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Long-time asymptotics of the second grade fluid equations

on R2
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Abstract. We study the large time behavior of solutions of the second grade
fluid system in the space R

2. Using scaled variables and introducing several
functionals in weighted Sobolev spaces, we prove that the solution of the second
grade fluid equations converges to the Oseen vortex, if the initial data are small
enough. We also give an estimate of the rate of convergence.
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1. Introduction

The classical theory of Newtonian fluids is unable to explain properties ob-
served in some fluids in the nature. Most of such fluids belong to the class of
non-Newtonian fluids. This is the case, for example, of many polymer solutions
and many commonly substances found in the industry (petroleum industry, plastic
manufacture, application of paints,....).
Several models have been introduced to describe and explain the behavior of non-
Newtonian fluids. Among these models, fluids of differential type introduced by
Rivlin-Erickson [23] have attracted much attention from a theoretical point of view.
In this article, we are interested in the study of a special class of non-Newtonian flu-
ids of differential type, namely fluids of second grade. Their study was initiated in
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1974 by J.E.Dunn and R.L.Fosdick [7] and then by R.L.Fosdick and K.R.Rajakopal
[8], [9]. For such fluids, the Cauchy stress tensor T is a polynomial of degree less
than 2 in the first two Rivlin-Ericksen kinematical tensors A1 and A2.

T = −pI + νA1 + α(A2 − A2
1)

where p is the pressure, ν is the viscosity and the tensors A1 and A2 are defined by

A1 = (grad u) + (grad u)T ,

A2 =
dA1

dt
+ A1(grad u) + (grad u)T A1

where u is the velocity of the fluid and d
dt = ∂t + u.∇.

The Newton laws and a classical computation lead to the following system, which
describes the motion of an incompressible fluid of second grade

(SGF )





∂t(u − α∆u) + rot(u − α∆u) × u = ν∆u −∇p
div u = 0

u(x, 0) = u0

where u = u(x, t) ∈ R2 is the velocity field, p = p(x, t) is the pressure, α is a
material coefficient, ν is the viscosity and x ∈ R2, t ≥ 0.
In the system (SGF), we have used the following notations and identifications.
We have identified any two-component vector field v = (v1, v2)

t with the three-
component field v = (v1, v2, 0)t and denoted rot v the 3-component vector field
given by

rot v = (0, 0, ∂1v2 − ∂2v1)
t.

Several authors have been interested in the study of the second grade fluid equa-
tions ([1], [6], [10], [11], [12], [18], [21], [20]). The first mathematical result of
existence and uniqueness of solutions was obtained by Cioranescu and Ouazar in
[6]. More precisely, when Ω is a bounded domain in R2, Cioranescu and Ouazar
have proved that for divergence-free initial data u0 in (H3(Ω))2 ∩ (H1

0 (Ω))2, the
solution of the system (SGF ) exists and is unique in the space L∞(R+, (H3(Ω))2)∩
L2(R+, (H1(Ω))2). The existence and uniqueness results are the same in the case of
periodic conditions, for more details, see [21]. When the equations are considered
in the whole space, a similar result is proved [1].
In the three-dimensional case, Cioranescu and Ouazar have also proved local ex-
istence (and uniqueness) of solutions of System (SGF ) (see [6]). Later, in [5],
Cioranescu and Girault established global existence (and uniqueness) of solutions
for small initial data.
On the other hand, the problem of existence of classical solutions has been studied
in [11] by Galdi, Grobbelaar and Sauer, who showed local existence and uniqueness
of classical solutions for (SGF ). Furthermore, when the size of the initial data is
suitably restricted and when the coefficient αρ is sufficiently large, where ρ is the
density of the fluid, they obtained a global existence result. Later, Galdi and Se-
queira have relaxed the condition on α in [12].

Let us remark that, when α vanishes, we recover the classical system of the Navier-
Stokes equations.

In this paper, we are interested in studying the large time asymptotic behavior
of the solution of (SGF ) in the whole space R

2. Our motivation comes from the
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case α = 0 (the Navier-Stokes equations). In [16], Gallay and Wayne used ideas
from the theory of dynamical systems in order to determine the long-time behavior
of solutions of the Navier-Stokes equations on R2. They showed that small solutions
of the corresponding vorticity equation, with non-zero total vorticity, asymptoti-
cally approach the Oseen vortex. In their work, they constructed finite-dimensional
invariant manifolds of these equations, and proved that all solutions in a neigh-
borhood of the origin approach one of these manifolds with a rate which can be
determined. Thus, computing the asymptotics of solutions is reduced to the task of
determining the asymptotics of the resulting systems of ordinary differential equa-
tions on these invariant manifolds.
This result was improved later in [17], where the authors showed that the Oseen
vortices are not only locally stable but also globally stable. In other words, any
solution of the two-dimensional vorticity equation whose initial vorticity is inte-
grable will approach one of the Oseen vortices. The proof of the global stability
was based on the construction of a pair of Lyapunov functionals for the rescaled
vorticity equation. Later, in [15], Gallay and Rodrigues gave an estimation of the
time that the solutions of the two-dimensional vorticity equation take to reach a
neighborhood of the Oseen vortex, when the initial data are integrable and well
localized in space (in [24], Rodrigues extended these results to slightly inhomoge-
neous incompressible fluids).

In this paper, we will prove that the solutions of the system (SGF ) have the
same behavior as the solutions of the Navier-Stokes equations, that is, the vorticities
converge to an Oseen vortex when the time goes to infinity.
As in the case of the Navier-Stokes equations, we will determine the asymptotics of
the solutions of the system (SGF ) by studying the evolution of the vorticity, rather
than the velocity. This is especially convenient in the two-dimensional case, where
the vorticity is a scalar.
In fact, taking the curl of the first equation in (SGF ), and using the identity

rot ( rot ũ × u) = u.∇( rot ũ),

which is true for any divergence free smooth vector fields u and ũ in R2, we obtain
the following equation for the vorticity w = rot u

(1.1) ∂t(w − α∆w) − ν∆w + u.∇(w − α∆w) = 0

One can then recover the solution u(x, t) of (SGF ) via the Biot-Savart law (see
Section 2.1).
In order to understand the long-time asymptotics of (SGF ), it is helpful to in-
troduce scaling variables. Scaling variables have been used in the study of the
long-time behavior of parabolic and also damped hyperbolic equations, in particu-
lar to prove convergence to self-similar solutions (see for example [16], [17], [13]) .
Following the ideas of Gallay and Wayne in [16] (see also [13]), for any fixed, large
enough time T , we introduce the new scaled variables

(1.2) ξ =
x√

ν(t + T )
, τ = log(t + T ).

We also define the new functions W (ξ, τ) and V (ξ, τ) by

(1.3) w(x, t) =
1

t + T
W (

x√
ν(t + T )

, log(t + T ))
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and

(1.4) u(x, t) =

√
ν

t + T
V (

x√
ν(t + T )

, log(t + T ))

where w(x, t) is a solution of (1.1) and u(x, t) is the corresponding velocity field.
Let

(1.5) τ0 = log T, ᾱ =
α

νT
, ǭ =

ǫ

ν2T
.

Then, W (ξ, τ) satisfies the following system

(1.6)
∂τ (W − ᾱe−τ∆ξW ) − LW + V.∇ξ(W − ᾱe−τ∆ξW )

+ ᾱe−τ∆ξW + ᾱ
2 e−τξ.∇ξ∆ξW = 0,

where W (ξ, τ0) = W0(ξ) = Tw0(x) and

(1.7) LW = ∆W +
1

2
ξ.∇W + W.

The second idea that helps to understand the long-time asymptotics of (SGF ) is
the introduction of weighted Sobolev spaces. For any m ≥ 0, we define the Hilbert
space L2(m) by

(1.8) L2(m) = {f ∈ L2(R2) /
∫

R2(1+ | ξ |2)m | f |2 dξ < ∞}
We denote

‖f‖L2(m) =
( ∫

R2

(1+ | ξ |2)m | f |2 dξ
) 1

2 < ∞.

We notice that the spectrum of the operator L acting on L2(m) consists of a
discrete spectrum and a continuous one. Choosing m large enough, we can move the
continuous spectrum to the left as much as wanted. The eigenvectors corresponding
to the isolated eigenvalues can be computed explicitly and are rapidly decaying at
infinity (For more details, see section 3.1).
If m > 1, L2(m) is embedded into L1(R2). We denote by L2

0(m) the closed subspace
of L2(m) given by

L2
0(m) = {f ∈ L2(m)/

∫

R2

f(ξ)dξ = 0}

We also define the higher order Sobolev spaces

H1(m) = {f ∈ L2(m)/∂if ∈ L2(m), i = 1, 2}

H2(m) = {f ∈ H1(m)/∂if ∈ H1(m), i = 1, 2}
We also use the classical Lebesgue spaces Lp(R2) equipped with the classical norm

‖u‖Lp = (

∫

R2

| u(x) |p dx)
1

p , for all p ≥ 1.

The first step in the study of the asymptotic behavior of the solutions of Equa-
tion (1.1) is to prove a local existence theorem in the weighted Sobolev spaces
H2(m), m ≥ 0.
For this purpose and for some technical reasons, we regularize Equation (1.1) by
adding the smoothing term ǫ∆2w. Then, we study the asymptotic behavior of the
solution wǫ of the regularized equation and establish energy estimates that are uni-
form with respect to ǫ. Finally, using these energy estimates, we prove that the
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family of solutions (wǫ)ǫ of these regularized equations admits a limit w, which is a
solution of Equation (1.1). We also show that this limiting solution w has the same
rate of decay as the regularized solution. We obtain the following theorem which
describe the large time asymptotic behavior of the solutions of Equation (1.6) (the
vorticity equation written in the scaled variables).

Theorem 1.1. Let T > 0 be a fixed time. There exist two positive constants
ᾱ0 and γ0 such that, for all ᾱ ≤ ᾱ0, for all W0 in H2(2) satisfying

(1.9) ‖W0‖2
H1 + ᾱe−τ0 ‖∆W0‖2

L2 +
∥∥| ξ |2 W0

∥∥2

L2
+ ᾱe−τ0

∥∥| ξ |2 ∆W0

∥∥2

L2
≤ γ0,

where τ0 = log T , Equation (1.6) has a unique solution W (τ) ∈
C0([τ0, +∞[, H2(2)) satisfying W (τ0) = W0.
Moreover, the following inequality is satisfied, for all τ ≥ τ0,

∥∥(1 − ᾱe−τ∆)(W (τ) − βG)
∥∥

L2(2)
≤ Ce−

θ
2
τ

where C and θ are positive constants, θ < 1
2 , ,

β =

∫

R2

W0(ξ)dξ

and where G is the Oseen vortex defined by

G(ξ) =
1

4π
e−|ξ|2/4, ξ ∈ R

2.

The interpretation of the result in the unscaled variables (x, t) is as follows:
Let

(1.10) Ω(x, t) =
1

t + T
G(

x√
ν(t + T )

)

and

(1.11) uΩ(x, t) =

√
ν

t + T
V G(

x√
ν(t + T )

).

From Theorem 1.1, we deduce the following result.

Corollary 1.2. Let T > 0 be a fixed time so that α
νT < ᾱ0. Then, there exists

a positive constant γ such that for all w0 in H2(2) satisfying

T ‖w0‖2
L2 + T

3

2 ‖∇w0‖2
L2 + αT ‖∆w0‖2

L2 +
∥∥x2w0

∥∥2

L2
+ α

∥∥x2∆w0

∥∥2

L2
≤ γ,

the unique solution w(x, t) of Equation (1.1) satisfies, for all t ≥ 0,

(1.12)

∥∥(1 − α
T ∆)(w(t) − βΩ)

∥∥
Lp ≤ Cp(T + t)−1− θ

2
+ 1

p , 1 ≤ p ≤ 2,

∥∥x2(1 − α
T ∆)(w(t) − βΩ)

∥∥
L2

≤ C(T + t)−1− θ
2

where C, Cp and θ, θ < 1/2, are three positive constants and Ω is given by (1.10).
If u(x, t) is the velocity field obtained from w(x, t) via the Biot-Savart law, then

(1.13)
∥∥(1 − α

T ∆)(u(t) − βuΩ)
∥∥

Lq ≤ Cq(T + t)−
1

2
− θ

2
+ 1

q , 1 < q < ∞

where 0 < θ < 1/2, Cq > 0 is a constant and uΩ is given by (1.11).
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We emphasize that, although the system (SGF ) converges to the system of the
Navier-Stokes equations when α tends to zero, the results that we obtained here,
are true for all values of α and not only for small values of α.
Indeed, if we look at the rescaled equation (1.6), we remark that the coefficient ᾱ
can be as small as we want provided that we choose the parameter T large enough.
This shows that the Oseen vortex is an asymptotic solution of the system (SGF ).

We also note that the techniques that we use to prove Theorem 1.1 are quite differ-
ent from the one used in the case of the Navier-Stokes equations ([16]). Actually,
we use the method of energy functionals developed in [13] and [14]. As in [13] and
[14], we introduce “primitives” of the function W . More precisely, we introduce
the auxiliary function F (ξ, τ) given by

(1.14) F (ξ, τ) = (−∆)−
3

4

(
W (ξ, τ) − βG(ξ)

)
.

This function F (ξ, τ) has a better decay rate than W (ξ, τ) − βG(ξ).

This paper is organized as follows. In the next section, we state the Biot-Savart
law and recall some useful estimates of the velocity in terms of the vorticity. We
also prove the local existence of the solution of the regularized vorticity equation
in the space H2(m), m ≥ 0. In Section 3, we study some spectral properties of the
operator L, we decompose the solution w and we give some auxiliary lemmas on the
auxiliary function F defined by (1.14). In section 4, we introduce several function-
als and we derive energy estimates in the space H2(2). We also state the theorem
(see Theorem 3.3) which describes the first order asymptotics of small solutions of
the regularized equation. The last section is devoted to the proof of Theorem 3.3.
Finally, we pass to the limit when ǫ tends to zero and we prove Theorem 1.1 and
Corollary 1.2.

Acknowledgements :

I would like to express all my gratitude to Geneviève Raugel, without whom this
work could not have been done.

2. Preliminaries and regularized vorticity equation

2.1. The Biot-Savart law. As we explained in the introduction, our ap-
proach consists first in studying the behavior of the solutions of the vorticity equa-
tion (1.1) and then, to derive information about the solutions of the system (SGF ).
For this reason, we begin our study by recalling the relationship between the ve-
locity field u and the associated vorticity w. In two dimensions, the velocity field
u is defined in terms of the vorticity via the Biot-Savart law

(2.1) u(x) =
1

2π

∫

R2

(x − y)⊥

| x − y |2 w3(y)dy

where x⊥ = (−x2, x1)
T and w = (0, 0, w3).

The following lemma collects useful estimates for the velocity u in terms of the
vorticity w (see [16]).

Lemma 2.1. Let u be the velocity field obtained from w via the Biot-Savart law
(2.1).
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(a) Assume that 1 < p < 2 < q < ∞ and 1
q = 1

p − 1
2 . If w ∈ Lp(R2), then

u ∈ Lq(R2)2, and there exists a positive constant Cp such that

‖u‖Lq ≤ Cp ‖w‖Lp .

(b) Assume that 1 ≤ p < 2 < q ≤ ∞ and define λ ∈ (0, 1) by the relation 1
2 =

λ
p + 1−λ

q .

If w ∈ Lp(R2) ∩ Lq(R2), then u ∈ L∞(R2)2, and there exists C > 0 such that

‖u‖L∞ ≤ C ‖w‖λ
Lp . ‖w‖1−λ

Lq .

(c) Assume that 1 < p < ∞. If w ∈ Lp(R2), then ∇u ∈ Lp(R2)4, and there exists

a positive constant C̃p such that

‖∇u‖Lp ≤ C̃p ‖w‖Lp .

(d) Let s ∈ R and J = (−∆)
1

2 .
If Js−1w ∈ L2(R2), then Jsu ∈ L2(R2)2, and there exists a positive constant C
such that

‖Jsu‖L2 ≤ C
∥∥Js−1w

∥∥
L2

.

In addition, div u = 0 and rot u = ∂1u2 − ∂2u1 = w.

For the proof of (a), (b) and (c), we refer to [16]. To prove (d), it is sufficient
to write the expression of the Biot-Savart law in Fourier variables:

û(η) =
iη⊥

| η |2 ŵ(η).

Lemma 2.2. Let u be the velocity field obtained from w via the Biot-Savart law.
There exists a positive constant C such that, for any w in L2(2)∩H1(R2), we have,

(a) ‖u‖L∞ ≤ C ‖w‖
1

2

H1 ‖w‖
1

2

L2(2) ,

(b) ‖u‖L4 ≤ C ‖w‖L2(2) ,

Proof : In order to prove Inequality (a), we use Lemma 2.1, part (b), with
λ = 1

2 , p = 6
5 , q = 6, for example, and the fact that H1(R2) and L2(2) are

continuously embedded into L6(R2) and L
6

5 (R2) respectively.
To prove Inequality (b), we use Lemma 2.1, part (a) and the continuous injection

of L2(2) into L
4

3 (R2). 2

We remark that, according to the Biot-Savart law, the velocity is, in general,
not in L2(R2). However, if

∫
R2 w(ξ)dξ = 0, then u ∈ L2(R2) and we have the

following lemma.

Lemma 2.3. For any w in L2(1), with
∫

R2 w(ξ)dξ = 0, the corresponding ve-

locity field u obtained from w via the Biot-Savart law belongs to L2(R2) and we
have:

‖u‖L2 ≤ C‖ | ξ | w‖L2 .

where C is a constant independent of w and u.
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Proof : Let ŵ be the Fourier transform of w. Then, using the Biot-Savart law
and the fact that ŵ(0) = 0, we can write

‖u‖2
L2 =

∫

R2

1

| k |2 | ŵ(k) |2 dk =

∫ 1

0

∫

R2

| ∇ŵ(sk) |2 dk ds

≤ C ‖∇ŵ‖2
L2 ≤ C‖ | ξ | w‖L2 .

2

Lemma 2.4. Let h belongs to L2(1), then (−∆)−
1

4 h belongs to L2(R2) and we
have ∥∥∥(−∆)−

1

4 h
∥∥∥

L2

≤ C ‖h‖L2(1)

Proof : Using the Fourier transformation, we can write
∥∥∥(−∆)−

1

4 h
∥∥∥

2

L2

=

∫

R2

1

| k | | ĥ(k) |2 dk

≤
∫

|k|≤1

1

| k | | ĥ(k) |2 dk +

∫

|k|≥1

| ĥ(k) |2 dk

On one hand, the second term in this inequality can be bounded ‖h‖2
L2 . On the

other hand, applying Hölder’s inequality to the first term in the right-hand side of
this inequality together with a classical Sobolev embedding theorem, we obtain

∥∥∥(−∆)−
1

4 h
∥∥∥

2

L2

≤
∥∥∥ĥ

∥∥∥
2

L6

( ∫

|k|≤1

1

| k | 32
dk

) 2

3

+ ‖h‖2
L2

≤ C
∥∥∥ĥ

∥∥∥
2

H1

+ ‖h‖2
L2

≤ C ‖(1+ | ξ |)h‖2
L2 ≤ C ‖h‖2

L2(1)

2

Remark 2.5. Using the Fourier transform, it is easy to remark that
∥∥∥(−∆)−

3

4 ∂ih
∥∥∥

L2

≤
∥∥∥(−∆)−

1

4 h
∥∥∥

L2

, i = 1, 2.

In fact, we have,
∥∥∥(−∆)−

3

4 ∂ih
∥∥∥

2

L2

=

∫

R2

| ki |2
| k |3 | ĥ(k) |2 dk ≤

∫

R2

1

| k | | ĥ(k) |2 dk

=
∥∥∥(−∆)−

1

4 h
∥∥∥

2

L2

.

2.2. Local existence of the regularized vorticity equation. As we al-
ready said in the introduction, in order to study the solutions of Equation (1.1),
in the weighted Sobolev spaces, we introduce the regularized equation (2.2) below.
Indeed, since Equation (1.1) contains a nonlinearity that involves derivatives of
order three, we cannot directly use classical methods of proofs to obtain the local
existence. In order to overcome this difficulty, we add the smoothing term ǫ∆2. to
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the equation (1.1) and study the local well-posedness of the following equation in
the space H2(m), m ≥ 0,

(2.2)
∂t(wǫ − α∆wǫ) + ǫ∆2wǫ − ν∆wǫ + uǫ.∇(wǫ − α∆wǫ) = 0

wǫ(0) = w0

Theorem 2.6. Let ǫ > 0. There exists a time tmax > 0 such that, for
all w0 ∈ H2(m), m ≥ 0, Equation (2.2) has a unique solution wǫ in the space
C0([0, tmax], H2(m)) ∩ C1((0, tmax], L2(m)), with wǫ(0) = w0.

Proof : Let β be a small positive constant (whose choice will be made more
precise later). In order to prove the local existence of the solutions of Equation
(2.2), we introduce the auxiliary variable and auxiliary unknown

X = βx, and wǫ(x, t) = sǫ(βx, t) = sǫ(X, t).

The equation satisfied by sǫ is given by

(2.3) ∂t(sǫ − αβ2∆Xsǫ) − νβ2∆Xsǫ + ǫβ4∆2
Xsǫ + βuǫ.∇X(sǫ − αβ2∆Xsǫ) = 0

We will see, in the proof of the local existence of solutions, that the above change
of variables allows us to avoid restrictions on the size of α.
Let q(X) = (1+ | X |2)m/2, and zǫ(t, X) = q(X)sǫ(X, t).
Then sǫ ∈ C0([0, tmax], H2(m)) ∩ C1((0, tmax], L2(m)) is a solution of Equation
(2.3) if and only if the function zǫ ∈ C0([0, tmax], H2(R2)) ∩ C1([0, tmax], L2(R2))
is a solution of the following equations

(2.4)
∂t[zǫ − αβ2∆Xzǫ − αβ2q∆X(q−1)zǫ − 2αβ2q∇X(q−1)∇Xzǫ] + ǫβ4∆2

Xzǫ

= P (zǫ),
zǫ(0) = q(X)w0(X) = z0 ∈ H2(R2),

where P (zǫ) = νβ2∆Xzǫ + q(X)
[
νβ2∆X(q−1)zǫ + 2νβ2∇X(q−1).∇Xzǫ

− β(uǫ.∇X)(q−1zǫ) + αβ3(uǫ.∇X)
(
∆X(q−1)zǫ + 2∇X(q−1).∇X(zǫ)

)

+ αβ3(uǫ.∇X)(q−1∆Xzǫ) − ǫβ4∆X

(
∆X(q−1)zǫ + 2∇X(q−1).∇Xzǫ

)

− ǫβ4
(
∆X(q−1)∆Xzǫ + 2∇X(q−1).∇X∆Xzǫ

)]
.

Let A be the linear operator: D(A) = H2(R2) → L2(R2), given by

A = αβ2∆X + αβ2q∆X(q−1).

If we suppose that β is small enough, then Id − A is invertible from L2(R2) into
H2(R2). Indeed, for f ∈ L2(R2), we consider the following problem.
Find u ∈ H2(R2) such that

(2.5) (Id − A)u = f

Let a be the bilinear form defined, for u, v ∈ H1(R2), by

a(u, v) =
∫

R2 u(X).v(X)dX + αβ2
∫

R2 ∇u(X).∇v(X)dX

− αβ2
∫

R2 q∆(q−1)u(X)v(X)dX.



194 BASMA JAFFAL-MOURTADA

Then, we have, for any u ∈ H1(R2),

a(u, u) ≥
∫

R2 | u(X) |2 dX + αβ2
∫

R2 | ∇u(X) |2 dX

−αβ2
∫

R2 | q∆(q−1) || u(X) |2 dx

We notice that | q∆(q−1) |≤ C0, where C0 > 0 is a constant.
Thus,

a(u, u) ≥ (1 − αβ2C0)‖u‖2
L2 + αβ2‖∇u‖2

L2.

Supposing that β is small enough such that 1−αβ2C0 > 0, we obtain from the Lax-
Milgram theorem that there exists a unique solution u ∈ H1(R2) of (2.5). Since f
belongs to L2(R2), we deduce from a classical regularity theorem that u belongs to
H2(R2) and

‖u‖H2 ≤ Cβ‖f‖L2,

where Cβ > 0 is a constant, independent of f and u.
On the other hand, if β is small enough, we can show by the same way that
(Id − A − αβ2q∇(q−1)∇)−1 exists and is defined from L2(R2) into H2(R2).
In fact, remarking that | q∇(q−1) |≤ C1, where C1 > 0, we have

a(u, u) − αβ2
∫

R2 q∇(q−1)∇u(X)u(X)dX ≥

(1 − αβ2C0)‖u‖2
L2 + αβ2‖∇u‖2

L2 − αβ2C1‖∇u‖L2‖u‖L2

Then, applying the Young inequality and supposing that
1 − αβ2C0 − 1

2αβ2C2
1 > 0, we obtain,

a(u, u) − αβ2
∫

R2 q∇(q−1)∇u(x)u(x)dx ≥

(1 − αβ2C0 − 1
2αβ2C2

1 )‖u‖2
L2 + 1

2αβ2‖∇u‖2
L2

Finally, using the Lax-Milgram theorem, we can show that the operator
(Id − A − αβ2q∇(q−1)∇) is invertible.
Now, let B = −αβ2q∇(q−1)∇.
Then, Equation (2.4) can be written as

(2.6) ∂tzǫ + ǫ(I − A + B)−1∆2
Xzǫ = (I − A + B)−1 P (zǫ) ≡ P̃ (zǫ)

The operator (I − A + B)−1∆2
X can be defined from H2(R2) into L2(R2) and can

be written as

(I − A + B)−1∆2
X = (I − A)−1∆2

X − (I − A + B)−1B(I − A)−1∆2
X

The operator (I − A)−1∆2
X defined from H2(R2) into L2(R2) is self-adjoint and

positive, thus, −(I −A)−1∆2
X is the generator of an analytic semigroup in L2(R2).

Let

R = −(I − A + B)−1B(I − A)−1∆2
X : H1(R2) −→ L2(R2).

Then, there exists a constant Cβ > 0 such that, for all u ∈ H1(R2),

‖Ru‖L2 ≤ Cβ‖u‖H1 .

Therefore, (I − A)−1∆2
X + R is the generator of an analytic semigroup in L2(R2)

(see [22] Corollary 2.2 page 81).

Since P̃ (zǫ) is a locally Lipschitz continuous mapping from H1(R2) into L2(R2),
we deduce, from a classical result ([22], [4]) that there exists a time tmax > 0
such that, for all z0 ∈ H2(R2), Equation (2.4) has a unique classical solution
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zǫ ∈ C0([0, tmax], H2(R2)) ∩ C1((0, tmax], L2(R2)) satisfying zǫ(0) = z0. Therefore,
we have proved the local existence and uniqueness of solutions of Equation (2.3) in
the space C0([0, tmax], H2(m)) ∩ C1((0, tmax], L2(m)) and thus, of the regularized
vorticity equation (2.2). 2

To complete the proof of the local existence of the solution w of Equation
(1.1), we need to take the limit of wǫ when ǫ tends to zero, but we do not know
how to prove that the existence time of wǫ is independent of ǫ. Therefore in the
next sections, the study of the asymptotic behavior will be done for wǫ. We will
establish energy estimates on wǫ, which are uniform in ǫ. Then passing to the limit
when ǫ tends to zero, we will prove that the limit of wǫ is the solution of Equation
(1.1) and satisfies the same energy estimates as wǫ.

3. Spectral study of the operator L and decomposition of the solution

One of the main ideas in our analysis of the long-time asymptotics of Equation
(2.2) is based on rewriting this equation in terms of the scaled variables (ξ, τ) given
by (1.2). We recall that the new functions Wǫ and Vǫ in the rescaled variables are
given by

(3.1) wǫ(x, t) =
1

t + T
Wǫ(

x√
ν(t + T )

, log(t + T ))

and

(3.2) uǫ(x, t) =

√
ν

t + T
Vǫ(

x√
ν(t + T )

, log(t + T ))

where wǫ(x, t) is a solution of (2.2) and uǫ(x, t) is the corresponding velocity field.
We remark that t = 0 corresponds to τ0 = log T .
The “rescaled vorticity” Wǫ(ξ, τ) satisfies the following system

(3.3)

∂τ (Wǫ − ᾱe−τ∆ξWǫ) − LWǫ + Vǫ.∇ξ(Wǫ − ᾱe−τ∆ξWǫ) + ǭe−2τ∆2
ξWǫ

+ ᾱe−τ∆ξWǫ + ᾱ
2 e−τξ.∇ξ∆ξWǫ = 0,

Wǫ(ξ, τ0) = W0(ξ) = Tw0(x),

where the operator L has been defined in (1.7), τ0, ᾱ, ǭ are given by (1.5) and,
according to the Biot-Savart law,

Vǫ(ξ, τ) =
1

2π

∫

R2

(ξ − η)⊥

| ξ − η |2 W ǫ
3 (η, τ)dη

where Wǫ = (0, 0, W ǫ
3).

We point out that Equation (3.3) preserves the total mass of Wǫ. Indeed, integrating
(3.3) over R2, and using the fact that div Vǫ = 0, we obtain

(3.4)

∫

R2

Wǫ(ξ, τ)dξ =

∫

R2

W0(ξ)dξ.
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3.1. The operator L. As we already explained in the introduction, working
in weighted Sobolev spaces allows to push the continuous spectrum of L to the left.
If one studies the spectrum of the operator L acting on L2(m), one finds that it
consists of a sequence of eigenvalues

σd = {−k

2
| k = 0, 1, 2, ..., m− 2}

and continuous spectrum

σc = {λ ∈ C | Re(λ) ≤ −m − 1

2
}

(for more details, see Appendix A in [16]).
The eigenvectors corresponding to the isolated eigenvalues can be explicitly com-
puted and are rapidly decaying at infinity (see Appendix B in [16]).
In our study, we will consider the behavior of small solutions of (3.3) in the space
L2(m) with m = 2. The operator L has a simple isolated eigenvalue λ0 = 0 in
L2(2), with corresponding eigenfunction

(3.5) G(ξ) =
1

4π
e−|ξ|2/4, ξ ∈ R

2.

For any β ∈ R,

(3.6) W (ξ) = βG(ξ)

is called the Oseen vortex. The corresponding velocity field V G (such that rot V G =
G) is given by

(3.7) V G(ξ) =
1 − e−|ξ|2/4

2π | ξ |2
(

−ξ2

ξ1

)

Remark 3.1. It is clear that ξ is orthogonal to V G, therefore

(3.8) V G.∇G(ξ) = 0

and

(3.9) V G.∇∆G(ξ) = 0

As a consequence of the equality (3.8), the Oseen vortex defined by (3.6) is a
stationary solution of the equation

(3.10) ∂τW − LW + V.∇W = 0

where V is the velocity field corresponding to the vorticity W .
Note that this equation is precisely the vorticity equation corresponding to the
Navier-Stokes equations in space dimension two.

Remark 3.2. Remarking that |V G| ∼ |ξ|−1 as |ξ| → +∞, we obtain that
V G ∈ Lq(R2)2, ∀q > 2.
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3.2. Decomposition of the solution and auxiliary lemmas. In this pa-
per, we will prove the following result.

Theorem 3.3. Let T > 0 be a fixed time. There exist two positive constants
ᾱ0 and γ0 such that for all ᾱ ≤ ᾱ0 and for all W0 in H2(2) satisfying
(3.11)

‖W0‖2
H1 + ᾱe−τ0 ‖∆W0‖2

L2 +
∥∥| ξ |2 W0

∥∥2

L2
+ ᾱe−τ0

∥∥| ξ |2 ∆W0

∥∥2

L2
≤ γ0,

where τ0 = log T , Equation (3.3) has a unique solution Wǫ(τ) ∈
C0([τ0, +∞[, H2(2)) satisfying Wǫ(τ0) = W0. Moreover, the following inequality is
satisfied, for all τ ≥ τ0,

∥∥(1 − ᾱe−τ∆)(Wǫ(τ) − βG)
∥∥2

L2(2)
≤ Ce−θτ

where C and θ, θ < 1
2 , are positive constants, β =

∫

R2

W0(ξ)dξ and G is the Oseen

vortex defined by (3.6).

Since we are interested in studying the behavior of the solution of (3.3) with
initial data W0 near an Oseen vortex in the space H2(2), it is convenient to introduce
the following change of functions:

(3.12) Wǫ(ξ, τ) = βG(ξ) + fǫ(ξ, τ),

where, due to the conservation of mass property (3.4),

(3.13) β ≡
∫

R2

W0(ξ)dξ = β.

Thus, fǫ(ξ, τ) belongs to L2
0(2) for any τ ≥ 0, where

L2
0(m) = {f ∈ L2(m)/

∫
R2 f(ξ)dξ = 0}.

In what follows, we will drop the index ǫ and simply denote fǫ(x, t) by f(x, t).
Taking into account the properties (3.8) and (3.9), we see that f(ξ, τ) satisfies the
following equation

(3.14)

∂τ (f − ᾱe−τ∆f) − Lf + ǭe−2τ∆2f + ᾱe−τ∆f + ᾱ
2 e−τξ.∇∆f

+Kf .∇(f − ᾱe−τ∆f) + βV G.∇(f − ᾱe−τ∆f) + βKf .∇(G − ᾱe−τ∆G)

+ǭβe−2τ∆2G + βᾱe−τ∆G + β ᾱ
2 e−τξ.∇∆G = 0

where Kf(ξ, τ) = V (ξ, τ) − βV G.

As we explained in the introduction, the main argument in the study of the as-
ymptotic behavior of f is the use of functional method. This method consists in
writing various energy estimates for f and in considering a linear combination of
these functionals in order to establish that f converges to zero with an exponential
decay rate in the space H2(2).
In what follows, we will establish various energy estimates for f(ξ, τ) in the spaces
H2(2). So, in a first step, we will control the L2-norm of f . Unfortunately, we
cannot obtain good estimates of f in the space L2(R2).
Indeed, if (., .) denotes the scalar product in L2(R2), we have,

(3.15) (−Lf, f) = ‖∇f‖2
L2 −

1

2
‖f‖2

L2 ,
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which is not helpful in the functional method.
In the paper [13] (where the asymptotic behavior was studied in the one-dimensional
space), the authors considered the primitive of f , because it had a better decay than
f . In our study, since we are in the two-dimensional case, we will introduce the
function

(3.16) F (ξ, τ) = (−∆)−
3

4 f(ξ, τ)

Before continuing our analysis, we give the following lemmas that will be useful
later.

Lemma 3.4. Let f belong to L2(2) such that
∫

R2 f(ξ)dξ = 0, then (−∆)−
3

4 f

belongs to L2(R2) and we have

(3.17)
∥∥∥(−∆)−

3

4 f
∥∥∥

L2

≤ C ‖f‖L2(2) ,

where C > 0 is independent of f .

Proof : Let f̂ be the Fourier transform of f given by

(3.18) f̂(k) =

∫

R2

f(ξ)exp(−ik.ξ)dξ.

Since f̂(0) = 0, we can write

∥∥∥(−∆)−
3

4 f
∥∥∥

2

L2

=

∫

R2

1

| k |3 | f̂(k) |2 dk

≤
∫

|k|≤1

1

| k |3 | f̂(k) |2 dk +

∫

|k|≥1

| f̂(k) |2 dk

≤
∫ 1

0

∫

|k|≤1

1

| k | | ∇f̂(sk) |2 dk ds + ‖f‖2
L2

Applying Hölder’s inequality on the first term in the above inequality, we obtain

∥∥∥(−∆)−
3

4 f
∥∥∥

2

L2

≤
∫ 1

0

(∫

|k|≤1

| ∇f̂(sk) |6 dk
) 1

3

(∫

|k|≤1

1

| k | 32
dk

) 2

3

ds + ‖f‖2
L2

≤ C
∥∥∥∇f̂

∥∥∥
2

L6

+ ‖f‖2
L2 ≤ C

∥∥∥∇f̂
∥∥∥

2

H1

+ ‖f‖2
L2

Therefore,
∥∥∥(−∆)−

3

4 f
∥∥∥

2

L2

≤ C
∥∥(1+ | ξ |2)f

∥∥2

L2
≤ C ‖f‖2

L2(2)

2

We emphasize that in order to bound the L2-norm of f , it is sufficient to bound
the L2-norms of ∇F and of ∇f .
In fact, applying Hölder’s inequality, we have

‖f‖2
L2 =

∫

R2

(−∆)
1

4 f(−∆)
1

2 (−∆)
−3

4 f ≤
∥∥∥(−∆)

1

4 f
∥∥∥

L2

∥∥∥(−∆)
1

2 F
∥∥∥

L2
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Then, using the fact that
∥∥∥(−∆)

1

2 F
∥∥∥

L2

= ‖∇F‖L2 and applying Young’s inequality,

we obtain

‖f‖2
L2 ≤ ‖f‖

1

2

L2

∥∥∥(−∆)
1

2 f
∥∥∥

1

2

L2

‖∇F‖L2 ≤ ‖f‖
1

2

L2 ‖∇f‖
1

2

L2 ‖∇F‖L2

≤ 1
2 ‖∇F‖2

L2 + 1
4 ‖∇f‖2

L2 + 1
4 ‖f‖

2
L2

Thus,

(3.19) ‖f‖2
L2 ≤ 2

3 ‖∇F‖2
L2 + 1

3 ‖∇f‖2
L2

In order to bound the L2-norm of ∇F , the first step consists in writing the equation
satisfied by F . The lemma stated below will help us to write this equation.

Lemma 3.5. Let F be given by (3.16). We have

(
(−∆)−

3

4 (ξ.∇f)
)

= −3

2
F + ξ.∇F

and

(−∆)−
3

4Lf = ∆F +
1

2
ξ.∇F +

1

4
F.

Proof : In what follows, the Fourier transform of f is sometimes denoted by P (f).
Using the Fourier transformation and integrating by parts, we can write

P
(
(−∆)−

3

4 (ξ.∇f)
)
(k) = −2P

(
(−∆)−

3

4 f
)
(k) + iki

| k | 32

∫

R2

ξif(ξ)exp(−ik.ξ)dξ

= −2P
(
(−∆)−

3

4 f
)
(k) − ki

| k | 32
∂ki

∫

R2

f(ξ)exp(−ik.ξ)dξ

= − 3
2P

(
(−∆)−

3

4 f
)
(k) + P

(
ξ.∇(−∆)−

3

4 f
)
(k)

Thus,

(−∆)−
3

4Lf = ∆F +
1

2
ξ.∇F +

1

4
F.

2

Lemma 3.5 at once implies that

(
− (−∆)−

3

4Lf, F
)

= ‖∇F‖2
L2 +

1

4
‖F‖2

L2 ,

which will help us in obtaining “good L2-estimates” on F .

Using Lemma 3.5, we see that F satisfies the following equation
(3.20)

∂τ (F − ᾱe−τ∆F ) − ∆F − 1
2ξ.∇F − 1

4F + ǭe−2τ∆2F + ᾱ
4 e−τ∆F

+ ᾱ
2 e−τξ.∇∆F + (−∆)−

3

4

(
(Kf + βVG).∇

(
(−∆)

3

4 F + ᾱe−τ (−∆)
7

4 F
))

+β(−∆)−
3

4

(
Kf .∇

(
G − ᾱe−τ∆G

)

+ ᾱ
2 e−τξ.∇(−∆)

1

4 G + ǭβe−2τ (−∆)
5

4 G + ᾱβ
4 e−τ (−∆)

1

4 G = 0
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4. Asymptotic behavior of solutions and energy estimates

In this section, we will establish various energy estimates of the solutions of
Equation (3.14) in the space H2(2).
In what follows, we introduce a positive constant δ0 (that will be fixed later) and let
0 < δ ≤ δ0. We also assume that, for some τ0 < τ1 < τ̂ , where τ̂ = log(T +tmax), we
are given a solution f ∈ C([τ0, τ1], H

2(2)) of Equation (3.14) satisfying the following
bound

(4.1) | β |2 + ‖f(τ)‖2
H1 +

∥∥ξ2f(τ)
∥∥2

L2
< δ, τ0 ≤ τ ≤ τ1

where β is given by (3.13).
Our aim is to control the behavior of the solution f on the time interval [τ0, τ1],
using energy functionals.

4.1. Energy estimates in L2(R2). In this section, we will introduce several
functionals in order to establish energy estimates of f in various “unweighted”
Sobolev spaces, in particular in the space H2(R2).

For this purpose, we will bound ‖f(τ)‖2
H1 + ᾱe−τ ‖∆f(τ)‖2

L2 . As we have explained
in the previous section, it is essential to bound the L2-norm of ∇F in order to bound
the L2-norm of f .

4.1.1. Estimates of F and ∇F . Let F be given by (3.16). In order to estimate
‖F‖L2 and ‖∇F‖L2 , we introduce our first functional E0(τ) given by

(4.2) E0(τ) =
1

2
(‖F (τ)‖2

L2 + ᾱe−τ ‖∇F (τ)‖2
L2).

We have the following lemma for the functional E0.

Lemma 4.1. Assume that f ∈ L∞([τ0, τ1], H
2(2)) is a solution of (3.14) satis-

fying the bound (4.1). Then, there exists two positive constants C0 and θ, θ < 1
2 ,

such that for all τ ∈ [τ0, τ1],
(4.3)

∂τE0(τ) + θE0(τ) + (1 + 3ᾱ
4 e−τ − θᾱ

2 e−τ ) ‖∇F‖2
L2 + ǭ(3

4 − θ
2 )e−2τ ‖∆F‖2

L2

≤ C0 | β |2
(
ᾱ2 + ǭ

)
e−2τ + C0 | β |2 ‖∇f‖2

L2

+ C0(δ+ | β |2)
(
‖f‖2

L2 +
∥∥| ξ |2 f

∥∥2

L2

)

+ C0(δ+ | β |2)ᾱ2e−2τ
(
‖∆f‖2

L2 +
∥∥| ξ |2 ∆f

∥∥2

L2

)

Proof : In order to estimate the L2-norm of F , we take the scalar product in
L2(R2) of Equation (3.20) with F. We obtain

(4.4)

∂τE0(τ) + 1
4 ‖F‖2

L2 + (1 − ᾱ
4 e−τ ) ‖∇F‖2

L2 + ᾱ
2 e−τ

(
ξ.∇∆F, F

)

+ǭe−2τ ‖∆F‖2
L2 + ᾱβ

2 e−τ
(
ξ.∇(−∆)

1

4 G, F
)

+ ǭβe−2τ
(
(−∆)

5

4 G, F
)

+ ᾱβ
4 e−τ

(
(−∆)

1

4 G, F
)

+ I1 + I2 + I3 = 0

where

(4.5) I1 =
(
(−∆)−

3

4

(
Kf .∇

(
(−∆)

3

4 F + ᾱe−τ (−∆)
7

4 F
))

, F
)
,
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(4.6) I2 = β
(
(−∆)−

3

4

(
Kf .∇

(
G − ᾱe−τ∆G

))
, F

)
,

(4.7) I3 = β
(
(−∆)−

3

4

((
V G.∇((−∆)

3

4 F + ᾱe−τ (−∆)
7

4 F
))

, F
)
.

First, integrating by parts several times, we remark that

(4.8)

(
ξ.∇∆F, F

)
= −2

∫

R2

∆F Fdξ −
∫

R2

ξ.∇F ∆Fdξ

= 2 ‖∇F‖2
L2 +

2∑
k=1

∫

R2

ξ.∇∂kF ∂kFdξ +

2∑

k=1

∫

R2

| ∂kF |2 dξ

= 2 ‖∇F‖2
L2

Next, integrating by parts, we obtain the following estimates:
(
ξ.∇(−∆)

1

4 G, F
)

≤
∥∥∥| ξ | ∇(−∆)

1

4 G
∥∥∥

L2

‖F‖L2 ≤ C ‖F‖L2 ,(4.9)

(
(−∆)

1

4 G, F
)

≤
∥∥∥(−∆)

1

4 G
∥∥∥

L2

‖F‖L2 ≤ C ‖F‖L2 ,(4.10)

(
(−∆)

5

4 G, F
)

= −
(
(−∆)

1

4 G, ∆F
)
≤

∥∥∥(−∆)
1

4 G
∥∥∥

L2

‖∆F‖L2

≤ C ‖∆F‖L2 .(4.11)

It remains to bound the terms I1, I2 and I3. Using the fact that divKf = 0, we
can write

I1 =
( 2∑

i=1

(−∆)−
3

4 ∂i

(
Ki

f

(
(−∆)

3

4 F + ᾱe−τ (−∆)
7

4 F
))

, F
)

where Ki
f denotes the ith component of Kf . We recall that Kf = V − βV G.

Therefore, applying Hölder’s inequality and using Lemma 2.4, we obtain

| I1 | ≤ ‖F‖L2

2∑
i=1

∥∥∥(−∆)−
3

4 ∂i

(
Ki

f(−∆)
3

4 F
)∥∥∥

L2

+ᾱe−τ ‖F‖L2

2∑
i=1

∥∥∥(−∆)−
3

4 ∂i

(
Ki

f (−∆)
7

4 F
)∥∥∥

L2

≤ ‖F‖L2

2∑
i=1

∥∥∥(−∆)−
1

4

(
Ki

f(−∆)
3

4 F
)∥∥∥

L2

+ᾱe−τ ‖F‖L2

2∑
i=1

∥∥∥(−∆)−
1

4

(
Ki

f(−∆)
7

4 F
)∥∥∥

L2

≤ C ‖F‖L2

2∑
i=1

( ∥∥∥Ki
f(−∆)

3

4 F
∥∥∥

L2(1)
+ ᾱe−τ

∥∥∥Ki
f (−∆)

7

4 F
∥∥∥

L2(1)

)

≤ C ‖F‖L2 ‖Kf‖L∞

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)
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Using Lemma 2.2, part (a), we obtain

| I1 | ≤ C ‖F‖L2 ‖f‖
1

2

H1 ‖f‖
1

2

L2(2)

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)

Using the assumption on the bound (4.1) of f , we get

(4.12) | I1 | ≤ C
√

δ ‖F‖L2

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)

The terms I2 and I3 are estimated in the same way as above and we get

(4.13)
| I2 | ≤ C | β | ‖F‖L2 ‖f‖

1

2

H1 ‖f‖
1

2

L2(2)

(
‖G‖L2(1) + ᾱe−τ ‖∆G‖L2(1)

)

≤ C | β | (1 + ᾱe−τ ) ‖F‖L2

(
‖f‖H1 + ‖f‖L2(2)

)

and

(4.14)

| I3 | ≤ C | β | ‖F‖L2

∥∥V G
∥∥

L∞

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)

≤ C | β | ‖F‖L2

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)

Collecting the bounds (4.8) to (4.14), we deduce from (4.4) that

∂τE0(τ) + 1
4 ‖F‖2

L2 + (1 + 3ᾱ
4 e−τ ) ‖∇F‖2

L2 + ǭe−2τ ‖∆F‖2
L2

≤ C | β | ᾱe−τ ‖F‖L2 + C | β | ǭe−2τ ‖∆F‖L2

+ C(
√

δ+ | β |) ‖F‖L2

(
‖f‖L2(1) + ᾱe−τ ‖∆f‖L2(1)

)

+ C | β | (1 + ᾱe−τ ) ‖F‖L2

(
‖f‖H1 + ‖f‖L2(2)

)

Applying Young’s inequality yields that for all µ0 > 0, there exists a constant
Cµ0

> 0 such that
(4.15)

∂τE0(τ) + (1
4 − µ0) ‖F‖2

L2 + (1 + 3ᾱ
4 e−τ ) ‖∇F‖2

L2 + ǭe−2τ (1 − µ0) ‖∆F‖2
L2

≤ Cµ0
| β |2

(
ᾱ2 + ǭ

)
e−2τ

+ Cµ0

(
δ+ | β |2

)(
‖f‖2

L2(1) + ᾱ2e−2τ ‖∆f‖2
L2(1)

)

+ Cµ0
| β |2 (1 + ᾱ2e−2τ )

(
‖f‖2

H1 + ‖f‖2
L2(2)

)

Remarking that

(4.16)

‖f‖2
L2(1) =

∫
R2(1+ | ξ |2) | f(ξ) |2 dξ

≤ ‖f‖L2 ‖f‖L2(2) ≤ 1
2 (‖f‖2

L2 +
∥∥| ξ |2 f

∥∥2

L2
).
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Using (4.16) and the fact that f satisfies the bound (4.1), we deduce form (4.15)
that

∂τE0(τ) + (1
4 − µ0) ‖F‖2

L2 + (1 + 3ᾱ
4 e−τ ) ‖∇F‖2

L2 + ǭe−2τ (1 − µ0) ‖∆F‖2
L2

≤ Cµ0
| β |2

(
ᾱ2 + ǭ

)
e−2τ + Cµ0

| β |2 ‖∇f‖2
L2

+ Cµ0
(δ+ | β |2)

(
‖f‖2

L2 +
∥∥| ξ |2 f

∥∥2

L2

)

+ Cµ0
(δ+ | β |2)ᾱ2e−2τ

(
‖∆f‖2

L2 +
∥∥| ξ |2 ∆f

∥∥2

L2

)

Now, let 0 < µ0 < 1
4 and θ

2 = 1
4 − µ0 < 1

4 . The above inequality becomes

∂τE0(τ) + θE0(τ) + (1 + 3ᾱ
4 e−τ − θᾱ

2 e−τ ) ‖∇F‖2
L2 + ǭ(3

4 + θ
2 )e−2τ ‖∆F‖2

L2

≤ C0 | β |2
(
ᾱ2 + ǭ

)
e−2τ + C0 | β |2 ‖∇f‖2

L2

+ C0(δ+ | β |2)
(
‖f‖2

L2 +
∥∥| ξ |2 f

∥∥2

L2

)

+ C0(δ+ | β |2)ᾱ2e−2τ
(
‖∆f‖2

L2 +
∥∥| ξ |2 ∆f

∥∥2

L2

)

2

Next, we will give estimates of f and ∆f .
4.1.2. Estimates of f and ∇f . In order to estimate ‖f‖L2 and ‖∇f‖L2 , we

introduce the functional E1(τ) given by

(4.17) E1(τ) = 1
2 (‖f(τ)‖2

L2 + ᾱe−τ ‖∇f(τ)‖2
L2)

We have the following lemma.

Lemma 4.2. Assume that f ∈ L∞([τ0, τ1], H
2(2)) is a solution of (3.14) satis-

fying the bound (4.1). Then, there exists a positive constant C1 such that, for all
τ ∈ [τ0, τ1],

∂τE1(τ) + E1(τ) +
(

1
6 − ᾱ

2 e−τ
)
‖∇f‖2

L2 + ǭ
2e−2τ ‖∆f‖2

L2

≤ C1 | β |2
(
ᾱ2 + ǭ

)
e−2τ +

(
2
3 + C1 | β |2

)
‖∇F‖2

L2

+ C1 | β |2
∥∥| ξ |2 f

∥∥2

L2
+ C1

(
δ+ | β |2

)
ᾱ2e−2τ ‖∆f‖2

L2

Proof : Taking the scalar product in L2(R2) of (3.14) with f , we obtain

(4.18)

∂τE1(τ) + ‖∇f‖2
L2 − 1

2 ‖f‖
2
L2 + ǭe−2τ ‖∆f‖2

L2

+β ᾱ
2 e−τ

(
ξ.∇∆G, f

)
+ βǭe−2τ

(
∆2G, f

)
+ βᾱe−τ

(
∆G, f

)

+J1 + βJ2 + βJ3 = 0
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where

J1 = (Kf .∇(f − ᾱe−τ∆f), f)

J2 = (V G.∇(f − ᾱe−τ∆f), f)

J3 = (Kf .∇(G − ᾱe−τ∆G), f).

Integrating by parts and applying the Hölder inequality, we have the following
bounds

|
(
ξ.∇∆G, f

)
| ≤

(
2 ‖∆G‖L2 + ‖| ξ | ∆G‖L2

)
‖∇f‖L2 ≤ C ‖∇f‖L2

(4.19)

|
(
∆2G, f

)
| ≤ ‖∆G‖L2 ‖∆f‖L2 ≤ C ‖∆f‖L2(4.20)

|
(
∆G, f

)
| ≤ ‖∇G‖L2 ‖∇f‖L2 ≤ C ‖∇f‖L2(4.21)

Next, we bound the terms Ji, i = 1, 2, 3. Integrating by parts and using the fact
that div Kf = 0, we can write J1 as

J1 = −ᾱe−τ
(
Kf .∇f, ∆f

)

Thus, applying Hölder’s inequality and using Lemma 2.2 part (a), we obtain the
following bound
(4.22)

| J1 |≤ ᾱe−τ ‖Kf‖L∞
‖∇f‖L2 ‖∆f‖L2

≤ Cᾱe−τ ‖f‖
1

2

H1 ‖f‖
1

2

L2(2) ‖∇f‖L2 ‖∆f‖L2 ≤ C
√

δᾱe−τ ‖∇f‖L2 ‖∆f‖L2

since f satisfies the bound (4.1).
On the other hand, since div V G = 0, the term J2 can be estimated as above and
we have

(4.23) |J2| ≤ ᾱe−τ
∥∥V G

∥∥
L∞

‖∇f‖L2 ‖∆f‖L2 ≤ Cᾱe−τ ‖∇f‖L2 ‖∆f‖L2

Finally, integrating by parts, using Lemma 2.2 part (b), we obtain the following
bound on J3

(4.24)
|J3| ≤ ‖Kf‖L4 ‖G − ᾱe−τ∆G‖L4 ‖∇f‖L2 ≤ C(1 + ᾱe−τ ) ‖f‖L2(2) ‖∇f‖L2

Collecting the bounds (4.19) to (4.24) and applying Young’s inequality on (4.18),
we show that, for all µ1 > 0, there exists a constant Cµ1

> 0 such that

∂τE1(τ) +
(
1 − µ1

)
‖∇f‖2

L2 − 1
2 ‖f‖

2
L2 + ǭe−2τ (1 − µ1) ‖∆f‖2

L2

≤ Cµ1
| β |2

(
ᾱ2 + ǭ

)
e−2τ + Cµ1

| β |2 (1 + ᾱ2e−2τ ) ‖f‖2
L2(2)

+ Cµ1

(
δ+ | β |2

)
ᾱ2e−2τ ‖∆f‖2

L2

Choosing µ1 = 1
2 and remarking that

(4.25) ‖f‖2
L2(2) ≤ 2

(
‖f‖2

L2 +
∥∥| ξ |2 f

∥∥2

L2

)
,
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we deduce from the above inequality that
(4.26)

∂τE1(τ) + E1(τ) +
(

1
2 − ᾱ

2 e−τ
)
‖∇f‖2

L2 + ǭ
2e−2τ ‖∆f‖2

L2

≤ C1 | β |2
(
ᾱ2 + ǭ

)
e−2τ +

(
1 + C1 | β |2 (1 + ᾱ2e−2τ )

)
‖f‖2

L2

+ C1 | β |2 (1 + ᾱ2e−2τ )
∥∥| ξ |2 f

∥∥2

L2
+ C1

(
δ+ | β |2

)
ᾱ2e−2τ ‖∆f‖2

L2

Using (3.19), we can write Inequality (4.26) as

(4.27)

∂τE1(τ) + E1(τ) +
(

1
6 − ᾱ

2 e−τ
)
‖∇f‖2

L2 + ǭ
2e−2τ ‖∆f‖2

L2

≤ C1 | β |2
(
ᾱ2 + ǭ

)
e−2τ +

(
2
3 + C1 | β |2

)
‖∇F‖2

L2

+ C1 | β |2
∥∥| ξ |2 f

∥∥2

L2
+ C1

(
δ+ | β |2

)
ᾱ2e−2τ ‖∆f‖2

L2 .

2

4.1.3. Estimates of ∇f and ∆f . In order to estimate ‖∇f‖L2 and ‖∆f‖L2 , we
introduce the functional is

(4.28) E2(τ) = 1
2 (‖∇f(τ)‖2

L2 + ᾱe−τ ‖∆f(τ)‖2
L2)

Lemma 4.3. Assume that f ∈ L∞([τ0, τ1], H
2(2)) is a solution of (3.14) satis-

fying the bound (4.1). Then, there exists a positive constant C2 such that for all
τ ∈ [τ0, τ1], we have

∂τE2(τ) + E2(τ) + (1
2 − ᾱe−τ ) ‖∆f‖2

L2 + ǭ
2e−2τ ‖∇∆f‖2

L2

≤ C2 | β |2
(
ᾱ2 + ǭ

)
e−2τ +

(
3
2 + C2(δ+ | β |2)

)
‖∇f‖2

L2

+ C2 | β |2 (
∥∥| ξ |2 f

∥∥2

L2
+ ‖f‖2

L2)

Proof : In order to obtain estimates of the L2-norm of ∆f , we take the scalar
product in L2(R2) of (3.14) with −∆f . We obtain

(4.29)

∂τE2(τ) +
(
Lf, ∆f

)
+ ǭe−2τ ‖∇∆f‖2

L2 − ᾱ
2 e−τ ‖∆f‖2

L2

≤| β | ᾱe−τ
(

1
2 ‖| ξ | ∇∆G‖L2 + ‖∆G‖L2

)
‖∆f‖L2

+ ǭβe−2τ ‖∆G‖L2 ‖∆f‖L2 + K1 + βK2 + βK3

where
K1 = (Kf .∇(f − ᾱe−τ∆f), ∆f)

K2 = (V G.∇(f − ᾱe−τ∆f), ∆f)

K3 = (Kf .∇(G − ᾱe−τ∆G), ∆f)

A simple integration by parts implies that
(
ξ.∇f, ∆f

)
= 0. Thus,

(
Lf, ∆f

)
= ‖∆f‖2

L2 − ‖∇f‖2
L2 .
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Since div V G = div Kf = 0, we remark that

(Kf .∇∆f, ∆f) = (V G.∇∆f, ∆f) = 0.

Therefore, using Lemma 2.2 part (a), we can write
(4.30)

|K1| ≤ ‖Kf‖L∞
‖∇f‖L2 ‖∆f‖L2 ≤ C ‖f‖

1

2

H1 ‖f‖
1

2

L2(2) ‖∇f‖L2 ‖∆f‖L2

≤ C
√

δ ‖∇f‖L2 ‖∆f‖L2 .

We also have

(4.31) |K2| ≤
∥∥V G

∥∥
L∞

‖∇f‖L2 ‖∆f‖L2 ≤ C ‖∇f‖L2 ‖∆f‖L2

Finally, using Lemma 2.2 part (b), we can write
(4.32)
|K3| ≤ ‖Kf‖L4

∥∥∇(G − ᾱe−τ∆G)
∥∥

L4
‖∆f‖L2 ≤ C(1 + ᾱe−τ ) ‖f‖L2(2) ‖∆f‖L2

Thus, using the bounds (4.30), (4.31) and (4.32) and applying the Cauchy-Schwarz
inequality to the estimate (4.29), we obtain that, for all µ2 > 0, there exists a
constant Cµ2

> 0 such that

∂τE2(τ) + (1 − ᾱ
2 e−τ − µ2) ‖∆f‖2

L2 − ‖∇f‖2
L2 + ǭe−2τ (1 − µ2) ‖∇∆f‖2

L2

≤ Cµ2
| β |2

(
ᾱ2 + ǭ

)
e−2τ + Cµ2

(δ+ | β |2) ‖∇f‖2
L2

+ Cµ2
| β |2 (

∥∥| ξ |2 f
∥∥2

L2
+ ‖f‖2

L2)

Choosing µ2 = 1
2 , we get

∂τE2(τ) + E2(τ) + (1
2 − ᾱe−τ ) ‖∆f‖2

L2 + ǭ
2e−2τ ‖∇∆f‖2

L2

≤ C2 | β |2
(
ᾱ2 + ǭ

)
e−2τ +

(
3
2 + C2(δ+ | β |2)

)
‖∇f‖2

L2

+ C2 | β |2 (
∥∥| ξ |2 f

∥∥2

L2
+ ‖f‖2

L2)

Thus, Lemma 4.3 is proved. 2

In order to obtain an estimate of ‖f‖2
H1 + ᾱe−τ ‖∆f‖2

L2 , we introduce the
functional E3 given by

(4.33) E3(τ) = 5E0(τ) + 5E1(τ) + 1
2E2(τ)

Indeed, we have the following inequality

‖f‖2
H1 + ᾱe−τ ‖∆f‖2

L2 ≤ CE3(τ),

where C > 0 is a constant independent of ᾱ.
Lemmas 4.1, 4.2, 4.3 and Inequality (3.19) imply that there exists a constant C3 > 0
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such that for all τ ∈ [τ0, τ1], we have
(4.34)

∂τE3(τ) + θE3(τ) + ǭe−τ
(
(15

4 + 5θ
2 ) ‖∆F‖2

L2 + 5
2 ‖∆f‖2

L2 + 1
4 ‖∇∆f‖2

L2

)

+
(

5
3 + 5ᾱ

4 e−τ − 5θᾱ
2 − C3(| β |2 +δ)

)
‖∇F‖2

L2

+
(

1
12 − 5ᾱ

2 − C3(| β |2 +δ)
)
‖∇f‖2

L2 +
(

1
4 − ᾱ

2 e−τ − C3ᾱ
2(| β |2 +δ)

)
‖∆f‖2

L2

≤ C3 | β |2
(
ᾱ2 + ǭ

)
e−τ + C3(| β |2 +δ)

∥∥| ξ |2 f
∥∥2

L2

+ C3(| β |2 +δ)ᾱ2e−2τ
∥∥| ξ |2 ∆f

∥∥2

L2

where 0 < θ < 1
2 .

4.2. Energy estimates in L2(2). In order to bound the H2 weighted norm of
f , it remains to estimate the term

∥∥| ξ |2
(
f(τ) − ᾱe−τ∆f(τ

)∥∥
L2

. For this purpose,
we introduce the weighted functional

(4.35) E4(τ) = 1
2

∥∥| ξ |2
(
f(τ) − ᾱe−τ∆f(τ

)∥∥2

L2
.

We have the following lemma.

Lemma 4.4. Assume that f ∈ L∞([τ0, τ1], H
2(2)) is a solution of (3.14) sat-

isfying the bound (4.1). Then, there exists a constant C4 > 0 such that for all
τ ∈ [τ0, τ1],

∂τE4(τ) + 1
2E4(τ) +

(
1
12 − C4(

√
δ + ᾱe−τ + δ)

)∥∥| ξ |2 f
∥∥2

L2

+
(
1 + ᾱ

2 e−τ − ǭe−2τC4

)∥∥| ξ |2 ∇f
∥∥2

L2

+ᾱe−τ
(
1 + ᾱ

4 e−τ − ᾱe−τ (
√

δ + 1
12 + C4ǭe

−2τ )
)∥∥| ξ |2 ∆f

∥∥2

L2

+ǭe−2τ
( ∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

≤ C4δ
(
ǭ2 + ᾱ2

)
e−2τ +

(
48 + C4(ᾱe−τ +

√
δ) ‖f‖2

L2

+C4ǭe
−2τ ‖∇f‖2

L2 +
(
C4ǭᾱe−3τ + ᾱ2e−2τC4

√
δ
)
‖∆f‖2

L2

Proof : In order to estimate E4(τ), we take the scalar product of Equation (3.14)
with | ξ |4 (f − ᾱe−τ∆f).
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We obtain
(4.36)

∂τE4(τ) −
(
Lf, | ξ |4 (f − ᾱe−τ∆f)

)
+ ǭe−2τ

(
∆2f, | ξ |4 (f − ᾱe−τ∆f)

)

+ ᾱ
2 e−τ

(
ξ.∇∆f, | ξ |4 (f − ᾱe−τ∆f)

)
+ ᾱe−τ

(
∆f, | ξ |4 (f − ᾱe−τ∆f)

)

≤| M1 | + | M2 | + | M3 |

+ | β | e−τ
∥∥| ξ |2 (f − ᾱe−τ∆f)

∥∥
L2

(
ǭe−τ

∥∥| ξ |2 ∆2G
∥∥

L2
+ ᾱ

∥∥| ξ |2 ∆G
∥∥

L2

+ ᾱ
2

∥∥| ξ |3 ∇∆G
∥∥

L2

)

where
M1 = β

(
V G.∇(f − ᾱe−τ∆f), | ξ |4 (f − ᾱe−τ∆f

)
,

M2 = β
(
Kf .∇(G − ᾱe−τ∆G), | ξ |4 (f − ᾱe−τ∆f)

)
,

M3 =
(
Kf .∇(f − ᾱe−τ∆f), | ξ |4 (f − ᾱe−τ∆f)

)
.

We begin by computing the term
(
Lf, | ξ |4 (f − ᾱe−τ∆f)

)
. Using an integrating

by parts, we obtain
(
∆f, | ξ |4 f

)
= −

∥∥| ξ |2 ∇f
∥∥2

L2
+ 8 ‖| ξ | f‖2

L2

1

2

(
ξ.∇f, | ξ |4 f

)
= −3

2

∥∥| ξ |2 f
∥∥2

L2
(4.37)

Thus,

(4.38) −
(
Lf, | ξ |4 f

)
=

∥∥| ξ |2 ∇f
∥∥2

L2
− 8 ‖| ξ | f‖2

L2 +
1

2

∥∥| ξ |2 f
∥∥2

L2
.

Next, we compute the term α
ν e−τ

(
Lf, | ξ |4 ∆f

)
. Integrating by parts yields

(4.39)

1
2

(
ξ.∇f, | ξ |4 ∆f

)
= − 1

2

(
ξ.∇∆f, | ξ |4 f

)
− 3

(
f, | ξ |4 ∆f

)

= − 1
2

(
ξ.∇∆f, | ξ |4 f

)
+ 3

∥∥| ξ |2 ∇f
∥∥2

L2
− 24 ‖| ξ | f‖2

L2

Thus, using the equalities (4.37) and (4.39), we get

(4.40)

ᾱe−τ
(
Lf, | ξ |4 ∆f

)
= ᾱe−τ

( ∥∥| ξ |2 ∆f
∥∥2

L2
+ 2

∥∥| ξ |2 ∇f
∥∥2

L2

− 16 ‖| ξ | f‖2
L2 − 1

2

(
ξ.∇∆f, | ξ |4 f

))

Equalities (4.38) and (4.40) imply that

(4.41)

−
(
Lf, | ξ |4 (f − ᾱe−τ∆f)

)
=

− ᾱ
2 e−τ

(
ξ.∇∆f, | ξ |4 f

)
− 8(1 + 2ᾱe−τ ) ‖| ξ | f‖2

L2

+ 1
2

∥∥| ξ |2 f
∥∥2

L2
+ (1 + 2ᾱe−τ )

∥∥| ξ |2 ∇f
∥∥2

L2
+ ᾱe−τ

∥∥| ξ |2 ∆f
∥∥2

L2

On the other hand,

−ᾱ2e−2τ
(

1
2ξ.∇∆f + ∆f, | ξ |4 ∆f

)
= ᾱ2

2 e−2τ
∥∥| ξ |2 ∆f

∥∥2

L2
,
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and

ǭe−2τ
(
∆2f, | ξ |4 f

)

= ǭe−2τ
( ∥∥| ξ |2 ∆f

∥∥2

L2
+ 16(∆f, | ξ |2 f) + 8(ξ.∇f, | ξ |2 ∆f)

)

= ǫ
ν2 e−2τ

( ∥∥| ξ |2 ∆f
∥∥2

L2
− 16 ‖| ξ | ∇f‖2

L2 + 32 ‖f‖2
L2 + 8(ξ.∇f, | ξ |2 ∆f)

)
.

Again, integrating by parts , we obtain

8(ξ.∇f, | ξ |2 ∆f) = 8 ‖| ξ | ∇f‖2
L2 − 16(ξ.∇f, ξ.∇f)

≥ 8 ‖| ξ | ∇f‖2
L2 − 16 ‖| ξ | ∇f‖2

L2 = −8 ‖| ξ | ∇f‖2
L2 .

Therefore,
(4.42)

ǭe−2τ
(
∆2f, | ξ |4 f

)
≥ ǭe−2τ

( ∥∥| ξ |2 ∆f
∥∥2

L2
− 24 ‖| ξ | ∇f‖2

L2 + 32 ‖f‖2
L2

)
.

Finally,
(4.43)

−ǭᾱe−3τ
(
∆2f, | ξ |4 ∆f

)
= ǭᾱe−3τ

( ∥∥| ξ |2 ∇∆f
∥∥2

L2
− 8 ‖| ξ | ∆f‖2

L2

)

Putting together the estimates (4.41), (4.42) and (4.43), we obtain the following
inequality for the left-hand side of (4.36), that is,

∂τE4(τ) + 1
2

∥∥| ξ |2 f
∥∥2

L2
+ (1 + ᾱe−τ )

∥∥| ξ |2 ∇f
∥∥2

L2

+ᾱe−τ (1 + ᾱ
2 e−τ )

∥∥| ξ |2 ∆f
∥∥2

L2

+ǭe−2τ
(∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

−
(
8 + 8ᾱe−τ

)
‖| ξ | f‖2

L2 − ǭe−2τ
(
24 ‖| ξ | ∇f‖2

L2 + 8ᾱe−τ ‖| ξ | ∆f‖2
L2

)

≤| M1 | + | M2 | + | M3 |

+ | β | e−τ
∥∥| ξ |2 (f − ᾱe−τ∆f)

∥∥
L2

(
ǭe−τ

∥∥| ξ |2 ∆2G
∥∥

L2
+ ᾱ

∥∥| ξ |2 ∆G
∥∥

L2

+ ᾱ
2

∥∥| ξ |3 ∇∆G
∥∥

L2

)

It remains to bound the terms Mi; i = 1, 2, 3.
Integrating by parts and using the fact that div VG = 0, we obtain

M1 = −2
∫

R2(VG.ξ) | ξ |2| f − ᾱe−τ∆f |2 dξ

Using remark 3.1, we deduce that M1 = 0.
In order to bound M2, we use Lemma 2.2 part (b). We obtain

|M2| ≤ | β | ‖Kf‖L4

∥∥| ξ |2 (G − ᾱe−τ∆G)
∥∥

L4

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥

L2

≤ C | β | ‖f‖L2(2)

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥

L2
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Then, the Cauchy-Schwarz inequality implies that for all λ > 0, there exists a
constant Cλ > 0 such that
(4.44)

|M2| ≤ Cλ | β |2 ‖f‖2
L2(2) + λ

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥2

L2

≤ Cλ | β |2 ‖f‖2
L2 + (λ + Cλ | β |2)

∥∥| ξ |2 f
∥∥2

L2
+ λᾱ2e−2τ

∥∥| ξ |2 ∆f
∥∥2

L2

Finally, integrating by parts the term M3 and remarking that, for all µ > 0, there
exists Cµ > 0 such that

(4.45) | ξ |3≤ µ | ξ |4 + Cµ,

we can write

| M3 | ≤ ‖Kf‖L∞

(
µ

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥2

L2
+ Cµ ‖f − ᾱe−τ∆f‖2

L2

)

Then, applying Lemma 2.2 part (a), we have

| M3 | ≤ µ ‖f‖
1

2

H1 ‖f‖
1

2

L2(2)

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥2

L2

+ Cµ ‖f‖
1

2

H1 ‖f‖
1

2

L2(2) ‖f − ᾱe−τ∆f‖2
L2

≤ µ
√

δ
( ∥∥| ξ |2 f

∥∥2

L2
+ ᾱ2e−2τ

∥∥| ξ |2 ∆f)
∥∥2

L2

)

+ Cµ

√
δ
(
‖f‖2

L2 + ᾱ2e−2τ ‖∆f‖2
L2

)

since f satisfies the bound (4.1).

Taking into account the estimates (4.44) and (4.46), using the fact that | β |2≤ δ
and applying the Cauchy-Schwarz inequality yield that, for all µ4 > 0, there exists
a constant Cµ4

> 0 such that
(4.46)

∂τE4(τ) +
(

1
2 − µ4 − Cµ4

(µ4

√
δ + δ)

) ∥∥| ξ |2 f
∥∥2

L2

+
(
1 + ᾱe−τ

) ∥∥| ξ |2 ∇f
∥∥2

L2

+ᾱe−τ
(
1 + ᾱ

2 e−τ − ᾱe−τ (µ4

√
δ + µ4)

)∥∥| ξ |2 ∆f
∥∥2

L2

+ǭe−2τ
(∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

−
(
8 + 8ᾱe−τ

)
‖| ξ | f‖2

L2 − ǭe−2τ
(
24 ‖| ξ | ∇f‖2

L2 + 8ᾱe−τ ‖| ξ | ∆f‖2
L2

)

≤ Cµ4

|β|2
ν2

(
ǭ2 + ᾱ2

)
e−2τ + Cµ4

(| β |2 +
√

δ) ‖f‖2
L2

+ᾱ2e−2τCµ4

√
δ ‖∆f‖2

L2

For any λ > 0, we can write

‖| ξ | f‖2
L2 ≤ λ

2

∥∥| ξ |2 f
∥∥2

L2
+ 1

2λ ‖f‖2
L2
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Likewise, for any η > 0, there exists a constant Cη > 0 such that

ǭe−2τ ‖| ξ | ∇f‖2
L2 ≤ ǭe−2τ

(
η

∥∥| ξ |2 ∇f
∥∥2

L2
+ Cη ‖∇f‖2

L2

)

ǭᾱe−3τ ‖| ξ | ∆f‖2
L2 ≤ ǭᾱe−3τ

(
η

∥∥| ξ |2 ∆f
∥∥2

L2
+ Cη ‖∆f‖2

L2

)

Thus, for any µ > 0 and any λ > 0, there exists a constant Cµ > 0 such that
Inequality (4.46) becomes

(4.47)

∂τE4(τ) +
(

1
2 − µ − Cµ(µ

√
δ + δ) − 4λ(1 + ᾱe−τ )

) ∥∥| ξ |2 f
∥∥2

L2

+
(
1 + ᾱe−τ − ǭe−2τCµ

) ∥∥| ξ |2 ∇f
∥∥2

L2

+ᾱe−τ
(
1 + ᾱ

2 e−τ − ᾱe−τ (µ
√

δ + µ + Cµǭe−2τ )
) ∥∥| ξ |2 ∆f

∥∥2

L2

+ǭe−2τ
(∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

≤ Cµ
|β|2
ν2

(
ǭ2 + ᾱ2

)
e−2τ +

(
4
λ (1 + ᾱ) + Cµ(| β |2 +

√
δ) ‖f‖2

L2

+Cµǭe−2τ ‖∇f‖2
L2 +

(
Cµǭᾱe−3τ + ᾱ2e−2τCµ

√
δ
)
‖∆f‖2

L2

We finally remark that
∥∥| ξ |2 (f − ᾱe−τ∆f)

∥∥2

L2
=

∥∥| ξ |2 f
∥∥2

L2
+ 2ᾱe−τ

∥∥| ξ |2 ∇f
∥∥2

L2

+ ᾱ2e−2τ
∥∥| ξ |2 ∆f

∥∥2

L2
− 16ᾱe−τ ‖| ξ | f‖2

L2 ,

and thus that

(4.48)

∥∥| ξ |2 (f − ᾱe−τ∆f)
∥∥2

L2
≤

∥∥| ξ |2 f
∥∥2

L2
+ 2ᾱe−τ

∥∥| ξ |2 ∇f
∥∥2

L2

+ ᾱ2e−2τ
∥∥| ξ |2 ∆f

∥∥2

L2
.

Next, we set µ = 4λ = 1
12 , for example. Thus, (4.47), together with (4.48), implies

that

(4.49)

∂τE4(τ) + 1
2E4(τ) +

(
1
12 − C4(

√
δ + ᾱe−τ + δ)

) ∥∥| ξ |2 f
∥∥2

L2

+
(
1 + ᾱ

2 e−τ − ǭe−2τC4

) ∥∥| ξ |2 ∇f
∥∥2

L2

+ᾱe−τ
(
1 + ᾱ

4 e−τ − ᾱe−τ (
√

δ + 1
12 + C4ǭe

−2τ )
)∥∥| ξ |2 ∆f

∥∥2

L2

+ǭe−2τ
( ∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

≤ C4δ
(
ǭ2 + ᾱ2

)
e−2τ +

(
48 + C4(ᾱe−τ +

√
δ) ‖f‖2

L2

+C4ǭe
−2τ ‖∇f‖2

L2 +
(
C4ǭᾱe−3τ + ᾱ2e−2τC4

√
δ
)
‖∆f‖2

L2

The lemma 4.4 is thus proved. 2



212 BASMA JAFFAL-MOURTADA

We have obtained energy estimates of the functionals E3 and E4. In order
to obtain an energy estimate of f in the space H2(2), we introduce a final func-
tional, which is a linear combination of E3 and E4. In order to choose appropriate
coefficients, we begin by remarking that

3 ‖f‖2
L2 ≤ 2 ‖∇F‖2

L2 + ‖∇f‖2
L2 .

Thus, choosing b > 12 × 16 = 192, we introduce the functional

(4.50) E5(τ) = bE3(τ) + E4(τ).

Then, we have the following lemma.

Lemma 4.5. Let f ∈ L∞([τ0, τ1], H
2(2)) be a solution of (3.14) satisfying the

bound (4.1). There exist three constants K0 > 0, K1 > 0 and K2 > 0 such that

(4.51) ‖f‖2
H1 + ᾱe−τ ‖∆f‖2

L2 +
∥∥| ξ |2 (f − ᾱe−τ∆f)

∥∥2

L2
≤ K1E5(τ)

and
(4.52)

E5(τ) ≤ K2

(
‖f‖2

H1 + ᾱe−τ ‖∆f‖2
L2 +

∥∥| ξ |2 f
∥∥2

L2
+ ᾱ2e−2τ

∥∥| ξ |2 ∆f
∥∥2

L2

)

Moreover, E5(τ) satisfies the following inequality for all τ ∈ [τ0, τ1],

(4.53) E5(τ) ≤ e−θ(τ−τ0)E5(τ0) + K0δ
2−θ (ᾱ2 + ǭ)e−θτ

with 0 < θ < 1
2 .

Proof : Using the definition of E5, it is easy to see that Inequality (4.51) is
verified. The estimate (4.52) is a direct consequence of the definition (4.50) of E5

and the lemmas 3.4 and 2.4.
It remains to prove Inequality (4.53). Using (4.34), (4.49) and choosing the con-
stants ǭ, δ and ᾱ sufficiently small, we show that there exists a constant K0 > 0
such that E5 satisfies the following inequality

∂τE5(τ) + θE5(τ) + ǭe−2τ
(
b(15

4 + 5θ
2 ) ‖∆F‖2

L2 + 5b
2 ‖∆f‖2

L2 + b
4 ‖∇∆f‖2

L2

)

+ǭe−2τ
(∥∥| ξ |2 ∆f

∥∥2

L2
+ 32 ‖f‖2

L2 + ᾱe−τ
∥∥| ξ |2 ∇∆f

∥∥2

L2

)

≤ K0δ(ᾱ
2 + ǭ)e−2τ

where 0 < θ < 1
2 .

Integrating the above inequality between τ0 and τ > τ0 and applying the Gronwall
inequality, we obtain

E5(τ) ≤ e−θ(τ−τ0)E5(τ0) + K0δ
2−θ (ᾱ2 + ǭ)e−θτ

(
e−τ0(2−θ) − e−τ(2−θ)

)

≤ e−θ(τ−τ0)E5(τ0) + K0δ
2−θ (ᾱ2 + ǭ)e−θτ

with 0 < θ < 1
2 . 2

5. Proof of Theorem 3.3 and convergence when ǫ tends to zero

In this section, we first prove Theorem 3.3. Next, passing to the limit, when ǫ
tends to zero, we prove Theorem 1.1 and Corollary 1.2.
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5.1. Proof of Theorem 3.3. Let γ be a small positive constant and let
W0 belong to H2(2). Theorem 2.6 implies that there exists a solution W ∈
C([τ0, τ̂ ], H2(2)) of Equation (3.3) with W (0) = W0, where τ̂ = log(T + tmax).
We recall that Wǫ(ξ, τ) = βG(ξ) + fǫ(ξ, τ).
Thus, the global existence of Wǫ is a direct consequence of the global existence of
fǫ.
We also know that the solution fǫ of Equation (3.14) exists on [τ0, τ̂ ] and belongs
to C([τ0, τ̂ ], H2(2)).
We suppose that W0 satisfies the bound (3.11).
Using the continuous injection of L2(2) into L1(R2), we can write that

| β |≤ Cγ0

where β is given by (3.13) and C > 0 is a constant.
Therefore, we have the following bound

(5.1)

| β |2 + ‖fǫ(τ0)‖2
H1 + ᾱ ‖∆fǫ(τ0)‖2

L2

+
∥∥| ξ |2 fǫ(τ0)

∥∥2

L2
+ ᾱ

∥∥| ξ |2 ∆fǫ(τ0)
∥∥2

L2
≤ C̃γ0,

where C̃ > 0 is a constant.
Let δ = C̃γ0

κ , where 0 < κ < 1
4 is a constant that will be made more precise later.

By continuity of the solutions, there exists a time τ1, with τ0 < τ1 ≤ τ̂ , such that,
for all τ ≤ τ1, fǫ satisfies the bound (4.1). Then, according to (4.53), we have, for
τ0 ≤ τ ≤ τ1,

E5(τ) ≤ e−θ(τ−τ0)E5(0) + K0δ
2−θ (ᾱ2 + ǭ)e−θτ

where 0 < θ < 1
2 .

Let

A(τ) = ‖fǫ(τ)‖2
H1 +

∥∥| ξ |2 fǫ(τ)
∥∥2

L2
.

In order to complete the proof of the global existence of fǫ, it remains to show that
A(τ) < δ, for all τ , τ0 ≤ τ ≤ τ1.
We recall that

∥∥| ξ |2 (fǫ − ᾱe−τ∆fǫ)
∥∥2

L2
=

∥∥| ξ |2 fǫ

∥∥2

L2
− 16ᾱe−τ ‖| ξ | fǫ‖2

L2

+ 2ᾱe−τ
∥∥| ξ |2 ∇fǫ

∥∥2

L2
+ ᾱ2e−2τ

∥∥| ξ |2 ∆fǫ

∥∥2

L2

Thus,
∥∥| ξ |2 fǫ

∥∥2

L2
≤

∥∥| ξ |2 (fǫ − ᾱe−τ∆fǫ)
∥∥2

L2
+ 16ᾱe−τ ‖| ξ | fǫ‖2

L2

We also have, for all µ > 0,

‖| ξ | fǫ‖2
L2 ≤ µ

2

∥∥| ξ |2 fǫ

∥∥2

L2
+ 1

2µ ‖fǫ‖2
L2

Choosing µ = 1
16 , we can write

1
2

∥∥| ξ |2 fǫ

∥∥2

L2
≤

∥∥| ξ |2 (fǫ − ᾱe−τ∆fǫ)
∥∥2

L2
+ 128ᾱe−τ ‖fǫ‖2

L2

Therefore, using Inequality (4.51) of Lemma 4.5, we obtain that there exists a

constant K̃1 > K1 such that

(5.2) A(τ) ≤ K̃1E5(τ)
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On the other hand, we have, by Inequality (4.52) of Lemma 4.5,

(5.3) E5(τ) ≤ K2

(
A(τ) + ᾱe−τ ‖∆fǫ(τ)‖2

L2 + ᾱ2e−2τ
∥∥| ξ |2 ∆fǫ(τ)

∥∥2

L2

)

Now, let

(5.4) K = K̃1max(K0, K2)

and choose

(5.5) κ =
1

4
min(1, K)

where K0 is the constant given in Inequality (4.53). Suppose that T is large enough
(which is equivalent to saying that ǭ and ᾱ are small enough) such that

K(ᾱ2 + ǭ) ≤ 1

8
, and ᾱ ≤ 1

4
.

Then, using Estimate (4.53) and Inequalities (5.2) (5.3), we obtain

A(τ) ≤ K1E5(τ)

≤ K1e
−θ(τ−τ0)E5(τ0) + K1K0

δ
2−θ (ᾱ2 + ǭ)e−θτ

≤ Ke−θ(τ−τ0)
(
A(τ0) + ᾱ ‖∆fǫ(τ0)‖2

L2 + ᾱ2
∥∥| ξ |2 ∆fǫ(τ0)

∥∥2

L2

)
+ δ

4e−θτ

< δ

Therefore, A(τ) remains small on [τ0, τ1]. We conclude that τ1 = τ̂ . On the other
hand, Inequalities (4.51) and (4.53) imply that the solution fǫ of Equation (3.14)
satisfies the following bound ∀τ0 ≤ τ ≤ τ̂ ,

(5.6)
‖fǫ(τ)‖2

H1 + ᾱe−τ ‖∆fǫ(τ)‖2
L2 +

∥∥| ξ |2 (fǫ(τ) − ᾱe−τ∆fǫ)
∥∥2

L2

≤ K1e
−θ(τ−τ0)E5(τ0) + K1K0δ

2−θ (ᾱ2 + ǭ)e−θτ ,

where 0 < θ < 1
2 . Therefore,

(5.7) ‖fǫ(τ) − ᾱe−τ∆fǫ‖2
L2(2) ≤ Ce−θτ ,

where C is a positive constant.
The above inequality implies that the H2(2)-norm of fǫ remains bounded for all
τ ∈ [τ0, τ̂ ]. Thus, τ̂ = +∞ and fǫ belongs to the space L∞([τ0, +∞[, H2(2)).

5.2. Convergence when ǫ tends to zero. Before we begin the proof of
Theorem 1.1, we give the following lemmas, which will be useful later.

Lemma 5.1. Let w ∈ L2(2) and let z = (I − α∆)−1w. Then, there exists a
positive constant C such that we have the following inequalities:

a) ‖z‖2
L2 + 2α‖∇z‖2

L2 + α2‖∆z‖2
L2 ≤ C‖w‖2

L2 .

b) ‖ | x |2 z‖2
L2 + 2α‖ | x |2 ∇z‖2

L2 + α2‖ | x |2 ∆z‖2
L2 ≤ C‖w‖2

L2(2).
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Proof : We have

(5.8) z − α∆z = w.

Thus, in order to prove Inequalities a) and b), it is sufficient to take the scalar
product of (5.8) with z − α∆z and | x |4 (z − α∆z) respectively. 2

Lemma 5.2. 1) Let f and g be two functions such that g ∈ L2(1) ∩ H1(R2),
∇f ∈ L4(R2) ∩ L∞(R2) and ∆f ∈ L2(R2) ∩ L4(R2). Also let
h = (I − α∆)−1(f.(I − α∆)g) − fg. Then, there exists a positive constant C such
that we have the following inequalities:

a) ‖h‖2
L2 + α‖∇h‖2

L2 ≤ Cα(‖∆f‖2
L2‖g‖2

H1 + ‖∇f‖2
L4‖∇g‖2

L2).

b) ‖ | x | h‖2
L2 + α‖ | x | ∇h‖2

L2 ≤ Cα

(
‖h‖2

L2 + ‖∆f‖2
L4‖ | x | g‖2

L2

+ ‖∇f‖2
L∞(‖g‖2

L2 + ‖ | x | g‖2
L2)

)
,

where Cα = C(α + α2).
2) Let f̄ and ḡ be two functions such that f̄ ∈ L∞(R2), ∇ḡ ∈ L2(2) and ∆ḡ ∈ L2(2).
Also let k = (I − α∆)−1(f̄ .∇(I − α∆)ḡ). Then, we have the following inequalities:

c) ‖k‖2
L2 + α‖∇k‖2

L2 ≤ C‖f̄‖2
L∞(‖∇ḡ‖2

L2 + α‖∆ḡ‖2
L2).

d) ‖ | x |2 k‖2
L2 + α‖ | x |2 ∇k‖2

L2 ≤ Cα

(
‖k‖2

L2

+ ‖f̄‖2
L∞(‖ | x |2 ∇ḡ‖2

L2 + ‖ | x |2 ∆ḡ‖2
L2)

)
.

Proof : Using the expression of h, we can write

(5.9) h − α∆h = α∆f g + 2α∇f.∇g

Taking the scalar product of Equation (5.9) with h and integrating by parts, we
can write the following inequality

(5.10) ‖h‖2
L2 + α‖∇h‖2

L2 ≤ Cα‖h‖L4(‖∆f‖L2‖g‖L4 + ‖∇f‖L4‖∇g‖L2)

Then, applying the Cauchy-Schwarz inequality, we obtain Inequality a).
In order to obtain Inequality b), it is sufficient to take the scalar product of Equation
(5.9) with | x |2 h.
Inequalities c) and d) can be shown by the same way. 2

Now, we prove the Theorem 1.1. In the previous section, we have showed that the
solution fǫ of Equation (3.14) belongs to the space C0([τ0, +∞), H2(2)) and that
Estimate (5.6) is satisfied, ∀τ ≥ τ0. In particular,
‖fǫ(τ) − ᾱe−τ∆fǫ(τ)‖L2(2) is bounded uniformly in ǫ and decays exponentially to
0.
On the other hand, one can show, according to Equation (3.14), that
∂τ (fǫ − ᾱe−τ∆fǫ) is uniformly bounded in ǫ in the space L∞([τ0, τ ], H−2(R2)).
Therefore,

(5.11) ∂τfǫ ∈ L∞([τ0, τ ], L2(R2))

Let O be a bounded open set in R2. Property (5.11) implies that the family (fǫ),
ǫ > 0, is equicontinuous in C0([τ0, τ ], L2(O)).
Ascoli’s theorem allows us to extract a subsequence still denoted by fǫ such that
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fǫ converges strongly to f in C0([τ0, τ ], H−1(O)). Next, the interpolation between
H−1(O) and H2(O) allows us to deduce that

(5.12) fǫ −→ f strongly in C0([τ0, τ ], Hs(O)), ∀s < 2.

Let us note that, by the Hölder inequality, we have

(5.13)
∥∥∥| ξ | 32 fǫ

∥∥∥
L2

≤ ‖fǫ‖
1

4

L2

∥∥| ξ |2 fǫ

∥∥ 3

4

L2

Then, using property (5.12) and the fact that fǫ is uniformly bounded in

L∞([τ0, +∞], L2(2))

, we deduce that, for any τ > 0,

(5.14) | ξ | 32 fǫ −→| ξ | 32 f strongly in C0([0, τ ], L2(O)).

Using Lemma 2.1 part b), together with the properties (5.12) and (5.14), we deduce
that

(5.15) Kfǫ
−→ Kf strongly in L∞([τ0, τ ], L∞(O)).

Also, using Lemma 2.1 part b) and Property (5.12), we deduce that

(5.16) ∇Kfǫ
−→ ∇Kf strongly in L∞([τ0, τ ], L4(O)).

These convergences allow us to show that f satisfies the equation (3.14) in the weak
sense for ǫ = 0. To this end, we take the L2-product of (3.14) with any function
φ ∈ C∞

0 (R+ × R
2, R2) such that supp(φ) ⊂ [τ0, τ ] × O.

We will only prove the convergence of the nonlinear term∫ τ

τ0

∫
O Kfǫ

.∇(fǫ − ᾱe−τ∆fǫ).φdξdτ since, for the other terms, the convergence is
easier to prove.
Let φ ∈ C∞

0 (R+ × R2, R2) such that supp(φ) ⊂ [τ0, τ ] × O.
Then, integrating by parts, we obtain
(5.17)∫ τ

τ0

∫

O

Kfǫ
.∇(fǫ − ᾱe−τ∆fǫ)φdξdτ =

∫ τ

0

∫

O

Kfǫ
.∇φ(fǫ − ᾱe−τ∆fǫ)dξdτ

=

∫ τ

τ0

∫

O

Kfǫ
.∇φfǫ

+ᾱe−τ

∫ τ

0

∫

O

2∑

k=1

(
∂kKfǫ

.∇φ∂kfǫ + Kfǫ
.∇∂kφ∂kfǫ

)
dξdτ

Using Properties (5.15), (5.16) and (5.12), we deduce that
∫ τ

τ0

∫

O

Kfǫ
.∇φ(fǫ − ᾱe−τ∆fǫ)dξdτ →

∫ τ

τ0

∫

O

Kf .∇φ(f − ᾱe−τ∆f)dξdτ.

Therefore, f satisfies the equation (3.14) in the weak sense for ǫ = 0.

On the other hand, remarking that the estimates proved in the Section 4 are uni-
form with respect to ǫ, we can then obtain the same estimates for the limiting
solution f with ǫ = 0. We thus have shown that f satisfies the same decay rate in
time as fǫ and we have

‖f(τ)‖2
H1 + ᾱ ‖∆f(τ)‖2

L2 +
∥∥| ξ |2 (f(τ) − ᾱe−τ∆f)

∥∥2

L2(2)
≤ δe−θτ



LONG-TIME ASYMPTOTICS 217

where 0 < θ < 1
2 and C > 0 is a constant.

Now, we prove the uniqueness of solutions of Equation (1.6). For this purpose, we
return to Equation (1.1) written in the original variables (x, t).
Suppose that w1 and w2 are two solutions of Equation (1.1) such that w1(0, x) =
w2(0, x) = w0(x) and let u1 and u2 be the velocity fields associated to the vorticities
w1 and w2 respectively.
Then, w = w1 − w2 satisfies the following equation
(5.18)

∂τ (w − α∆w) − ν∆w + u1.∇(w − α∆w) + (u1 − u2).∇(w2 − α∆w2) = 0
w(0, x) = 0

According to Lemma 2.3, we have that

‖u1 − u2‖L2 ≤ C‖ | x | w‖L2 .

This indicated that the uniqueness of solutions should be proved by using a weighted
norm.
Before we start the proof of the uniqueness of solutions, we will give the following
bounds, which will be useful later.
Using the Fourier transform of u and the continuous injection of L2(2) into L1(R2),
we can write

(5.19)
‖∇u1‖L∞ ≤ C‖∇̂u1‖L1 ≤ C‖ŵ1‖L1

≤ C‖ŵ1‖L2(2) ≤ C(‖w1‖L2 + ‖∆w1‖L2) ≤ C,

where C > 0 is a constant.
We also have by Lemma 2.1 part(d) that

(5.20)
‖∆u1‖L4 ≤ C‖∆u1‖H1 ≤ C(‖∆u1‖L2 + ‖∇∆u1‖L2)

≤ C(‖∇w1‖L2 + ‖∆w1‖L2) ≤ C.

As we have explained before, in order to prove that w = 0, we will write an energy
estimation of w in the space L2(2). As a first step, we begin by performing an
estimation of ‖w‖L2 +

√
α‖∇w‖L2 . For this purpose, we take the scalar product of

Equation (5.18) with w. We obtain, after some integrations by parts,

1
2∂t(‖w‖2

L2 + α‖∇w‖2
L2) + ν‖∇w‖2

L2

≤ C‖∇u1‖L∞‖∇w‖2
L2 + C‖u1 − u2‖L∞‖∆w2‖L2‖∇w‖L2

Therefore, using (5.19) and Lemma 2.2 part a), then applying the Cauchy-Schwarz
inequality, we obtain

(5.21)

1
2∂t(‖w‖2

L2 + α‖∇w‖2
L2) + ν‖∇w‖2

L2

≤ C‖∇w‖2
L2 + C‖w‖

1

2

L2(2)‖w‖
1

2

H1‖∇w‖L2

≤ C‖∇w‖2
L2 + C‖w‖L2(2)‖w‖H1

In order to obtain an estimation of w in L2(2), it remains to bound the L2-norm
of | x |2 w. For this purpose, we write Equation (5.18) in another form:

(5.22)
∂tw − ν(I − α∆)−1∆w + (I − α∆)−1(u1.∇(w − α∆w))

+ (I − α∆)−1((u1 − u2).∇(w2 − α∆w2)) = 0
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Now, taking the scalar product of the above equation with | x |4 w, we get

(5.23)

1
2∂t‖ | x |2 w‖2

L2 − ν
(
(I − α∆)−1∆w, | x |4 w

)

+
(
(I − α∆)−1(u1.∇(w − α∆w)), | x |4 w

)

+
(
(I − α∆)−1((u1 − u2).∇(w2 − α∆w2)), | x |4 w

)
= 0

We begin by computing the term I1 = −
(
(I − α∆)−1∆w, | x |4 w

)
.

Let z = (I − α∆)−1w. Integrating by parts, we can write

(5.24)

I1 = −
∫

R2 ∆z. | x |4 z dx + α
∫

R2 ∆z. | x |4 ∆z dx

= ‖ | x |2 ∇z‖2
L2 − 8‖ | x | z‖2

L2 + α‖ | x |2 ∆z‖2
L2

= ‖ | x |2 ∇(I − α∆)−1w‖2
L2 − 8‖ | x | (I − α∆)−1w‖2

L2

+ α‖ | x |2 ∆(I − α∆)−1w‖2
L2

Next, we estimate the term I2 =
(
(I −α∆)−1(u1.∇(w −α∆w)), | x |4 w

)
. We have

I2 =
∫

R2 u1.∇(I − α∆)2z.(I − α∆)−1 | x |4 (z − α∆z)dx

=
∫

R2 u1.∇(I − α∆)2z.(I − α∆)−1
[
(I − α∆)(| x |4 z)

+ α∆(| x |4)z + 2α∇(| x |4).∇z
]
dx

=
∫

R2 u1.∇(I − α∆)2z. | x |4 zdx

+ α
∫

R2(I − α∆)−1(u1.∇(I − α∆)2z).(16 | x |2 z + 8 | x |2 x.∇z)dx

Let

J1 =
∫

R2 u1.∇(I − α∆)2z. | x |4 zdx

=
∫

R2(u1.∇z − 2αu1.∇∆z + α2u1.∇∆2z). | x |4 zdx

Integrating by parts and using (4.45) and Lemma 2.2 part a), we obtain

(5.25)

|
∫

R2 u1.∇z | x |4 zdx | = | −2
∫

R2 u1.x | x |2| z |2 dx |

≤ C‖u1‖L∞‖z‖2
L2(2) ≤ C‖z‖2

L2(2)

We also have

(5.26)

|
∫

R2 u1.∇∆z | x |4 zdx |

=| −
∫

R2 u1.∇z | x |4 ∆zdx − 4
∫

R2 u1.x∆z | x |2 zdx |

≤ C‖u1‖L∞‖ | x |2 ∆z‖L2(‖ | x |2 ∇z‖L2 + ‖ | x | z‖L2)

≤ C‖ | x |2 ∆z‖L2(‖ | x |2 ∇z‖L2 + ‖z‖L2(2))
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Finally, integrating by parts several times, we get
∫

R2 u1.∇∆2z. | x |4 z dx =
∫

R2 ∆u1.∇∆z. | x |4 z dx

+
∫

R2 u1.∇∆z.∆(| x |4 z)dx + 2
∑

k

∫
R2 ∂ku1.∇∆z.∂k(| x |4 z)dx

= −
∫

R2 ∆u1.∇(| x |4 z)∆z dx −
∫

R2 u1.∇∆(| x |4 z)∆z dx

− 2
∑

k

∫
R2 ∂ku1.∇∂k(| x |4 z)∆z dx

A simple computation and the application of the Hölder inequality allow us to write
that

|
∫

R2 u1.∇∆2z. | x |4 z dx |

≤ C‖∆u1‖L4‖ | x |2 ∆z‖L2(‖ | x |2 ∇z‖L4 + ‖ | x | z‖L4)

+C‖u1‖L∞

[
‖∆z‖L2(‖ | x | z‖L2+‖ | x |2 ∇z‖L2)+‖ | x |2 ∆z‖L2‖ | x | ∆z‖L2

]

+C‖∇u1‖L∞‖ | x |2 ∆z‖L2(‖z‖L2 + ‖ | x | ∇z‖L2 + ‖ | x |2 ∆z‖L2)

Thus, inequalities (5.19) and (5.20) imply that
(5.27)

|
∫

R2 u1.∇∆2z. | x |4 z dx |

≤ C‖ | x |2 ∆z‖L2(‖ | x |2 ∇z‖H1 + ‖ | x | z‖H1)

+ C
[
‖∆z‖L2(‖z‖L2(2) + ‖ | x |2 ∇z‖L2) + ‖ | x |2 ∆z‖L2‖∆z‖L2(2)

]

+ C‖ | x |2 ∆z‖L2(‖z‖L2 + ‖∇z‖L2(2) + ‖ | x |2 ∆z‖L2)

≤ C‖ | x |2 ∆z‖L2(‖z‖L2(2) + ‖∇z‖L2(2) + ‖∆z‖L2(2))

+ C‖∆z‖L2(‖z‖L2(2) + ‖ | x |2 ∇z‖L2).

Then, adding the inequalities (5.25), (5.26) and (5.27), we can write the following
bound on J1

| J1 |≤

C‖z‖2
L2(2) + αC‖ | x |2 ∆z‖L2(‖z‖L2(2) + (1 + α)‖∇z‖L2(2) + α‖∆z‖L2(2))

+ α2C‖∆z‖L2(‖z‖L2(2) + ‖ | x |2 ∇z‖L2)

Therefore, Lemma 5.1 implies that

(5.28) | J1 | ≤ C̃α‖w‖2
L2(2),

where C̃α = C(1 +
√

α + α + 1+α√
α

) and C is a positive constant.

Now, let J2 = α
∫

R2(I − α∆)−1(u1.∇(I − α∆)2z).(16 | x |2 z + 8 | x |2 x.∇z)dx.
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Integrating by parts and applying the Hölder inequality, we can write

| J2 |= α | ∑
i

∫
R2(I − α∆)−1(u1i(I − α∆)2z).(32xiz + 24 | x |2 ∂iz

+ 16xix.∇z + 8 | x |2 x.∇∂iz)dx |

≤ αC(‖ | x | z‖L2 + ‖ | x |2 ∇z‖L2)
∑

i ‖(I − α∆)−1(u1i(I − α∆)2z)‖L2

+αC(‖ | x | ∇z‖L2 + ‖ | x |2 ∆z‖L2)
∑

i ‖ | x | (I − α∆)−1(u1i(I − α∆)2z)‖L2

Using Lemma 5.2 parts a), we can write

(5.29)

‖(I − α∆)−1(u1i(I − α∆)2z)‖L2

≤ ‖(I − α∆)−1(u1i(I − α∆)2z) − u1iw‖L2 + ‖u1iw‖L2

≤ Cα(‖∆u1‖L2‖w‖H1 + ‖∇u1‖L4‖∇w‖L2) + C‖u1‖L∞‖w‖L2

≤ Cα‖w‖H1

On the other hand, Lemma 5.2 parts b) allows us to write

(5.30)

‖ | x | (I − α∆)−1(u1i(I − α∆)2z)‖L2

≤ ‖ | x | [(I − α∆)−1(u1i(I − α∆)2z) − u1iw]‖L2 + ‖ | x | u1iw‖L2

≤ Cα‖w‖H1 + Cα(‖∆u1‖L4‖ | x | w‖L2 + ‖∇u1‖L∞‖w‖L2(2))

+C‖u1‖L∞‖ | x | w‖L2

≤ Cα(‖w‖H1 + ‖w‖L2(2))

Thus, Inequalities (5.29) and (5.30), together with Lemma 5.1 imply that

(5.31) | J2 |≤ Cα(‖w‖L2(2)‖w‖H1 + ‖w‖2
L2(2))

Finally, we estimate the term

I3 =
(
(I − α∆)−1((u1 − u2).∇(w2 − α∆w2)), | x |4 w

)
.

Applying the Hölder inequality and using Lemma 5.2 parts c) and d), we can write

(5.32)

| I3 |≤ ‖ | x |2 (I − α∆)−1((u1 − u2).∇(w2 − α∆w2))‖L2‖ | x |2 w‖L2

≤ Cα‖u1 − u2‖L∞‖ | x |2 w‖L2(‖∇w2‖L2(2) + ‖∆w2‖L2(2))

≤ Cα‖w‖
1

2

L2(2)‖w‖
1

2

H1‖ | x |2 w‖L2

Therefore, collecting the inequalities (5.24), (5.28), (5.31) and (5.32), we can write
Equality (5.23) as follows
(5.33)

1
2∂t‖ | x |2 w‖2

L2 + ν‖ | x |2 ∇(I − α∆)−1w‖2
L2 + αν‖ | x |2 ∆(I − α∆)−1w‖2

L2

≤ Cα(‖w‖L2(2)‖w‖H1 + ‖w‖2
L2(2)) + Cα‖w‖

1

2

L2(2)‖w‖
1

2

H1‖ | x |2 w‖L2
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Taking the sum of Inequalities (5.21) and (5.33) and applying the Cauchy-Schwarz
inequality, we obtain

1
2∂t(‖w‖2

L2(2) + α‖∇w‖2
L2) + ν‖∇w‖2

L2 + ν‖ | x |2 ∇(I − α∆)−1w‖2
L2

+αν‖ | x |2 ∆(I − α∆)−1w‖2
L2 ≤ (Cα + C̃α)‖w‖2

L2(2) + Cα‖w‖2
H1)

Finally, integrating the above inequality between 0 and t > 0 and using the Gronwall
lemma, we deduce that w = 0 and thus, the solution of Equation (1.1) is unique.

5.3. Proof of Corollary 1.2. In the proof of Corollary 1.2, we use the propo-
sition B.1 of [16], that we recall here.

Proposition 5.3. Let w ∈ L2(m⋆) for some m⋆ > 0 and denote by v the
velocity field obtained from w via the Biot-Savart law. Assume that either 1) 0 <
m⋆ ≤ 1, or

2) 1 < m⋆ ≤ 2, and

∫

R2

w(ξ)dξ = 0

If m⋆ /∈ N, then for all 2 < q < ∞, there exists C > 0 such that∥∥∥(1+ | ξ |2)m⋆

2
− 1

q v
∥∥∥

Lq
≤ C

∥∥∥(1+ | ξ |2)m⋆

2 w
∥∥∥

L2

.

For the proof of the above proposition, see [16].

Now, let w(x, t) be the solution of (1.1) with w(x, 0) = w0(x) and let W (ξ, τ)
be the solution of (1.6) with W0(ξ) = T w0(x) as initial data. We recall that L2(2)
is continuously embedded into Lp(R2), for all 1 ≤ p ≤ 2.
Then, using (1.3) and Theorem 1.1, we obtain

(5.34)

∥∥(1 − α
T ∆)(w(t) − βΩ(t))

∥∥
Lp

= ν
1

p (T + t)−1+ 1

p ‖(1 − ᾱe−τ∆)(W (log(T + t)) − βG)‖Lp

≤ C(T + t)−1+ 1

p ‖(1 − ᾱe−τ∆)(W (log(T + t)) − βG)‖L2(2)

≤ C(T + t)−1−θ+ 1

p

Using Lemma 2.1 part a), we see that (1.13) holds for all 2 < q < ∞.
In order to show that (1.13) holds also for all 1 < q ≤ 2, we use Proposition 5.3.
Now, assume that 1 < q ≤ 2 and fix m⋆ ∈ (2

q , 2).

Therefore, using Proposition 5.3 and the Hölder inequality, we obtain

(5.35)

∥∥(1 − ᾱe−τ∆)(V (τ) − βV G(τ))
∥∥

Lq

≤
∥∥∥(1+ | ξ |2)m

2
− 1

4 (1 − ᾱe−τ∆)(V (τ) − βV G(τ))
∥∥∥

L4

≤ C
∥∥(1+ | ξ |2)m

2 (1 − ᾱe−τ∆)(W (τ) − βG(τ))
∥∥

L2

≤ ‖(1 − ᾱe−τ )(W (τ) − βG(τ))‖L2(2) ≤ Ce−θτ

Finally, using the change of variables (1.4), we obtain (1.13) for all 1 < q ≤ 2.
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