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On the quasilinear elliptic problem with a Hardy-Sobolev

critical exponent

Guanwei Chen and Shiwang Ma
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Abstract. In this article, we consider a quasilinear elliptic equation involving
Hardy-Sobolev critical exponents and superlinear nonlinearity. The right hand
side nonlinearity f(x, u) which is (p − 1)-superlinear nearby 0. However, it
does not satisfy the usual Ambrosetti-Rabinowitz condition (AR-condition).
Instead we employ a more general condition. Using a variational approach
based on the critical point theory and the Ekeland variational principle, we

show the existence of two nontrivial positive solutions. Moreover, the obtained
results extend some existing ones.
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1. Introduction and main results

We will consider the following problem
{

−△pu = µ |u|p
∗(s)−2

|x|s u + λf(x, u), x ∈ Ω\{0},

u = 0, x ∈ ∂Ω,
(1.1)

where △pu = div(|∇u|p−2∇u) denotes the p-laplacian differential operator, Ω is an

open bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω and 0 ∈ Ω, 0 ≤
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s < p, 1 < p < N, 0 < µ < ∞, p∗(s) = p(N−s)
N−p

is the Hardy-Sobolev critical

exponent and p∗ = p∗(0) = Np
N−p

is the Sobolev critical exponent, λ > 0 is a real

parameter. W 1,p
0 (Ω) is the Sobolev space with the norm

‖u‖ :=

(
∫

Ω

|∇u|pdx

)
1
p

,

which is equivalent to the usual norm of W 1,p
0 (Ω) due to the Poincaré inequality

and

As(Ω) := inf
u∈W

1,p
0 (Ω)\{0}

‖u‖p

(

∫

Ω
|u|p∗(s)

|x|s dx
)

p

p∗(s)

(1.2)

is the best Hardy-Sobolev constant.
In the case s = 0 and p = 2, this problem has been widely studied (see [1, 2, 11]

and the references therein). In the case s = 0, Goncalves and Alves in [8] have

studied Problem (1.1) in RN involving f(x, u) = h(x)uq, u ≥ 0 and u 6≡ 0 to obtain
existence of positive solutions where 2 ≤ p < N, 0 < q < p−1 or p−1 < q < p∗−1
and a suitable h. Ghoussoub and Yuan have studied problem (1.1)(see [9]), when
f(x, u) = |u|r−2u, p ≤ r ≤ p∗. For other relevant papers see [6, 10, 7, 12] and the
references herein.

A direct extension of these methods to the case p 6= 2 is faced with serious dif-
ficulties. Such as, the energy functional associated to (1.1) is defined on W 1,p

0 (Ω),
which is not a Hilbert space for p 6= 2. Due to the lack of compactness of the em-
bedding in W 1,p

0 (Ω) →֒ Lp∗

(Ω) and W 1,p
0 (Ω) →֒ Lp∗(s)(Ω, |x|−sdx), we cannot use

the standard variational argument directly. The corresponding energy functional
fails to satisfy the classical Palais-Smale ((PS) for short) condition in W 1,p

0 (Ω).
However, a local (PS) condition can be established in a suitable range. Then the
existence result is obtained via constructing a minimax level within this range and
the Mountain Pass Lemma due to A. Ambrosetti and P.H. Rabinowitz (see also
[15]).

F (x, t) is a primitive function of f(x, t) defined by F (x, t) :=
∫ t

0 f(x, s)ds for
x ∈ Ω, t ∈ R. For problem (1.1) we have the following assumptions:

(A1) f ∈ C(Ω × R+,R), f(x, 0) ≡ 0, lim
t→0+

f(x, t)

tp−1
= +∞ and lim

t→∞

f(x, t)

tp∗(s)−1
= 0

uniformly for x ∈ Ω.

(A2) f : Ω × R+ → R is nondecreasing with respect to the second variable.

(A3) N > p ≥ max

{

2,
3N

N + 3 − s
,

s − 1 +
√

(1 − s)2 + 4N

2

}

.

In what follows, ‖ · ‖p denotes the norm in Lp(Ω). Now, our main results are
as follows:
Theorem 1. Suppose that N ≥ 3, 0 < µ < ∞, 0 ≤ s < p, 1 < p < N .
Assume (A1) holds, then there exists λ∗ > 0 such that problem (1.1) has at least
one nontrivial positive solution uλ for every λ ∈ (0, λ∗).

Theorem 2. Suppose that N ≥ 3, 0 < µ < ∞, max
{

0, p2−N
p−1

}

< s < p. If

(A1) − (A3) all hold, then there exists λ∗ > 0 such that problem (1.1) has at least
two nontrivial positive solutions for every λ ∈ (0, λ∗).
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Remark 1. Here we give some examples of the nonlinearity satisfying (A1) and
(A2).
(1) f(x, t) = tq−1, t ≥ 0 with 1 < q < p.
(2) f(x, t) = v(x)tr + h(x)tν , t ≥ 0, where v(x), h(x) ∈ L∞(Ω), v(x), h(x) >
0, 0 ≤ r < p − 1 and p − 1 < ν < p∗(s) − 1.

This paper is organized as follows. In Section 2, we manage to give the proof of
Theorem 1. The proof of Theorem 2 is given in Section 3. Throughout the article
the letters C or Ci (i = 1, 2, 3, ...) will denote various positive constants whose
exact value may change from line to line but are not essential to the analysis of the
problem.

2. Proof of Theorem 1

It is obvious that the values of f(x, t) for t < 0 are irrelevant in Theorem
1-2, and we may define

f(x, t) ≡ 0 for x ∈ Ω, t ≤ 0.

Let u± := max{±u, 0}. The functional corresponding to (1.1) is

I(u) =
1

p

∫

Ω

|∇u|pdx −
µ

p∗(s)

∫

Ω

(u+)p∗(s)

|x|s
dx − λ

∫

Ω

F (x, u+)dx, u ∈ W 1,p
0 (Ω).

By Hardy-Sobolev inequalities (see [4, 9]) and (A1), I ∈ C1(W 1,p
0 (Ω),R). Now

it is well known that there exists a one-to-one correspondence between the weak
solutions of problem (1.1) and the critical points of I on W 1,p

0 (Ω). More precisely

we say that u ∈ W 1,p
0 (Ω) is a weak solution of problem (1.1), if for any v ∈ W 1,p

0 (Ω),
there holds

〈I ′(u), v〉 =

∫

Ω

|∇u|p−2∇u∇vdx − µ

∫

Ω

(u+)p∗(s)−1

|x|s
vdx − λ

∫

Ω

f(x, u+)vdx = 0.

Proof of Theorem 1. Let X := W 1,p
0 (Ω). From the Sobolev and Hardy-Sobolev

inequalities, we can easily get

‖u‖p
p ≤ C‖u‖p;

∫

Ω

|u|p
∗(s)

|x|s
dx ≤ C‖u‖p∗(s); ‖u‖p∗

p∗ ≤ C‖u‖p∗

, ∀ u ∈ X. (2.1)

It follows from (A1) that

∃δ > 0 such that |F (x, t)| <
tp

∗(s)

p∗(s)|xs|
for t > δ,

∃M1 > 0 such that |F (x, t)| ≤ M1 for all t ∈ [0, δ],

uniformly for all x ∈ Ω \ {0}. Therefore, we deduce that

|F (x, t)| ≤ M1 +
tp

∗(s)

p∗(s)|xs|
(2.2)

for all t ∈ R and for x ∈ Ω \ {0}. By (2.1) and (2.2), we have

I(u) =
1

p
‖u‖p −

µ

p∗(s)

∫

Ω

(u+)p∗(s)

|x|s
dx − λ

∫

Ω

F (x, u+)dx

≥
1

p
‖u‖p − C1‖u‖

p∗(s) − λM1|Ω|
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for all λ ∈ (0, 1] and some C1 = Cµ
p∗(s) , so there exist ρ > 0 and λ∗ ∈ (0, 1] such that

I(u) > 0 if ‖u‖ = ρ, and I(u) ≥ −C2 if ‖u‖ ≤ ρ

for every 0 < λ < λ∗, where C2 = C1ρ
p∗(s) + λ∗M1|Ω|. Choose u0 ∈ W 1,p

0 (Ω) ∩
L∞(Ω) such that u+

0 6= 0. Let M2 := ‖u0‖
p/(λ‖u+

0 ‖
p
p). From (A1), there exists δ1

such that

|F (x, t)| ≥
2M2

p
|t|p, 0 < t < δ1.

Hence we have

I(ru0) = rp

p
‖u0‖

p − µrp∗(s)

p∗(s)

∫

Ω

(u+
0 )p∗(s)

|x|s dx − λ
∫

Ω
F (x, ru+

0 )dx

≤ rp

p
‖u0‖

p − 2rp

p
λM2‖u

+
0 ‖

p
p

= − rp

p
‖u0‖

p < 0

for every 0 < λ < λ∗ and 0 < r < min{ρ, δ1/‖u
+
0 ‖∞}. Thus there exists u small

enough such that I(u) < 0. Then we deduce that

inf
u∈Bρ(0)

I(u) < 0 < inf
u∈∂Bρ(0)

I(u).

By applying Ekeland’s variational principle (see [13], Theorem 4.1) in Bρ(0), there

is a minimizing sequence {un} ⊂ Bρ(0) such that

I(un) ≤ inf
u∈Bρ(0)

I(u) +
1

n
, I(ω) ≥ I(un) −

1

n
‖ω − un‖, ω ∈ Bρ(0).

Therefore, we have

‖I ′(un)‖ → 0 and I(un) → cλ as n → ∞,

where cλ stands for the infimum of I(u) on Bρ(0). Since {un} is bounded and Bρ(0)

is a closed convex set, there exist uλ ∈ Bρ(0) ⊂ W 1,p
0 (Ω). Going if necessary to a

subsequence, one can get that(see [9])


































un ⇀ uλ weakly in W 1,p
0 (Ω),

un → uλ strongly in Lγ(Ω), 1 < γ < p∗,
un → uλ a.e. in Ω,
∇un → ∇uλ a.e. in Ω,
un

x
⇀ uλ

x
weakly in Lp(Ω),

∫

Ω
|un|p

∗(s)−2un

|x|s vdx →
∫

Ω
|uλ|

p∗(s)−2uλ

|x|s vdx, ∀ v ∈ W 1,p
0 (Ω).

Consequently, passing to the limit in 〈I ′(un), v〉, as n → ∞, we have
∫

Ω

|∇uλ|
p−2∇uλ∇vdx − µ

∫

Ω

(u+
λ )p∗(s)−1v

|x|s
dx − λ

∫

Ω

f(x, u+
λ )vdx = 0

for all v ∈ W 1,p
0 (Ω). That is, 〈I ′(uλ), v〉 = 0. Thus uλ is a critical point of the

functional I . Since ‖u−
λ ‖

p = −〈I ′(uλ), u−
λ 〉 = 0, thus uλ = u+

λ ≥ 0. Moreover, we
deduce from (A1) and the boundedness of Ω that

∃ M3 > 0 such that |f(x, t)| <
µ

λ

tp
∗(s)−1

|x|s
for t > M3,

∃ δ2 ∈ (0, M3) such that |f(x, t)| > 0 for 0 < t < δ2,
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∃ M4 > 0 such that |f(x, t)| ≤ M4 for all t ∈ [δ2, M3],

for all x ∈ Ω \ {0}. Therefore, we deduce that

f(x, t) ≥ −
µ

λ

tp
∗(s)−1

|x|s
− M4tδ

−1
2 (2.3)

for all t ∈ R+ and for x ∈ Ω \ {0}. From (1.1) and (2.3), we have

−△puλ + λM4δ
−1
2 uλ ≥ 0.

From the strong maximum principle, we deduce that uλ > 0. So Theorem 1 is
proved. �

3. Proof of Theorem 2

The first positive solution uλ of problem (1.1) have been obtained in previ-
ous section, we can look for the second positive solution by a translated functional
as in [1]. For fixed λ ∈ (0, λ∗), we look for the second solution of problem (1.1) of
the form u = uλ + v, where uλ is the first positive solution obtained in previous
section. The corresponding equation for v is
{

−△p v = µ (uλ+v)p∗(s)−1

|x|s − µ (uλ)p∗(s)−1

|x|s + λf(x, uλ + v) − λf(x, uλ), x ∈ Ω \ {0},

v = 0, x ∈ ∂Ω.
(3.1)

Let us define

g(x, t) =

{

µ (uλ+t)p∗(s)−1

|x|s − µ (uλ)p∗(s)−1

|x|s + λf(x, uλ + t) − λf(x, uλ), t ≥ 0,

0, t < 0,
(3.2)

G(x, t) =

∫ t

0

g(x, s)ds

and

J(v) = 1
p

∫

Ω
|∇v|pdx −

∫

Ω
G(x, v+)dx

= 1
p
‖v‖p − µ

p∗(s)

∫

Ω

(

(uλ+v+)p∗(s)

|x|s −
u

p∗(s)
λ

|x|s − p∗(s)
u

p∗(s)−1
λ

v+

|x|s

)

dx

−λ
∫

Ω [F (x, uλ + v+) − F (x, uλ) − f(x, uλ)v+] dx.

Now we have one-to-one correspondence between critical points of J in W 1,p
0 (Ω)

and solutions of problem (3.1). That is, if v ∈ W 1,p
0 (Ω), v 6≡ 0 is a critical point of

J , then v is a solution of (3.1). Since ‖v−‖p = −〈J ′(v), v−〉 = 0, thus v = v+ ≥ 0.
Moreover, by the Maximum Principle, v > 0 in Ω. Here u = uλ + v is a positive
solution of (1.1) and u 6= uλ. We will prove the existence of a second positive
solution of (1.1) by contradiction. Assume that v = 0 is the only critical point of

J in W 1,p
0 (Ω).

Lemma 1. v = 0 is a local minimum of J in W 1,p
0 (Ω).

Proof. For any v ∈ W 1,p
0 (Ω), write v = v+ − v−. From the expression of J and

direct computation, we obtain that

J(v) =
1

p
‖v−‖p + I(uλ + v+) − I(uλ). (3.3)
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Since uλ is a local minimizer of I in W 1,p
0 (Ω), we have

J(v) ≥
1

p
‖v−‖p

as long as ‖v‖ ≤ ε for ε small enough. �

Lemma 2. ([9]) Suppose 1 < p < N, 0 ≤ s < p. Then we have the following:
(i) As(Ω) is independent of Ω (and will henceforth be denoted by As).

(ii) As is attained when Ω = RN by the functions

lε(x) =

[

ε(N − s)

(

N − p

p − 1

)p−1
]

N−p
p(p−s)

(

ε + |x|
p−s
p−1

)

p−N
p−s

for some ε > 0. Moreover the functions lε(x) are the only positive radial solutions
of

−△pu =
up∗(s)−1

|x|s

in RN , and satisfy
∫

RN

|∇lε|
pdx =

∫

RN

|lε|
p∗(s)

|x|s
dx = A

N−s
p−s
s .

Lemma 3. Suppose 0 < µ < ∞, f satisfies (A1)−(A3). Assume that v=0 is the only

critical point of J. Let {vn} be a (PS)c sequence with 0 < c < p−s
p(N−s)A

N−s
p−s
s µ

p−N
p−s .

Then we have
vn → 0 in W 1,p

0 (Ω) as n → ∞.

Proof. Let vn be a sequence in W 1,p
0 (Ω) such that

J(vn) → c <
p − s

p(N − s)
A

N−s
p−s

s µ
p−N
p−s and J ′(vn) → 0 in

(

W 1,p
0 (Ω)

)∗

. (3.4)

Then from (3.3) and (3.4), we have

J(vn) =
1

p
‖v−n ‖p + I(uλ + v+

n ) − I(uλ) = c + o(1), (3.5)

〈J ′(vn), uλ+v+
n 〉 =

∫

Ω

|∇v−n |p−2∇v−n ∇uλdx+〈I ′(uλ+v+
n ), uλ+v+

n 〉 = o(1)‖uλ+v+
n ‖.

It yields that

J(vn) − 1
p
〈J ′(vn), uλ + v+

n 〉

= 1
p

(

‖v−n ‖p −
∫

Ω |∇v−n |p−2∇v−n ∇uλdx − 〈I ′(uλ + v+
n ), uλ + v+

n 〉
)

+I(uλ + v+
n ) − I(uλ)

≤ c + 1 + o(1)‖uλ + v+
n ‖.

Therefore, one gets

1
p

(

‖v−n ‖p −
∫

Ω
|∇v−n |p−2∇v−n ∇uλdx

)

+ µ
(

1
p
− 1

p∗(s)

)

∫

Ω
(uλ+v+

n )p∗(s)

|x|s dx

+λ
∫

Ω

[

1
p
f(x, uλ + v+

n )(uλ + v+
n ) − F (x, uλ + v+

n )
]

dx

≤ I(uλ) + c + 1 + o(1)‖uλ + v+
n ‖.

(3.6)
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By (A1) and the boundedness of Ω, for any ε > 0, there exists M5 = M5(ε) > 0
such that

|f(x, t)t| ≤ ε
|t|p

∗(s)

|x|s
, x ∈ Ω\{0}, |t| > M5, |f(x, t)t| ≤ C3(ε), x ∈ Ω, |t| ∈ [0, M5],

|F (x, t)| ≤
ε

p

|t|p
∗(s)

|x|s
, x ∈ Ω\{0}, |t| > M5, |F (x, t)| ≤ C4(ε), x ∈ Ω, |t| ∈ [0, M5],

where C3(ε), C4(ε) > 0. Therefore, we have

|f(x, t)t| ≤ C3(ε) + ε
|t|p

∗(s)

|x|s
, (x, t) ∈ (Ω \ {0})× R, (3.7)

|F (x, t)| ≤ C4(ε) +
ε

p

|t|p
∗(s)

|x|s
, (x, t) ∈ (Ω \ {0})× R. (3.8)

Let C(ε) := 1
p
C3(ε) + C4(ε), combining (3.7) and (3.8), one gets

F (x, t) −
1

p
f(x, t)t ≤ C(ε) +

2ε

p

|t|p
∗(s)

|x|s
, (x, t) ∈ (Ω \ {0})× R. (3.9)

From (3.6) and (3.9), we deduce that
(

µ(p − s)

p(N − s)
−

2λε

p

)
∫

Ω

(uλ + v+
n )p∗(s)

|x|s
dx

≤ λC(ε)|Ω| −
1

p
‖v−n ‖p + C5‖v

−
n ‖p−1 + C6 + o(1)‖uλ + v+

n ‖,

where C5 = 1
p
‖uλ‖, C6 = I(uλ) + c + 1. Let ε = µ(p−s)

4(N−s)λ , we have

∫

Ω

(uλ + v+
n )p∗(s)

|x|s
dx ≤ C7‖v

−
n ‖p−1 + C8 + o(1)‖uλ + v+

n ‖,

where C7 = 2p(N−s)
µ(p−s) C5, C8 = 2p(N−s)

µ(p−s) (λC(ε)|Ω| + C6), which together with (3.3),

(3.5) and (3.8) imply that

1−ε
p

‖v−n ‖p + 1
p

[

(1 − ε)‖v+
n ‖p − Cε‖uλ‖

p − (1 − ε)‖v+
n ‖p−1

]

≤ 1
p
‖v−n ‖p + 1

p

[

(1 − ε)‖v+
n ‖p − Cε‖uλ‖

p
]

≤ 1
p
‖v−n ‖p + 1

p
|(‖v+

n ‖ − ‖uλ‖)|
p

≤ 1
p
‖v−n ‖p + 1

p
‖uλ + v+

n ‖p

= µ
p∗(s)

∫

Ω
(uλ+v+

n )p∗(s)

|x|s dx + λ
∫

Ω F (x, uλ + v+
n )dx + J(vn) + I(uλ) + o(1)

≤ C9‖v
−
n ‖p−1 + C10 + o(1)‖uλ + v+

n ‖,

where in the second step we used the fact that, the elementary inequality |a− b|t ≥

(1 − ε)at − Cεb
t (t ≥ 1, a, b > 0) holds. C9 =

(

µ
p∗(s) + λε

p

)

C7, C10 = λC4(ε)|Ω| +
(

µ
p∗(s) + λε

p

)

C8 + I(uλ) + c + o(1). Since ‖v−n ‖p−1 + ‖v+
n ‖p−1 = ‖vn‖

p−1, then we

deduce
‖vn‖

p − C11‖v
+
n ‖p−1 − C′

11‖v
−
n ‖p−1 ≤ C12 + o(1)‖uλ‖,
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where C11 = 1 + o(1) p
1−ε

, C′
11 = C9p

1−ε
, C12 = Cε‖uλ‖

p+pC10

1−ε
. So we get

‖vn‖
p − C13‖vn‖

p−1 ≤ C12 + o(1)‖uλ‖,

where C13 = C11+C′
11. It shows that {vn} is bounded in W 1,p

0 (Ω), going if necessary
to a subsequence, one gets that







vn ⇀ v0 weakly in W 1,p
0 (Ω),

vn → v0 strongly in Lγ(Ω), 1 < γ < p∗,
vn → v0 a.e. in Ω,

(3.10)

as n → ∞.
In addition, by the Sobolev embedding theorem, there exists M ′ > 0 such that

‖uλ + v+
n ‖

p∗(s)
p∗(s) ≤ M ′, denote by measE the measure of E. By (A1), for any ε > 0,

there exists C14(ε) > 0 such that

|f(x, t)t| ≤ C14(ε) +
ε

2M ′
|t|p

∗(s), (x, t) ∈ Ω × R.

Set δ := ε
2C14(ε) > 0, when E ⊂ Ω, measE < δ, we have

∣

∣

∫

E
f(x, uλ + v+

n )(uλ + v+
n )dx

∣

∣ ≤
∫

E
|f(x, uλ + v+

n )(uλ + v+
n )| dx

≤
∫

E
C14(ε)dx + ε

2M ′

∫

E
|uλ + v+

n |p
∗(s)dx

≤ C14(ε)meas E + ε
2 < ε.

By Vitali’s theorem, we prove that
∫

Ω

f(x, uλ + v+
n )(uλ + v+

n )dx →

∫

Ω

f(x, uλ + v+
0 )(uλ + v+

0 )dx as n → ∞.

Hence one has
∫

Ω
f(x, uλ + v+

n )(uλ + vn)dx
=
∫

Ω f(x, uλ + v+
n )(uλ + v+

n )dx −
∫

Ω f(x, uλ)(v−n )dx
→
∫

Ω
f(x, uλ + v+

0 )(uλ + v0)dx as n → ∞.
(3.11)

Using the same method, we deduce that
∫

Ω

F (x, uλ + v+
n )dx →

∫

Ω

F (x, uλ + v+
0 )dx, (3.12)

∫

Ω

f(x, uλ + v+
n )ωdx →

∫

Ω

f(x, uλ + v+
0 )ωdx,

as n → ∞ for ω ∈ W 1,p
0 (Ω). Hence, similar to the proof of Theorem 1, we have

0 = lim
n→∞

〈J ′(vn), ω〉 = 〈J ′(v0), ω〉

for ω ∈ W 1,p
0 (Ω), which implies that J ′(v0) = 0. Therefore, v0 is a critical point of

J in W 1,p
0 (Ω). From the assumption that v = 0 is the only critical point of J , we

know that v0=0. Now we want to prove v0 → 0 strongly in W 1,p
0 (Ω). From (3.10),

(3.12) and the Brezis-Leib Lemma (see [3]), we have

J(vn) =
1

p
‖v−n ‖p + I(uλ + v+

n ) − I(uλ) =
1

p
‖vn‖

p −
µ

p∗(s)

∫

Ω

(v+
n )p∗(s)

|x|s
dx + o(1).
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Therefore, we get

〈J ′(vn), vn〉 = ‖vn‖
p − µ

∫

Ω

(v+
n )p∗(s)

|x|s
dx + o(1) → 0,

then ‖vn‖
p → 0 as n → ∞. Otherwise, there exists a subsequence (still denoted by

vn) such that

lim
n→∞

‖vn‖
p = k, lim

n→∞
µ

∫

Ω

(v+
n )p∗(s)

|x|s
dx = k, k > 0.

By (1.2), we deduce that

‖vn‖
p ≥ As

(
∫

Ω

(v+
n )p∗(s)

|x|s
dx

)

p

p∗(s)

, for all n ∈ N.

Then, k ≥ As

(

k
µ

)

p

p∗(s)

, that is, k ≥ A
N−s
p−s
s µ

p−N
p−s . Thus we get that

c = o(1) + J(vn) = 1
p
‖vn‖

p − µ
p∗(s)

∫

Ω
(v+

n )p∗(s)

|x|s dx + o(1)

= p−s
p(N−s)k + o(1)

≥ p−s
p(N−s)A

N−s
p−s
s µ

p−N
p−s .

This is a contradiction. So vn → 0 strongly in W 1,p
0 (Ω) as n → ∞. �

Since uλ > 0 is a solution of problem (1.1), in a way similar to the proof of
Theorem 1.1 in [5], we obtain positive constants R and r0 such that B2R(0) ⊂ Ω
and

0 < r0 ≤ uλ(x), ∀ x ∈ B2R(0)\{0}. (3.13)

In the following, we shall give some estimates for the extremal functions. Let

Cε :=

[

ε(N − s)

(

N − p

p − 1

)p−1
]

N−p
p(p−s)

, Uε(x) :=
lε(x)

Cε

.

Define a function ϕ ∈ C∞
0 (Ω), 0 ≤ ϕ(x) ≤ 1 such that

ϕ(x) =

{

1, |x| ≤ R,
0, |x| ≥ 2R,

where B2R(0) ⊂ Ω. Set

uε(x) := ϕ(x)Uε(x), vε(x) :=
uε(x)

(

∫

Ω
|uε|p

∗(s)

|x|s dx
)

1
p∗(s)

,

so that
∫

Ω
|vε|

p∗(s)

|x|s dx = 1. Then, by using the argument as [9], we can get the

following results:

As + C15ε
N−p
p−s ≤ ‖vε‖

p ≤ As + C16ε
N−p
p−s (3.14)

and

C17

(

ε
(p−s)(p−1)

p

)

≤

∫

Ω

|vε|
p

|x|s
dx ≤ C18

(

ε
(p−s)(p−1)

p

)

, p >
N − s

N − p
(p − 1). (3.15)
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Lemma 4. Suppose that N ≥ 3, 0 < µ < ∞ and max
{

0, p2−N
p−1

}

< s < p. Assume

(A1) − (A3) and f(x, 0) ≡ 0 hold. Then there exists v∗ ∈ W 1,p
0 (Ω), v∗ 6≡ 0, such

that

sup
t≥0

J(tv∗) <
p − s

p(N − s)
A

N−s
p−s

s µ
p−N
p−s .

Proof. By (3.2), (A2) and an elementary inequality (the proof of this inequality is
elementary but not straightforward. We postpone it to Appendix A.)

(a+b)γ ≥ aγ+bγ+Caγ−tbt, γ ≥ 2, 1 ≤ t ≤ γ−1, a, b > 0, where C is a positive constant,

we have

g(x, l) ≥ µ
lp

∗(s)−1

|x|s
+ Cµ

lp−1u
p∗(s)−p

λ

|x|s
,

where (A3) implies p∗(s) − 1 ≥ 2, 1 ≤ p − 1 ≤ (p∗(s) − 1) − 1. Therefore, we have

G(x, tvε) ≥ µ
tp

∗(s)

p∗(s)

v
p∗(s)
ε

|x|s
+

Cµtp

p

vp
εu

p∗(s)−p

λ

|x|s
.

Note that s > p2−N
p−1 implies p > N−s

N−p
(p − 1), then (3.15) holds. Therefore, from

(3.13)-(3.15), we deduce that

J(tvε) = tp

p
‖vε‖

p −
∫

Ω G(x, tvε)dx

≤ tp

p
‖vε‖

p − µ tp∗(s)

p∗(s) − C19t
p
∫

Ω
vp

ε

|x|s dx

≤ tp

p
‖vε‖

p − µ tp∗(s)

p∗(s) − C20t
pε

(p−s)(p−1)
p

≤ As

p
tp + C21t

pε
N−p
p−s − µ tp∗(s)

p∗(s) − C20t
pε

(p−s)(p−1)
p ,

where C19 =
Cµr

p∗(s)−p

0

p
, C20 = C17C19 and C21 = C16

p
. Let

Q(t) :=
As

p
tp + C21t

pε
N−p
p−s − µ

tp
∗(s)

p∗(s)
− C20t

pε
(p−s)(p−1)

p .

It is clear that the equation

0 = Q′(t) = Ast
p−1 + pC21t

p−1ε
N−p
p−s − µtp

∗(s)−1 − pC20t
p−1ε

(p−s)(p−1)
p

has only one positive root

tε :=

(

As + pC21ε
N−p
p−s − pC20ε

(p−s)(p−1)
p

µ

)

1
p∗(s)−p

.
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We have

Q(tε) = 1
p

(

As + pC21ε
N−p
p−s − pC20ε

(p−s)(p−1)
p

)

tpε − µ
tp∗(s)
ε

p∗(s)

= µ
(

1
p
− 1

p∗(s)

)

(

As+pC21ε
N−p
p−s −pC20ε

(p−s)(p−1)
p

µ

)

p∗(s)
p∗(s)−p

= p−s
p(N−s)µ

p−N
p−s

(

As + pC21ε
N−p
p−s − pC20ε

(p−s)(p−1)
p

)

N−s
p−s

< p−s
p(N−s)µ

p−N
p−s A

N−s
p−s

s ,

for ε > 0 sufficiently small due to the fact that

N − p

p − s
>

(p − s)(p − 1)

p
, for s >

p2 − N

p − 1
.

Noting that Q(0) = 0 and limt→+∞ Q(t) = −∞, we have

sup
t≥0

Q(t) = Q(tε) <
p − s

p(N − s)
µ

p−N
p−s A

N−s
p−s

s ,

for ε > 0 sufficiently small. Hence we obtain

sup
t≥0

J(tvε) ≤ sup
t≥0

Q(t) <
p − s

p(N − s)
µ

p−N
p−s A

N−s
p−s
s ,

for ε > 0 sufficiently small, which complete the proof by letting v∗ = vε for ε > 0
sufficiently small. �

Proof of Theorem 2. By contradiction. Assume that v = 0 is the only critical
point of J in W 1,p

0 (Ω). From Lemma 1, there exists α > 0 such that J(v) > α for

all v ∈ ∂Bρ = {v ∈ W 1,p
0 (Ω), ‖v‖ = ρ}, where ρ > 0 small enough. By Lemma 4

there exists v∗ ∈ W 1,p
0 (Ω), v∗ 6≡ 0, such that

sup
t≥0

J(tv∗) <
p − s

p(N − s)
A

N−s
p−s

s µ
p−N
p−s .

From (3.8), we easily note that limt→∞ J(tv∗) → −∞. Hence we can choose t0 > 0
such that ‖t0v∗‖ > ρ and J(t0v∗) < 0. Applying the Mountain Pass Lemma (see

[15] or [14]), there is a sequence {vn} ⊂ W 1,p
0 (Ω) satisfying

J(vn) → c ≥ α and J ′(vn) → 0,

where

c = inf
h∈Γ

max
t∈[0,1]

J(h(t))

and

Γ = {h ∈ C([0, 1], X)| h(0) = 0, h(1) = t0v∗}.

Note that

0 < α ≤ c = inf
h∈Γ

max
t∈[0,1]

J(h(t))

≤ max
t∈[0,1]

J(tt0v∗) ≤ sup
t≥0

J(tv∗) <
p − s

p(N − s)
A

N−s
p−s

s µ
p−N
p−s .
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Together with Lemma 3, we know that vn → 0 strongly in W 1,p
0 (Ω) as n → ∞.

Hence one has 0 = J(0) = limn→∞ J(vn) = c ≥ α > 0, this is a contradiction. So
Theorem 2 holds. �

Appendix A

Here we give the proof of the elementary inequality in Lemma 4, that is,

(a + b)γ ≥ aγ + bγ + Caγ−tbt, γ ≥ 2, 1 ≤ t ≤ γ − 1, a, b > 0,

where C is a positive constant.
Proof. Indeed, by scaling it suffices to show that

(1 + x)γ ≥ 1 + xγ + Cxt, 0 < x < ∞.

Let γ = k + θ, t = m + η, where k ≥ 2, 1 ≤ m ≤ k − 1 are integral numbers and
0 ≤ η ≤ θ < 1 are real numbers. It is obvious that

(1 + x)γ = (1 + x)k+θ = (1 + x)k(1 + x)θ

≥ (1 + xk + Cxm)(1 + x)θ

≥ 1 + xk+θ + Cxm(1 + x)θ

≥ 1 + xk+θ + Cxmxη = 1 + xγ + Cxt.

Therefore, this inequality holds. �
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