = ||u||1£p(A(A)) + le\il ||6i“||ip(A(A))} (u € Wl’p(A(A))) ,

1<p<oo,
which makes it a Banach space. To that space are attached some other spaces
such as WHP(A(A))/C = {u € WHLP(A(A)) : fA(A) udf = 0} and its separated
completion W;E’p (A(A)); we refer to [31] for a documented presentation of these
spaces.

As we have said a while ago, we end this subsection with an important result
connecting the dynamical systems to the spectrum of some H-supralgebras.



270 MAMADOU SANGO AND JEAN LOUIS WOUKENG

THEOREM 3. Let A be an H-supralgebra on RN. Suppose A is translation
invariant and that each of its elements is uniformly continuous (thus A is an algebra
with mean value). Then the translations T(y) : RY — RN, T(y)r = x + vy, extend
to a group of homeomorphisms T(y) : A(A) — A(A), y € RY, which forms a
continuous N-dimensional dynamical system on A(A) whose invariant probability
measure is precisely the M-measure 3 for A.

PROOF. As A is translation invariant, each translation 7'(y) induces an isomet-
ric isomorphism still denoted by T'(y), from A onto A, defined by T (y)u = u(- +y)

for u € A. So define T(y) : C(A(A)) — C(A(A)) by
T(y)G(u) = G(T(y)u) (u€ A)

where G denotes the Gelfand transformation on A. Then T(y) is an isometric
isomorphism of C(A(A)) onto itself; this is easily seen by the fact that G is an
isometric isomorphism of A onto C(A(A)). Therefore, by the classical Banach-Stone
theorem there exists a unique homeomorphism T'(y) of A(A) onto itself. The family
thus constructed is in fact a continuous N-dimensional dynamical system. Indeed
the group property easily comes from the equality G(T(y)u)(s) = G(u)(T(y)s)
(y € RN, s € A(A), u € A). As far as the continuity property is concerned, let
(Yn)n be a sequence in RY and (s4)4 be a net in A(A) such that y,, — y in RY and
sqg — s in A(A). Then the uniform continuity of u € A leads to T'(yn)u — T'(y)u in
B(RY), and the continuity of G gives G(T'(yn)u) — G(T(y)u), the last convergence
result being uniform in C(A(A)). Hence G(T(yn)u)(sa) — G(T(y)u)(s), which
is equivalent to G(u)(T (yn)sa) — G(u)(T(y)s). As C(A(A)) separates the points
of A(A), this yields T(y,)sa — T(y)s in A(A), which implies that the mapping
(y,s) — T(y)s, from RY x A(A) to A(A), is continuous. It remains to check that
3 is the invariant measure for T. But this easily comes from the invariance under
translations’ property of the mean value and of the integral representation (2.4).
We keep using the notation T'(y) for T(y), and the proof is complete. O

With the above result, one may directly consider deterministic homogenization
theory in algebras with mean value as a particular case of stochastic homogenization
theory. That is why in the sequel, our results in these particular H-supralgebras
could be viewed as particular ones of reiterated stochastic homogenization theory.
However they are no less important because so far, although widely used, the results
stated in Section 3 have never been proven before.

2.3. The generalized Besicovitch spaces. We can define the generalized
Besicovitch spaces associated to a H-supralgebra. The notations are those of the
preceding subsection. Let A be a H-supralgebra on RV, Let 1 < p < co. If u € A,
then |ul” € A with G(Ju|”) = |G(u)|". Hence the limit lim,_, ;o ﬁ fBT lu(y)[? dy
exists and we have

1
lim ——
r—too |By] Jp,

() dy = M(Jul?) = / G(u)[? dB.

A(A)
Hence, for u € A, put
1
lull, = (M(Ju"))""".

This defines a seminorm on A with which A is in general not separated and not
complete. First we denote by B’ the closure of A with respect to [|-[|,. Then Tt
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is known that BY is a complete seminormed vector space verifying B% C B for
1 <p < g < oo. From this last property one may naturally define the space BY as
follows:

BY ={f € M<p<ocBYy : sup ||f||p < oo}
1<p<oo

We endow B with the seminorm [f]

o = SUPj<peoo || fIl,, which makes it a com-

plete seminormed space. We recall that the spaces BY (1 < p < oo0) are not
in general Fréchet spaces since they are not separated in general. The following
properties are worth noticing [32, 39]:

(1) The Gelfand transformation G : A — C(A(A)) extends by continuity
to a unique continuous linear mapping, still denoted by G, of B} into
LP(A(A)). Furthermore if u € BY ﬁLOO(RéV) then G(u) € L*°(A(A)) and
1G]l L acay < lullpos @)

(2) The mean value M viewed as defined on A, extends by continuity to
a positive continuous linear form (still denoted by M) on BY satisfying
M(u) = fA(A) G(u)dp (u € BY). Furthermore, M (t,u) = M (u) for each
u € BY and all a € RV, where 7,u(y) = u(y — a) for almost all y € RY.

(3) Let 1 < p,q,r < oo be such that %—I— é = % < 1. The usual multiplication
Ax A— A; (u,v) — uv, extends by continuity to a bilinear form BY x
BY% — B’ with

[uvll, < [lull, [0ll, for (u,v) € By x Bj.
The following result will be of great interest in the work.
PROPOSITION 4. Let A be a H-supralgebra on RN . Assume each element of

A is uniformly continuous and moreover A is translation invariant (i.e. Tou =
u(-+a) € A for allu € A and all a € RN ). Then A is dense in BY.

PROOF. Since A is an algebra with mean value, the result follows from [39,
Proposition 2.4]. O

Now, let u € BY (1 < p < 00); then |u[’ € B} (this is easily seen) and so,
by part (2) above one has M(|ul’) = fA(A) G(W)["dB = IG(W)[}p(a(a)- Thus

for u € BY} we have |u|, = (M(|u|p))1/p, and [[ul,, = 0 if and only if G(u) = 0.
Unfortunately, the mapping G (defined on B%) is not in general injective. So let
N = KerG (the kernel of G) and let

BY = B4 /N.
Endowed with the norm
lu+Nllgr = llull, (ue Bj),
B, is a Banach space with the following property.

THEOREM 4 ([32]). The mapping G : B} — LP(A(A)) induces an isometric
isomorphism Gy of BY onto LP(A(A)).
As a first consequence of the preceding theorem one can define the mean value

of u + N (for each v € BY) as follows:

r——400

(2.5) M (u+N) = M(u), so that My(u+N) = lim F1|/ u(y)dy.
T B,
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One crucial result that can be derived from the preceding theorem is the fol-
lowing

COROLLARY 1. The following hold true:
(i) The spaces B are reflexive for 1 < p < oo; /
(ii) The topological dual of the space BY (1 < p < o0) is the space BYy (p/ =
p/(p — 1)), the duality being given by
<u—|—./\/,v—|—./\/>6,:{ = M (uv) fA(A)gl (u+N)Gi(v+N)dp
foru e BZ/ and v € BZ.

This result is easily proven by using the properties of the LP-spaces and the
above isometric isomorphism.

REMARK 2. The space BY is the separated completion of BY and the canonical
mapping of BY into B is just the canonical surjection of B} onto BY; see once
more [7, Chap. II, Sect. 3, no 7] for the theory of completion.

Another definition which will be of great interest in the forthcoming sections is

DEFINITION 2. An H-supralgebra A on R¥ is ergodic if for every u € B} such
that |lu — u(- + a)||;, = 0 for every a € R we have |ju — M (u)||, = 0.

The above definition is equivalent to say that any B}-translation invariant
function is BY-constant, that is, the dynamical system T defined on RY by T'(y)x =
x + y is ergodic in the sense of Subsection 2.1.

An equivalent property stated by Casado Diaz and Gayte is given in the fol-
lowing proposition.

PROPOSITION 5 ([13]). An H-supralgebra A on RY is ergodic if and only if
(2.6 llr_il H|B|/ (-+y)dy — M(u) —OforalluEBZ,1§p<oo.

The following result provides us with a few examples of ergodic H-supralgebras
(see next section for its application).

LeEMMA 1 ([32]). Let A be an H-supralgebra on RY with the following property:
For any u € A,

r——400

1
(2.7) lim Bl / u(x + y)dz = M(u) uniformly with respect to y.
T B,

Then A is ergodic.

In order to simplify the presentation of the paper we will from now on, use the
same letter u (if there is no danger of confusion) to denote the equivalence class of
an element v € BY. The symbol ¢ will denote the canonical mapping of B} onto
BY = B4 /N.

Our goal here is to define another space attached to BY. Let u € D'(A(A)),
and let o € NV. We know that 0%u € D'(A(A)) exists and is defined by

(2.8) (0%, ) = (=1)1% (u, %) for any ¢ € D(A(A)).
This leads to the following definition.
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DEFINITION 3. The formal derivative of order oo € NV is defined to be the
formal operator on B’} given by

(2.9) D, =G '0d* oG

where 0% is defined above. In particular, for a = (6;5)1<j<n with 1 <7 < N, ﬁ;
is denoted by 0/dy; and is called the formal derivative of index i.

REMARK 3. Foru € BY” (that is the space of u € B, such that Dyu € (B5)N)

we have
ou ou
6 (2(5)) =9 () = 0 ) = 261 (etw)
= (by definition) G 0 (o(w))
— Yy 1 ayl 0 )
hence
ou 0
or equivalently,
o0 0 1p
(2.10) goayi —8%09011 B,”.

We return for a while to the framework of the preceding subsection and as-
sume that the hypotheses of Theorem 3 are satisfied. Let {T'(y) : y € RV}
be the dynamical system constructed in Theorem 3. We know by the results
of Subsection 2.1 that T'(y) induces a N-parameter group of isometries U(y) :
LP(A(A)) — LP(A(A)). By the properties of Gy, this also yields a N-parameter
group of isometries g;l oU(y) oG : By — BY. We denote by D; , the generators
of Gy 1oU(y) 0 Gy. Now, let u € A'; we have 9;G(u) = g(g—;) = gl(g(g—;)), so that

g(g—;) = %(g(u)) by the preceding remark. But since g—; is the derivative along

the direction e; = (J;5)1<i<n of the dynamical system induced by the translations
in RV, it is immediate that

Diplolw) = 5

(o(u)),

so that

0

y;i

The above equality is crucial in the process of viewing homogenization in algebras
with mean value as a special case of stochastic homogenization. Indeed in the
case when Q = A(A), it allows to just replace C*(2) by the space G1(0(A>)) =
G(A>*) = D(A(A)) which plays exactly the same role since firstly, it is dense in
LP(A(A)) for all 1 < p < oo and secondly, for all u € D(A(A)) = C*(A(4))
we have u € L®(A(A)) and 0%u € L®(A(A)) for all @ € NV, This remark will
be particularly used in Section 6 when dealing with the homogenization of some
Stokes’ type equations.

(2.11) D, =
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Now, set (for 1 < p < 00)

B}{P:{ueBZ:g:EBZ, forlSiSN}.

We endow 3114,10 with the norm

p 1

/p
] (ue B}{p)

du
el = o

N
lully +>
i=1

p

which makes it a Banach space with the property that the restriction of G; to Bi’p is
an isometric isomorphism from Bi’p onto W1P(A(A)). However we will be mostly
concerned with the subspace Bi’p /C of 8114,;) consisting of functions u € Bi’p with
M;i(u) = M(u) = 0. Equipped with the seminorm

N

lullgs e = Dy, = [z

i=1

P

ou
y;

p

1/p
] (ue BY?/C)

where D, = (0/0y:)1<i<n, Bi"p /C is a locally convex topological space which
is in general not separated and not complete. We denote by B;i the separated
completion of ka/(C with respect to ||-||ka/(c, and by J; the canonical mapping
of Bi’p /C into B;’i. By the theory of completion of the uniform spaces [7, Chap.
IT, Sect. 3, no 7] it is a fact that the mapping 9/dy; : By?/C — B extends by
continuity to a unique continuous linear mapping still denoted by 9/dy; : B;i —
BY and satisfying

0 0 — 1
(2-12) 6—% oJi = a—yl and ||’UJHB;§‘ = HDyqu (u S B#i)
where Ey = (3/8%)193 ~. Since G; is an isometric isomorphism of B}L"p onto

WLP(A(A)) we have by (2.9) that the restriction of G; to B /C sends isometrically
and isomorphically B5?/C onto W1?(A(A))/C. So by [7, Chap. II, Sect. 3, no 7]
there exists a unique isometric isomorphism G : B;i — W#p (A(A)) such that

(2.13) GioJi=JoG
and
_ B )
(2.14) ai091=g108 (1<i<N).
Yi

We recall that J is the canonical mapping of W?(A(A))/C into its separated
completion W;E’p (A(A)) while J; is the canonical mapping of B4?/C into B;i.
Furthermore, as J; (8114,;) /C) is dense in B;’i (this is classical), it follows that if
A% is dense in A (this is the case when A is an algebra with mean value), then

(J100)(A>®/C) is dense in B;Z, where A*°/C = {u € A* : M(u) =0}.



STOCHASTIC X-CONVERGENCE 275

3. The stochastic Y-convergence

In this section we define the concept of stochastic ¥-convergence which is the
generalization of both two-scale convergence in the mean (of Bourgeat et al. [10])
and X-convergence (of Nguetseng [31]). In all that follows, @ is an open subset of
RY and A is an H -supralgebra on Rf)’ . We use the letter G to denote the Gelfand
transformation on A. Points in A(A) are denoted by s. We still denote by M the
mean value on RY for the action H (see Section 2). The compact space A(A) is
equipped with the M-measure 3 for A. Next, let (2, M, ) denote a probability
space and let {T'(y) : y € RN} denote a N-dimensional dynamical system acting
on the probability space (Q, M, ). Points in Q are denoted by w. Finally, let &1
and e5 be two well separated functions of ¢ tending towards zero with &, that is,
0 < e1,e2,69/e1 — 0 ase — 0, and such that the functions z — /1 and z — /o
define two actions of R* on RY.

DEFINITION 4. A bounded sequence (uc)eso in LP(Q x ) (1 < p < 00) is said
to weakly stochastically X-converge in LP(Q x §) to some ug € LP(Q x Q; BY) if as

€ — 0, we have
/ ue(z, w)f (I,T <£> w, 1) dxdp
Q%0 €1 €2

(3.1) — // to(z,w, s) f (z,w, s)dedudg
QXOQAXA(A)

for every f € C§°(Q) ®C™(Q) ® A, where g = Gy o ug and f=Gof=Gio (0o f).
We express this by writing u. — ug stoch. in LP(Q x Q)-weak X.

We recall that C5°(Q) ® C°°(Q) ® A is the space of functions of the form
flz,w,y) Z% 9i(y), (z,w,y) € Q x QAxRY,

finite

with ¢; € C§°(Q), ¥; € C*°(Q) and g; € A. Such functions are dense in C§°(Q) ®
Q)@ A (p =p/(p—1) for 1 < p < oo, since C®() is dense in L? (2)) and
hence in K(Q; L' (Q)) ® A (K(Q; L”' () being the space of continuous functions
of @ into Lp,(Q) with compact support containing in @; see e.g., [6, Proposition 5]
for the denseness result). As K(Q; L (Q)) is dense in L¥' (Q; L¥' () = L?' (Q x Q)
and Lp,(Q x ) ® A is dense in L (Q x Q; A), the uniqueness of the stochastic
3-limit is ensured.

Before continuing our study, we need to make a comparison between the weak
stochastic X-convergence and other existing convergence methods closed to it. For
that, we must first state these convergence schemes:

(1) A sequence (ug)e>0 C LP(Q) (1 < p < o0) is said to weakly 3-converge in
LP(Q) to some vy € LP(Q; BY)) if as E 5 & — 0, we have

(3.2) /Qus( z)f <a: _) da:—»//QXA(A) z,s)f(z, s)dzdp

for every f € LP (Q; A) (1/p' = 1 —1/p), where Gp = Gy o vg and f =
Gio(eof)=Golf.

(2) A sequence (ug)eso € LP(Q x 2) (1 < p < 00) is said to stochastically
two-scale converge in the mean to some vy € LP(Q x Q) if as € — 0, we
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have

(3.3) /ng ue(z,w) f <x,T (%) w) dedy — //QXQ vola, w) f(x, w)dzdy

for all admissible functions (in the sense of [10, Section 3]) f € L (Q x Q).
We denote it by ue — ug stoch. in LP (Q x Q)-weak.

REMARK 4. The weak stochastic X-convergence method generalizes the above
two convergence methods. Indeed, it is very important to note that both the above
definitions (3.2) and (3.3) imply the boundedness of the sequence u, either in L?(Q)
or in LP(Q x ), accordingly. With this in mind, we see that if in (3.1) we take
f € C(Q) ® C>=(), that is f is constant with respect to y € RY, and next
using the density of the latter space in L¥' (Q x Q) then (3.1) reads as (3.3) with
vo(z,w) = [ AA uo 2, w, s)dB by choosing in L¥' (Q x ) admissible functions. If
besides we take 1n (3.1) f € C§°(Q) ® A, that is f not depending upon the random
variable w and further if we choose u. not depending on w, then using the density
of C°(Q) ® A in L' (Q; A) we readily get (3.2) with To(x, s) = [, Go(z,w, s)dp.

The following result is easily verified; its proof is left to the reader.

PROPOSITION 6. Let (uc)eso be a sequence in LP (Q x Q). If uc — wug stoch.
in LP (Q x Q)-weak X, then (uc)e>o stochastically two-scale converges in the mean
towards vo(x,w) = fA(A) uo(x,w, 8)dB and

/ ue (ryw) (w)dp — // o (-, w, 8) Y(w)dudB in L' (Q)-weak Vi € I,’Z; Q).
Q QxA(A)

The next results provide us with a few examples of sequences that weakly
stochastically »-converge.

PROPOSITION 7. Let f € K(Q;C>°(Q; A)). Then, as e — 0,

x x -~
(3.4) /QXQf (w,T (€—1) w, 5) drdp — //QXQXA(A) f(z,w,s)dzduds.

PROOF. Since C§°(Q) ® C*(2) ® A is dense in K(Q;C>(€2; A)) we first check
(3.4) for fin C§°(Q) @ C*(2) ® A. However, it is sufficient to do it for f under the
form f(z,w,y) = o(z)(w)g(y) with ¢ € C§°(Q), ¥ € C>*(2) and g € A. But for

[l (2)ez)im — [ (o (r() oo (2)
([ o) o ()

([ wtran) /Q o)y (£ ) do

where the second equality above is due to the Fubini’s theorem and to the fact
that the measure p is invariant under the maps T'(y). But, as ¢ — 0, we have the
following well-known convergence result:

/ p(x)g (@)dwa//@mm) G(s)dxdf as € — 0.
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Hence the sequence

/ S <3:,T <£> w, £> drdy — // f(:z:,w, s)dxzdudf.
QxQ €1 €2 QxQxA(A)

Now, let f € K(Q;C>(Q; A)) and let n > 0 be arbitrarily fixed. Let K C Q
be a compact set such that suppf C K. By a density argument we choose ¢
in C§°(Q) ® C*(2) ® A with supp¢ C K, such that || f — ¢l < n/(3|K]), |K]|
denoting the Lebesgue volume of K. By the decomposition

foQ fedxdp — foxQxA(A) fda:duﬁlﬂ = foQ(fE - ¢5)dzdu/\ R

+ Joxa @ dzdi = [[ a0y nca) $dxdndB + [[ . quna) (@ — fdeduds,

it follows readily that there exists €9 > 0 such that

/ fedadp — / / fdzdudp
QXN QXOAXA(A)
This completes the proof. ([

<nfor0<e<eg.

As a result, we have the following corollaries.

COROLLARY 2. Let u € K(Q;C>*(; A)) and let 1 <p < oo. Then, ase — 0,
(i) u® — o(u) stoch. in LP(Q x Q)-weak X, where o denote the canonical
mapping of BY into BY, and the function o(u) is defined by o(u)(z,w) =
o(u(z,w)) for a.e. (z,w) € Q xQ;
(i) ||u€||LP(Q><Q) - ”aHLP(QxQXA(A))'

PROOF. (i) For each f € C§°(Q) ® C*° () ® A we have uf € K(Q;C>(£; A)),
hence part (i) follows readily by Proposition 7. For (ii), since K(Q;C>(£; A))
is a Banach algebra, it is easily shown that, for 1 < p < oo we have |u|’ €
K(Q;C>(Q; A)) whenever u € K(Q;C>(£2; A)), so that once again by Proposition
7 we have, as € — 0,

/ [us|? dxdp — // [al” dedudp.
QxQ QXOQXA(A)
The proof is complete. (|

COROLLARY 3 (Lower-semicontinuity property). Let (ues)e>0 be a sequence in
LP(Q x Q) (1 <p < o0) such that ue — ug stoch. in LP(Q x Q)-weak ¥ as e — 0,
where ug € LP(Q x Q; BY). Then

(3.5) ||u0||LP(Q><Q;B’j1) < hgn_)%lf ”uE“LP(QxQ) :

PRrROOF. Let f € C5°(Q) ® C*(2) ® A. We have
(35) [ et < ol 1L
QxQ
Then taking lim inf._,o of both sides of (3.6) and using the equality

i [ 5]l 2o oxa) = Hﬂ (see part (ii) of Corollary 2 above)

e—0

LP (QxQxA(A))

<[4

one arrives at

(3.7) / / Uo fdadpdp
QXQxXA(A)

LPI(QXQXA(A)) lllsri}(l)lf ||u5||LP(Q><Q) .
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The space G(C3°(Q) ® C* () ® A) = C5°(Q) ® C* () ® C(A(A)) being dense in
LV (Q x Q x A(A)), (3.7) still holds with v € L (Q x Q x A(A)) instead of f.
Consequently

||u0||LP(Q><Q><A(A)) = sup -
1ol Lp (@ xaxacay S

// upvdrduds
QXQAXA(A)

lim inf el 1o (g x) -

IN

The lemma follows. O

Throughout the paper the letter E will denote any ordinary sequence E = (g,,)
(integers n > 0) with 0 < ¢, < 1 and €, — 0 as n — oco. Such a sequence will be
termed a fundamental sequence.

The usefulness of the next result will be brought to light in the sequel. Prior
to that we need one further definition.

DEFINITION 5. A function w € L'(Q x Q; BY) is said to be admissible if the
trace function (z,w) — u(z,T(x/e1)w,z/e2) (denoted by uf), from Q x Q to C,
is well-defined as an element of L*(Q x ) and satisfies the following convergence
result:

(3.8) / |uf| dedp — // || dedpdB as e — 0.
QX QXQOXA(A)

One can verify that any function in each of the following spaces is admissible:
K(Q; LP(£2; A)) (the space of continuous functions f : RY — LP(Q; A) with compact
support contained in @, 1 < p < o0), C(Q; L=(Q; A)) (for any bounded domain Q
in RV).

PROPOSITION 8. Let (ug)eer C LP(Q X ) (1 < p < 00) be a sequence which
is weakly stochastically -convergent in LP(Q x Q) to some uy € LP(Q x Q; BY).
Then as E 5 € — 0 we have (3.1) (in Definition 4) for any admissible function

£ € K(Q; LY (Q; BY ")) where BY, > = BE 0 L<(RN).

PRrROOF. The space K(Q) ® C>*(Q) ® Biz,’oo is dense in IC(Q;LT’/(Q;BZ,’OO)).
Indeed C*°(Q) @ BY ™ is dense in L (Q; BY,">°), so that by [6, p. 46], our claim is
justified. With this in mind, we firstly check (3.1) for f € K(Q) ® C®(Q) ® B, ™.
It suffices to verify this for f under the form

fawy) = e@pwhy) (reQ,weyeRY) with
o € K(Q),veC™(Q) andv e B,

Let f be as above. Let § > 0 be freely fixed, and let w € A be such that [[v — w]|, <
d (where we have used here the density of A in BQI ). Set

9(z,w,9) = p@)p(W)w(y) (z€QweQyeRY),
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which gives a function g € K(Q) ® C*(2) ® A. We have

/ ue fedzdp — / / to fdzdudp
QxQ QXQAXA(A)

- /stz ucp(x)(T (x/e1)w)[v (x/€2) — w(w/e2)]dudp

—|—/ ucg®dadp — // Upgdxdudp
QxQ QXOAXA(A)

+//Q><Q><A(A) Uop(w — v)dxdpds
= (H+{I)+{ID).

As far as (I) is concerned, we have

, 1/p
(D] < Nlello 1Pllog el Lo@x ey (/K 0" — wff” dff)

where K is a compact subset of R containing the support of ». But v and w
possess mean value, so that, as ¢ — 0,

/ v — w|” dw — M(Jv —w|”) | K| since |v —w|” € B,
K

|K'| denoting the Lebesgue measure of K. In view of the equality [[v—wl, =

[M(Jv— u;|p/)]1/p/7 we have limps. 0 |(I)| < ¢d where ¢ is a positive constant inde-
pendent of . For (I1I), we have

/ / o (@ — B)dedudd
QxQXA(A)

< H170||LP(QXQ><A(A)) el oo 1910 10 — %\HLP,(A(A))

= clv—wl, <

where ¢ = [[Uo|| Lr(@xaxa(ay 9]l [¥]l- Next, since

/ ueg°drdu — // wogdxdudf
QX QXX A(A)

it follows that

/QXQusgp(x)w(T(x/el)w)w(x/sg)dzdu - // Uopypwdrdudl| < cd

QXQXA(A)

lim
E>e—0

where ¢ > 0 is independent of §, hence (3.1) follows with the above taken f, since &
is arbitrary. In view of the density of K(Q)®C>® () ® BA > in K(Q; L¥ (2; B, ™))
the result follows by repeating the same way of proceeding as done above. ([l

The next result is a mere consequence of the preceding result. Its easy proof is
left to the reader.

COROLLARY 4. Let u € K(Q;L>®(Q;BY™)) (1 < p < o) be an admissible
function in the sense of Definition 5. Then the sequence (u¥)e>o is weakly stochas-
tically ¥-convergent in LP(Q x Q) to o(u).
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The following result is the point of departure of all the compactness results
involved in this paper.

THEOREM 5. Any bounded sequence (ug)ecp in LP(Q X Q) (where E is a fun-
damental sequence and 1 < p < 00) admits a subsequence which is weakly stochas-
tically X-convergent in LP(Q x Q).

Its proof relies on the following result whose proof can be found in [32].

PROPOSITION 9. Let X be a subspace (not necessarily closed) of a reflexive
Banach space Y and let f, : X — C be a sequence of linear functionals (not
necessarily continuous). Assume there exists a constant ¢ > 0 such that

(3.9) limsup |fn(z)| < cl|z|| for all x € X.

where ||-|| denotes the norm in' Y. Then there exist a subsequence (fn, )i of (fn)
and a functional f €Y' such that limy, fr, () = f(z) for all z € X.

Proof of Theorem 5. Let Y = LP'(Q x Q@ x A(4)), X = C°(Q) @ C®(Q) ®
C(A(A)). Let us define the mapping L. by

Le(f) = /an ucfdudp (f € CF(Q)RC™(Q)RC(A(A)) = G(C3(Q)2C™(Q)@A)).
where f¢(x,w) = f(z,T(x/e1)w,z/e2) for (z,w) € @ x Q. Then

L(P| <e|7]
Indeed one has the inequality |L.(f)| < c[[f*llLr(oxn) and thus, as e — 0,
£l e (@xe) — Hf‘ L QXX AA)) (see Corollary 2). We therefore apply Proposi-

tion 9 with the above notation to get the existence of a subsequence E’ of E and
of a unique vg € LP(Q x Q x A(A)) such that

/ ue fodxdp — // vo(x,w, ) A(x,w, s)dxdpdp
QX QXX A(A)

for all f € X. But v = G o ug where ug € LP(Q x Q;BY), and so the result
follows. (|

lim sup : for all fe X.
€

LP (QxQxA(A)

In order to deal with the convergence of a product of sequences we need to
define the concept of strong stochastic X-convergence.

DEFINITION 6. A sequence (u)eso C LP(QxQ) (1 < p < o0) is said to strongly
stochastically X-converge in LP(Q x Q) to some ug € LP(Q x Q; BY) if it is weakly
stochastically X-convergent and further satisfies the following condition:

(3.10) luellooxay = ol Lo@xaxa(ay) -
We denote this by u. — wug stoch. in LP(Q x Q)-strong X.
REMARK 5. (1) By the above definition, the uniqueness of the limit of such

a sequence is ensured. (2) By the Corollary 2 it is immediate that for any u €
K(Q;C>(Q; A)), the sequence (uf).so is strongly stochastically X-convergent to

o(u).

The next result will be of capital interest in the homogenization process.
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THEOREM 6. Let 1 < p,q < oo and r > 1 be such that 1/r =1/p+1/q < 1.
Assume (ug)ecp C LI(Q X Q) is weakly stochastically X-convergent in L1(Q x Q)
to some ug € L1(Q x ;BY), and (ve).ce C LP(Q x Q) is strongly stochastically -
convergent in LP(Q x Q) to some vy € LP(Q x Q; BY). Then the sequence (u:v:)ecp
is weakly stochastically 3-convergent in L™(Q X Q) to ugvp.

PROOF. We assume without lost of generality that our sequences are real val-
ues. This assumption is fully motivated by the fact that in general, almost only
linear problems are of complex coefficients, and so in that case, the linearity per-
mits to work with real coefficients. This being so, we will deeply make use of the
following simple inequalities proved in [52]:

0 < |a+ 10" —[af” — pt[a|"*ab < c[t|"** (|af” + [b]")
(3.11) for each |t| <1 and for every a,b € R, where

s =min(p —1,1) > 0 and ¢ > 0 is independent of a, b.
We proceed in two steps.

Step 1. Set p' = p/(p — 1), and let us first show that the sequence z. = |v.|""> v,
is weakly stochastically S-convergent to |vg|” > vo in L' (Q x Q). To this end, let

ze " (QxQ; BZ/) denote the weak stochastic S-limit of (z.)eep in LP (Q x Q) (up
to a subsequence if necessary; in fact it is easily seen that this sequence is bounded
in LP (Q x Q). Let ¢ € C°(Q) ® C™(Q) ® A with [l rr(@x0a) < 1. We have by
the second inequality in (3.11) that

/ lve + tef|P dadp < / Ivslpda?du+pt/ zep“drdp
QxQ QxQ QxQ

+Cl |t|1+s

for |t| < 1, ¢1 being a positive constant independent of € (since the sequence (ve).cp
is bounded in LP(Q x §2)). Taking the lim inf g5, in the above inequality we get,
by virtue of (3.10) (in Definition 6) and the lower semicontinuity property (3.5) (in
Corollary 3) that

i o+ 10 deduds < [[ [Bol? dadpud
QXX A(A) QXX A(A)

it / / 2Gdudpdf + o [t |
QXOAXA(A)

On the other hand, the first inequality in (3.11) yields

I/ o 9" dodpds = [ [Gol? dadpud
QXQAXA(A) QXQAXA(A)

st [ (5ol Bo@edzduds,
QXQAXA(A)

hence

pt / / [0 [" ™2 Topdaduds < pt / / Zpdadpd + ey |t
QXQAXA(A) QXOQAXA(A)

Now, taking in the above inequality ¢ = v/ ||1/1||LP(QXQ;A) for any arbitrary ¢ €
C&R(Q) ® C*(2) ® A the same inequality holds for any arbitrary ¢ in place of
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©, which, together with the arbitrariness of the real number ¢ in [t| < 1, gives
-2
2 = |vol? " vo.

Step 2. Now, let us establish the convergence result u.v. — wugvg stoch. in
L™(Q x Q)-weak X. First of all the sequence (usv:)ecpg is bounded in L"(Q x ).
Next, let ¢ € C3°(Q) ® C*(2) ® A and set

£ = lim UV dxdp (possibly up to a subsequence).
E3e—0 Joxa

We need to show that £ = foxng(A) UoVopdadudB. First and foremost we have

©° € L"(Q x Q) and so, u.p® € LP (Q x Q) since 1/r' +1/q = 1/p’ and u. €
LY@ x Q). Thus, once again by the second inequality in (3.11) and keeping in
mind the definition of z. in Step 1, one has

/ |ze + tus¢€|pl drdp < / |Zs|p, drdp + p/t/ |Zs|p72 Zeuep®dzdp
QxQ QxQ QxQ
+er |t|1+s

/ lve P dxdp + p’t/ veusptdadp + ey |t
QxQ QxQ

since v = |2e|P 2 2 and |z.[” = |v-|P. On the other hand, one casily sees that the
sequence (us¢%)ccp is weakly stochastically 3-convergent to ugo(p) in Lp/(Q x Q),
so that, passing to the limit in the above inequality, using the lower semicontinuity
property (3.5), we get

// 2 + i@ dedpdB < // [0o|? dadudB + p'tl + ci |t|'F*
QXOXA(A) QXOXA(A)

// B dadpdB + p'te + ey [t
QXNOXA(A)

”

since z = |vg|” ?vo (as shown in Step 1), and therefore, |vo|” = |z|” . Besides, we

have by the first inequality in (3.11) that

/ / 12+ tiodl? dedpdB > / / 21 dwdpdp
QXOAXA(A) QXOAXA(A)
+p't / / 1217 2 2o pdwdpdp
QxOQxA(A)
= / / 21 dwdpdp
QxOxXA(A)

QXOAXA(A)

since vy = |z|p/_2 z. We are therefore led to
/ o / I+s
P t// VoUopdrdudB < p'tl + c1 |t| Vit <1,
QXQXA(A)
hence £ = foxng(A) Votippdxdudp. O

The following result will be of great interest in practise. It is a mere consequence
of the preceding theorem.
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COROLLARY 5. Let (us)ecr C LP(QXQ) and (ve)eer € LP (QXxQ)NL®(Qx Q)
(1<p<ooandp =p/(p—1)) be two sequences such that:
(i) ue — ug stoch. in LP(Q x Q)-weak X;
(ii) ve — o stoch. in L' (Q x Q)-strong X;
(iii) (ve)ecr is bounded in L™ (Q x Q).
Then u:v. — ugvg stoch. in LP(Q x Q)-weak X.

PROOF. By Theorem 6, the sequence (u:v: )ec g weakly stochastically Y-converges
towards ugvp in L1(Q x ). Besides the same sequence is bounded in LP(Q x ) so
that by the Theorem 5, it weakly stochastically X-converges in LP(Q x Q) towards
some wy € LP(Q x Q;BY). This gives as a result wy = ugvo. [l

The strong stochastic Y-convergence is a generalization of the strong conver-
gence as one can easily see in the following result whose easy proof is left to the
reader.

PROPOSITION 10. Let (uc)eer C LP(Q x Q) (1 < p < o0) be a strongly con-
vergent sequence in LP(Q X Q) to some ug € LP(Q x Q). Then (uc)eep strongly
stochastically S-converges in LP(Q X Q) towards uy.

In the first step of the proof of Theorem 6 we have proven the following asser-
tion: If v, — vy stoch. in LP(Q x Q)-strong ¥ then |v.[P~> v, — |vo|”~ % vy stoch. in
¥’ (Q x Q)-weak X. One can weaken the above strong convergence condition and
obtain, under an additional weak convergence assumption, the following result: If
ue — ug stoch. in LP(Q x Q)-weak ¥ and |uc|’? us. — vg stoch. in LP'(Q x )-weak

3, then
// upvodrdudf < lim inf/ |uc|? dxdp.
QXX A(A) =0 Joxa

Moreover if the above inequality holds as an equality, then vy = |ug|” -2 ug.
The above result is a particular case of a general situation stated in the following

THEOREM 7. Let (z,w,y,\) — a(x,w,y, \), from Q x Q x RN x R™ to R™ be
a vector-valued function which is of Carathéodory’s type, i.e., (i) and (ii) below are
satisfied:
(i) a(z,-,y,N) is du-measurable for any (z,y,\) € Q x RN x R™
(i) a(-,w,-,-) is continuous for du-almost all w € €2,
and further satisfies the following conditions:
(iii) |a(z,w,y, )| < (AP +1)
(iv) (a(z,w,y,\) —a(z,w,y,N))-(A—=X)>0
(v) a(z,w,-,A) € (A)™
for all (z,y) € Q@ x RN, all A, € R™ and for du-almost all w € Q, where ¢
is a positive constant independent of (x,w,y,A). Finally let (v.)eep C LP(Q X
Q)™ be a sequence which componentwise weakly stochastically ¥-converges towards
vo € LP(Q x Q; (BY)™) as E > € — 0. Then the sequence (a®(-,v:))ecr defined
by a®(-,ve)(z,w) = alx, T(x/e1)w, x/e2,ve(x,w)) for (z,w) € Q X Q, is weakly
stochastically -convergent in ¥ (Q x )™ (up to a subsequence) to some zy €
LP(Q x (Bf{)m) such that

(3.12) // Zovodzdpdf < lim inf a® (-, ve) - vedxdp.
QXQXA(A) E3e—=0 Joxa
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Moreover if (3.12) holds as an equality, then zo(z,w,y) = a(z,w,y,vo(x,w,y)).
We will make use of the following lemma.

LEMMA 2. Let Fy and Fy be two Banach spaces, (Y,9M, 1) a measure space,
X a p-measurable subset of Y, and g : X x Fy — Fy a Carathéodory mapping.
For each measurable function v : X — Fi, let G(u) be the measurable function
x — g(z,u(x)), from X to Fp. If G : uw — G(u) maps LP(X; Fy) into L"(X; F»)
(1 <p,r < o0) then G is continuous in the norm topology.

PROOF. A look at the proof of [21, Chap. IV, Proposition 1.1] shows that one
can replace in that proof, the Borel subset 2 of R by the measurable subset X of
Y, E by Fi, F by F3, and get readily our result. O

Proof of Theorem 7. By (iii) the sequence (a°(-,v.))ce is bounded in L (Q x
Q)™ thus there exists a subsequence E’ from E and a function zy € LP (Q x
Q; (Bj)m) such that a*(-,v.) — z stoch. in L? (Q x Q)™-weak ¥ as E 3 ¢ — 0.
Let us show (3.12). For that purpose, let ¢ € [C5°(Q) ® C=(Q2) @ A]™ (which is
dense in LP(Q x Q; A)™); then the function (z,w,y) — a(z,w,y,¥(z,w,y)) lies
in C(Q; L>=(2; A))™. Indeed, as a result of (i), the function a(-,w,y, (-, w,y)) is
continuous. Moreover for each fixed z € Q, a(z,-, -, ¥(x,-,-)) € L=®(Q; A)™: in
fact for any y € RY we have |a(z,-,y,9¢(z,-,y))| < c1 where ¢; = ¢(1 + ||w||’;o_1)
and the function a(z, -, y, ¥ (z,-,y)) is p-measurable; furthermore, for p-a.e. w € §,
the function a(z,w, -, ¥ (z,w,-)) belongs to (A)™. In fact ¥ (z,w, ) € (A)™, and it
suffices to check that a(z,w, -, ¢) € (A)™ for any ¢ € (A)™. But since the function
¢ is bounded, let K C R™ be a compact set such that ¢(y) € K for all y € R,
Viewing A — a(x,w,-,\) as a function defined on K, we have that this function
belongs to C(K;(A)™) (use also hypothesis (v)), so that by the classical Stone-
Weierstrass theorem one has a(z,w,-, ¢) € (4)™; see either [46, Proposition 1] or
[45, Proposition 3.1] for the justification. As a result, we end up with the fact that
the function (z,w,y) — a(z,w,y,¥(x,w,y)) belongs to C(Q; L>=(2; A))™.

We now use (iv) to get

[ @) = a0 (o = w)dod 2 0
QxQ
or equivalently,

/ a(,ve) - vedwdp > / a®(+,ve) - Yedrdp + / a®(, Ye) - vedadp
QxQ QxQ

QxQ
[ @) vadedn
QXN

Taking the liminfg/5. ¢ of both sides of the above inequality we get

(3.13) liminf / a® (-, ve) - vedaxdp > // Zo - YdzdudB
QxQ QXX A(A)

E’'3e—0
+ / / a(,¢) - todrdpdf
QXQAXA(A)

- / / a(, ) - bdzdudp
QXQAXA(A)
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where: for the first integral on the right-hand side of (3.13), we have used the defi-
nition of the weak stochastic X-convergence for the sequence (a®(+,v:)):c g, for the
second integral, we have used the definition of the weak stochastic X-convergence
of (ve)e associated with Proposition 8 by taking a(-, 1) as a test function, and fi-
nally for the last integral, we use the same argument as for the preceding integral.
Therefore, subtracting foXQXA(A) 20 - Vodzdudf from each member of (3.13), we
end up with

(3.14) Eglaigg Joxa 07 (5 ve) ~vedzdp = [[o, 0 n(a) Z0 - Dodadud
| e foXQxA(A) (30 —6(-,1/1)) - (Vo — )dxdudf

for any ¢ € [C5°(Q) ® C=(Q2) @ A]™. The right-hand side of (3.14) is of the form
g(z,w, s, 9(z,w, s)) and, due to the fact that Zp € LP (Q x Q x A(A))™, one easily
deduces from assumption (iii) (in Theorem 7) that g(z,w, s, %) € L*(Q x Q2 x A(A))
for any 1 € LP(Q x Q x A(A))™, so that the operator G defined here as in Lemma
2 (by taking there X = Q x Q x A(A), F1 = LP(Q x Q x A(A))™, F, = LY(Q x
Q x A(A))) maps LP(X; Fy) into LY(X; Fy). In view of Lemma 2, the map G is
continuous under the norm topology. As a result, the inequality (3.14) holds for
any 1 € LP(Q x © x A(A))™ (that is for any 1 € LP(Q x BY%)™). Hence taking
in (3.14) 1 = vy we get readily (3.12).

For the last part of the theorem, assuming that (3.12) is actually an equality, we
return to (3.14) and take there ¢ = vy + tw, w € LP(Q x Q; BY)™ being arbitrarily
fixed and t > 0. Then,

// (20 —a(-, Vo + tw)) - wdzdpdp <0 Yw € LP(Q x Q; BY)™.
QXOXA(A)
Letting t — 0, and next changing w for —w, we end up with
// (B0 — (-, B0)) - BdedudB = 0 Y € LP(Q x O B%)™,
QXOAXA(A)

which implies zg = a(-, vp). O

As was said before the statement of Theorem 7, if we take a(z,w,y,\) =
AP “? Xand m = 1, then we arrive at the claimed conclusion by the above theorem.

Now we assume in the sequel that the H-supralgebra A is translation invariant
and moreover each of its elements is uniformly continuous, that is, A is an algebra
with mean value. The next result requires some preliminaries. Let a € RY. Since A
is translation invariant, the translation operator 7, : A — A extends by continuity
to a unique translation operator still denoted by 7, : B} — BY (1 < p < o0).
Indeed 7, is bijective and ||7,ull, = |lull, since M(|r,ul”) = M (7, [u|”) = M(|Jul")
for all u € A. Besides, as each element of A is uniformly continuous, the group of
unitary operators {7, : a € RV} thus defined is strongly continuous, i.e. T,u — u
in BY as |a] — 0 for all u € BY. Moreover

(3.15) M (7,u) = M (u) for all u € BY, and any a € RV,
Arguing as above we see that the group {7, },cr~ yields a family of mappings still
denoted by {7, }4erny (each of them sending LP(; BY) into itself) verifying

Tatt (W, y) = Tau(w, - )(y) = u(w,y + a)

for a.e. (w,y) € Q x RY and for u € LP(Q; BY).
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With this in mind, we begin with the following preliminary result.

LEMMA 3. Assume the H-supralgebra A is an algebra with mean value on R
i.e., it is translation invariant and each of its elements is uniformly contmuous
Let (ue)ecr be a sequence in LP(Q x ) (1 < p < o0) which weakly stochastically
Y-converges towards ug € LP(Q x ; BY). Let the sequence (ve)ecr be defined by

ve(x,w) = / ue(z + e2p,w)dp ((z,w) € Q x Q).
B
Then, as £ >¢ — 0,
(3.16) ve — vg stoch. in LP(Q x Q)-weak ¥
where vy is defined by vo(z,w,y) = [5 uo(z,w,y+p)dp for (z,w,y) € Q x A xRN,

REMARK 6. Assume Lemma 3 holds. Then as F > ¢ — 0,

1
(3.17) / (x + y,w)dy — ==wg stoch. in LP(Q x Q)-weak X.
|BEQT| Beyr |Br|

The above convergence result will be of particular interest in the next result.

Proof of Lemma 3. Let ¢ € C§°(Q), f € C*(2) and g € A. One has

/ng (/B us(z + szp,w)dp> o(x)f (T (831) w) g (832) dzdp
- /B ( /Qm ez + £ap,w)pl@) f <T (3) w) g (3) da:du) i

In view of the Lebesgue dominated convergence theorem, (3.16) will be checked as
soon as we show that for each fixed p € RY,

/ ue(x + e2p,w)p(x) f (T (i) w) g (i) dxdp

QxQ €1 €2

— / / T_puo(z,w, 8)p(z) f (W) (s)dBdrdp when E 5 e — 0.
QxQ JA(A)

First of all, let us beginning by noticing that since G; is a bounded linear operator
of BY into L'(A(A)), we have

6 ([ wolew ko) = [ Grtuntowns+ oo
Br B,
where u is as above. So let a € RY and let ¢, f and g be as above. One has

foQUa(SE—EN w ( ( ) (Ei) dxdp =
f(Q era) XD ue(z, w) (r +e2a)f (f ) ) (% + a) dxdp
foQ ue(z W)<P($+52a)f( (f +2 ) ) (m +a) dxdp
- f(Q\(Q—aga))xQ ue(z, w)p(z + £2a) f (5 a) (% + a) dxdu

T
+ J(@—cra)\@)xa Ue (@ w)p(x + £20) f ( ( + &2 a) ) (é + a) dxdp
=(I)—{II)+ (III).
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As for (I) we have

/stz us(z,w)p(x) f (T (;l + i—?a) w) (T-a9) (é) dzdpu

+ /Q @)l + 2a0) = (o)

(1 (2+20)-) o 5

(11) + (12).

1) = [ e (7(£)w) tras) (£ ) de

n /Q uaplo)ra) ()

(5 5e)e) o (o (5) o)
(I1) + (13).

The H-supralgebra A being translation invariant, we have 7_,g € A and so,

(1)

But

() — / / Uo(x,w, 8)p(x) f(W)T_ag(s)dpdzdy as E > ¢ — 0.
oxaJa)

But

/ oy, )7 mB()AB = M(uo(,0,)(7—ag)
A(A)

= M(T*G[Tauo(xawa')g])
= M(rqup(z,w,)g) (see (3.15))

_ / (2, w, 5)§(s)dP.
A(A)

287

Note that here we have identified ug(z,w,-) € BY with its representative still de-
noted by up(z,w, ) € BY so that M;(uo(z,w,-)) = M(uo(z,w, ")), uo(z,w,-) on the
left-hand side of the above equality being an equivalence class whereas ug(z,w, )

on the right-hand side is one of its representative. For (I}), we have

()] < el e guay 19llo 9]l

([l (r(ze2))-s(r(2))

[ (r(220)e) s (r(£)o)] aaa
ool (G5 )0 ((5)) @

But

p/
dxdpu.
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Since the group U(z) is strongly continuous in L?' (Q) (see Subsection 2.1) we get
immediately (using the Lebesgue dominated convergence theorem) that

Joal (1 (5 # 50 e) =1 (7(5) )
QxQ €1 €1 €1
Thus (I5) — 0 as E 5 € — 0. Finally since the sequence (uc)ecg is bounded in

LP(Q x Q) and as p > 1, this sequence is uniformly integrable in L!(Q x ), so that
from the inequality

pl
dzdp — 0 as e — 0.

/ e (2, 0)] [ (@ + £20)
(Q—e2a)AQ)xQ2

(G2l (5 )
€1 €1 €9

< el 1 sl | )] dds,
((Q—e2a)AQ)xQ

dzxdp

we see that (II) and (I1I) go towards 0 as E 3 ¢ — 0; here the symbol A between
the sets (Q — e2a) and @ denotes the symmetric difference between these two sets.
Hence the lemma. O

We are now able to state and prove the most important compactness result of
the paper. It will be of capital interest in the next sections.

THEOREM 8. Let 1 < p < oo. Let X be a normed closed conver subset of
WP (Q), Q being an open subset of RN. Let A be an ergodic supralgebra on R;JJV-
Assume (uc)eep 15 a sequence in LP(Q x Q) such that:

(i) ue(,w) € X for alle € E and for p-a.e. w € Q;
(ii) (ue)eer is bounded in LP(Q; WHP(Q)).

Then there exist ug € WHP(Q;IP,(Q)), u1 € LP(Q;WHP(Q)), ug € LP(Q %
Q; B;’i) and a subsequence E’ from E such that

(iii) uo(-,w) € X for p-a.e. w € Q and Dug(z,-) € (IE, ()N for a.e. z € Q
and, as E' 3¢ — 0,

(iv) ue — ug stoch. in LP(Q x Q)-weak;

(v) Due — Dug + Dyuy + Dyus stoch. in LP(Q x Q)N -weak 3.

PROOF. By Theorem 5, there exist a subsequence E’ from F, a function ug €

LP(Q x ;BY) and a vector function v = (v;)1<;<n € LP(Q x ©; B5)Y such that,
as E' 3 ¢ — 0, we have u. — ug stoch. in L?(Q x Q)-weak ¥ and Du. — v stoch.
in LP(Q x Q)N-weak X.
At this level, the proof consists of three parts. We must check that: Part (I)
(a) up does not depend upon y, that is Dyug = 0, (b) uo(x,-) € I2,(Q), that is
Dug(z,-) = 0 or equivalently [, uo(x,-)D;ppdp = 0 Vo € C°(Q) and (¢) ug €
Whp(Q; IP,(Q)); Part (II) ug(-,w) € X for p-a.e. w € Q and Dug(z,-) € IZ,(Q)N
for a.e. x € Q; Part (III) There exist two functions u; € LP(Q; W'P(2)) and
ug € LP(Q x £ B;&’i) such that v = Dug + Dyui + Dyus.
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Let us first prove (I). (a) Let ®.(z,w) = ex¢(x) f(T(x/e1)w)g(z/e2) for (z,w) €
Q x Q, where ¢ € C°(Q), f € C*(2) and g € A>®. Then

0 0
/ 3—%_ Sodrdy = — / eauc f7g° asp_dwdu— / U f* (Dy,9)° dadp
QxQ 0T Q%0 Ly QxQ

e
—/ E—juswgs(Di,wf)sdIdu
QxQ

where D,, g = dg/0y;. Letting E' 5 ¢ — 0 we get

/ / G0 Dy, f dudpud = 0,
QXX A(A)

hence fA(A) o (z,w, ~)5y\igdﬂ =0 for all g € A and all 1 <4 < N, which means
that up does not depend on y since the H-supralgebra A is ergodic.

(b) Let ®.(z,w) = e1p(x)f(T(z/e1)w) for (z,w) € Q X Q where ¢ € C§°(Q)
and f € C>°(Q). Then proceeding as above we get [, uo(z, ) D; fdp = 0 for all
1 <4< N and f € C>®(), which is equivalent to say that ug(x,-) € I2,(Q) for a.e.
x € @ (use property (P2) in Subsection 2.1).

(¢) Hypothesis (ii) implies that the sequence (uc)ee g is bounded in WP (Q; LP (1)),
which yields the existence of a subsequence of E’ not relabeled and of a function
u € WHP(Q; LP(2)) such that u. — u in WHP(Q; LP(Q))-weak as E' 5 & — 0. In
particular [;, ue(-,w)¥(w)dp — [o,u(-,w)y(w)dp in L'(Q)-weak for all ¢ € IE, ().
Therefore using [10] (see in particular Lemma 3.6 therein) we get at once ug €
WhP(Q; LP(R)), so that ug € WHP(Q; IP,(2)).

As for (II), repeating the proof of [parts (iii) and (vi) of | [10, Theorem 3.7
(b)] we are immediately led to (IT). It remains to check (ITII) here above. We begin
by deriving the existence of ugs € LP(Q x Q;B;’fi‘). For that purpose, let » > 0

be freely fixed. Let B.,, denote the open ball in RY centered at the origin and of
radius esr. By the equalities

1 1
— [ ue(z,w) — —— us(x + p,w)d
(( o wt >p>

egr

1 1

= — / (ue(z,w) —uc(z + p,w)) dp
€2 | Beyr| Beyr
1 1

= —= - d
2 TB,] Jp, Lel) uelo teap )y

1 1
= _m/ dp/ Du.(x + teap,w) - pdt
T B, 0

where the dot denotes the usual Euclidean inner product in RY, we deduce from
the boundedness of (u.)ecp in LP(Q; WHP(Q)) that the sequence (27).c defined
by

1 1
Zg(xaw):_ us(wi)_— us(x—kp,u})dp ((I,LU)EQXQ,EEE/)
€2 |BEQT| Beyr

is bounded in LP(Q x Q). It is important to note that in general the function

2L is well defined since u. and Du. can be naturally extended off ) as elements

of LP(Q; LY (RN)) and LP(Q; LY (RM)N), respectively. Once more, by virtue of

loc loc
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Theorem 5 we find that there exist a subsequence from E’ (not relabeled) and a
function z, in LP(Q x ; BY) such that, as E' 5 ¢ — 0

(3.18) 2L — 2z stoch. in LP(Q x Q)-weak X.

As (20)eep is bounded in LP(Q x ) we have (since €9, e2/e1 — 0 as E' 3¢ — 0)
that

(3.19)  e22" — 0in LP(Q x Q) and 22" — 0 in LP(Q x Q) as E' 3 ¢ — 0.
€1

Now, for ¢ € C5°(Q), f € C=(£2) and g € A> we have
(3.20)

foQ (gml (z,w) |BE i fBE2T ozt pw )dp) o) f (T (i) w) 9(Z)dzdp
=~ Jgwae2#(@w)f (T (£)w) (£ )azl( ) dady
Qx0 if z (, W)@(I)g(—) (Diwf) (T w)dxdu
= Joxa # (@, w)p(@)f (T (i) w) 3—; (5) dzdj.

\_/

Passing to the limit in (3.20) (as E’ 3 € — 0) using conjointly (3.18), (3.19) and
Remark 6 (see (3.17) therein) one gets

foxQXA(A) Gi (’Ui(x, w,) — ﬁ fBT 'Ui(xu w, -+ p)dp) (s)cp(:c)f(w)ﬁ(s)dxdudﬁ
e 5 (@, 8)0(2) f()0,G(s)dwdudB,
the derivative 9; in front of g being the partial derivative of index ¢ with respect to
A(A) defined in the preceding section as 9,9 = G(0g/0y;) (see also (2.8) therein).
Therefore, because of the arbitrariness of ¢, f and g, we are led to
O (v, w,) = G (vi(w,w,) = 7 [, vilw,w, -+ p)dp) ac. in A(A)
for (z,w) € Q x Q.
But 9,2, (z,w, ) = 0;G1(2r(z,w,)) = G1 (gzr/ﬁyi(a:,w, )), hence, for 1 <i < N,

Oz, 1
o LW, ) =0T, W, ) —

vi(x,w, -+ p)dp a.e. in Rév for (z,w) € Q x Q

(recall that G is an isomorphism of BY onto L'(A(A)) which carries over B
onto LP(A(A)) isomorphically and isometrically). Set fr(r,w,y) = z(z,w,y) —
My(zr(z,w,-)) where here, z,(z,w,-) € B is viewed as its representative in BY
and M, = M standing here for the mean Value with respect to y defined as in the
precedlng section (see in particular property (2) and equality (2.5) in Subsection
2.3). Then My(f,) = 0 and moreover D, f, = Dyz, so that f. € LP(Q x Q;B%)
with 0f,./0y; € LP(Q x Q; BY), that is,

fr € LP(Q x Q; BY?/C).

So let g, = Jy o f, where J; denotes the canonical mapping of Bi"p /C into its
separated completion B;p Then g, € LP(Q x §; Bl’p *) and moreover

0y,
yi

(z,w,) = vi(z,w,-) — / vi(xz,w,-+p)dp (1<i<N)
1B:| /B,
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since g(w (x,w,-) = 2{/: (x,w,-) = g’; (z,w,-). Now, we also view v;(z,w, ) as its

representative in Bf). Taking this into account, we have
lgr(z,w,") = g (z,w, ')Hzg;fl

(321) < Hgygr(xv W, ) - V(.I, W, ) + My(V(I, w, ))H
+ ||Dygr/(:17,w, ) - V(Iawa ) + My(v(xawa ))|ﬁ) .

But B
Do) — vl ) + My, ],

= Hﬁf& v(z,w, -+ p)dp — My(v(:v,w, ))Hp

Therefore, since the algebra A is ergodic, the right-hand side (and hence the
left-hand side) of (3.21) goes to zero when 7, — +oo. Thus, the sequence
(9r(z,w,))r>0 is a Cauchy sequence in the Banach space B;&’i, whence the ex-

istence of a unique us(x,w, ) € B;’i such that
gr(z,w, ") — uz(z,w,-) in B;’i as r — +00,
that is
Dygr(z,w,) — Dyus(z,w,-) in (BH)N as r — +oo.
Once again the ergodicity of A and the uniqueness of the limit leads at once to
Dyus(z,w,-) = v(z,w,-) — M, (v(z,w,-)) a.e. in RY and for a.e. (z,w) € Q x €.

We deduce the existence of a function us : Q@ x @ — B, (z,w) — uz(z,w,-), lying
in LP(Q x Q; BY) such that

(3.22) v — M(v) = Dyus.

Let us finally derive the existence of u;. Let ®.(z,w) = ¢(z)U(T(x/e1)w) ((z,w) €
Q X Q)) with Y e C(())o (Q) and ¥ = ('l/]j)lgjg]\/' € Viiv (18 din7p/\If = 0) Clearly

N ou
= — w5 dxdu
jZl/QxQ Ox; ;/Qxﬂ Jal’;

where 95 (z,w) = 1;(T(v/e1)w). Passing to the limit when £’ > ¢ — 0 yields

N

dp
vjpidrdudf = // u 1 ——dxdudg,
Z//QXQXA(A) I Z QxOXA(A 0 Jaxa‘

j=1

or equivalently,

// (Vv — Duyg) - Updzdpds = 0,
QXQAXA(A)

and so, as ¢ is arbitrarily fixed in C§°(Q),

// (V(z,w, 8) — Dug(z,w)) - ¥(w)dudB =0 VU € Vyiy.
QxA(A)
This is also equivalent to

/ (M(v) — Dug) - Wdpu =0 for all ¥ € Vg,
Q
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Therefore, the Proposition 1 provides us with a function wuy(x,-) € WHP(Q) such
that

(3.23) M(v) — Dug = Dyus(z, ).

Putting (3.22) and (3.23) together leads at once at v = Dug+ Dyui + Dyus, where
the function uy : z +— wuy(z,-) lies in LP(Q; W1P(Q)). This completes the proof. [

REMARK 7. The preceding theorem generalizes its homologue (see Theorem
3.5 in [32]) as follows: In Theorem 8 above, take Q = A(A,) where A, is any H-
supralgebra on RY which is translation invariant and whose elements are uniformly
continuous. Then thanks to Theorem 3, a dynamical system can be constructed on
A(A,) such that the corresponding invariant probability measure is the M-measure
3. associated to A,. Therefore by the equality (2.11), our claim is justified since
in [32, Theorem 3.5], both the algebras A and A, are assumed to be ergodic while
here, the algebra A, is not assumed to be ergodic. We will see in the next section
how the above result is used, and how it generalizes the one in [32] as claimed.

4. Application to the homogenization of a linear partial differential
equation

We need to show how the preceding result arises in the homogenization of
partial differential equations. To illustrate this we begin by focusing our attention
on the rather simple case of an elliptic linear differential operator of order two, in
divergence form, namely, we consider the following boundary-value problem

N
(4.1) _1-,3218% (%‘(fvaT(w/sl)w,w/az)?,g;) —finQ
ue = 0 on 0Q)

where @ is a bounded open subset in RY, f € L>®(Q; H=1(Q)) = L>=(; W—12(Q)),
aij € C(Q; L (% B(RY))), aij = @j; (the complex conjugate of aj;), and (a;)1<ij<n
satisfies the following ellipticity condition: there exists a constant o > 0 such that
Zgj:l aij(z,w, )N > a|A]® for all (z,y) € Q x RV, for du-almost all w € Q and
for all A € CN. Tt is a well-known fact that for each € > 0 (4.1) uniquely determines
ue = uc(z,w) € HHQ; L*(Q)) in such a way that we have in hands a generalized
sequence (ug)e>o. The fundamental problem in homogenization theory is the study
of the asymptotic behavior of such a sequence under a suitable assumption made
on the coefficients a;; of the operator in (4.1). Here, as we will see in the sequel,
it will be sufficient to make this assumption with respect to the variable y € RV,
Prior to this, it is worth to recall the following facts: firstly, in the case when the
functions a;; do not depend on the variable y, the homogenization of (4.1) has been
conducted in [10]; secondly, in the case when the coefficients a;; depend only on the
variables z,y (i.e. the functions a;;(z,-,y) are constants), it is commonly known
that under the periodicity assumption on the functions a;; (with respect to y), the
homogenization problem for (4.1) has already been solved by many authors and
the results are available in the literature. In the same case, it is also known that
in the general framework of deterministic homogenization theory the same results
are available in the ergodic environment; see e.g. [31]. However, in contrast with
the ergodic setting, no result is available in the non-ergodic framework so far. The
following theorem provides us with a general homogenization result in all settings:
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the stochastic one, the coupled stochastic-deterministic one and the deterministic
one as well.

THEOREM 9. Assume the following assumption holds:
(4.2) aij(z,w,+) € A for allx € Q and p-a.e. w € Q (1 <i,j < N).

For each fized € > 0 let ue be the unique solution to (4.1). Then, as e — 0,

(4.3) ue — ug stoch. in L*(Q x Q)-weak
and
0 0 — 0
(4.4) 8Zj — 87”? + Djur + %yj stoch. in L*(Q x Q)-weak ¥ (1 <j < N)

where the triple (ug,u1,uz) € F' = HI(Q;12,(Q)) x L2(Q; WhH2(Q)) x L*(Q x
Q; B;’i) is the unique solution to the following variational problem

u = (ug,u1,uz) € F*:

45 S B _

(4.5) > Jloxaxaca) @iiDjubivdzdudB = (f,To) for all (vo,v1,v2) € F!
ig=1

with Dju = Oug/Ox;+D; wu1+G1(uz/dy;) (same definition for D;v) and (f, Do) =
Jo (f(w),o(w)) du, (-,-) denoting the duality pairing between H1(Q) and Hg(Q).

Proor. We have
N

(1.6) Y [ i)™ R~ (1))

for all v € Hy(Q), where af;(z,w) = aij(z, T(x/e1)w, x/e2) for (z,w) € Q x Q. By
taking the particular v = u. (-, w) and and making use of the properties of the matrix
(aij)1<ij<n and of the function f we get the existence of an absolute constant

¢ > 0 such that sup,g ||u8(-,w)||Hé(Q) < ¢ for p-a.e. w € Q. Hence, by Theorem 8

(where we take there X = H{(Q)), given any fundamental sequence E, there exists
a subsequence E’ of E and a triple u = (ug,u1,u2) € F! such that, as E' > ¢ — 0
we have (4.3)-(4.4). Thus the theorem will be proven as soon as we check that u
verifies the variational equation (4.5). In fact it is easy to see that equation (4.5) has
at most one solution, so that checking that u verifies (4.5) will prove that u does not
depend on the subsequence E’, but on the whole sequence € > 0 which will therefore
establish Theorem 9. Before we can do this, let us, however notice that the space
Fo = [D(Q)® (12, ()] x [D(Q)& 1> (€ ()] X [D(Q) £C>(2) & (1 00) (4™ /C)] is
dense in F'. Indeed, this comes from the fact that I (C>°(Q)) (resp. (J100)(A>/C))
is dense in W12(Q) (resp. B;i), where J; (resp. o, I2) denotes the canonical

mapping of 8114’2/((: (resp. B3, C*°(Q)) into its separated completion B;’i (resp.
B2, Wh2(Q)); see Section 2 (particularly the Subsections 2.1 and 2.3 therein).
With this in mind, let ® = (¢g, I2(11), (J1 0 0)(1h2)) € F§° and define

. (z,w) = o (w,w)+e1r(z, T(x/e1)w) +eatha(z, T(w/e1)w, x/e2) ((z,w) € QX Q)

where 1y € C5°(Q) ® I, (Q), ¥1 € C5°(Q) ® C>(R) and 1y € C°(Q) ® C=(Q) ®
(A°/C); clearly ®.(-,w) € C3°(Q). Taking in (4.6) the particular v = ®.(-,w) and
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integrating the resulting equality over Q with respect to u, we get
N [—
Oue 0P —
4.7 c——Sdadu = {f,®.).
(4.7) [ o= ()

3,5=1

One easily show that as e — 0, <f,55> — <f,EO> and 0¥, /0x; — OYo/0x; +
D; I3 (1) +0(Jy00)(12)/0y; = 0o/ Oxi + D; b1 + O /Dy stoch. in L?(Q x Q)-
strong ¥ (1 < i < N). Putting together this convergence result with (4.4), we get
by Theorem 6 that, as £’ 3 ¢ — 0,

Ou. 0D,

8$j 8%1
where CDju = 8u0/8;vj —l—ﬁijul —I—EUQ/(?JJ]‘ and ©,® = awo/al'i-i-Di)w’lﬁl +6w2/8y1
Note that G1(D;u) = Dju and G(D;P) = G1(0(D;P)) = D;P. Hence a passage to
the limit in (4.7) using Proposition 8 (recall that the function a;; € C(Q; L°°(Q; A))
and is therefore an admissible function in the sense of Definition 5) yields

— D,;u®;® stoch. in L*(Q x Q)-weak %

N
// ZL\U]D)Ju]D%(I)d:cd;Ldﬂ = <f, EO> for all € .7:80
i1/ Jaxaxa(a)
We therefore get (4.5) by density of F§° in F'. This completes the proof of the
theorem. ]

Now, we need to show that Theorem 9 generalizes all the existing results in
the framework of homogenization of linear elliptic equations. To that end, we will
distinguish three cases: (1) the case when the functions a;; and f do not depend
on the random variable w; (2) the case when the functions a;; do not depend on
the deterministic variable y and, (3) the case when the functions a;; depend upon
both w and y and the function f does not depend on w, but with = A(A,) where
A, is some algebra with mean value on RY.

For the first case we have a;;(z,w,y) = aij(x,y) and f(z,w) = f(z) for
(z,w,y) € @x QxR In that case, the problem (4.1) is a deterministic one, and its
solution u. does not depend on w. A rapid survey of the proof of Theorem 8 gives,
by the Remark 4, that the functions v and ug therein can be chosen in L?(Q; BY)Y
and in LP(Q; BY), respectively. This yields immediately the fact that the function
uy there is equal to zero, so that v = Dug + Dyus with us € LP(Q;B;&’Q). The
continuity assumption on a;;(x, -) can therefore be replaced by a measurability as-
sumption ag;(z,-) € L(R})), so that the homogenization result for (4.1) therefore
reads as

THEOREM 10. Assume the following assumption holds:
aij(x,-) € By forallz € Q (1<1i,j <N).
For each fized € > 0 let ue be the unique solution to (4.1). Then, as e — 0,
ue — ug in Hy (Q)-weak

and

= o=+ in L*(Q)-weak ¥ (1 < j < N)
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where the couple (ug,uz) € F' = HY(Q) x L*(Q; 3;124) is the unique solution to the
following variational problem

u = (ug,us) € F!:

N ~ Aug Juy 61}0 T,
18§ Soxaw (52 +0:1532)) (32 + G1(32) ) dndd = (£,70)

for all (vo,v2) € FL.

Equation (4.8) is well-known in the literature of deterministic homogenization;
see in particular [31].

For the case of a random operator (a;;(z,w,y) = a;;(x,w)), a similar type of
reasoning as the one in the previous case (using once again the Remark 4) yields
the following result.

THEOREM 11. For each fized e > 0 let u. be the unique solution to (4.1). Then,
ase — 0,

ue — ug stoch. in L*(Q x Q)-weak
and
Oug Oug

8$J 8—17] + D] wl1 stoch. in L2(Q X Q) weak (1 <Jj< N)

where the couple (ug,uy) is the unique solution of the following variational problem
(uO, u1) € Bt = Hg(Q; I7,(Q) x L2(Q;WH2(Q))

(4.9) _Zl Joxa ais (6_1;3 + Dj,wul) (g%f. +Ei,wvl)d$dﬂ = (f,%0)
i,j=
for all (vo,v1) € F.

Equation (4.9) is also well-known in the literature; see [10, 24, 25].

For the last case, we assume that = A(A,), A, being some algebra with
mean value on RY for the action H = (H.).>o defined by H.(z) = z/e1 (z € RV).
The ergodic algebra A (in Theorem 9) is denoted here by A, and its associated
M-measure by 3,. We use the same letter G to denote the Gelfand transformation
on A, and on A, as well. Points in A(A,) (resp. A(A,)) are denoted by s (resp. w).
The compact space A(A,) is equipped with the M-measure 3, for A,. We know
by Theorem 3 that one can define a dynamical system on the spectrum A(A,) of
A, so that the invariant probability measure is precisely the M-measure (3, for A, .

With the above preliminaries, our concern here is not to reformulate the state-
ment of Theorem 9, but to show how it includes the general setting of reiterated de-
terministic homogenization. For that purpose, let b;; € C(Q; L= (RY; B(RY'))) with
bij = Eﬂ and (b;j)1<ij<n satisfying the following ellipticity condition: there exists
a constant a > 0 such that Z” Lhij (@2, )N > a IA]” for all (z,y) € Q@ x RN,
for almost all z € RY and for all A € CV. Assume moreover that the following
hypothesis is satisfied:

(4.10) bij(x,-,y) € B4. and bij(z,2,-) € Ay ae. (z,y) €RY xR} (1<i,j<N).

Since by the construction of the dynamical system T'(z) on A(A,) (see the proof of
Theorem 3) we have

G(bij (2, - + 2,9)) (W) = G(bis (2, -, y))(T(2)w)
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(for all z € RN, for almost w € A(A.) and for any fixed (z,y) € @ x R)Y), we set
in a natural way

aij(w7w7y) = g(blj(xa 7y))(w) ((‘vavy) €Q X A(AZ) X RN)?

G being here the extension of the Gelfand transformation to the Besicovitch space
B,242§ see property (2) in Subsection 2.3. Then, in view of the properties of G, the
functions a;; thus defined satisfy all the requirements of Theorem 9 so that we get
a homogenization result for the following problem:

Noog r x\ Oue . 1
(4.11) — Z D <bij (I, - > (9.%“) =fin @, u. € Hy(Q).
2 J

g1 €
i.j=1 te?

It is important to note that we do not say that problem (4.1) is equivalent to problem
(4.11). In fact let us assume that the functions b;; are such that b;;(z,-,y) € A,.

Then
(o (=7 (5) 2) 5
= (90 (=2)) (1 (2)) 55)
= (o (h (4 2.2)) 02)

0 z x\ Ou.
o[ o (o2

the last equality being due to the fact that G is linear continuous. If in particular
w =26, (z € RY), the Dirac mass at z, then

O (o wr(E) o 2 Que 5.9 (o (g B2 OUe
8:171' * ’ €1 ’ 135} 8$j - 8{EZ * ’ 817 135} 8$j

= O (o gy BB Oue
T om I\ T e oxj )’

(,) denoting the duality pairing between A’ and A, (see Subsection 2.2). Thus, in
this particular case, Equation (4.1) becomes

N5 9
(4.12) —Z m <bij (I,Z—i- £,£> u€> = [in Q, ue € Hy(Q).

N——

ij=1 """

One therefore sees that (4.11) comes from (4.12) by taking there z = 0. It is also
to be noted that if the algebra A, is ergodic, then the dynamical system T'(z) is
ergodic, in such a way that (4.12) is equivalent to (4.11). However, still assuming
A to be ergodic and taking the functions b;; in C(Q; L>(RY; B(R)))) with (4.10),
and finally arguing as in [20, Section 4], one also obtains the equivalence of (4.11)
and (4.12). We also note here that the algebra A, is not assumed to be ergodic
in general, so that we have a great flexibility in Theorem 9 in the particular case
where Q = A(A,). Indeed, Theorem 9 works in all the environments: the ergodic
one and the non ergodic one for A,. In the particular case when the algebra A,
is ergodic, I2,(A(A.)) consists of constants, so that the function ug lies in Hg(Q).
We thus recover the well-known results in that environment. If we assume that A,
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is not ergodic, our result is then new. For the sake of completeness, let us give some
concrete situations in which our result applies.

ExaMPLE 1 (Homogenization in ergodic algebras). One can solve the homog-
enization problem for (4.11) under each of the following hypotheses:
(H); The function b;j(z, -, ) is periodic in y and in z;
(H)2 The function b;;(z, -, ) is almost periodic in y and in z;
(H)3 The function b;;(z,-,y) is almost periodic and the function b;;(z, 2, ) is
weakly almost periodic [19];
(H)4 The functions b;;(z, -, y) and b;;(z, z, -) are both weakly almost periodic.

ExAMPLE 2 (Homogenization in non ergodic algebras). For the sake of simplic-
ity, we assume here that N = 1. Let A, be the algebra generated by the function
f(2z) = cos ¥z (2 € R) and all its translates f(-+a), a € R. It is known that A is an
algebra with mean value which is not ergodic; see [22] for details. However, as said
above, one can solve the homogenization problem for (4.11) under the following
hypothesis: b;;(z,-,y) € Bf‘z and b;;(z, z,-) € Ay, where A, is any ergodic algebra
with mean value on R. The homogenization problem solved here is new. One can
also consider other homogenization problems in the present setting of non ergodic
algebras.

5. Application to the homogenization of nonlinear Reynolds-type
equations

In this section we study the homogenization problem for nonlinear Reynolds-
type equations. More precisely, let 1 < p < oo be fixed and let the function
(r,w,y,\) — a(r,w,y,)\) from Q x Q x RN x RY to RV satisfy the following
conditions:

For all (z,y,)\) € RV x RN x R™" and for almost all w € , a(x,-,y, \)

(5.1) is measurable and a(-,w, -, ) is continuous;
There are four constants ¢, ¢1,c2 > 0, 0 < a <min(1,p — 1)
and a continuity modulus v (i.e., a nondecreasing continuous
function on [0, +00) such that »(0) = 0,v(r) > 0 if » > 0, and
v(r) = 1if r > 1) such that for a.e. y € RY and for p-a.e w € Q,
(i) a(z,w,y,\) - X > co |A\P
i) la(z,w,y,\)| <c (1+ /\p71>

sz ey n<e (11

(ifi) |a(z,w,y, A) = a@’,w,y, N)| < v(le =21+ AP+ VP
oo (L N+ A =X

(iv) (a(z,w,y,A) —a(z,w,y, \)) - (A=XN)>0if X # N

for all z, 2’ € Q, all A, N € RY, where the dot denotes the usual

Euclidean inner product in R and |-| the associated norm,

Q being a bounded open set in RV,

We consider the boundary value problem
u (-, w) € WyP(Q) :
diva (x,T (Ei) w, L, Dug) =divb (:v, T (i) w, l) in Q
1 €2 €1 €2
with b € C(Q; L>(; B(R)))), where we assume that the scales £ and €5 are well-
separated as in Section 3. It is easily seen that the realization a(z, T'(z)w,y, ) is

(5.3)



298 MAMADOU SANGO AND JEAN LOUIS WOUKENG

well-defined for almost all w € €, such that the functions « — a(z, T(x/e1)w, /2, v(z))
of Q into RN (defined as element of L (Q)N for v € LP(Q)N) and (z,w) —
a(z, T(z/e1)w,x/eo, VU (x, T (x/e1)w,z/e2)) (for ¥ € C(Q; L“(Q;B(Rév)N))) of Q x

Q into RN denoted by a®(-, ¥¢) (as element of L>(Q x Q)V) are well-defined.
With this in mind, we see that the problem (5.3) admits a unique solution u. €
WyP(Q; LP(Q)) (for each fixed & > 0); see e.g., [28, Chap. 2|.

The main advantage of considering this problem lies in its application in hydro-
dynamics. One of the difficulties encountered in homogenizing the above problem
is that the right-hand side of (5.3) depends upon € and rather weakly converges in
LP' (0 W19 (Q)), contrary to what is usually considered in the literature.

Throughout the rest of this section, all the vector spaces are assumed to be
real vector spaces, and the scalar functions are assumed real valued. Obviously,
this entails that the results of Section 3 are still valid, the only difference being
that all the function spaces are real. Now, let A be an ergodic H-supralgebra on
R}’. Our goal here is to investigate the limiting behavior of (uc)cs0 (the sequence
of solutions to (5.3)) under the assumptions

(5.4) be C(Q; L™(2; A))

(5.5) ai(z,w,,\) € A for all (z,w,\) € Q@ x A xRY (1<i<N)

where a; denotes the ith component of the function a. Assuming (5.5), it follows
as in the proof of Theorem 7 that, for any ¥ € [C5°(Q) ® C®(Q) ® AV, the

() ,
function a(-, ¥) : (z,w,y) — a(z,w,y, ¥(x,w,y)) lies in C(Q; L°>°(; A)N) so that
by Proposition 8 we have the following convergence result:

(5.6) aS(-,¥%) — poa;(-,¥) stoch. in L' (Q x Q)-weak ¥ as e — 0 (1 <i < N),

o being the canonical mapping from BZ/ into Bi/ and (g o a;(-,¥))(z,w,y) =
o(a;(z,w, -, ¥(z,w,)))(y) for (z,w,y) € Q x Q x RY. Moreover the following result
holds.

PROPOSITION 11. The mapping ¥ +— a(-, ¥) from [C°(Q) ® C*(Q) ® AN into
¥ (Q x £ BIZZ;)N, extends by continuity to a unique mapping still denoted by a, of
LP(Q x Q; (BR)N) into LP' (Q x Bg)N such that

(a(-,v) —a(-,w)) - (v—w) >0 a.e in@Q xQx R;J,V

-1
||a'(.7v)||Lp/(Q><Q;Bz,)N < Cll(l =+ ||V||;ZP(Q><Q;(B£)N))
11—
||(1(-,V) - a(.’w)”Li’,(QXQ;Bi,)N < e ||1 + |V| + |W||‘Z£P(Q:gl;3§) ”V - WH%P(QxQ;BZ)N
a0, W) — (a5, w)| < vz — 2D+ W) @, in 9 x RY

for all v,w € LP(Q x Q; (BY)N) and all z,2" € Q, where the constant ¢ depends
only on c1 and on Q.

PROOF. It is immediate that for ¥ € [C5°(Q) ® C*°(Q) ® A]V, the function
a(-, ) verifies properties of the same type as in (5.2) (see in particular inequality
(iii) therein), so that arguing as in the proof of [44, Proposition 3.1] we get the
result. O
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As a consequence of the convergence result (5.6) we have the following result
whose proof is quite similar to that of [45, Corollary 3.9] (see also [48, Corollary
3.3)).

PROPOSITION 12. For ¢y € C§°(Q) ® IE, (), 1 € C°(Q) @ C=(2) and ¢2 €
CeR(Q) ®C>®(Q) @ A, define the function ®. (¢ > 0) by

(5.7) Q. = o + 197 + 2905,

e, O (z,w) = Yolz,w) + e1v1 (z, T(x/e1)w) + eatha(x, T(x/e1)w, x/e2) ((z,w) €
Q x Q). Let (ve)eer be a sequence in LP(Q x Q)N such that v. — vo stoch. in
LP(Qx Q)N -weak Y as E 3 € — 0 where vg € LP(Q xS BY)N. Then, as E 3> e — 0,

| atpe0vdsdu— [[ G-, Do + Duths + 00) - Todardud
QxQ QXQOXA(A)

where 3121\2 = (ajJQ)lngN with 3;'121\2 = G(0v2/0y;).

We recall that the algebra A is as stated earlier in this section. For 1 < p < 0o
we put Fy? = WyP(Q; 17, () x LP(Q; WHP(Q)) x LP(Q x Q;B;’i). We endow
Fy? with the norm

N

||u||]F[1)’P = {HDIin”LP(QXQ) + ||ﬁiku1HLP(Q><Q) + HEMUQHLF(QXQ;BQJ
1

'L
u = (uo,ul,uQ)eFl’p

In this norm, F? is a Banach space admitting F5° = [C5°(Q)® (17, ()] X [C5°(Q)®
I,(C=(2))] x [C5°(Q) ® C=(Q2) @ (J1 0 0)(A>®/C)] as a dense subspace where, J;
(resp. o, I,) denotes the canonical mapping of ka/(C (resp. BY, C>=(Q)) into its
separated completion B;i (resp. BY, W'P(Q)). With this in mind, we have the
following homogenization result.

THEOREM 12. Let 1 < p < o0o. Assume (5.4) and (5.5) hold with A an ergodic
H -supralgebra on RN which is moreover an algebra with mean value. For each real
e > 0, let uc be the unique solution of (5.3). Then, as e — 0,

(5.8) ue — ug stoch. in LP(Q x Q)-weak
and
0 0 Juz
(5.9) az; 8—:) + Dju1 + 8—% stoch. in LP(Q x Q)-weak ¥ (1 < j < N)

where u = (ug, u1,us) € Fé’p is the unique solution of the variational equation

(5.10) foxng(A) a(-,Du) - Dvdzduds = fong(A) b(z,w, s)divvdzdud
for all v .= (vg,v1,v2) € Fl’p

with Dw = Dwo+wa1+gl (D ywz)fOTW = (w05w17w2) € F " where: gl (D yWw2) =
(G1(Ow2/0y:))1<i<n, divw = dwwo—l—dwwwl—l—dwng with div,w, = EZ 1 D; ywi,

divyws = Gi (%ng), %ng = Zfil Ows /0y;, G1 being the isometric isomorphism
of BY, onto LP(A(A)).
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PROOF. First of all, it is evident that due to the properties of the mapping a
we have

(5.11) co [lue (- )y ) < NdivD (@) -1 (@) -

Thus, rising the two members of the inequality (5.11) to the power p’ and integrating
the resulting inequality over 2 we get

) S < ||divd®

eb luelfyrr guro (e [Hr———

Hence. as the sequence (divb®) is bounded in L?' (; W~1#'(Q)), it results that the
sequence (u; )z is bounded in Wy ?(Q; L?(£2)). Therefore the sequence (a (-, Due))eso
is bounded in L¥ (Q x Q). Thus, given a fundamental sequence E, Theorem

8 guarantees the existence of a subsequence E’ extracted from F and a triplet

u = (ug,us,uz) € Fy¥ such that (5.8)-(5.9) hold when E’ 3 ¢ — 0. The next
part of the proof is to show that u solves equation (5.10). For that purpose, let

o = (1/)0,Ip(1/)1),(J1 o Q)(1/)2)) S .7'80 and define &, (E > O) as in (57) Then
O, (,w) € C§°(Q) and further, in view of [part (iv) of] (5.2) we have

0< / (a® (-, Dug) — a*(-, D®,)) - (Du. — D®.)dxdp,
QxQ

or,

(5.12) 0< —/ a®(-,D®.) - (Dus — D®.)dzdu —|—/ b*div(ue — D )dxrdp.
QxQ QxQ
But,

/ b*div(ue — ®.)dxdpy = b*divu.dxdy — / bEdivipgdxdp
QxQ QxQ QxQ

_|_

/ b°[(divy, 11)° + (divy 92)®]dzdp

QxQ

—/ b[en(divepr)® + e2(divepe)®)]dzdp
QXN

+ / 2 (div o) S dzdp,
Qx0 €1
and, as E’ 3 ¢ — 0 we have by using (5.9),
(5.13) / bediv(u. — O, )dzdy — / / bdiv(u — ®)dwdudp.
QxQ QXX A(A)

Therefore passing to the limit in (5.12) using (5.8)-(5.9), the above convergence
result (5.13) together with Proposition 12, we get
(5.14)

0<— // a(-, D) - D(u — ®)dwduds + // bdiv(u — ®)dzdudp,
QXOAXA(A) QXOQAXA(A)

® ranging over F;°, and hence over Fé’p too (by a density argument). Taking in
(5.14) the particular functions ® = u — tv with ¢ > 0 and v = (vo, v1,v2) € Fy*,
then dividing both sides of the resulting inequality by ¢, and finally letting ¢t — 0,
we get (5.10).
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The next point to check is to show that u is unique. We begin by showing that
ug is unique. For that, we take in (5.10) the function v = (vg,v1,v2) with vg = 0
and v; = 0; then for each fixed (x,w) € Q x Q, us(x,w,-) is solution to

(5.15) Ja(ay @@, w. s, Dug(,w) + Dour (z,w) + Jiip(z, w, 5)) - 00df3
| = Jaw b(z,w, 5) divy wdp for all w € Bh.

So, let (z,w,&) € Q x Q x RY be freely fixed, and let ( = ((z,w,&) € B;’i be
defined by the cell equation

—

(5.16) / a(z,w,, & + 0C) - 0idf3 = / b(z,w, )divy wdf for all w € ByY.
A(A) A(A)

Since the linear functional w — fA(A)/l;(:zr,w, -)divy, wdf is continuous on B;i, it
follows by [28, Chap. 2| that equation (5.16) admits at least a solution. But this
solution is unique; indeed if ¢; and (s are solutions to (5.16), then we have

Jaw @@, w, €+ 0G) =z, w,, & + 0G)) - dBdB = 0
for all w € B;’i.

Taking in particular w = ¢; — {2 in the above equation it follows by [part (iv) of]
(5.2) that 821 = 852 and hence D,(; = Dy(2. We deduce that ¢; = (> since they
belong to B;i. Now, taking in (5.16) & = Dug(z)+ Du; (z,w), and comparing the
resulting equation with (5.15), we get by the uniqueness of the solution of (5.16)
that us(z,w,) = ((z,w, Dug(r,w) + Dyui(z,w)) for ae. (z,w) € Q x Q. This
shows the uniqueness of uy. The same process shows the uniqueness of w; and
of ug. We conclude that u is unique so that the convergence results (5.8) and
(5.9) hold for the whole sequence ¢ as expected. This completes the proof of the
theorem. (]

One can work out some homogenization problems related to problem (5.3),
(5.4) and (5.5). In particular one can solve:

(P)1 The coupled stochastic-periodic homogenization problem stated
as follows: For each fixed (z,w,\) € Q x Q x RY, the functions y
a(z,w,y,\) and y — b(z,w,y), are Y-periodic where Y = (0,1)". Here
we get the homogenization of (5.3) with A = Cper(Y).

(P)2 The coupled stochastic-almost periodic homogenization problem
stated as follows:
a(z,w,,A) € (APRM)N for any (z,w,\) € Q x Q x RY;
b(z,w,) € AP(RY) for a.e. (z,w) € Q x Q

where here, AP(RY) is the algebra of all Bohr almost periodic complex
functions [5] defined as the algebra of functions on RY that are uni-
formly approximated by finite linear combinations of functions in the set
{7 : k € RN} with v, (y) = exp(2ink - y) (y € RY). It is known that
AP(RY) satisfies assumptions of Theorem 8 (see [32]). We are led to the
homogenization of (5.3) with A = AP(RY).
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(P)s The coupled stochastic-weakly almost periodic homogenization
problem I:

a(z,w,,\) € (WAPRN))N for any (z,w,\) € Q x Q x RY;
b(z,w,-) € AP(RV) for a.e. (z,w) € Q x

where WAP(RY) is the algebra of weakly almost periodic functions on
RY [19, 32]. It is known [32] that WAP(RY) satisfies hypotheses of
Theorem 8 with moreover, AP(RY) Cc WAP(RY). This leads to the
homogenization of (5.3) with A = WAP(RY).

(P)4+ The coupled stochastic-weakly almost periodic homogenization
problem II:

a(z,w,,A) € (AP(RM))N for any (z,w,\) € Q x Q x RV;
b(z,w,) € WAPRY) for ae. (z,w) € Q x Q

which yields the homogenization of (5.3) with A = WAP(RY).

(P)5 The fully coupled stochastic-weakly almost periodic homoge-
nization problem III:

a(r,w,,A) € (WAPRN))N for any (z,w,\) € Q@ x Q x RY;
b(z,w,-) € WAP(RY) for a.e. (z,w) € Q x .

Here the suitable H-supralgebra is A = WAP(RY).

The same remark as the one made at the end of the preceding section is also
valid in this case, namely, the results of this section apply in all the environments:
the deterministic one and the stochastic one as well. This is also true for the
reiterated deterministic framework as seen in the preceding section. This therefore
extends all the results of the paper [32] since in the case when Q = A(A4,) we do
not need to make any ergodicity assumption on the algebra A, as it was the case
in [32].

6. Application to the homogenization of a model of rotating fluids

Throughout this section, all the vector spaces are assumed to be real vector
spaces, and the scalar functions are assumed real valued.

6.1. Introduction and preliminary results. It is well known that the flows
of commonly encountered Newtonian fluids are modeled by the Navier-Stokes equa-
tions. These flows are sometimes laminar, sometimes turbulent. Unfortunately, in
reality, the flows of fluids are almost always turbulent. Thus starting from two
identical situations, the flow may evolve very differently. This explains its dual
nature of being both deterministic and unpredictable (random).

In this section, our goal is not to establish the conditions for the prediction of
the turbulence, but to describe the asymptotic behavior of a model of turbulence.
More precisely we study the asymptotic behavior, as 0 < € — 0, of the following
three dimensional Stokes equation

Pfu, + h® x u. +gradp. =f in @
(6.1) divu, =0 in Q
u. =0 on 0Q.
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Let us make precise the data in (6.1). Let @ be a smooth bounded open set in R
(N = 3); in @ we consider the partial differential operator

P = — Z 815@ <aij (z,T(x/e1)w,z/e2) %)

i,j=1

where T' is an N-dimensional dynamical system acting on the probability space
(2, M, ), the functions a;; € C(Q; L=(;B(RY))) (1 < 4,j < N) satisfy the
following assumptions:

(62) Qi = Qjj

and there exists a constant o > 0 such that

N —
(6.3) 3 aij(z,w, )N > a|A]® forall A\ = (\;) e RN, all 2 € Q
: ij=1

and for almost all (w,y) € Q x RV,

The operator P¢ defined above is assumed to act on vector functions as follows:
for u = (u')1<i<ny € HHQ)Y = (WL2(Q))Y we have P°u = (P*u');<;<ny. The
function h® is defined by h*(z,w) = h(T'(x/e1)w, x/e2) for (z,w) € Q x Q, where
h = (h;) € L=(QB(R)))N. Likewise, for two vector functions u = (u) and
v = (v*) both in L?(Q)", u x v denotes the exterior product of u and v defined to
be the vector w = (w*) with

N=3
(6.4) w' = Z gipulv® (1 <i< N =3)
jk=1

where €5}, is the totally antisymmetric tensor defined as follows: €;;; = 0for 1 <¢ <
3, and €123 = €231 — €312 = 1 and €321 — €213 = €132 — —1; 611/6:Ej stands for the
vector (Qu'/dx;,...,0ulN /Ox;). Finally, the function f lies in L>°(Q; H=1(Q)N) =
L= (Q; (W=12(Q))N) and gradp (for p € L?(Q)) designates the gradient of p, some-
times denoted by Dp.

It is known that the problem (6.1) (for each fixed € > 0 and for p-almost all
w € Q) uniquely determines a couple (u.(-,w),p:(-,w)) € HHQ)N x (L*(Q)/R),
which therefore yields a unique couple (uc,p:) € H}(Q; L2(92))N x L?(; L2(Q)/R).
Thus we have in hand a sequence ((uc,p:))e>0 and we aim at investigating its
asymptotic behavior, as ¢ — 0, under suitable assumptions on a;; (1 < 1,5 < N)
and on h. It is worth noting that there exist many references on the homogenization
of Stokes equations in the periodic setting as well as in the stochastic setting.

We assume throughout this section that A is an algebra with mean value on
Rfjv . In the study of the problem (6.1) the following issues arise:

(1) To establish the conditions under which the solutions of (6.1) converge as
e —0;
(2) To determine the boundary value problem for the limit function.

These issues will be addressed in the next subsection. Prior to this, we introduce
the following space:

H(Q) = {u e H}(Q)" : divu = 0}.
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This is a Hilbert space under the Hilbertian norm of H3(Q)Y defined by
1/2

N
2
HVHHé(Q)N = (Z/Q ‘Vvk| dx) , V= (Uk) € H&(Q)N
k=1

with Vo* denoting the gradient of v* € HE(Q). Next we introduce the bilinear
form a®(wj; -, ) defined as follows:

8uk ov*
(w;u,v) Z / a;;(r,w) 8333 D dr (u= (u¥), v= (%) € H}(Q)N).
4,5,k=1 v

One easily sees by (6.2)-(6.3) that a®(w; -, -) is symmetric and satisfies the coercivity
assumption

(6.5) a*(w;v,v) = a|[Via g (veHFQN,0<e<1).

Moreover we have |a®(w;u, v)| < CHu”Hé(Q)N ||VHH5(Q)N for every u,v € HY(Q)V
and 0 < € < 1, where ¢ is a positive constant independent of € and of w € Q.

In the sequel we will use the following notation: the stochastic divergence
operator div, 2 will be merely denoted by div,,. With this in mind, we will make
use of the following spaces:

Wiie, (@) = {u e W@ : divou = 0}

and
Byl ={ue (By%)" : div,u=0}

where div,u = Efil Ou’ /dy; and div,u = sz\il D, ,u’, and of their smooth coun-
terparts

Wi, () ={u e c(Q)N : divyu = 0}
and

Ag?vy/R ={ue (AOO)N : M(u) =0 and divyu = 0}.

The following result holds.

LEMMA 4. The space 13 (W3, () (Tesp (J1 0 0)N (A %, /R)) is dense in
Wiin, () (resp. By, ) where, foru= (u'); € A%, /R, (Jro0)™ () = (J1(o(u'))):.
and, for u= (u'); € W5, (), 13" () = (I2(u ))

PROOF. As regard the denseness of WS, (€2) in Wdli’fw (€2), this follows in the
same way as the proof of [49, Lemma 2.3]. Concerning the next part, as it was
seen in Section 2, when Q@ = A(A), the space C>() is just replaced by the space
G1(0(A>®)) = G(A>*) = D(A(A)). Moreover the algebra A being ergodic, the in-
variant functions (for the dynamical system induced by the translations on A(A))
consist of constants. Therefore we have Wlf(A(A)) =G (B;&i) = W;EQ(A(A))
(see (2.13) and (2.14) for the properties of G1). Let us recall that W12(A(A))
is the completion of C*(A(A)) = D(A(A)) with respect to the seminorm (2.1)
(see Section 2), which is also the completion with respect to the same seminorm
of C*(A(A))/R = {u € D(A(A)) : fA(A) udf = 0} = D(A(A))/R (that is,
W;Q(A(A))) since any u € C*(A(A)) invariant (for the dynamical system in-
duced on A(A) by the translations on RY) is constant. Hence, using once again
[49, Lemma 2.3] we get the last part, and the lemma is proved. O
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Now, let Daiv(Q) = {p € C(Q)N : divp = 0}. It is known [28, 42] that
Daiv(Q) is dense in H}(Q). Next set
IF‘0 - HO(Q7 nv( )) X LQ(Q; Wch\i,(ﬂ)) x LQ(Q x € Ble )
and
oo = [Pan(@: 17, ()] x [C5°(Q) @ I3 Wik, ()] x [C5°(Q) © C¥(Q) @
(Jio Q) (Adivy /R)]

where: Daiy (Q; I2,(Q)) is defined to be the space of those u € (C5°(Q) ® I2, ()Y
such that divu = 0 (and the other members of the Cartesian product in Fg° are
defined as usual) and H}(Q;12,(2)) = {u € HO (Q; 12,(2))N : divu = 0}. Then
thanks to Lemma 4, the space F§° is dense in F}.

2. Homogenization result. Our goal in this subsection is the study of
the asymptotic behavior of (u.)e>¢ (the sequence of solutions to (6.1)) under the
following assumptions:

(6.6) a;j(z,w,) € Aforall (z,w) e Q@ xQ, 1<14,j<N;
(6.7) h e L°(Q; A)Y
We are now able to state and prove the homogenization result of this section.

THEOREM 13. Assume (6.6)-(6.7) hold. For each 0 < e < 1 and for a.e. w € Q
let u.(-,w) = (ub(-,w)) € H(Q) be defined by (6.1). Then as e — 0,

(6.8) u. — g stoch. in L*(Q x Q)N -weak
and
oul oul oul
(6.9) 815 813 + Djul + 8—% stoch. in L*(Q x Q)-weak ¥ (1 < j,k < N)
where u = (ug,uy,uz) € F} (with w; = (uF)1<p<n, 0 < i < 2) is the unique
solution to the following variational problem:
(6.10) a(u,v) + foXQ(h X ug) - vodzdu = (f,vp)
for all v = (vqg,v1,v2) € F}
with:
N 6uk _ —
a(u,v) = Z // a;j(z,w,s) (8—0 + Djul + 3ju§>
ikl Y QXQxA(A) Zj
k —
" (800 _|_Ei1wvlf + 8iv§) dxdudp;
8:@»
Bw) = [ Blos)ds,
A(A)
() = [ (EC.)vol)) s gy sy
and

(%—172“ = G1(0uk /0y;) (and a same definition for 8152;)
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PROOF. We have (for each 0 < ¢ < 1 and for p-a.e. w € Q)

a®(w;ue(,w),v) + fQ(h5(~,w) X Ug(-,w)) - vdr — prE(-,w)divvd:c
= (f(-,w),v) for all ve H} Q)N

where (f(-,w),v) = (£(,w), v)g-1(Q)~,mi (@)~ - Taking the particular v = u.(,w)
in (6.11) and using the fact that (h®(-,w) x u.(,w)) - ue(-,w) = 0, we obtain
immediately that the sequence (uc(-,w))e>0 is bounded in HJ(Q)" uniformly in w.
On the other hand, it is an easy task (using the above boundedness condition) to
see that

(6.11)

[(gradp- (- ), v)| < ¢ [V g gy for all v € HY(Q)N,

c being a positive constant independent of w and of v € H(Q)YN. Hence, the
sequence (gradpe(-,w))o<e<1 is bounded in H~'(Q)" independently of w € .
Therefore, using a well-known argument (see e.g. [42, p. 15]) we deduce that the
sequence (pe(-,w))o<e<1 is bounded in L?(Q)" independently of w. So, given an
arbitrary ordinary sequence E, Theorems 5 and 8 give rise to a subsequence E’
from E and functions ug = (uf) € H}(Q; I2,()N, uy = (u}) € L2(Q; WH2(Q))N,
up = (uh) € LX(Q x BN, po € L*(Q x ©;B%) such that, as E' 3 & — 0 we
have (6.8)-(6.9) and

(6.12) pe — po stoch. in L?(Q x Q)-weak X.

It is easy to see that, due to the equality divu. = 0, we have divuy = 0, div,u; =0
and myuQ = 0. Therefore u = (ug,u;,us) € F}. The next step is to show that
u solves equation (6.10). To this end, let ® = (¥, IV (¥y), (J1 0 0)N (¥2)) € F&°;
define ®, := ¥y +e1P5 + 205, that is, P (z,w) = Vo(z,w)+ 1P (2, T(x/c1)w) +
eoWo(z, T(x/e1)w, z/e2) for (z,w) € Q x Q. We have, in view of (6.11),

fQ af(wyu, P )dp + fQXQ(h‘E X ug) - Pedady — fQXQpEdiWPEdIdu
= fgz(f('aw)a (I)E(vw))d:u

We need to pass to the limit in (6.13). Starting from the term [, a°(w; ue, ®.)dp,
proceeding as in the proof of Theorem 9 we get

(6.13)

/ a®(w;ue, ®.)dp — a(u, ®) as E' 3¢ — 0.
Q

From the definition of h® x u., it readily follows from Proposition 8 (taking there
hito; € K(Q;L™(2,A)) as a test function, where ¥y = (¢9,i)1<i<n) that, as
E' 5¢—0,

/ (h® x u.) - D drdy — (h x ug) - Wodady,
QXN QXN
and due to (6.12), as E' 3¢ — 0,

/Q ngdiv<1>8d:cdu R / /Q eacn Po(divilg + div, Uy + div, ¥s)deduds,
X XE2IX

which, with the fact that ® € F§° (which yields div¥y = 0, div,¥; = 0 and
div,¥o = 0) gives

/ pediv®.dzdy — 0 when E' 3 ¢ — 0.
QXN

Moreover one obviously has [, (f(-,w), ®:(-,w))du — [, (f(-,w), Yo(-,w))dy when
E' 3¢ —0.
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Finally, taking into account all the above facts, a passage to the limit in (6.13)
when E' 5 ¢ — 0 yields

a(u, ®) + //Q Q(fl X ug) - Yodadu = (f, ¥g)

for all @ € F§°. Using the continuity of the linear form vy — foXQ(ExuO)-vod:vdu
on HA(Q; I2,(R)) (recall that h € L>®(2)N) associated to the density of F5° in FJ,
we are led at once to (6.10). Finally, from the equality [[,, o (h X uo)-uodzdp =0

it classically follows that the solution of (6.10) is unique. Therefore (6.8)-(6.9) hold
for the whole sequence ¢ > 0 as claimed. (I

6.3. Some applications of Theorem 13. We give in this subsection some
concrete situations in which Theorem 13 is applicable. First of all, we recall that
we will only need to satisfy assumptions (6.6)-(6.7). With this in mind, we see that
one can solve the following homogenization problems:

(P); The coupled stochastic-periodic homogenization problem stated
as follows: For each fixed 1 < 4,7 < N and for p-a.e. w € Q and a.e.
x € @, the functions y — a;j(z,w,y) and y +— h(w,y) are Y-periodic,
where Y = (0,1)". Thus, we are led to the homogenization of (6.1) under
the above assumptions, but with A = Cpe (V).

(P)2 The coupled stochastic-almost periodic homogenization problem
stated as follows:

aij(r,w,-) € AP(RY) and h(w,-) € (AP(RM))N.
The homogenization of (6.1) follows with A = AP(RY).

(P)s The coupled stochastic-perturbed almost periodic homogeniza-
tion problem:

a;j(z,w,-) € AP(RN) + CO(RN) and h(w, ) € (Cper(Y))N

where Co(RY) is the space of functions on RY that vanish at infinity. It is
a fact that A = AP(RY)+Co(R") is an ergodic H-supralgebra (called the
algebra of perturbed almost periodic functions) satisfying the assumptions
of Theorem 8; see [32]. Thus we get the homogenization of (6.1) with the
above A.

(P)4 The coupled stochastic-weakly almost periodic homogenization
problem stated either as
aij(r,w,-) € WAP(RY) and h(w,-) € (AP(RV))N
or
aij(r,w,-) € WAPRY) and h(w,-) € (WAPRM))N.

In each of the above cases we are led to the homogenization of (6.1) with
A=WAPRY).
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(P)s The coupled stochastic-deterministic homogenization problem
in the Fourier-Stieltjes algebra. We first need to define the Fourier-
Stieltjes algebra F'S(R™): The Fourier-Stieltjes algebra on R” is defined
as the closure in B(RY) of the space

exp(iz - y)dv(y) for some v € M*(RN)}
N

where M, (RY) denotes the space of complex valued measures v with
finite total variation: |v|(RM) < co. We denote it by FS(RY). Since
by [19] any function in FS.(RY) is a weakly almost periodic continuous
function, we have that F.S(RY) ¢ WAP(RY). Moreover thanks to [14,
Theorem 4.5] F'S(RY) is a proper subalgebra of W AP(RY).

As FS(RY) is an ergodic algebra which is translation invariant (this
is easily seen: indeed F'S.(RY) is translation invariant) we see that the
hypotheses of Theorem 8 are satisfied with algebra A = F'S (Rff ).

With all the above in mind, we see that one can solve the homoge-
nization problem for (6.1) under the assumption:

aij(z,w, ) € FS(RY) and h(w, ) € (AP(RM))V.
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