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Abstract. In this paper, we study the blow-up solutions for the Davey-
Stewartson system

iut + △u + |u|p−1u + E(|u|2)u = 0, t ≥ 0, x ∈ R
3. (DS)

Using the profile decomposition of the bounded sequences in H1(R3), we give
some new variational characteristics for the ground states and generalized
Gagliardo-Nirenberg inequalities. Then, we obtain the precise expressions on
the sharp blow-up criteria to (DS) for 1 + 4

3
≤ p < 5.
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1. Introduction

This paper is concerned with the Cauchy problem of the following Davey-
Stewartson system

(1.1) iut + △u+ |u|p−1u+ E(|u|2)u = 0, t ≥ 0, x ∈ R
N ,

(1.2) u(0, x) = u0,
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where i =
√
−1; △ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ · · · + ∂2

∂x2
N

is the Laplace operator on R
N ;

u = u(t, x): [0, T ) × RN → C is the complex valued function and 0 < T ≤ +∞;
the parameter 1 < p < 2∗ − 1 (where 2∗ = +∞ for N = 2; 2∗ = 2N

N−2 for N ≥ 3

); E is the singular integral operator with symbol σ1(ξ) =
ξ2
1

|ξ|2 , ξ ∈ RN , E(ψ) =

F−1 ξ2
1

|ξ|2Fψ, F and F−1 are the Fourier transform and Fourier inverse transform

on RN , respectively.
For the Cauchy problem (1.1)-(1.2), Ghidaglia and Saut [8], Guo and Wang [9]

established the local well-posedness in the energy space H1(RN ) for N = 2 and
N = 3 respectively (see [1, 22] for a review). Cipolatti [2] showed the existence
of the standing waves. Cipolatti [3], Ohta [15, 16], Gan and Zhang [6] showed
the stability and instability of the standing waves. Ghidaglia and Saut [8], Guo
and Wang [9] showed the existence of the blow-up solutions. Ozawa [17] gave the
exact blow-up solutions. Wang and Guo [23] studied the scattering of solutions.
Richards [19], Papanicolaou etal [18], Gan and Zhang [5,6], Shu and Zhang [20]
studied the sharp conditions of blow-up and global existence. Li etal [13], Richards
[19] obtained the mass-concentration properties of the blow-up solutions in L2-
critical case in R

2.
We note that in R2, Richards [19] and Papanicolaou etal [18] gave the precise

expression on the sharp blow-up criteria in L2-critical case that is N = 2 and p = 3.
But in R3 Equation (1.1) has not any L2-critical case because of influence of the
nonlocal term E(|u|2)u. Although in [5,6, 20] some sharp thresholds of blow-up
and global existence are gotten, we also note that the upper bound d of the energy
functional I(u) is not determined. This motivates us to investigate the precise
expression on the sharp blow-up criteria in R3.

In the present paper, at first, we study the sharp blow-up criteria for the Cauchy
problem (1.1)-(1.2) in R3 for 1 + 4

3 ≤ p < 5. Motivated by Holmer and Roudenko’s

studies [11] for the classical L2-super nonlinear Schrödinger equation, we consider
the following elliptic equations

(1.3)
3

2
△Q− 1

2
Q+ |Q|2Q+ E(|Q|2)Q = 0, Q ∈ H1(R3)

and

(1.4)
3

2
△R− 1

2
R+ E(|R|2)R = 0, R ∈ H1(R3).

Applying the profile decomposition of the bounded sequences in H1(R3), we obtain
the following generalized Gagliardo-Nirenberg inequalities

(1.5)

∫

R3

|f |4 + E(|f |2)|f |2dx ≤ 2

‖Q‖2
2

‖∇f‖3
L2‖f‖L2, ∀ f ∈ H1(R3)

and

(1.6)

∫

R3

E(|f |2)|f |2dx ≤ 2

‖R‖2
L2

‖∇f‖3
L2‖f‖L2, ∀ f ∈ H1(R3)

where Q is the solution of Equation (1.3) and R is the solution of Equation(1.4).
Using the above Gagliardo-Nirenberg inequalities, we obtain the sharp blow-up
criteria to the Cauchy problem (1.1)-(1.2) for 1 + 4

3 ≤ p < 5 by overcoming the
loss of scaling invariance. We remark that we get a clear bound value of energy
functional, which corresponds to d in [6]. Furthermore, we prove that there is no



SHARP BLOW-UP CRITERIA 241

L3 strong limit of the blow-up solutions to the Cauchy problem (1.1)-(1.2) provided
1 < p ≤ 3.

There are two major difficulties in the analysis of blow-up solutions to the
Davey-Stewartson system (1.1)-(1.2) in H1(R3): One is the nonlinearity containing
the singular integral operator E; The other is the loss of scaling invariance to
Equation (1.1) for p 6= 3, which destroys the balance between |u|p−1u and E(|u|2)u.
Due to the singular integral operator E, we have to establish the corresponding
generalized Gagliardo-Nirenberg inequalities and variational structures. Since there
is no scaling invariance for p 6= 3, improving Holmer and Roudenko’s method [11]
we use the ground state of the classical nonlinear Schrödinger equation to describe
the sharp blow-up criteria to the Davey-Stewartson system (1.1)-(1.2). Finally, for
the time being, as we have mentioned, the results in the present paper are new for
the Davey-Stewartson system (1.1)-(1.2). In particular, the sharp blow-up criteria
are different from [6], and the sharp blow-up criteria obtained in this paper are
more precisely, which is very useful from the viewpoint of physics.

We conclude this section with several notations. We abbreviate Lq(R3), ‖ ·
‖Lq(R3), H

s(R3) and
∫

R3 ·dx by Lq, ‖ · ‖q, H
s and

∫

·dx. The various positive
constants will be simply denoted by C.

2. Preliminary

For the Cauchy problem (1.1)-(1.2), the energy space is defined by

H1 := {u ∈ L2 ; ∇u ∈ L2},

which is a Hilbert space. The norm of H1 is denoted by‖ ·‖H1 . Moreover, we define
the energy functional H(u) in H1 by

H(u) :=
1

2

∫

|∇u(t, x)|2dx− 1

p+ 1

∫

|u(t, x)|p+1dx − 1

4

∫

E(|u|2)|u|2dx.

The functional H is well-defined according to the Sobolev embedding theorem and
the properties of the singular operator E.

Guo and Wang [9] established the local well-posedness of the Cauchy problem
(1.1)-(1.2) in energy space H1.

Proposition 2.1. Let u0 ∈ H1. There exists an unique solution u(t, x) of
the Cauchy problem (1.1)-(1.2) on the maximal time [0, T ) such that u(t, x) ∈
C([0, T );H1) and either T = +∞(global existence), or T < +∞ and lim

t→T
‖u(t, x)‖H1 =

+∞ (blow-up). Furthermore, for all t ∈ [0, T ), u(t, x) satisfies the following con-
servation laws

(i) Conservation of mass

(2.1) ‖u(t, x)‖2 = ‖u0‖2,

(ii) Conservation of energy

(2.2) H(u(t, x)) = H(u0).

For more specific results concerning the Cauchy problem (1.1)-(1.2), we refer
the reader to [8,22]. In addition, by some basic calculations, we have the following
proposition(see also Ohta [16]).
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Proposition 2.2. Assume that u0 ∈ H1, |x|u0 ∈ L2 and the corresponding
solution u(t, x) of the Cauchy problem (1.1)-(1.2) on the interval [0, T ). Then, for
all t ∈ [0, T ) we have |x|u(t, x) ∈ L2. Moreover, let J(t) :=

∫

|x|2|u(t, x)|2dx, we
have

(2.3) J
′

(t) = −4ℑ
∫

xu∇udx

and

(2.4) J
′′

(t) = 8

∫

|∇u|2dx− 12
p− 1

p+ 1

∫

|u|p+1dx− 6

∫

E(|u|2)|u|2dx.

We give some known facts of the singular integral operator E (see Cipolatti
[2,3]), as follows.

Lemma 2.3. Let E be the singular integral operator defined in Fourier variables
by

F [E(ψ)](ξ) = σ1(ξ)F [ψ](ξ),

where σ1(ξ) =
ξ2
1

|ξ|2 , ξ ∈ R3 and F denotes the Fourier transform in R3. For 1 <

p < +∞, E satisfies the following properties:

(i) E ∈ L(Lp, Lp), where L(Lp, Lp) denotes the space of bounded linear oper-
ators from Lp to Lp.

(ii) If ψ ∈ Hs(R3), then E(ψ) ∈ Hs(R3), s ∈ R.
(iii) If ψ ∈ Wm,p, then E(ψ) ∈ Wm,p and

∂kE(ψ) = E(∂kψ), k = 1, 2.

(iv) E preserves the following operations:
– translation: E(ψ(· + y))(x) = E(ψ)(x + y), y ∈ R3;
– dilatation: E(ψ(λ·))(x) = E(ψ)(λx), λ > 0;

– conjugation: E(ψ) = E(ψ),
where ψ is the complex conjugate of ψ.

At the end of this section, we shall give the profile decomposition of bounded se-
quences in H1 proposed by Gérard [7], Hmidi and Keraani [10], which is important
to study the variational characteristic of the ground state.

Proposition 2.4. Let {vn}∞n=1 be a bounded sequence in H1. Then there is a
subsequence of {vn}∞n=1 (still denoted by {vn}∞n=1 ) and a sequence {V j}∞j=1 in H1

and a family of {xj
n}∞j=1 ⊂ R

3 such that

(i) for every j 6= k, |xj
n − xk

n|
n→∞→ +∞;

(ii) for every l ≥ 1 and every x ∈ R3

(2.5) vn(x) =
l
∑

j=1

V j(x − xj
n) + vl

n(x)

with

(2.6) lim
n→∞

sup ‖vl
n‖r

l→∞→ 0,

for every r ∈ (2, 6).
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Moreover, we have, as n→ ∞,

(2.7) ‖vn‖2
2 =

l
∑

j=1

‖V j‖2
2 + ‖vl

n‖2
2 + o(1)

and

(2.8) ‖∇vn‖2
2 =

l
∑

j=1

‖∇V j‖2
2 + ‖∇vl

n‖2
2 + o(1).

3. Sharp Gagliardo-Nirenberg Inequalities

In order to study the sharp blow-up criteria to the Cauchy problem (1.1)-(1.2),
we have to establish the generalized Gagliardo-Nirenberg inequalities corresponding
to the Davey-Stewartson system. For p = 3, we consider the standing wave solutions

of Equation (1.1) in the form u(t, x) = Q(
√

3
2x)e

− i
2 t. It is easy to check that Q(x)

satisfies

(3.1)
3

2
△Q− 1

2
Q+ |Q|2Q+ E(|Q|2)Q = 0, Q ∈ H1.

We say that Q ∈ H1 is a ground state solution of (3.1), if it satisfies

S̃(v) = inf{S̃(v)| v ∈ H1 \ {0} is a solution of (3.1)},
where S̃(v) is defined for v ∈ H1 by

S̃(v) =
1

2

∫

|∇v|2dx− 1

4

∫

(|v|4 + E(|v|2)|v|2)dx+
1

2

∫

|v|2dx.

For any solution Q of Equation (3.1), we claim the following Pohozhaev identities:

(3.2) − 1

2

∫

|Q|2dx− 3

2

∫

|∇Q|2dx+

∫

|Q|4 + E(|Q|2)|Q|2dx = 0

and

(3.3)

∫

|Q|2dx+

∫

|∇Q|2dx −
∫

|Q|4 + E(|Q|2)|Q|2dx = 0.

Indeed, multiplying (3.1) by Q and integrating by parts, we have that (3.2) is true.
On the other hand, multiplying (3.1) by x · ∇Q and integrating by parts, we have

3

2

∫

△Qx ·∇Qdx− 1

2

∫

Qx ·∇Qdx+

∫

Q2Qx ·∇Qdx+

∫

E(|Q|2)Qx ·∇Qdx = 0.

It follows from some basic calculations that

−
∫

△Qx · ∇Qdx =

∫

|∇Q|2dx+

∫

x · ∇(
|∇Q|2

2
)dx = −1

2

∫

|∇Q|2dx,
∫

Qx · ∇Qdx = −3

2

∫

|Q|2dx,
∫

Q2Qx · ∇Qdx = −3

4

∫

|Q|4dx

and
∫

E(|Q|2)Qx · ∇Qdx = −3

4

∫

E(|Q|2)Q2dx.

Collecting the above identities, we have that (3.3) is true.



244 JIAN ZHANG AND SHIHUI ZHU

In this section, using the profile decomposition of bounded sequence in H1, we
shall give a new and simple proof of the existence of the ground state of (3.1). More-
over, we compute the best constant of a generalized Gagliardo-Nirenberg inequality
in dimension three, which is corresponding to Equation (1.1). More precisely, we
have the following theorem.

Theorem 3.1. Let f ∈ H1, then

(3.4)

∫

|f |4 + E(|f |2)|f |2dx ≤ 2

‖Q‖2
2

‖∇f‖3
2‖f‖2,

where Q is the solution of Equation (3.1).

We shall give the proof of Theorem 3.1 by three steps. First, from the definition
of E and the classical Gagliardo-Nirenberg inequality, we observe that

∫

R3(|v|4 + E(|v|2)|v|2)dx ≤ C
∫

R3(|v|4 + |v|4)dx

≤ C‖v‖2‖∇v‖3
2,

which motivates us to investigate the best constant C of the above inequality. Thus,
we consider the variational problem

(3.5) J := inf{J(u) | u ∈ H1} where J(u) :=
(
∫

|u|2dx) 1
2 (
∫

|∇u|2dx) 3
2

∫

(|u|4 + E(|u|2)|u|2)dx .

It is obvious that if W is the minimizer of J(u), then |W | is also a minimizer. Hence
we can assume that W is an real positive function. Indeed, W = |W |eiθ(x) we have

|∇|W || ≤ |∇W |
in the sense of distribution. On the other hand, if W ∈ H1, then|W | ∈ H1 and
J(|W |) ≤ J(W ).

Second, by some basic calculations, if W is the minimizer of J(u), we have the
following lemma.

Lemma 3.2. If W is the minimizer of J(u), then W satisfies

(3.6)
3

2
‖W‖2‖∇W‖2△W − 1

2

‖∇W‖3
2

‖W‖2
W + 2J(|W |2 + E(|W |2))W = 0.

Proof. Since W is a minimizing function of J(u) in H1, and we have ∀ v ∈
C∞

0 (R3)

(3.7)
d

dε
J(W + εv) |ε=0 = 0.

By some basic calculations, we have

d

dε
{‖(W + εv)‖2‖∇(W + εv)‖3

2} |ε=0

=
1

2

‖∇W‖3
2

‖W‖2

∫

2ℜWvdx − 3

2
‖W‖2‖∇W‖2

∫

2ℜ△Wvdx(3.8)

and
(3.9)
d

dε
{
∫

|(W +εv)|4 +E(|W +εv|2)|W +εv|2dx} |ε=0 = 4

∫

(|W |2 +E(|W |2)ℜWvdx.
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By (3.7)-(3.9), we have

(3.10)

1
2
‖∇W‖3

2

‖W‖2

∫

2ℜWvdx− 3
2‖W‖2‖∇W‖2

∫

2ℜ△Wvdx

= 2
‖∇W‖3

2‖W‖2
R

|W |4+E(|W |2)|W |2dx

∫

(|W |2 + E(|W |2))2ℜWvdx,

which implies that (3.6) is true.
The Euler-Lagrange equation (Lemma 3.2) shows that any minimizer of J(u)

is a solution of (3.1). Since any smaller mass solution would yield a lower value of
J(u), the Pohozhaev identities show that it is in fact a minimal mass solution of
(3.1). Therefore, to prove the existence of a ground state it suffices to prove the
existence of a minimizer for J(u).

Thirdly, we use the profile decomposition of bounded sequences in H1 to prove
the following proposition, which give a proof of the existence of a minimizer for
J(u). Moreover, Theorem 3.1 is a direct conclusion of the following proposition.

Proposition 3.3. J is attained at a function U(x) with the following proper-
ties:

(3.11) U(x) = aQ(λx+ b) for some a ∈ C
∗, λ > 0 and b ∈ R

3

where Q is the solution of Equation(3.1). Moreover, we have

(3.12) J =
‖Q‖2

2

2
.

Proof. If we set uλ,µ = µu(λx), where λ = ‖u‖2

‖∇u‖2
, µ =

‖u‖
1
2
2

‖∇u‖
3
2
2

, we have

‖uλ,µ‖2 = 1, ‖∇uλ,µ‖2 = 1 and J(uλ,µ) = J(u).

Now, choosing a minimizing sequence {un}∞n=1 ⊂ H1 such that J(un) → J as
n→ ∞, after scaling, we may assume

(3.13) ‖un‖2 = 1 and ‖∇un‖2 = 1,

and we have

(3.14) J(un) =
1

∫

|un|4 + E(|un|2)|un|2dx
→ J, as n→ ∞.

Note that {un}∞n=1 is bounded in H1. It follows form the profile decomposition
(Proposition 2.4) that

un(x) =
l
∑

j=1

U j(x− xj
n) + rl

n(x),

(3.15)

l
∑

j=1

‖U j
n‖2

2 ≤ 1 and

l
∑

j=1

‖∇U j
n‖2

2 ≤ 1,

where U j
n = U j(x − xj

n). Moreover, using the Hölder’s inequality for rl
n and the

properties of E, we have
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(3.16)

∫

(|rl
n|4 + E(|rl

n|2)|rl
n|2)dx ≤ C(‖rl

n‖4
4 + ‖E(|rl

n|2)‖2‖rl
n‖2

4)

≤ C(‖rl
n‖4

4 + ‖rl
n‖4

4) → 0, as l → ∞.

Applying the orthogonal conditions and the properties of E, we have the following
claims:

(i)

(3.17)

∫

|
l
∑

j=1

U j(x− xj
n)|4dx→

l
∑

j=1

∫

|U j|4dx, as n→ ∞.

(ii)
(3.18)
∫

E(|
l
∑

j=1

U j(x−xj
n)|2)|

l
∑

j=1

U j(x−xj
n)|2dx→

l
∑

j=1

∫

E(|U j |2)|U j |2dx, as n→ ∞.

Indeed, for (3.17), it suffices to show that

(3.19) In =

∫

U j1
n U

j2
n U j3

n U j4
n dx→ 0, as n→ ∞

for 1 ≤ jk ≤ l and at least two jk are different. Assuming for example j1 6= j2, by
the Hölder’s inequality, we can estimate

|In|2 ≤ C2‖U j1
n U

j2
n ‖2

2,

where C = Π4
k=3‖U jk

n ‖4. Without loss of generality, we can assume that both
U j1 and U j2 are continuous and compactly supported. Now, we use the pairwise
orthogonal conditions, and we have the following estimation

(3.20) |In|2 ≤ C2

∫

|U j1(y)U j2(y − (xj2
n − xj1

n ))|2dy → 0, as n→ ∞.

This completes the proof of Claim (i).
For (3.18), we have

∫

E(|
l
∑

j=1

U j(x− xj
n)|2)|

l
∑

j=1

U j(x− xj
n)|2dx

≤ C (
∫

[
l
∑

j=1

E(|U j
n|2) +

∑

1≤j,k≤l,j 6=k

E(|U j
nU

k
n |)][

l
∑

j=1

|U j
n|2 +

∑

1≤j,k≤l,j 6=k

|U j
nU

k
n |]dx),

which implies that
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(3.21)
∫

E(|
l
∑

j=1

U j(x− xj
n)|2)|

l
∑

j=1

U j(x − xj
n)|2dx−

l
∑

j=1

∫

E(|U j |2)|U j |2dx

≤ C
l
∑

j=1

∫

E(|U j
n|2)|U j

n|2dx+
∑

1≤j,k≤l,j 6=k

∫

E(|U j
n|2)|Uk

n |2dx

+C
∑

1≤i,j,k≤l,i6=j

∫

E(|U i
nU

j
n|)|Uk

n |2dx+
∑

1≤i,j,k≤l,j 6=k

∫

E(|U i
n|2)|U j

nU
k
n |dx

+C
∑

1≤i,j,k,m≤l,i6=j,k 6=m

∫

E(|U i
nU

j
n|)|Uk

nU
m
n |dx

= I + II + III.

Without loss of generality, we can assume that U i, U j, Uk and Um are continuous
and compactly supported. Using the orthogonal conditions and the properties of
the singular operator E(u), we have

I = C
∑

1≤j,k≤l,j 6=k

∫

E(|U j
n|2)|Uk

n |2dx

=
∑

1≤j,k≤l,j 6=k

∫

E(|U j |2)(x− xj
n)|Uk(x− xk

n)|2dx

= C
∑

1≤j,k≤l,j 6=k

∫

E(|U j |2)(x)|Uk(x− (xk
n − xj

n))|2dx

→ 0, as n→ ∞,

II ≤ C
∑

1≤i,j,k≤l,i6=j

[‖E(|U i
nU

j
n|)‖2‖Uk

n‖2
4 + ‖E(|Uk

n |2)‖L2‖U i
nU

j
n‖2]

≤ C
∑

1≤i,j,k≤l,i6=j

‖U i
nU

j
n‖2‖Uk

n‖2
4

→ 0, as n→ ∞
and

III ≤ C
∑

1≤i,j,k,m≤l,i6=j,k 6=m

‖E(|U i
nU

j
n|)‖2‖Uk

nU
m
n ‖2 → 0, as n→ ∞.

The last step estimations of I, II and III follows from the proof of Claim (i) and
this completes the proof of Claim (ii).

Therefore, by (3.14) and (3.16)- (3.18), we have

(3.22)

l
∑

j=1

∫

(|U j |4 + E(|U j |2)|U j |2)dx→ 1

J
, as n→ ∞.

On the other hand, by the definition of J , we have

(3.23) J

∫

(|U j |4 + E(|U j |2)|U j |2)dx ≤ ‖U j‖2‖∇U j‖3
2.

Since the series
∑

j ‖U j‖2
2 is convergent, there exists a j0 ≥ 1 such that

(3.24) ‖U j0‖2 = sup{‖U j‖2 | j ≥ 1}.
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It follows from (3.22)-(3.24) that
(3.25)

1 ≤ J

(

l
∑

j=1

∫

(|U j |4 + E(|U j |2)|U j |2)dx
)

≤ sup{‖U j‖2 | j ≥ 1}
(

l
∑

j=1

‖∇U j‖3
2

)

≤ ‖U j0‖2

(

l
∑

j=1

‖∇U j‖2
2

)

≤ ‖U j0‖2.

It follows from (3.15) that ‖U j0‖2 = 1, which implies that there exists only one
term U j0 6= 0 such that

(3.26) ‖U j0‖2 = 1, ‖∇U j0‖2 = 1 and

∫

(|U j0 |4 + E(|U j0 |2)|U j0 |2)dx =
1

J
.

Therefore, we show that U j0 is the minimizer of J(u). It follows from Lemma 3.2
that

(3.27)
3

2
△U j0 − 1

2
U j0 + 2J(|U j0 |2 + E(|U j0 |2))U j0 = 0.

We may assume that U j0 is an real positive function by the definition of J(u).
Now, we take U j0 = aQ(λx + b) with Q is the positive solution of (3.1). By

some computations, we have that ‖U j0‖2
2 = a2

λ3 ‖Q‖2
2 = 1, ‖∇U j0‖2

2 = a2

λ
‖∇Q‖2

2 = 1

and
∫

(|U j0 |4 + E(|U j0 |2)|U j0 |2)dx = a4

λ3

∫

(|Q|4 + E(|Q|2)|Q|2)dx = 1
J
. Applying

Claim (3.2) and (3.3), we have
∫

(|Q|4 + E(|Q|2)|Q|2)dx = 2

∫

Q2dx = 2

∫

|∇Q|2dx,

which implies that

(3.28) J =
λ3

a4

1
∫

(|Q|4 + E(|Q|2)|Q|2)dx =
1

2a2
=

‖Q‖2
2

2
.

This completes the proof Proposition 3.3.

Next, we consider the following elliptic equation

(3.29)
3

2
△R− 1

2
R+ E(|R|2)R = 0, R ∈ H1.

By the same argument in Theorem 3.1, we have the following theorem.

Theorem 3.4. Let f ∈ H1, then

(3.30)

∫

E(|f |2)|f |2dx ≤ 2

‖R‖2
2

‖∇f‖3
2‖f‖2,

where R is the solution of Equation(3.29).

Remark 3.5. (i) To our knowledge, the uniqueness of the ground state Q(x)
and R(x) is still an open problem. Indeed, the known proofs of the uniqueness rely
on radiality (see [12]). Since the E operator does not commute with rotation, one
cannot deduce the radiality of minimizers to J(u) by symmetric rearrangement.

(ii) The best constants of the generalized Gagliardo-Nirenberg inequalities (3.4)
and (3.30) are dependent on the space dimension N , but they are independent of
the choices of the ground state solution Q(x) and R(x). Cipolatti [2] showed the
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existence of a ground state solution of (3.1) in dimension two and three. Papani-
colaou etal [18] computed the best constant of the generalized Gagliardo-Nirenberg
inequality in dimension two. We point out that the method used in this paper is
different from [2,18]. Moreover, our method can also be applied in the dimension
N = 2.

In the end, we collect Weinstein’s results [24], and we consider the following
elliptic equation

(3.31)
3(p− 1)

4
△P − 5 − p

4
P + |P |p−1P = 0, P ∈ H1.

Strauss [21] showed the existence of equation (3.31). Weinstein [24] showed the
best constant of the Gagliardo-Nirenberg inequality, as follows

Proposition 3.6. Let f ∈ H1 and 1 < p < 5, then

(3.32) ‖f‖p+1
p+1 ≤ p+ 1

2‖P‖p−1
2

‖∇f‖
3(p−1)

2
2 ‖f‖

5−p

2
2 ,

where P is the solution of Equation (3.31).

4. Sharp Blow-up Criteria

In this section, using the sharp Gagliardo-Nirenberg inequalities obtained in
Section 3, we obtain the sharp blow-up criteria to the Cauchy problem (1.1)-(1.2).
More precisely, establishing four classes of invariant evolution flows according to the
value of p, we obtain the sharp blow-up criteria to the Cauchy problem (1.1)-(1.2)
for all 1 + 3

4 ≤ p < 5.

• Sharp Criteria for p = 3

Theorem 4.1. Let p = 3, u0 ∈ H1 and satisfy

(4.1) H(u0)‖u0‖2
2 <

2

27
‖Q‖4

2.

Then, we have that

(i) If

(4.2) ‖∇u0‖2‖u0‖2 <
2

3
‖Q‖2

2,

then the solution u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally.
Moreover, u(t, x) satisfies

(4.3) ‖∇u(t, x)‖2‖u(t, x)‖2 <
2

3
‖Q‖2

2.

(ii) If

(4.4) ‖∇u0‖2‖u0‖2 >
2

3
‖Q‖2

2,

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (1.1)-(1.2)
blows up in finite time T < +∞,

where Q is the solution of Equation (3.1).
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Proof. Applying the generalized Gagliardo-Nirenberg inequality (Theorem
3.1), we have

(4.5)
H(u) = 1

2

∫

|∇u|2dx− 1
4

∫

|u|4 + E(|u|2)|u|2dx

≥ 1
2‖∇u‖2

2 − ‖u‖2

2‖Q‖2
2
‖∇u‖3

2.

Now, we define a function f(y) on [0,+∞) by

f(y) =
1

2
y2 − ‖u0‖2

2‖Q‖2
2

y3,

then we have f(y) is continuous on [0,+∞) and

(4.6) f
′

(y) = y − 3‖u0‖2

2‖Q‖2
2

y2 = y(1 − 3‖u0‖2

2‖Q‖2
2

y).

It is obvious that there are two roots for equation f
′

(y) = 0: y1 = 0, y2 =
2‖Q‖2

2

3‖u0‖2
.

Hence, we have that y1 and y2 are two minimizers of f(y), and f(y) is increasing
on the interval [0, y2) and decreasing on the interval [y2,+∞).

Note that f(0) = 0 and fmax = f(y2) =
2‖Q‖4

2

27‖u0‖2
2
. By the conservation of energy

and assumption (4.1), we have

(4.7) f(‖∇u‖2) ≤ H(u) = H(u0) <
2‖‖Q‖4

2

27‖u0‖2
2

= f(y2).

Therefore, using the convexity and monotony of f(y) and the conservation laws, we
obtain two invariant evolution flows generated by the Cauchy problem (1.1)-(1.2),
as follows.

K1 := {u ∈ H1 | 0 < ‖∇u‖2‖u‖2 <
2

3
‖Q‖2

2, 0 < H(u)‖u‖2
2 <

2‖Q‖4
2

27
}

and

K2 := {u ∈ H1 | ‖∇u‖2‖u‖2 >
2

3
‖Q‖2

2, 0 < H(u)‖u‖2
2 <

2‖Q‖4
2

27
}.

Indeed, by the conservation of mass and energy, we have ‖u‖2 = ‖u0‖2 and H(u) =

H(u0). If u0 ∈ K1, we have 0 < H(u)‖u‖2
2 <

2‖Q‖4
2

27 and ‖∇u0‖2‖u0‖2 <
2
3‖Q‖2

2,
which implies that ‖∇u0‖2 < y2. Since f(y) is continuous and increasing on [0, y2)

and f(y) < fmax =
2‖‖Q‖4

2

27‖u0‖2
2
, we have that for all t ∈ I(maximal existence interval)

‖∇u(t, x)‖2 < y2,

which implies that K1 is invariant.
If u0 ∈ K2, we have

‖∇u0‖2‖u0‖2 >
2

3
‖Q‖2

2,

which implies that ‖∇u0‖2 > y2. Since f(y) is continuous and decreasing on
[y2,+∞) and

f(y) < fmax =
2‖‖Q‖4

2

27‖u0‖2
2

,

we have that for all t ∈ I(maximal existence interval)

(4.8) ‖∇u(t, x)‖2 > y2 and ‖∇u(t, x)‖2‖u(t, x)‖2 >
2

3
‖Q‖2

2,

which implies that K2 is invariant.
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Now, we return to the proof the Theorem 4.1. By (4.1) and (4.2), we have
u0 ∈ K1. Applying the invariant of K1, we have that (4.3) is true and the solution
u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally. This completes the part
(i) of the proof.

By (4.1) and (4.4), we have u0 ∈ K2. Applying the invariant of K2, we have
(4.8) is true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local
well-posedness. Thus, we recall the virial identity and the conservation of energy
H(u(t)) = H(u0), and we have

(4.9)

J
′′

(t) = d2

dt2

∫

|x|2|u(t, x)|2dx

= 8
∫

|∇u|2dx− 6
∫

|u|4 + E(|u|2)|u|2dx

= 24H(u0) − 4‖∇u‖2
2.

Multiplying both side of (4.9) by ‖u0‖2
2, applying the conservation laws, (4.1) and

(4.8), we have

(4.10)
‖u0‖2

2
d2

dt2

∫

|x|2|u(t, x)|2dx = 24H(u0)‖u0‖2
2 − 4‖∇u‖2

2‖u0‖2
2

< 16
9 ‖Q‖4

2 − 16
9 ‖Q‖4

2 = 0.

By the classical analysis identity

(4.11) J(t) = J(0) + J
′

(0)t+

∫ t

0

J
′′

(s)(t− s)ds,

we have that the maximal existence interval I of u(t, x) must be finite, which implies
that the solution u(t, x) of the Cauchy problem (1.1)-(1.2) blows up in finite time
T < +∞. This completes the proof.

• Sharp Criteria for p = 1 + 4
3

Theorem 4.2. Let p = 1 + 4
3 , u0 ∈ H1 and satisfy

(4.12) ‖u0‖2 < ‖P‖2 and H(u0) <
2‖R‖4

2(‖P‖
4
3
2 − ‖u0‖

4
3
2 )3

27‖u0‖2
2‖P‖4

2

.

Then, we have

(i) If

(4.13) ‖∇u0‖2‖u0‖2 <
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

,

then the solution u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally.
Moreover, for all time t, u(t, x) satisfies

(4.14) ‖∇u(t, x)‖2‖u(t, x)‖2 <
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

.

(ii) If

(4.15) ‖∇u0‖2‖u0‖2 >
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

,
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and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (1.1)-(1.2)
blows up in finite time T < +∞,

where P is the solution of Equation (3.31) and R is the solution of Equation (3.29).

Proof. Applying Theorem 3.4 and Proposition 3.6, we have

(4.16)

H(u) = 1
2

∫

|∇u|2dx− 1
2+ 4

3

∫

|u|2+ 4
3 dx − 1

4

∫

E(|u|2)|u|2dx

≥ 1
2‖∇u‖2

2 −
‖u‖

4
3
2

2‖P‖
4
3
2

‖∇u‖2
2 − ‖u‖2

2‖R‖2
2
‖∇u‖3

2.

Now, we define a function f(y) on [0,+∞) by

f(y) = (
1

2
− ‖u0‖

4
3
2

2‖P‖
4
3
2

)y2 − ‖u0‖2

2‖R‖2
2

y3,

then we have f(y) is continuous on [0,+∞) and

(4.17) f
′

(y) = (1 − ‖u0‖
4
3
2

‖P‖
4
3
2

)y − 3‖u0‖2

2‖R‖2
2

y2.

It is obvious that there are two roots for equation f
′

(y) = 0: y1 = 0, y2 =

2
3
‖R‖2

2(‖P‖
4
3
2 −‖u0‖

4
3
2 )

‖u0‖2‖P‖
4
3
2

> 0. Hence, we have that y1 and y2 are two minimizers of

f(y), and f(y) is increasing on the interval [0, y2) and decreasing on the interval
[y2,+∞).

Note that f(y1) = 0 and

fmax = f(y2) =
2‖R‖4

2(‖P‖
4
3
2 − ‖u0‖

4
3
2 )3

27‖u0‖2
2‖P‖4

2

.

By the conservation of energy and the assumption (4.12), we have

(4.18) f(‖∇u‖2) ≤ H(u) = H(u0) < f(y2).

Therefore, using the convexity and monotony of f(y) and the conservation laws, we
obtain two invariant evolution flows generated by the Cauchy problem (1.1)-(1.2),
as follows.

K3 := {u ∈ H1 | 0 < ‖∇u‖2‖u‖2

<
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

, ‖u‖2 < ‖P‖2, 0 < H(u) < D}

and

K4 := {u ∈ H1 | ‖∇u‖2‖u‖2 >
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u‖

4
3
2 )

‖P‖
4
3
2

, ‖u‖2

< ‖P‖2, 0 < H(u) < D},

where D =
2‖R‖4

2(‖P‖
4
3
2 −‖u‖

4
3
2 )3

27‖u0‖2
2‖P‖4

2
. Indeed, by the conservation of mass and energy,

we have ‖u‖2 = ‖u0‖2 and H(u) = H(u0). If u0 ∈ K3, we have ‖u‖2 < ‖P‖2,

0 < H(u) < D and ‖∇u0‖2 <
2
3
‖R‖2

2(‖P‖
4
3
2 −‖u0‖

4
3
2 )

‖u0‖2‖P‖
4
3
2

, which implies that ‖∇u0‖2 <
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y2. Since f(y) is increasing on [0, y2) and 0 < f(y) < D, we have that for all
t ∈ I(maximal existence interval)

‖∇u(t, x)‖2‖u(t, x)‖2 <
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

,

which implies that K3 is invariant.
If u0 ∈ K4, we have

‖u‖2 < ‖P‖2, 0 < H(u) < D

and

‖∇u0‖2 >
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖u0‖2‖P‖
4
3
2

,

which implies ‖∇u0‖2 > y2. Since f(y) is decreasing on [y2,∞) and 0 < f(y) < D,
we have that for all t ∈ I(maximal existence interval)

(4.19) ‖∇u(t, x)‖2 > y2 and ‖∇u(t, x)‖2‖u(t, x)‖2 >
2

3

‖R‖2
2(‖P‖

4
3
2 − ‖u0‖

4
3
2 )

‖P‖
4
3
2

,

which implies that K4 is invariant.
Now, we return to the proof the Theorem 4.2. By (4.12) and (4.13), we have

u0 ∈ K3. Applying the invariant of K3, we have that (4.14) is true and the solution
u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally. This completes the part
(i) of the proof.

By (4.12) and (4.15), we have u0 ∈ K4. Applying the invariant of K4, we have
(4.19) is true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local
well-posedness. Thus, we recall the virial identity and the conservation of energy
H(u(t)) = H(u0), and we have

(4.20)

J
′′

(t) = d2

dt2

∫

|x|2|u(t, x)|2dx

= 8
∫

|∇u|2dx− 16
2+ 4

3

∫

|u|2+ 4
3 − 6

∫

E(|u|2)|u|2dx

= 24H(u0) − 4
∫

|∇u|2dx+ 8
2+ 4

3

∫

|u|2+ 4
3 dx

≤ 24H(u0) − 4[1 − ‖u0‖
4
3
2

‖P‖
4
3
2

]‖∇u‖2
2.

By the assumption (4.12), it follows from (4.19) and (4.20) that
(4.21)

‖u0‖2
2

d2

dt2

∫

|x|2|u(t, x)|2dx ≤ 24H(u0)‖u0‖2
2 − 4[1 − ‖u0‖

4
3
2

‖P‖
4
3
2

]‖∇u‖2
2‖u0‖2

2

<
16‖R‖4

2(‖P‖
4
3
2 −‖u0‖

4
3
2 )3

9‖P‖4
2

− 16‖R‖4
2(‖P‖

4
3
2 −‖u0‖

4
3
2 )3

9‖P‖4
2

= 0,

which implies that the solution u(t, x) of the Cauchy problem (1.1)-(1.2) blows up
in finite time T < +∞. This completes the proof.
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In order to study the sharp thresholds of blow-up and global existence for the
Cauchy problem (1.1)-(1.2) for 1 + 4

3 < p < 3 and 3 < p < 5, we need the following
preparations.

Let us define a function g(y) on [0,+∞)

(4.22) g(y) = 1 − 3(p− 1)‖u0‖
5−p

2
2

4‖P‖p−1
2

y
3(p−1)

2 −2 − 3‖u0‖2

2‖P‖2
2

y,

where P is the solution of Equation (3.31). We claim that there exists an unique
positive solution y0 for the equation g(y) = 0. Indeed, by some computations, we
have for y > 0

(4.23) g
′

(y) = −3(p− 1)(3p− 7)‖u0‖
5−p

2
2

8‖P‖p−1
2

y
3(p−1)

2 −3 − 3‖u0‖2

2‖P‖2
2

< 0,

which implies that g(y) is decreasing on [0,+∞). Notice that

g(0) = 1 > 0,

and

g(
2‖P‖2

2

3‖u0‖2
) = −3(p− 1)

4
(
2

3
)

3p−7
2

‖u0‖6−2p
2

‖P‖6−2p
2

< 0.

Since g(y) is continuous on [0,+∞), there exists an unique positive y0 ∈ [0,
2‖P‖2

2

3‖u0‖2
]

such that g(y0) = 0.

• Sharp Criteria for 1 + 4
3 < p < 3

Theorem 4.3. Let 1 + 4
3 < p < 3, u0 ∈ H1 and satisfy

(4.24) 0 < H(u0) <
3p− 7

6(p− 1)
y2
0 .

Then, we have

(i) If

(4.25) ‖∇u0‖2 < y0,

then the solution u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally.
Moreover, for all time t, u(t, x) satisfies

(4.26) ‖∇u(t, x)‖2 < y0.

(ii) If

(4.27) ‖∇u0‖2 > y0,

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (1.1)-(1.2)
blows up in finite time T < +∞,

where y0 is the unique positive solution of the equation g(y) = 0 and g(y) is defined
in (4.22).



SHARP BLOW-UP CRITERIA 255

Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 3.6), we
have

(4.28)

H(u) = 1
2

∫

|∇u|2dx− 1
1+p

∫

|u|p+1dx − 1
4

∫

E(|u|2)|u|2dx

≥ 1
2

∫

|∇u|2dx− 1
1+p

∫

|u|p+1dx − 1
4

∫

|u|4dx

≥ 1
2‖∇u‖2

2 −
‖u‖

5−p
2

2

2‖P‖p−1
2

‖∇u‖
3(p−1)

2
2 − ‖u‖2

2‖P‖2
2
‖∇u‖3

2.

Now, we define a function f(y) on [0,+∞) by

f(y) =
1

2
y2 − ‖u0‖

5−p

2
2

2‖P‖p−1
2

y
3(p−1)

2 − ‖u0‖2

2‖P‖2
2

y3,

then we have f(y) is continuous on [0,+∞) and

(4.29) f
′

(y) = y[1 − 3(p− 1)‖u0‖
5−p

2
2

4‖P‖p−1
2

y
3(p−1)

2 −2 − 3‖u0‖2

2‖P‖2
2

y] = yg(y).

By the properties of g(y), we have

(4.30) f
′

(0) = f
′

(y0) = y0g(y0) = 0 and f
′′

(y0) = g(y0) + y0g
′

(y0) < 0,

which implies that 0 and y0 are two minimizers of f(y), and f(y) is increasing on
the interval [0, y0) and decreasing on the interval [y0,+∞).

Note that fmax = f(y0) and f(0) = 0. Since g(y0) = 0, we have

(4.31)

fmax = f(y0) = 1
2y

2
0 − ‖u0‖

5−p
2

2

2‖P‖p−1
2

y
3(p−1)

2
0 − ‖u0‖2

2‖P‖2
2
y3
0

= [12 − 2
3(p−1) ]y

2
0 + [ 1

p−1 − 1
2 ]‖u0‖2

‖P‖2
2
y3
0

≥ 3p−7
6(p−1)y

2
0 .

By the conservation of energy and the assumption (4.24), we have

(4.32) H(u) = H(u0) <
3p− 7

6(p− 1)
y2
0 < fmax.

Therefore, using the convexity and monotony of f(y) and the conservation laws, we
obtain two invariant evolution flows generated by the Cauchy problem (1.1)-(1.2),
as follows. We set

K5 := {u ∈ H1 | 0 < ‖∇u‖2 < y0, 0 < H(u) <
3p− 7

6(p− 1)
y2
0}

and

K6 := {u ∈ H1 | ‖∇u‖2 > y0, 0 < H(u) <
3p− 7

6(p− 1)
y2
0}.

Indeed, by the conservation of mass and energy, we have ‖u‖2 = ‖u0‖2 and H(u) =

H(u0). If u0 ∈ K5, we have 0 < H(u) < 3p−7
6(p−1)y

2
0 and ‖∇u0‖2 < y0. Since f(y) is

continuous and increasing on [0, y0) and f(y) < 3p−7
6(p−1)y

2
0 < fmax, we have that for

all t ∈ I(maximal existence interval)

‖∇u(t, x)‖2 < y0,

which implies that K5 is invariant.
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If u0 ∈ K6, we have 0 < H(u) < 3p−7
6(p−1)y

2
0 and ‖∇u0‖2 > y0. Since f(y) is

continuous and decreasing on [y0,+∞) and f(y) < 3p−7
6(p−1)y

2
0 < fmax, we have that

for all t ∈ I(maximal existence interval)

(4.33) ‖∇u(t, x)‖2 > y0,

which implies that K6 is invariant.
Now, we return to the proof the Theorem 4.3. By (4.24) and (4.25), we have

u0 ∈ K5. Applying the invariant of K5, we have that (4.26) is true and the solution
u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally . This completes the part
(i) of the proof.

By (4.24) and (4.27), we have u0 ∈ K6. Applying the invariant of K6, we have
(4.33) is true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local
well-posedness. Thus, we recall the virial identity and the conservation of energy
H(u(t)) = H(u0), and we have
(4.34)

J
′′

(t) = d2

dt2

∫

|x|2|u(t, x)|2dx

= 8
∫

|∇u|2dx− 12(p−1)
p+1

∫

|u|p+1dx − 1
4

∫

E(|u|2)|u|2dx

= 12(p− 1)H(u0) − [6(p− 1) − 8]‖∇u‖2
2 + [3(p− 1) − 6]

∫

E(|u|2)|u|2dx

≤ 2[3(p− 1) − 4]y2
0 − [6(p− 1) − 8]y2

0 = 0,

for 1 + 4
3 < p < 3, which implies that the solution u(t, x) of the Cauchy problem

(1.1)-(1.2) blows up in finite time T < +∞. This completes the proof.

• Sharp Criteria for 3 < p < 5

Theorem 4.4. Let 3 < p < 5, u0 ∈ H1 and satisfy

(4.35) 0 < H(u0) <
1

6
y2
0 .

Then, we have that

(i) If

(4.36) ‖∇u0‖2 < y0,

then the solution u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally
. Moreover, for all time t, u(t, x) satisfies

(4.37) ‖∇u(t, x)‖2 < y0.

(ii) If

(4.38) ‖∇u0‖2 > y0,

and |x|u0 ∈ L2, then the solution u(t, x) of the Cauchy problem (1.1)-(1.2)
blows up in finite time T < +∞,

where y0 is the unique positive solution of the equation g(y) = 0 and g(y) is defined
in (4.22).
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Proof. Applying the Gagliardo-Nirenberg inequality (Proposition 3.6), we
have

(4.39)

H(u) = 1
2

∫

|∇u|2dx− 1
1+p

∫

|u|p+1 − 1
4

∫

E(|u|2)|u|2dx

≥ 1
2‖∇u‖2

2 −
‖u‖

5−p
2

2

2‖P‖p−1
2

‖∇u‖
3(p−1)

2
2 − ‖u‖2

2‖P‖2
2
‖∇u‖3

2.

Now, we define a function f(y) on [0,+∞)

f(y) =
1

2
y2 − ‖u0‖

5−p

2
2

2‖P‖p−1
2

y
3(p−1)

2 − ‖u0‖2

2‖P‖2
2

y3,

then we have f(y) is continuous on [0,+∞) and

(4.40) f
′

(y) = y[1 − 3(p− 1)‖u0‖
5−p

2
2

4‖P‖p−1
2

y
3(p−1)

2 −2 − 3‖u0‖2

2‖P‖2
2

y] = yg(y),

where g(y) is defined in (4.22). By the properties of g(y), we have

(4.41) f
′

(0) = f
′

(y0) = y0g(y0) = 0 and f
′′

(y0) = g(y0) + y0g
′

(y0) < 0,

which implies that 0 and y0 are two minimizers of f(y), and f(y) is increasing on
the interval [0, y0) and decreasing on the interval [y0,+∞).

Note that f(0) = 0 and fmax = f(y0). Since g(y0) = 0, we have

(4.42)

fmax = f(y0) = 1
2y

2
0 − ‖u0‖

5−p
2

2

2‖P‖p−1
2

y
3(p−1)

2
0 − ‖u0‖2

2‖P‖2
2
y3
0

= [12 − 1
3 ]y2

0 + [p−1
4 − 1

2 ]
‖u0‖

5−p
2

2

2‖P‖p−1
2

y
3(p−1)

2
0

≥ 1
6y

2
0 .

By the conservation of energy and the assumption (4.35), we have

(4.43) 0 < H(u) = H(u0) <
1

6
y2
0 < fmax.

Therefore, using the convexity and monotony of f(y) and the conservation laws, we
obtain two invariant evolution flows generated by the Cauchy problem (1.1)-(1.2),
as follows. We set

K7 := {u ∈ H1 | 0 < ‖∇u‖2 < y0, 0 < H(u) <
1

6
y2
0}

and

K8 := {u ∈ H1 | ‖∇u‖2 > y0, 0 < H(u) <
1

6
y2
0}.

Indeed, by the conservation of mass and energy, we have ‖u‖2 = ‖u0‖2 and H(u) =
H(u0). If u0 ∈ K7, we have ‖∇u0‖2 < y0. Since f(y) is continuous and increasing
on [0, y0) and ∀ y ∈ [0,+∞), f(y) < 1

6y
2
0 < fmax, we have that for all t ∈ I(maximal

existence interval)

‖∇u(t, x)‖2 < y0,

which implies that K7 is invariant.
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If u0 ∈ K8, we have ‖∇u0‖2 > y0. Since f(y) is continuous and decreasing on
[y0,+∞) and ∀ y ∈ [0,+∞), f(y) < 1

6y
2
0 < fmax, we have that for all t ∈ I(maximal

existence interval)

(4.44) ‖∇u(t, x)‖2 > y0,

which implies that K8 is invariant.
Now, we return to the proof the Theorem 4.4. By (4.35) and (4.36), we have

u0 ∈ K7. Applying the invariant of K7, we have that (4.37) is true and the solution
u(t, x) of the Cauchy problem (1.1)-(1.2) exists globally . This completes the part
(i) of the proof.

By (4.35) and (4.38), we have u0 ∈ K8. Applying the invariant of K8, we have
(4.44) is true. If we assume |x|u0 ∈ L2, then we have |x|u(t, x) ∈ L2 by the local
well-posedness. Thus, we recall the virial identity and the conservation of energy
H(u(t)) = H(u0), and we have

(4.45)

J
′′

(t) = d2

dt2

∫

|x|2|u(t, x)|2dx
= 8

∫

|∇u|2dx− 12(p−1)
p+1

∫

|u|p+1dx− 1
4

∫

E(|u|2)|u|2dx

= 24H(u0) − 4‖∇u‖2
2 + 24−12(p−1)

p+1

∫

|u|p+1dx

< 4y2
0 − 4y2

0 = 0,

for 3 < p < 5, which implies that the solution u(t, x) of the Cauchy problem
(1.1)-(1.2) blows up in finite time T < +∞. This completes the proof.

5. Properties of Blow-up Solutions

In this section, we shall investigate the blow-up properties of the solutions to
the Cauchy problem (1.1)-(1.2). We prove the nonexistence of the L3 strong limit
to the blow-up solutions of the Cauchy problem (1.1)-(1.2) for 1 < p ≤ 3, as follows.

Theorem 5.1. Let 1 < p ≤ 3 and the initial data u0 ∈ H1. If the solution of
the Cauchy problem (1.1)-(1.2) u(t, x) blows up in finite time T < +∞, Then for
any sequence {tn}∞n=1 such that tn → T as n → ∞, {u(tn, x)}∞n=1 does not have
any strong limit in L3 as n→ ∞.

Proof. We prove this result by contradiction. Suppose that {u(tn, x)}∞n=1 has
a strong limit in L3 along a sequence {tn}∞n=1 such that tn → T as n → ∞. Since
the solution u(t, x) of the Cauchy problem (1.1)-(1.2) blows up at finite time T in
H1, we have ‖∇u(tn)‖2 → +∞ as n→ +∞. By the conservation of energy

H(u) :=
1

2

∫

|∇u(t, x)|2dx− 1

p+ 1

∫

|u(t, x)|p+1dx− 1

4

∫

E(|u|2)|u|2dx = H(u0),

for 1 < p ≤ 3, we claim ∀n 6= m,

(5.1) ‖∇u(tn)‖2
2 ≤ C‖u(tn) − u(tm)‖4

4 + C‖u(tm)‖4
4 + C.

Indeed, if p = 3, by the conservation of energy, we have

‖∇u(tn)‖2
L2 ≤ 2H(u0) + 1

2‖u(tn)‖4
4 + 1

2

∫

E(|u(tn)|2)|u(tn)|2dx
≤ 2H(u0) + C‖u(tn)‖4

4 + C

≤ C‖u(tn) − u(tm)‖4
4 + C‖u(tm)‖4

4 + C.



SHARP BLOW-UP CRITERIA 259

If 1 < p < 3, using the Gagliardo-Nirenberg inequality and Hölder inequality, we
have ∀ ε > 0

‖u(tn)‖p+1
p+1 ≤ C‖∇u(tn)‖

3(p−1)
2

2 ‖u0‖
5−p
2

2 ≤ ε‖∇u(tn)‖2
2 + C(ε).

By the conservation of energy, we have

‖∇u(tn)‖2
2 ≤ 2H(u0) + ε‖∇u(tn)‖2

2 + C‖u(tn)‖4
4 + C(ε)

≤ ε‖∇u(tn)‖2
2 + C‖u(tn) − u(tm)‖4

4 + C‖u(tm)‖4
4 + C,

for ε < 1, which implies that Claim (5.1) is true.
Since 3 < 4 < 6, applying the Hölder’s inequality for 1

4 = θ
3 + 1−θ

6 , θ ∈ (0, 1),
we have

(5.2)
‖u(tn) − u(tm)‖4

4 ≤ C‖u(tn) − u(tm)‖4θ
3 ‖u(tn) − u(tm)‖4(1−θ)

6

≤ C‖u(tn) − u(tm)‖2
3‖∇(u(tn) − u(tm))‖2

2.

It follows from (5.1) and (5.2) that for m 6= n large enough

(5.3) ‖∇u(tn)‖2
2 ≤ C‖u(tn) − u(tm)‖2

3‖∇(u(tn)‖2
2 + Cm,

where Cm depends on m.
On the other hand, since the sequence {u(tn)}∞n=1 converges strongly in L3,

there is a positive integer k such that for all n ≥ k,m ≥ k

C‖u(tn) − u(tm)‖2
3 ≤ 1

2
.

Therefore, choosing m = k in the inequality (5.3), we obtain that for all n ≥ nk

(5.4) ‖∇u(tn)‖2
2 ≤ 1

2
‖∇u(tn)‖2

2 + Ck,

which implies that the sequence {∇u(tn)}∞n=1 is bounded in L2. This is contradic-
tory to that u(t, x) blows up in finite time T < +∞. This completes the proof.
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