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Long-time asymptotics of the second grade fluid equations

on R?
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Communicated by Y. Charles Li, received May 25, 2011.

ABSTRACT. We study the large time behavior of solutions of the second grade
fluid system in the space R2. Using scaled variables and introducing several
functionals in weighted Sobolev spaces, we prove that the solution of the second
grade fluid equations converges to the Oseen vortex, if the initial data are small
enough. We also give an estimate of the rate of convergence.

CONTENTS

Introduction

Preliminaries and regularized vorticity equation

Spectral study of the operator £ and decomposition of the solution
Asymptotic behavior of solutions and energy estimates

. Proof of Theorem 3.3 and convergence when e tends to zero
References

AR .

1. Introduction

185
190
195
200
212
222

The classical theory of Newtonian fluids is unable to explain properties ob-
served in some fluids in the nature. Most of such fluids belong to the class of
non-Newtonian fluids. This is the case, for example, of many polymer solutions
and many commonly substances found in the industry (petroleum industry, plastic

manufacture, application of paints,....).

Several models have been introduced to describe and explain the behavior of non-
Newtonian fluids. Among these models, fluids of differential type introduced by
Rivlin-Erickson [23] have attracted much attention from a theoretical point of view.
In this article, we are interested in the study of a special class of non-Newtonian flu-
ids of differential type, namely fluids of second grade. Their study was initiated in
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1974 by J.E.Dunn and R.L.Fosdick [7] and then by R.L.Fosdick and K.R.Rajakopal
[8], [9]. For such fluids, the Cauchy stress tensor T' is a polynomial of degree less
than 2 in the first two Rivlin-Ericksen kinematical tensors A; and As.

T =—pl +vA; +a(Ay — A?)

where p is the pressure, v is the viscosity and the tensors A; and Ay are defined by

Ay = (grad u) + (grad u)7T,

dAq T

As = = + A;(grad u) + (grad w)* A;

where u is the velocity of the fluid and % =0 +u.V.
The Newton laws and a classical computation lead to the following system, which
describes the motion of an incompressible fluid of second grade

O¢(u — aAu) + rot(u —alAu) xu = vAu—Vp
(SGF) divu = 0
u(z,0) = g

where u = u(x,t) € R? is the velocity field, p = p(z,t) is the pressure, « is a
material coefficient, v is the viscosity and € R?, t > 0.
In the system (SGF), we have used the following notations and identifications.
We have identified any two-component vector field v = (v1,v2)" with the three-
component field v = (v1,v2,0)" and denoted rot v the 3-component vector field
given by

rot v = (0,0, 01v9 — davy)".
Several authors have been interested in the study of the second grade fluid equa-
tions ([1], [6], [10], [11], [12], [18], [21], [20]). The first mathematical result of
existence and uniqueness of solutions was obtained by Cioranescu and Ouazar in
[6]. More precisely, when  is a bounded domain in R?, Cioranescu and Ouazar
have proved that for divergence-free initial data ug in (H3(2))? N (Hg(Q))?, the
solution of the system (SGF') exists and is unique in the space L (R*, (H3(Q2))?)N
L2(R*, (H'(9))?). The existence and uniqueness results are the same in the case of
periodic conditions, for more details, see [21]. When the equations are considered
in the whole space, a similar result is proved [1].
In the three-dimensional case, Cioranescu and Quazar have also proved local ex-
istence (and uniqueness) of solutions of System (SGF) (see [6]). Later, in [5],
Cioranescu and Girault established global existence (and uniqueness) of solutions
for small initial data.
On the other hand, the problem of existence of classical solutions has been studied
in [11] by Galdi, Grobbelaar and Sauer, who showed local existence and uniqueness
of classical solutions for (SGF'). Furthermore, when the size of the initial data is
suitably restricted and when the coefficient «ap is sufficiently large, where p is the
density of the fluid, they obtained a global existence result. Later, Galdi and Se-
queira have relaxed the condition on « in [12].

Let us remark that, when « vanishes, we recover the classical system of the Navier-
Stokes equations.

In this paper, we are interested in studying the large time asymptotic behavior
of the solution of (SGF) in the whole space R%. Our motivation comes from the
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case @ = 0 (the Navier-Stokes equations). In [16], Gallay and Wayne used ideas
from the theory of dynamical systems in order to determine the long-time behavior
of solutions of the Navier-Stokes equations on R2. They showed that small solutions
of the corresponding vorticity equation, with non-zero total vorticity, asymptoti-
cally approach the Oseen vortex. In their work, they constructed finite-dimensional
invariant manifolds of these equations, and proved that all solutions in a neigh-
borhood of the origin approach one of these manifolds with a rate which can be
determined. Thus, computing the asymptotics of solutions is reduced to the task of
determining the asymptotics of the resulting systems of ordinary differential equa-
tions on these invariant manifolds.

This result was improved later in [17], where the authors showed that the Oseen
vortices are not only locally stable but also globally stable. In other words, any
solution of the two-dimensional vorticity equation whose initial vorticity is inte-
grable will approach one of the Oseen vortices. The proof of the global stability
was based on the construction of a pair of Lyapunov functionals for the rescaled
vorticity equation. Later, in [15], Gallay and Rodrigues gave an estimation of the
time that the solutions of the two-dimensional vorticity equation take to reach a
neighborhood of the Oseen vortex, when the initial data are integrable and well
localized in space (in [24], Rodrigues extended these results to slightly inhomoge-
neous incompressible fluids).

In this paper, we will prove that the solutions of the system (SGF) have the
same behavior as the solutions of the Navier-Stokes equations, that is, the vorticities
converge to an Oseen vortex when the time goes to infinity.

As in the case of the Navier-Stokes equations, we will determine the asymptotics of
the solutions of the system (SGF') by studying the evolution of the vorticity, rather
than the velocity. This is especially convenient in the two-dimensional case, where
the vorticity is a scalar.

In fact, taking the curl of the first equation in (SGF), and using the identity

rot ( rot 4 X u) = u.V( rot @),

which is true for any divergence free smooth vector fields « and @ in R?, we obtain
the following equation for the vorticity w = rot u

(1.1) O(w — aAw) — vAw + u.V(w — aAw) =0

One can then recover the solution wu(z,t) of (SGF) via the Biot-Savart law (see
Section 2.1).

In order to understand the long-time asymptotics of (SGF), it is helpful to in-
troduce scaling variables. Scaling variables have been used in the study of the
long-time behavior of parabolic and also damped hyperbolic equations, in particu-
lar to prove convergence to self-similar solutions (see for example [16], [17], [13]) .
Following the ideas of Gallay and Wayne in [16] (see also [13]), for any fixed, large
enough time 7', we introduce the new scaled variables

x

1.2 - r=logt+T).
(1.2) £ T T) gt +T)
We also define the new functions W (¢, 7) and V(§,7) by
(1.3) w(at) = — W (" log(t + T))

t+T v(t+T)
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and

(1.4) ule,t) = ||V V(t+T),log(t+T))

where w(x,t) is a solution of (1.1) and u(x,t) is the corresponding velocity field.
Let
« €

(15) TOZ].OgT, d:ﬁ, €= ﬁ

Then, W (&, 7) satisfies the following system
0-(W — Ge T AW) — LW + V.Ve(W — aeTAW)

(1.6) )
+ae T TAW + %eng.VgAgw =0,

where W (&, 19) = Wo(€) = Twp(x) and
(1.7) LW = AW + %g.vw+w.

The second idea that helps to understand the long-time asymptotics of (SGF) is
the introduction of weighted Sobolev spaces. For any m > 0, we define the Hilbert
space L?(m) by

(1L8)  L2m)={f € L2(RY) | [u(l+|E )™ | f [ de < oo}
We denote
s = ([ 1€ 11 P dg)* <
R2

We notice that the spectrum of the operator £ acting on L?(m) consists of a
discrete spectrum and a continuous one. Choosing m large enough, we can move the
continuous spectrum to the left as much as wanted. The eigenvectors corresponding
to the isolated eigenvalues can be computed explicitly and are rapidly decaying at
infinity (For more details, see section 3.1).

If m > 1, L?(m) is embedded into L*(R?). We denote by LZ(m) the closed subspace
of L?(m) given by

Lim) = (£ € L2}/ [ | F(edg =0}

We also define the higher order Sobolev spaces
HY(m) = {f € L?*(m)/0;f € L*(m), i =1,2}

H?*(m)= {f € H'(m)/0;f € H'(m), i =1,2}

We also use the classical Lebesgue spaces LP(R?) equipped with the classical norm

lull,, = (/ | u(a) [P da)*, for all p > 1.
R2

The first step in the study of the asymptotic behavior of the solutions of Equa-
tion (1.1) is to prove a local existence theorem in the weighted Sobolev spaces
H?(m),m > 0.

For this purpose and for some technical reasons, we regularize Equation (1.1) by
adding the smoothing term eA2w. Then, we study the asymptotic behavior of the
solution we of the regularized equation and establish energy estimates that are uni-
form with respect to e. Finally, using these energy estimates, we prove that the
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family of solutions (we). of these regularized equations admits a limit w, which is a
solution of Equation (1.1). We also show that this limiting solution w has the same
rate of decay as the regularized solution. We obtain the following theorem which
describe the large time asymptotic behavior of the solutions of Equation (1.6) (the
vorticity equation written in the scaled variables).

THEOREM 1.1. Let T > 0 be a fized time. There exist two positive constants
ao and Yo such that, for all & < &y, for all Wy in H?(2) satisfying

_ 2 _ 2
(1.9)  [Wollzy +ae ™ [[AW 172 + ||| € 12 W), + ae ™ ||| € 2 AW, < 0.
where 79 = log T, Equation (1.6) has a unique solution W (7) €
C°([r9, +oo[, H?(2)) satisfying W (19) = Wp.
Moreover, the following inequality is satisfied, for all T > 79,
=~ —T —QT
|(1—ae "A)YW(r) - BG)HLQQ) <Ce 2

1

where C' and 6 are positive constants, 6 < 5, ,

B = Wo(€)dg

R2
and where G is the Oseen vortex defined by
1
G(&) =—
© =1

The interpretation of the result in the unscaled variables (z,t) is as follows:
Let

P/ ¢ e R2,

1

TS N

(1.10) Oz, t) =

and

Q _ v G T
(1.11) U (x’ﬂ_’/t—kTV ( I/(t—I—T))'

From Theorem 1.1, we deduce the following result.

COROLLARY 1.2. Let T > 0 be a fized time so that = < dg. Then, there exists
a positive constant vy such that for all wo in H*(2) satisfying

2 2
T |lwoll72 + T3 ||Vl 72 + T || Awoll7z + [Ja?wo . + o [|a* Awo| . < v,
the unique solution w(x,t) of Equation (1.1) satisfies, for all t >0,

[0 = §2)0w(e) ~ 9|, < Co(T +0)77F5  1<p <2,
(1.12)
2 (1 = FA) (w(t) = B[] < CT + )15

where C, Cp, and 0, 0 < 1/2, are three positive constants and 2 is given by (1.10).
If u(z,t) is the velocity field obtained from w(z,t) via the Biot-Savart law, then

(1.13) (1= @A) (u(t) — Bu?)||,, < Co(T+6) 251 | 1<g<oo

where 0 < 0 < 1/2, C, > 0 is a constant and u** is given by (1.11).
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We emphasize that, although the system (SGF') converges to the system of the
Navier-Stokes equations when « tends to zero, the results that we obtained here,
are true for all values of o and not only for small values of «.

Indeed, if we look at the rescaled equation (1.6), we remark that the coefficient &
can be as small as we want provided that we choose the parameter T large enough.
This shows that the Oseen vortex is an asymptotic solution of the system (SGF').

We also note that the techniques that we use to prove Theorem 1.1 are quite differ-
ent from the one used in the case of the Navier-Stokes equations ([16]). Actually,
we use the method of energy functionals developed in [13] and [14]. As in [13] and
[14], we introduce “primitives” of the function W. More precisely, we introduce
the auxiliary function F(§,7) given by

(1.14) F(&,7) = (=8)7F (W(&,7) - BG(€)).
This function F(&,7) has a better decay rate than W (&, 7) — BG(§).

This paper is organized as follows. In the next section, we state the Biot-Savart
law and recall some useful estimates of the velocity in terms of the vorticity. We
also prove the local existence of the solution of the regularized vorticity equation
in the space H2(m), m > 0. In Section 3, we study some spectral properties of the
operator £, we decompose the solution w and we give some auxiliary lemmas on the
auxiliary function F' defined by (1.14). In section 4, we introduce several function-
als and we derive energy estimates in the space H2(2). We also state the theorem
(see Theorem 3.3) which describes the first order asymptotics of small solutions of
the regularized equation. The last section is devoted to the proof of Theorem 3.3.
Finally, we pass to the limit when € tends to zero and we prove Theorem 1.1 and
Corollary 1.2.

Acknowledgements :
I would like to express all my gratitude to Genevieve Raugel, without whom this
work could not have been done.

2. Preliminaries and regularized vorticity equation

2.1. The Biot-Savart law. As we explained in the introduction, our ap-
proach consists first in studying the behavior of the solutions of the vorticity equa-
tion (1.1) and then, to derive information about the solutions of the system (SGF).
For this reason, we begin our study by recalling the relationship between the ve-
locity field u and the associated vorticity w. In two dimensions, the velocity field
u is defined in terms of the vorticity via the Biot-Savart law

r— )+
(2.1) ute) = 5= | @) )y

T or r o=y
where 2+ = (—x2,21)T and w = (0,0, ws).
The following lemma collects useful estimates for the velocity u in terms of the
vorticity w (see [16]).

LEMMA 2.1. Let u be the velocity field obtained from w via the Biot-Savart law

(2.1).
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a) Assume that 1 < p < 2 < q < oo and * =L -1 Ifw € LP(R?), then
q P 2
u € LYR?)%, and there exists a positive constant C,, such that

lullpe < Cpllwll s -

(b) Assume that 1 < p < 2 < q < oo and define X € (0,1) by the relation 3+ =
If w € LP(R?) N LY(R?), then u € L>(R?)?, and there exists C > 0 such that

A 1-2
[ullpee < CllwllZe - llwliza”

(c) Assume that 1 < p < oo. If w € LP(R?), then Vu € LP(R?)%, and there exists
a positive constant C, such that

IVull L, < Cpllwllg, -

1

(d) Let s e R and J = (—A)=.
If J571w € L?(R?), then Ju € L*(R?)?, and there exists a positive constant C
such that

|Jul|. <C HJS_leL2 .

In addition, div u =0 and rot u = O1us — Oouy = w.

For the proof of (a), (b) and (c), we refer to [16]. To prove (d), it is sufficient
to write the expression of the Biot-Savart law in Fourier variables:

a(n) = fjj F00).

LEMMA 2.2. Let u be the velocity field obtained from w via the Biot-Savart law.
There exists a positive constant C such that, for any w in L*(2)NH(R?), we have,

1 1
(@) llullpee < Cllwllg lwllZ2gy »
®) fulls < Cllwllag.

Proof : In order to prove Inequality (a), we use Lemma 2.1, part (b), with

A=3, p =2 ¢q=6, for example, and the fact that H'(R?) and L*(2) are
continuously embedded into L8(R2) and L5 (R?) respectively.

To prove Inequality (b), we use Lemma 2.1, part (a) and the continuous injection
of L2(2) into L3 (R?). O

We remark that, according to the Biot-Savart law, the velocity is, in general,
not in L*(R?). However, if [p, w(§)d{ = 0, then v € L*(R?) and we have the
following lemma.

LEMMA 2.3. For any w in L*(1), with [p, w(§)d = 0, the corresponding ve-
locity field u obtained from w via the Biot-Savart law belongs to L*(R?) and we
have:

[ullze < CI € [ wllz2-

where C' is a constant independent of w and w.
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Proof : Let @ be the Fourier transform of w. Then, using the Biot-Savart law
and the fact that w(0) = 0, we can write

1. ! R
- /Wm(k) |2dk::// | Vi) 2 dk ds
R2 0 R2

C V)7 < C|l | €| wlge.

IN

a

LEMMA 2.4. Let h belongs to L2(1), then (—A)~%h belongs to L2(R2) and we
have

H(_A)_ZhHLz < Cllhll 2y

Proof : Using the Fourier transformation, we can write
2 1 .

= [ 1) P ak
L2 R2 | k |

1 . .

/ —— | h(k) |? dk+/ | h(k) |? dk
|k|<1 | | [k|>1

On one hand, the second term in this inequality can be bounded ||h||iz On the

other hand, applying Hélder’s inequality to the first term in the right-hand side of

this inequality together with a classical Sobolev embedding theorem, we obtain

s

IN

2 12 1 5
—A *lh} < M / —_dk hl|?
[arnl,. < (all () o)+ bl
~ 12 2
< clfa],, +nl:
< O+ T€DAIG: < ClhlEq

REMARK 2.5. Using the Fourier transform, it is easy to remark that

_3 _1 .
[t < 21740 .. 1= 12
In fact, we have,
2 | ki s I
—A)"19;h = / L | h(k 2dk</ — | (k) |? dk
|carytam]|, = [ 1A P k< | o 1R
1 2
= [arial,,

2.2. Local existence of the regularized vorticity equation. As we al-
ready said in the introduction, in order to study the solutions of Equation (1.1),
in the weighted Sobolev spaces, we introduce the regularized equation (2.2) below.
Indeed, since Equation (1.1) contains a nonlinearity that involves derivatives of
order three, we cannot directly use classical methods of proofs to obtain the local
existence. In order to overcome this difficulty, we add the smoothing term A2, to
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the equation (1.1) and study the local well-posedness of the following equation in
the space H%(m), m > 0,

O (we — aAwe) + eA?w, — vAwe + ue.V(we — aAw,) = 0

(2.2) we(0) = 1w

THEOREM 2.6. Let € > 0. There exists a time tyq, > 0 such that, for

all wog € H?(m), m > 0, Equation (2.2) has a unique solution w, in the space
CY([0, tmaz], H2(m)) N CY((0,tmaz], L*(m)), with we(0) = wp.

Proof : Let 8 be a small positive constant (whose choice will be made more
precise later). In order to prove the local existence of the solutions of Equation
(2.2), we introduce the auxiliary variable and auxiliary unknown

X =z, and we(z,t) = sc(Bz,t) = s(X, t).
The equation satisfied by s, is given by
(2.3)  Os(sc — P Axs) — v Axse + €S A% s + Buc.Vx (se — af*Axsc) =0

We will see, in the proof of the local existence of solutions, that the above change
of variables allows us to avoid restrictions on the size of .

Let ¢(X) = (1+ | X |2)™/2, and z.(t, X) = q(X)s(X, 1).

Then s € CY([0, tmaz], H2(m)) N C((0, timaz], L*(m)) is a solution of Equation
(2.3) if and only if the function z. € CY([0, timaz], H2(R?)) N CL([0, tiaz], L*(R?))
is a solution of the following equations

Olze —afPAxze — af’qAx (g7 )2 — 2032qV x (¢ ) Vx 2] + ef* A% 2
(2.4) = P(z),
2e(0) = q(X)wo(X) = 20 € H?*(R?),
where P(z.) = v82Axze + ¢(X) [Vﬁmx(q*l)zé 2082V (g Y). Vxze
— BueVx)(g 2) + af (e Vi) (Ax (g7 7 +2Vx (g 7). Vi )
+ 0 (e Vx) (g Axze) — eB'Ax (Axlg )z +2Vx (g ). Vx )
— Bt (Ax(qfl)AXzE n 2VX(q’1).VXAXz€)] .
Let A be the linear operator: D(A) = H2(R2) — L2(R?), given by
A=af’Ax +af’qAx(g).

If we suppose that 3 is small enough, then Id — A is invertible from L?(R?) into
H?(R?). Indeed, for f € L?*(R?), we consider the following problem.
Find u € H%(R?) such that

(2.5) (Id—Au = f
Let a be the bilinear form defined, for u,v € H*(R?), by
a(u,v) = [po u(X)0(X)dX + af? [, Vu(X).Vo(X)dX

— af? [ge ¢A(g M u(X)v(X)dX.
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Then, we have, for any u € H'(R?),
a(u,u) > fR2 | u(X) |? dX + afp? fR2 | Vu(X) |? dX

—aff? [ [ qA(g™) || w(X) |? do
We notice that | gA(qg™1) |< Co, where Cp > 0 is a constant.
Thus,
a(u,u) = (1—aB?Co)llull?z + aB?(|Vull7..
Supposing that 3 is small enough such that 1 —a32Cy > 0, we obtain from the Lax-
Milgram theorem that there exists a unique solution u € H'(R?) of (2.5). Since f
belongs to L?(R?), we deduce from a classical regularity theorem that u belongs to
H?(R?) and
lull > < Cpll fllz2,
where C'3 > 0 is a constant, independent of f and w.
On the other hand, if 3 is small enough, we can show by the same way that
(Id — A—af?qV(q1)V) ™! exists and is defined from L?(R?) into H?(R?).
In fact, remarking that | ¢V (¢~!) |< C1, where C; > 0, we have

a(u,u) — af8? [po qV(g ) Vu(X)u(X)dX >

(1 = aB?Co)llull7z + aB?[|Vull. — aB*Cil|Vul L2|lull 2
Then, applying the Young inequality and supposing that
1—a3?Cy — %aﬁQCf > (0, we obtain,

a(u,u) — af8? [o ¢V(g™ ") Vu(z)u(z)de >

(1 —apf*Co — 5a8°CF)|lul72 + 5067 || Vull7.
Finally, using the Lax-Milgram theorem, we can show that the operator
(Id — A — af?qV (g 1) V) is invertible.
Now, let B = —af8%qV (¢~ !)V.
Then, Equation (2.4) can be written as

(2.6) Orze +e(I —A+B) 'A%z2.=(T - A+B)™! P(z) = P(z)
The operator (I — A+ B)~'A% can be defined from H?*(R?) into L?(R?) and can
be written as

(I—A+B)'A% = (I— A)"'A% — (I — A+ B)"'B(I — A)~'A%

The operator (I — A)~'A% defined from H?*(R?) into L?*(R?) is self-adjoint and
positive, thus, —(I — A)~1A% is the generator of an analytic semigroup in L?(R?).
Let
R=—(I-A+B)"'B(I-A)™'A% : HY(R?) — L*(R?).
Then, there exists a constant Cz > 0 such that, for all u € H'(R?),
[Rull> < Callull -

Therefore, (I — A)~'A% + R is the generator of an analytic semigroup in L?(R?)
(see [22] Corollary 2.2 page 81).

Since P(z) is a locally Lipschitz continuous mapping from H'(R?) into L?(R?),
we deduce, from a classical result ([22], [4]) that there exists a time tq, > 0
such that, for all zo € H?(R?), Equation (2.4) has a unique classical solution
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2e € CO([0, timaz], H2(R?)) N CH((0, tmaz], L?(R?)) satisfying z.(0) = z9. Therefore,
we have proved the local existence and uniqueness of solutions of Equation (2.3) in
the space C°([0, tmaz], H2(m)) N CY((0, tmaz], L2(m)) and thus, of the regularized
vorticity equation (2.2). O

To complete the proof of the local existence of the solution w of Equation
(1.1), we need to take the limit of w. when € tends to zero, but we do not know
how to prove that the existence time of w, is independent of €. Therefore in the
next sections, the study of the asymptotic behavior will be done for w.. We will
establish energy estimates on w,, which are uniform in e. Then passing to the limit
when € tends to zero, we will prove that the limit of w, is the solution of Equation
(1.1) and satisfies the same energy estimates as we.

3. Spectral study of the operator £ and decomposition of the solution

One of the main ideas in our analysis of the long-time asymptotics of Equation
(2.2) is based on rewriting this equation in terms of the scaled variables (&, 7) given
by (1.2). We recall that the new functions W, and V; in the rescaled variables are
given by

L (% tog(t+ 7))

(3.1) we(x,t) = T

and

(3.2) ue(x, t) = “t—i— TV€( T T),log(t +T))

where we(z,t) is a solution of (2.2) and u(z,t) is the corresponding velocity field.
We remark that ¢ = 0 corresponds to 79 = log T'.
The “rescaled vorticity” W, (€, 7) satisfies the following system

Or(We —ae ™ TAW,) = LW + Ve Ve(We — ae™TAW,) + ée 2T AW,
(3.3) + 54877A§WE + %eng.VEAgwe =0,

We(€,m0) = Wo(§) = Two(z),

where the operator £ has been defined in (1.7), 79, @, € are given by (1.5) and,
according to the Biot-Savart law,

L[ (E—n"
Vel§,m) == | 57— Wsn.7)d

(57—) 27_‘_/R2|£_n|2 3(77T)77
where W, = (0,0, W$).
We point out that Equation (3.3) preserves the total mass of W,. Indeed, integrating
(3.3) over R?, and using the fact that div V. = 0, we obtain

(34) We(€, 7)d¢ = Wo(€)dé.
]R2 RQ
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3.1. The operator L. As we already explained in the introduction, working
in weighted Sobolev spaces allows to push the continuous spectrum of £ to the left.
If one studies the spectrum of the operator £ acting on L?(m), one finds that it
consists of a sequence of eigenvalues

k
0d={—§ |k=0,1,2,...,m— 2}

and continuous spectrum

m—1

0= {AeC| Re(N) < —7—}

(for more details, see Appendix A in [16]).

The eigenvectors corresponding to the isolated eigenvalues can be explicitly com-
puted and are rapidly decaying at infinity (see Appendix B in [16]).

In our study, we will consider the behavior of small solutions of (3.3) in the space
L?(m) with m = 2. The operator £ has a simple isolated eigenvalue \g = 0 in
L?(2), with corresponding eigenfunction

(3.5) Gle) = ﬁe*\ﬂ%, £c R2.
For any 0 € R,
(3.6) W (&) = BG(¢)

is called the Oseen vortex. The corresponding velocity field V¢ (such that rot V& =
G) is given by

1—eleP/a /o _
(3.7) V() = TR ( gj )
REMARK 3.1. It is clear that & is orthogonal to V&, therefore
(3.8) VEVG(E) =0
and
(3.9) VEVAGE) =0

As a consequence of the equality (3.8), the Oseen vortex defined by (3.6) is a
stationary solution of the equation

(3.10) W — LW + V.VW =0

where V' is the velocity field corresponding to the vorticity W.
Note that this equation is precisely the vorticity equation corresponding to the
Navier-Stokes equations in space dimension two.

REMARK 3.2. Remarking that |[VC¢| ~ |¢|7! as || — +oo, we obtain that
V& e LI(R?)?, Vg > 2.
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3.2. Decomposition of the solution and auxiliary lemmas. In this pa-
per, we will prove the following result.

THEOREM 3.3. Let T > 0 be a fized time. There exist two positive constants
&o and Yo such that for all & < &g and for all Wy in H?(2) satisfying
(3.11)

. 2 . 2

[Wolligs + ae™™ | AWoIIZ. + [[1 € 1> Woll. +ae ™™ [[| € P AWo[7, <.
where 79 = log T, Equation (3.3) has a unique solution W(r) €
C°([r0, +oo[, H?(2)) satisfying We(r9) = Wo. Moreover, the following inequality is
satisfied, for all T > 19,

(1 — ae "AY(W,(r) — 6G)||2L2(2) < Ce 7

27
vortez defined by (3.6).

where C and 0, 0 < %, are positive constants, 3 = / Wo(§)dE and G is the Oseen
R2

Since we are interested in studying the behavior of the solution of (3.3) with
initial data Wy near an Oseen vortex in the space H?(2), it is convenient to introduce
the following change of functions:

(3.12) We(&,7) = BG(E) + fe(& 7),

where, due to the conservation of mass property (3.4),

(313) o= [ Walde =
R2

Thus, fo(&,7) belongs to LE(2) for any 7 > 0, where

Li(m) = {f € L*(m)/ [g= f(£)dE = 0}

In what follows, we will drop the index e and simply denote f.(z,t) by f(z,t).
Taking into account the properties (3.8) and (3.9), we see that f(&,7) satisfies the
following equation

O (f —ae TAf) = Lf + e A2 f +ae TAf 4+ Se TEVAS
(3.14) +K;V(f —ae TAf) + BVENV(f —ae TAf) + BK;.V(G — ae TAG)

+eBe 2T A%G + Bae TAG + 33 TEVAG =0
where K(¢,7) =V (¢, 1) — V.

As we explained in the introduction, the main argument in the study of the as-
ymptotic behavior of f is the use of functional method. This method consists in
writing various energy estimates for f and in considering a linear combination of
these functionals in order to establish that f converges to zero with an exponential
decay rate in the space H?(2).

In what follows, we will establish various energy estimates for f(£,7) in the spaces
H?(2). So, in a first step, we will control the L?-norm of f. Unfortunately, we
cannot obtain good estimates of f in the space L?(R?).

Indeed, if (.,.) denotes the scalar product in L?(R?), we have,

(315) (L5, H) =112 = 5171
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which is not helpful in the functional method.

In the paper [13] (where the asymptotic behavior was studied in the one-dimensional
space), the authors considered the primitive of f, because it had a better decay than
f. In our study, since we are in the two-dimensional case, we will introduce the
function

(3.16) F(&,m) = (~A)TTf(€,7)

Before continuing our analysis, we give the following lemmas that will be useful
later.

3

LEMMA 3.4. Let f belong to L?(2) such that [p. f(§)d§ =0, then (—A)~3 f
belongs to L*(R?) and we have

_3
(3.17) |22, <Cllflagy.
where C' > 0 is independent of f.

Proof : Let f be the Fourier transform of f given by

(3.18) f(k) = |, F(©)exp(—ik.£)de.
Since f(0) = 0, we can write
3 2 “
[carts, = [ gl iwra
1 R 2 R 2
< [ wlie) dk+/|k|>1|f(k)| i
Y S )
< [ ] IR P s

Applying Holder’s inequality on the first term in the above inequality, we obtain

2 ' : 3 1 3
< Vf(sk)[®dk)’ / —dk) ds+ |||,
; /0(/Ik|§| k) ) ([ k) s+ 1515

<c|vil, 1z < c|vil, + 12

|(=a)-17]

Therefore,

< Ca+1EPl5a < ClF iz

O

We emphasize that in order to bound the L2-norm of f, it is sufficient to bound
the L2-norms of VF and of Vf.
In fact, applying Holder’s inequality, we have

13 = [ () =a )7 < o)t

(—A)4F|

L2 L2



LONG-TIME ASYMPTOTICS 199

Then, using the fact that H (—A)%F ‘ = ||VF|| .2 and applying Young’s inequality,

L2
we obtain
1
2 1 1.2 1 1
£z < WAz || (=A)2F) LIV El e < fllze IV Al IVE] 2
2 2 2
< 5IVFIL + 3 IVFlze + 1 11z
Thus,
2 2 2
(3.19) Iz < 2IVFIL: +31IVFlLe

In order to bound the L?-norm of VF, the first step consists in writing the equation
satisfied by F'. The lemma stated below will help us to write this equation.

LEMMA 3.5. Let F' be given by (3.16). We have
_3 3
(—A)"3(&VS)) = —5F+EVE
and . )
(~A)ILf = AF + 56 VEF + JF.

Proof : In what follows, the Fourier transform of f is sometimes denoted by P(f).
Using the Fourier transformation and integrating by parts, we can write

P(C2)THEVN)(R) = 2P(CA)H ) (k) + ;’j /R &if (§)exp(—ik.£)de

= —2P((—A)*%f)(k) — I:ilgaki /RQ f(&)exp(—ik.€)dE

Thus,
(=AY iLf=AF + %g.VF + EF.

Lemma 3.5 at once implies that
_3 1
(= (=) LS F) = [|VF|L2 + 7 IF ]

which will help us in obtaining “good L?-estimates” on F.
Using Lemma 3.5, we see that F' satisfies the following equation
(3.20)

O-(F —ae "AF) — AF — 3¢.VF — {F + ée 2" A’F + e "AF

2 TEVAF + (—A)~ 1 ((Kf +AVE).V((-A)iF + ae*T(—A)%F))

+4(=8)7% (K7.V(G - ac T AG)

136 TENV(-A)IG 4 Ee ¥ (—A)IG + LT (~A)IG =0
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4. Asymptotic behavior of solutions and energy estimates

In this section, we will establish various energy estimates of the solutions of
Equation (3.14) in the space H?(2).
In what follows, we introduce a positive constant dy (that will be fixed later) and let
0 < § < dp. We also assume that, for some 79 < 71 < 7, where 7 = log(T +tmax), We
are given a solution f € C[ry, 1], H?(2)) of Equation (3.14) satisfying the following
bound

(4.1) 1B+ + |E2F (|52 <6 0 <7 <7

where (3 is given by (3.13).
Our aim is to control the behavior of the solution f on the time interval [rp, 1],
using energy functionals.

4.1. Energy estimates in L?(R?). In this section, we will introduce several
functionals in order to establish energy estimates of f in various “unweighted”
Sobolev spaces, in particular in the space H?(R?).

For this purpose, we will bound || f(7)||3: +ae™" |Af(7)||32 . As we have explained
in the previous section, it is essential to bound the L?-norm of VF in order to bound
the L%-norm of f.

4.1.1. Estimates of F and VF. Let F be given by (3.16). In order to estimate

|F|| 2 and ||VF|,., we introduce our first functional Ey(7) given by

1 B
(42) Eo(r) = 5(IF ()72 + ae ™ [VE(D)II72).
We have the following lemma for the functional Fj.

LEMMA 4.1. Assume that f € L>([ro,71], H*(2)) is a solution of (3.14) satis-
fying the bound (4.1). Then, there exists two positive constants Coy and 0, 6 < %,
such that for all T € [19, 1],

(4.3)

OrEo(r) + 0Eo(r) + (1+ 5te™™ = Be ) [|VF |2 +&(§ = §)e > |AF|

<Co| B2 (@ +&)e 2 +Co | B2 VS22
+Co(+ 1 B (IF1Z + |1 € 12 £I%.)

+Co(6+ | B P)a2e 2 (|Af]7. + 1 €12 Af|2.)

Proof : In order to estimate the L2-norm of F, we take the scalar product in
L?(R?) of Equation (3.20) with F. We obtain

OrBo(r) + L IFI}: + (1= $e ) |VF|}: + Se 7 (£ VAR, F)

(44)  +ee 2 ||AF|2, + e (g.V(—A)iG, F) + Eﬁe‘zT((—A)%G, F)

Q1

+Tﬁe*7((—A)iG, F) 4L+ +13=0

(4.5) I = ((—A)—% (Kf.v((—A)%F + ae—f(—A)%F)) , F)
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(4.6) I = ﬁ((—A)’% (Kf.v(G - ae*TAG)) , F)

(4.7) Iy = ﬁ((—A)-% ((VG.V((—A)%F + ae—f(—A)%F)),F).
First, integrating by parts several times, we remark that

(§.VAF, F) - —2/ AF Fdg —/ EVF AFde
R2 R2

2 2
(4.8) =2|VF|%. + % / ENVOF Oy FdE + Z/ | O F |? de
k=1JR? =1 Y R?

2
=2|VFL

Next, integrating by parts, we obtain the following estimates:

(49) (¢V(2)FGF) < |61 VEa)TG| 1Pl < ClF,.
(4100 (2)FGF) < ||CAEG| L IFN: < CIFL,

(diar) = —(a)iaar) <|atc| | 1aF],.
(4.11) < ClAF|.

It remains to bound the terms I, I and I3. Using the fact that divK; = 0, we
can write
2

1= (Y8 1o (K () F +ae " (-A)iF) ), F)

=1

where Kl denotes the i*" component of K;. We recall that K; =V — gV ¢,
T herefore applying Holder’s inequality and using Lemma 2.4, we obtain

EAREN TIPS ol [CNRESTENT ]

L2

6o 1Pl z [CISREACSTENER]

NH

IN

(Ki(-a)1F),

17150 3 |-

L2

.z:.

ae Pl X 2 H(i-m))

IN

H=A)TF|

2
Il 3 ([[Ei-)ir]

)

+
L2(1)

IN

CUFN 2 1Kl e (£l 2y + G [AFl o))
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Using Lemma 2.2, part (a), we obtain

1 1 _ .

Ll < CUFl g 17 1722y (11l 2y + @€ 1Afll 2y )
Using the assumption on the bound (4.1) of f, we get
(4.12) [ Ll < CVB|Fl (I1fll 2y +ae T 1Af ] 12y

The terms I» and I3 are estimated in the same way as above and we get

[ | < ClIBINEN 117 11720y (1G] 20y + e~ |AG] 121y )
(4.13)
< ClplA+ae )Pl (Il +1fllz2))
and
[ ] < ClBIIFlL VO e (Il L2y +ae T IAFl 20y)
(4.14)
< ClBIIFLz (1fllzey +ae T [Afl20y)

Collecting the bounds (4.8) to (4.14), we deduce from (4.4) that
OnBo(7) + § | Fllze + (14 e77) | VFIIpe + e |AFIL
<C|BlaeTT||F|. +C | 8| e |AF]
+ OO+ BDIEN L (1l 2y +ae T IAf L2y )
+C 181 A+ae ) [Pl (1l + 122
Applying Young’s inequality yields that for all py > 0, there exists a constant

Cuo > 0 such that
(4.15)

0-Eo(7) + (5 = po) [|Fll72 + (1 + 22e™) [ VE||72 + &7 (1 — o) [|AF| |7
<Cuy | B2 (@2 +E)e ™
+ Cuo (04| 8 2 )(Hf”iz(l) +a’e?" ||Af||iz(1))
+Cy | B2 (142 2) ([IF 17 + 1 £1l72(2) )

Remarking that

172 = JeeQFTER) | S 2 dE
(4.16)

IN

1F e 1F ey < SAFIG: + 1€ 2 £I]5.).
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Using (4.16) and the fact that f satisfies the bound (4.1), we deduce form (4.15)

0-Eo(7) + (2 = o) [|F 32 + (14 32 ™) |[VF|7. + (1 — po) [|AF |3
<O | B (@2 +)e™ > +Chy | B IVSIGe

+ Cuo (04 1 B2 + 1€ 12 £1122)

+ Cup (04 | B1P)ae 2 (IAF]2: + ||| € 2 AF|)

Now, let 0 < pg < % and g =7~ to < %. The above inequality becomes
O-Eo(T) + 0Eo(1) + (14 327

&, —T 2 = —27 2
88c=T) |VF|7: + &3 + §)e~? |AF]S.
<Co| B (@ +&)e 2 +Co | B2 IVS3a

+Co0+ | BRIAR: + 1 €12 £

+Co(6+ | B P)a2e 2 (|Af]7. + 1 €12 Af|5.)

Next, we will give estimates of f and Af.

4.1.2. Estimates of f and Vf. In order to estimate | f||,. and |V f|| 2, we
introduce the functional E;(7) given by
(4.17) =

El(T) =

We have the following lemma.

LUF @2 + ae T IV A7)

LEMMA 4.2. Assume that f € L°([9, 1], H*(2)) is a solution of (3.14) satis-
fying the bound (4.1). Then, there exists a positive constant C1 such that, for all
T € [10,71],

&-El (7') + El(T) + (6

1

§ = 5eT) IVl + 5e T [ ASIIZ
<SCL AP (@®+&)e >+ (24C1|B?)|VF|3e
+C1BPIEP FII.+Ca(o+ | B )a2e > |AS][3
Proof : Taking the scalar product in L?(R?) of (3.14) with f, we obtain
O Ev(T) + |V fII32

TIfINZe + e 2 | Al
(4.18)

+B5e T (EVAG, f) + Bee 2T (A2G, f) + Bae T (AG, f)
+J1+08J+B8J3=0
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where

Jio= (KpV(f—ae7Af), f)
Jo = (VEN(f —ae "Af), f)

Js = (K;V(G—ae"AG),f).

Integrating by parts and applying the Holder inequality, we have the following
bounds

| (EVAG )| < QIAGIL + €1 AG) L) IVl < CIVF L

(4.19)
(4.20) | (A%G,f) | < [IAGlp2 [Afllz2 < CIAFI L
(4.21) [ (AG,f)| < VGl lVElLe < CIV Ll

Next, we bound the terms J;, ¢ = 1,2,3. Integrating by parts and using the fact
that div Ky = 0, we can write J; as

J1 = —ae 7 (Kf.Vf, Af)

Thus, applying Holder’s inequality and using Lemma 2.2 part (a), we obtain the
following bound
(4.22)

| i< ae™ [ Kl IV £l 2 [AS L2

< Cae T || llz 11720 IV Fll L2 1AF 2 < CVoae T [V £l 2 |AFl

since f satisfies the bound (4.1).
On the other hand, since div V¥ = 0, the term J; can be estimated as above and
we have

(4.23) [ Ja| < @e™™ VO] L IV Flle |1Af]l L2 < CaeT [V £l 2 IAf] 2

Finally, integrating by parts, using Lemma 2.2 part (b), we obtain the following
bound on J3
(4.24)

[Js| S K¢l pa |G — ae " AG| pa [Vl < CA+ae™) [[fll g2 IVl 2

Collecting the bounds (4.19) to (4.24) and applying Young’s inequality on (4.18),
we show that, for all 1 > 0, there exists a constant C,, > 0 such that

0rEr(r) + (L= 1) [V F 17 = 5 172 + €677 (1 = pua) | AFII7:
<G |81 (a%+€)e™ +Cuy | B (L+0%7) | fllZe o)

+ 0 (04| B2 )a2e > | Af|3a

Choosing 1 = % and remarking that

(4.25) 1711220y < 2017122 + |1 €12 7|5 ),
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we deduce from the above inequality that
(4.26)

0rEr(7) + Ev(r) + (3 = §¢77) IIVfI72 + 5e727 [ AfIIZ:
<O AP (@2 +e >+ (1+C1 | B (1+a%e™)) | f]7:

o _or 2 o _or
+ OB A+ a ) [[[ €1 fll.+ Ca(o+ ] B )a*e™ | ASIIL
Using (3.19), we can write Inequality (4.26) as

O Ei (1) + Er(7) + (3 — 2e ) [V |72 + e |Af]72
(4.27) <SCBP(@+ee T+ (2+0|B12)IVF|.

FCOLIBR|ER | +Ci(o+ | B )a2e > |Af| 22 .
O

4.1.3. Estimates of Vf and Af. In order to estimate |V f|, . and [|Af| ., we
introduce the functional is

(4.28) Ex(r) = LIVF@)i2+ae T |Af(7)]7)

LEMMA 4.3. Assume that f € L>([rg,m1], H*(2)) is a solution of (3.14) satis-
fying the bound (4.1). Then, there exists a positive constant Cy such that for all
T € [10,71], we have

0rEa(7) + Ea(7) + (& — ae ™) [|Af][72 + e~ [VAS]3.
<Oy [BP (@2 +8)e 2 + (34 Co(0+ | 81) V32

+Co | BRAIERFIZ+ 1f122)

Proof : In order to obtain estimates of the L2-norm of Af, we take the scalar
product in L?(R?) of (3.14) with —Af . We obtain

0-Ea(7) + (L. Af) + e 2 |[VASf|72 — Se= Al
(4.29) <|Blae (21 €| VAG 2 + [|IAG]| 2 ) IAf]l 12

+ 8862 | AG o [ Af]l + K1 + K + BK;

where

K4 (Kp V(f—ae "Af),Af)
Ky = (VEN(f—aec"Af),Af)

K; = (K V(G—-ae TAG),Af)
A simple integration by parts implies that ({.Vf, Af) = 0. Thus,

(L, AF) = |Afl72 = |V £]3.
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Since div V& = div K ¢ =0, we remark that
(K; VAf,Af) = (VE.VASf,Af) =0.

Therefore, using Lemma 2.2 part (a), we can write
(4.30)

| K1

IN

1K oo VANl L2 1Al 2 < CUFIE I Z22) IV F Il 1A 2

IN

CVO IVl 1A e -
We also have
(4.31) (Kol < [VE o IV fllpz 1Al L2 < CUIV Fllp2 1AS] 12
Finally, using Lemma 2.2 part (b), we can write
(4.32)
|Ks| < [Kplla [[V(G = aeTAG)|| s [Afll 2 < O+ ae™ ) [ fll 2o 1A 2
Thus, using the bounds (4.30), (4.31) and (4.32) and applying the Cauchy-Schwarz

inequality to the estimate (4.29), we obtain that, for all pus > 0, there exists a
constant C,, > 0 such that

OrEa(1) + (1 — Se™ — o) |Afll72 — |V fII32 + e 27(1 — p2) [ VAF| 7
<Cuy | B2 (@2 +€)e 2 +Cuy(6+ | BI) V72
2
+Cu | B (IER e+ 1£122)
Choosing pg = 3, we get
07 Ea (1) + Ea(7) + ( —ae ™) |Af|3: + Se |[VAS3-
<Cy| B2 (a2 +8)e 2 + (3 +Co(6+|81D)) IVSI2a
2
+Co | B AER fIF+1£1122)
Thus, Lemma 4.3 is proved. O

In order to obtain an estimate of ||f||§11 + ae™ 7 ||Af||iz, we introduce the
functional E3 given by

(4.33) E3(t) = BEo(T)+5E1(7) + 3 Ea(7)
Indeed, we have the following inequality
1f 17 + ae ™ |Af]72 < CEs(r),

where C' > 0 is a constant independent of a&.
Lemmas 4.1, 4.2, 4.3 and Inequality (3.19) imply that there exists a constant C3 > 0
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such that for all 7 € [rg, 71], we have
(4.34)

OrBy(7) + 0B, (r) + ee™ (3 + 2) IAFIL. + S 1ASIT: + 3 IVASIT:)

+(§+ %o - 22— Cy(| B2 +9)) IVFI

HH = -G B+ IV + (§— S - Csa®(| B> +9)) [ASI]

12 2 3 L2 1 5 € 3¢ L2
9\ 2
<G| B (a®+e)e ™ +Cs(| B +0)[[[ €17 f],
o _or 2
+Cs(| B> +0)ate > ||| € | Af]| L.
where 0 < 0 < %
4.2. Energy estimates in L?(2). In order to bound the H? weighted norm of

f, it remains to estimate the term H| EP(f(r) —ae TAf(T) HL2. For this purpose,
we introduce the weighted functional

(4.35) Ei(r) = F[I€1 (f(r) —aeAfE) 3.
We have the following lemma.

LEMMA 4.4. Assume that f € L>([ro, 1], H*(2)) is a solution of (3.14) sat-
isfying the bound (4.1). Then, there exists a constant Cy > 0 such that for all
T € [10,71),

0. Ex(r) + 3E(r) + (%~ Ca(VB +ae= +8)) 1 €7 £]3
+(1 3 — €e*2704) X2

+de‘7(1 +Ge T —ae T(Vo+ 5+ 0456‘27)) 1€ P aflf;
e (1€ 12 Af|[L. + 32112 +ae 1€ 2 AL,

< Cu8(& + a?)e? + (48 + Cu(ae™™ +v3) | ]2

+Cyee 2 ||V |22 + (Caeae + a2e 27 CuVo) | A S5

Proof : In order to estimate F4(7), we take the scalar product of Equation (3.14)
with | € |* (f —ae TAf).
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We obtain
(4.36)

O-Ey(r) — (Lf,| €1 (f —ae TASf)) +ee 2T (A% f,[ £ |* (f —ae TAf))
+5e T (EVAL I (f —aeTAf)) +ae " (Af, [ |* (f —ae TAf))
<My | 4| My | + | Ms |

F1BLe 1€ R (F = aeAP|,. (e 1€ P A%, + a1 €  AG .

+5 161 vAG] . )

where

My = B(VEN(f—ae TAf) €| (f —ae TAf),

M,

B(K;.V(G —ae " AG), | €' (f —ae " Af)).

Ms = (KpV(f—ae "Af)|€* (f —ae TAf)).

We begin by computing the term (Lf,| ¢ [* (f —ae "Af)). Using an integrating
by parts, we obtain

ARl ) = =P VAl +8I1E1 Al
@31 SEVAlErn = —3lleP L
Thus,
@38)  —(ChIE1 ) =P VI - Sl E e+ 5 1€ P 7

Next, we compute the term 2e~7(Lf,| £ [* Af). Integrating by parts yields

s(EVEIEITAS) = =5 (EVALTE f) =3(f. 1 £* AF)
(4.39)

2
= 3 (EVALIEI 1) +3[1€P Vf L. — 2411 €| £
Thus, using the equalities (4.37) and (4.39), we get

aer(cf, €1t af) =ae ([l € 12 AL +2l € P s
(4.40)

~ 161 | fIZ: ~ $(EVALIEI f))
Equalities (4.38) and (4.40) imply that
—(Lf €11 (f —ae TAf)) =

(441)  —Se T(EVALE|N ) =81+ 2ae ) ||| € | fII7-

F P fI + A+ 2ae ) ||| €12 VS| +ae T || € 2 Af|
On the other hand,
—a2e 2 (LENVAF + AL IEINAf) = Se ||| €12 Af|[.
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and
e (A, 1€ )
= (||| € P AF|;. +16(AF, [ € ° £)+ 86V € 2 Af))

= e (||| €2 Af|2, — 16| €| VFII22 + 32|If |32 + 8(EV L, | € [2 AS)).

Again, integrating by parts , we obtain

S(EVLIEPAf) = 8[| €|VSlr —16(6V,EVS)

> 811V =160 VT = =8I VI
Therefore,
(4.42)
_ o _ _or 2
e (A2, €0 f) = e (1€ P Af|. — 240 €1 VAT + 3211 f172).
Finally,
(4.43)

—eae (A, [P Af) = eae (||| €12 VAS|Z, — 8] € Af]I3)

Putting together the estimates (4.41), (4.42) and (4.43), we obtain the following
inequality for the left-hand side of (4.36), that is,

8- Ea(r) + L[ € P fa+ L+ ae ) ||| €12 VI3
+ae T (L+ e ) ||l €12 Af|[3.

e (||l €12 Af|[7a + 320715 +ae |1 € 2 VAS]7. )

—(8+8ae ) Nl €1 fI3: —ce™r (241 € | V113 +8ae ™ [l €] A1} )
<| My |+ | M|+ | Ms|

1811 P (f —ae AN, (e 7 I1€ 12 A% . +alll € P AG

+4 1€ P vad,.)

It remains to bound the terms M;; i = 1,2, 3.
Integrating by parts and using the fact that div Vg = 0, we obtain

My = =2 [p(Ved) [EP| f—ae TAf [ d€

Using remark 3.1, we deduce that M; = 0.
In order to bound M3, we use Lemma 2.2 part (b). We obtain

Ma| < [BIIEf NI €17 (G —aeTAG)| L [ € P (f —ae " AS)| .

IN

Cl1BIN Lz I € P (f —ae " AN
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Then, the Cauchy-Schwarz inequality implies that for all A > 0, there exists a
constant C > 0 such that
(4.44)

_ . 2
IMa| SCx [ BN f1720) + A €2 (F —ae AL

SO BRI+ A+Cr B EP fI[72 +ra2e2 ||| € 2 AF|2,

Finally, integrating by parts the term M3 and remarking that, for all 4 > 0, there
exists C}, > 0 such that

(4.45) [ EP<pulElt + C,
we can write
. 2 . 2
| M| < [IKfll e (]| € P (f —ae TAS)|[ 2 + Cullf — ae TAf][72)
Then, applying Lemma 2.2 part (a), we have

| Ms | < pll i 1flGa 1€ P (F —ae AR,
+ Cu Il 1oy I — aeAF 3
< wV([1€P fllj. +ae [l P AN}.)

+ CuVB (/1152 + a2 > [ Af7:)
since f satisfies the bound (4.1).

Taking into account the estimates (4.44) and (4.46), using the fact that | 3 [2< §
and applying the Cauchy-Schwarz inequality yield that, for all 4 > 0, there exists
a constant C,, > 0 such that

(4.46)

0rEa(7) + (3 = 11 = Cs (V3 +0)) 1 € 2 £][7

+(1+ac ) |l€ R vs3

(i e w0 1€ 1

+ee > (||l € 2 ALlf7a +321f15: +ae T ||| € 2 VAL )

—(8+8ae ) 1€ | fIF —ee > (241 €| VFIT. +8ae ™l €] AfII3: )

<GB (@2 4+ a2)e 2 + O, (| B2 +VO) |1 f]22

v

+a%e 2 C, VO | A7

For any A > 0, we can write

ETFIZa <2 NER FIZ + 2 112
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Likewise, for any n > 0, there exists a constant C;, > 0 such that

e €1 VA1 < e (nll €2 V|2 + G VSIS

cae || €| Af|7. < eae™ (]| € 2 Af|. + Cy IAf]32)

Thus, for any ¢ > 0 and any A > 0, there exists a constant C, > 0 such that
Inequality (4.46) becomes

O-Ea(r) + (% = p = Culu/5+6) — A1 +ae ™)) |1 € 2 £
+(1+aem —ee >, ) [ € P v/
+aeT (1 + Qe —ae (Vo + p+ C,ﬁe‘%)) €2 af|
(4.47)

+ee > (||l € 2 AS|f7a + 32117115 + ae T [l € 2 VAS]. )

I 2

<CLF(E+a?)e® + ($(L+a) + Cull B2 +VO) [1£1172

V2

+ O |V f|2 + (Cueae™" + a2 CuV/B) | Af2s
We finally remark that

P (F—ae AP = [1€2 f]2e +2ae ||| € V|

9 _or 2 .
+a2e ||| €2 Af| . — 16ae [ €] fl72
and thus that

I1ER(fF—ae AN < |1€R f)5. +2ae ||| €12 VS|
(4.48)

+a2e ||| € 2 AS|}.

Next, we set = 4\ = %, for example. Thus, (4.47), together with (4.48), implies
that

0-Ea(7) + LEo(7) + (% — COy(VE +ae " + 6)) 1€ £,
+(1+ gem—eera) |1 € P s
~po—T Q& ,—T _ ~,—T 1 =, —2T 2 2
(4.49) +-ae (1 + Ge ae” (Vo + 5 + Ciée )) ||| £ AfHL2
+ee 2 ([[1€ P AF|[}. +321F13: +ae [ € 12 VAL, )
< Cud(E +a%) e + (48 + Cu(ae™™ + Vo) || £1172

+Csee 2 ||V £ + (Cacae™T + a%e~27CuV) | Af[
The lemma 4.4 is thus proved. |
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We have obtained energy estimates of the functionals E3 and E4. In order
to obtain an energy estimate of f in the space H?(2), we introduce a final func-
tional, which is a linear combination of F3 and F4. In order to choose appropriate
coeflicients, we begin by remarking that

Bz < 2IVEFIL: + IV Iz -
Thus, choosing b > 12 x 16 = 192, we introduce the functional
(4.50) E5(7) = bE3(T) + E4(7).
Then, we have the following lemma.

LEMMA 4.5. Let f € L®([r9,m1], H%(2)) be a solution of (5.14) satisfying the
bound (4.1). There exist three constants Ko >0, K1 >0 and K2 > 0 such that

(4.51) 112 + ae T |Af|22 + ||| € 12 (f — ae "Af)|[2. < K1 Es(7)

and
(4.52)

. 2 9 _o9r 2
Es(r) < K ([ + e IAS I + 1€ 1P Sl + a7 1€ 2 A2 )
Moreover, E5(7) satisfies the following inequality for all T € [19,71],

(4.53) Es5(1) < e 0= Ey(rg) + K2 (a2 + €)e 07

with 0 < 0 < 4.

Proof : Using the definition of Ej, it is easy to see that Inequality (4.51) is
verified. The estimate (4.52) is a direct consequence of the definition (4.50) of Es
and the lemmas 3.4 and 2.4.

It remains to prove Inequality (4.53). Using (4.34), (4.49) and choosing the con-
stants €, § and & sufficiently small, we show that there exists a constant Ky > 0
such that Es5 satisfies the following inequality

Or Bs(7) + 0B5(r) + &> (b(3 + R) IAF |2 + 2 |ASIZ: + 4 IVASIS: )

e (|1 €2 AFI[5. +321f15 +ae 1€ P VAS];.)

< Kod(a? + e)e 27

where 0 < 0 < %
Integrating the above inequality between 79 and 7 > 7y and applying the Gronwall
inequality, we obtain

Es(1) < e 900 By (19) + £98(a2 4 €)e 07 (e7 70270 — ¢=7(2-0))

< e 0= By (1) + £28 (a2 + @)e 0"

with 0 < 6 < 3. O

5. Proof of Theorem 3.3 and convergence when ¢ tends to zero

In this section, we first prove Theorem 3.3. Next, passing to the limit, when €
tends to zero, we prove Theorem 1.1 and Corollary 1.2.



LONG-TIME ASYMPTOTICS 213

5.1. Proof of Theorem 3.3. Let v be a small positive constant and let
Wy belong to H?(2). Theorem 2.6 implies that there exists a solution W €
C([r0,7], H*(2)) of Equation (3.3) with W (0) = Wy, where 7 = log(T + tmax)-

We recall that W, (&, 7) = BG(&) + fe(&, 7).

Thus, the global existence of W, is a direct consequence of the global existence of
Je-

We also know that the solution f. of Equation (3.14) exists on [r9, 7] and belongs
to C([ro, 7], H2(2)).

We suppose that W, satisfies the bound (3.11).

Using the continuous injection of L?(2) into L'(R?), we can write that

| B1< Cy

where  is given by (3.13) and C > 0 is a constant.
Therefore, we have the following bound

| B 12+ I f(r) I3 + & | Afe(70)I7
(5.1)

+ ||| 3 |2 fe(TO)Hiz +a ||| 3 |2 Afe(TO)H2L2 < 0'707

where C' > 0 is a constant.

Let 6 = C:“, where 0 < Kk < % is a constant that will be made more precise later.
By continuity of the solutions, there exists a time 71, with 79 < 7 < 7, such that,
for all 7 < 7, f. satisfies the bound (4.1). Then, according to (4.53), we have, for
70 < T < T,

Es(1) < e /070 B5(0) 4 £95 (a2 + €)e 0

where 0 < 0 < %
Let

A = 1@l + 16 P F @2
In order to complete the proof of the global existence of f, it remains to show that
A(r)y <, forall 7, 1o < 7 < 7.
We recall that

1€ 2 (f. — ae AL, €12 fel|3a = 16ae= ||| €| fell2

2ae=" ||| € 2 VL, + a2 || € 2 AL

_|_

Thus,

H|§|2 feH22 < H|€|2 (fé ae TAfe)sz 16ae T|||§|feH2[2
L L
We also have, for all 12 > O,

2 2 2
€N fellze < G117 fell 2 + g5 IellZe
1

Choosing p = 15, we can write

HIEP L2, < €2 (fe—ae™ A2, +128ae™ | fe2

Therefore, using Inequality (4.51) of Lemma 4.5, we obtain that there exists a
constant K7 > K7 such that

(5.2) A(T) < KiEs(1)
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On the other hand, we have, by Inequality (4.52) of Lemma 4.5,

(5.3) Es(r) < Ka(A(r) + ae T |Af(r)52 + 6272 ||| € 12 Afe(r)[})
Now, let

(5.4) K = Kimax(Ko, K»)
and choose

1
(5.5) K= Zmin(l, K)

where K is the constant given in Inequality (4.53). Suppose that T is large enough
(which is equivalent to saying that € and @ are small enough) such that

K@ +é <=, anda <

o] =
To BIm

Then, using Estimate (4.53) and Inequalities (5.2) (5.
A(r) < K1E5(T)

), we obtain

< K1e %m0 By (1) + K1 Ko525 (a2 + €)e 7

< Ke 00 (A(ro) + @ || Afe(ro)l7: + a2 [[| € 2 Afe(mo)}2 ) + §e0

<9

Therefore, A(7) remains small on [rg,71]. We conclude that 73 = 7. On the other
hand, Inequalities (4.51) and (4.53) imply that the solution f. of Equation (3.14)
satisfies the following bound V7o <7 < 7,

56) 1fe O +ae AL O + (I € 2 (Fo(r) — Ge " AL
. < Klefe(rfﬂro)E%(TO) + K21K06 (a + 6) 7-,

where 0 < 0 < % Therefore,
(5.7) 1fe(r) — ae" AL Fagn) < Ce?,

where C' is a positive constant.
The above inequality implies that the H?(2)-norm of f. remains bounded for all
T € [10,7]. Thus, 7 = 400 and f. belongs to the space L>([ry, +oo[, H%(2)).

5.2. Convergence when ¢ tends to zero. Before we begin the proof of
Theorem 1.1, we give the following lemmas, which will be useful later.

LEMMA 5.1. Let w € L*(2) and let 2 = (I — aA) " w. Then, there exists a
positive constant C' such that we have the following inequalities:

a) |lzl|72 + 20 V2|72 + o[ Az]|7. < Cllwl|Z.

) 2 [* 2172 +2afl |2 [* Vzll72 + o[ | 2 2 Az][72 < CllwlZs
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Proof : We have

(5.8) z—alz =w.
Thus, in order to prove Inequalities a) and b), it is sufficient to take the scalar
product of (5.8) with z — @Az and | x |* (2 — aAz) respectively. O

LEMMA 5.2. 1) Let f and g be two functions such that g € L*(1) N H*(R?),
Vf € L*(R?) N L*>®(R?) and Af € L2(R?) N L*(R?). Also let
h=(I—aA)~Yf.(I—al)g)— fg. Then, there exists a positive constant C such
that we have the following inequalities:

a) |[hlz: + el VAlZ: < Ca(lAfIZ:l9l3 + IV FIZ:01ValZ2)-
b) [T [ Al +all [ @] VAL < Ca(lbllf + 1ALl [ 2] glI7

HIVAIE<glz: + 1 2] gll2)),
where Co, = C(a + a?). B
2) Let f and g be two functions such that f € L*(R?), Vg € L*(2) and Ag € L*(2).
Also let k = (I — aA)"L(f.V(I — aA)g). Then, we have the following inequalities:

o) [ElZ + ol VE(Z: < ClIFII~ (V312 + all AglIT)-
d) |||z [* kl|72 + el [ 2 [* VE[7. < Ca([k]I7

I 2 2 VallZ: + 1 = [ Agl2.)).
Proof : Using the expression of h, we can write
(5.9) h—alAh=aAf g+2aVf.Vyg
Taking the scalar product of Equation (5.9) with h and integrating by parts, we
can write the following inequality
(5.10) Il[Z2 + allVAlZ: < CallhlLa(|Afl2llgllzs + IV FlLalVgllz2)

Then, applying the Cauchy-Schwarz inequality, we obtain Inequality a).

In order to obtain Inequality b), it is sufficient to take the scalar product of Equation
(5.9) with | x |2 h.

Inequalities ¢) and d) can be shown by the same way. a

Now, we prove the Theorem 1.1. In the previous section, we have showed that the
solution f. of Equation (3.14) belongs to the space C°([rp, +00), H(2)) and that
Estimate (5.6) is satisfied, V7 > 79. In particular,

[fe(T) — ae " Afe(T)|l f2(2) is bounded uniformly in € and decays exponentially to
0.

On the other hand, one can show, according to Equation (3.14), that

Or(fe — ae”"Af) is uniformly bounded in € in the space L>([ro, 7], H 2(R?)).
Therefore,

(5.11) dr fe € L=([r0,7], L*(R?))

Let O be a bounded open set in R2. Property (5.11) implies that the family (f.),
€ > 0, is equicontinuous in C°([ry, 7], L%(0)).

Ascoli’s theorem allows us to extract a subsequence still denoted by f. such that
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fe converges strongly to f in C°([ro, 7], H 1(O)). Next, the interpolation between
H~=1(0) and H?(0) allows us to deduce that

(5.12) fe — [ strongly in C%([ro, 7], H*(O)), Vs < 2.
Let us note that, by the Holder inequality, we have

3 1 2 3
(5.13) ([EEA I AT A (F A

Then, using property (5.12) and the fact that f. is uniformly bounded in
L*([ro, +00], L*(2))

, we deduce that, for any 7 > 0,

(5.14) | €15 fo —| €2 f strongly in C°([0, 7], L*(0)).

Using Lemma 2.1 part b), together with the properties (5.12) and (5.14), we deduce
that

(5.15) Ky, — Ky strongly in L*°([r, 7], L*(0O)).
Also, using Lemma 2.1 part b) and Property (5.12), we deduce that
(5.16) VK — VK strongly in L ([, 7], L*(O)).

These convergences allow us to show that f satisfies the equation (3.14) in the weak
sense for ¢ = 0. To this end, we take the L?-product of (3.14) with any function
¢ € C°(RT x R% R?) such that supp(¢) C [0, 7] x O.

We will only prove the convergence of the nonlinear term

f;} fo Ky V(fe — ae " "Af.).¢dédr since, for the other terms, the convergence is
easier to prove.

Let ¢ € C§°(R* x R?,R?) such that supp(¢) C [ro,7] x O.

Then, integrating by parts, we obtain

(5.17)

/TT /O K; V(f. — ae TAf.)pdedr = /OT /O K} Vo(f. — ae—"Af.)dédr

Z/T:/OKfe-Wﬁfe

r 2
taeT / / > (0kKy, Vi fe + K. N O fo)dédr
0 O

k=1
Using Properties (5.15), (5.16) and (5.12), we deduce that

/T:/OKfe-V¢(fe —ae TAf)dedr — /T:/OKf_v(b(f _aeTAf)dgdr

Therefore, f satisfies the equation (3.14) in the weak sense for € = 0.

On the other hand, remarking that the estimates proved in the Section 4 are uni-
form with respect to €, we can then obtain the same estimates for the limiting
solution f with e = 0. We thus have shown that f satisfies the same decay rate in
time as f. and we have

1) + @A + (1€ 2 (F) = ae T AP} < 0677
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where 0 < 0 < % and C > 0 is a constant.

Now, we prove the uniqueness of solutions of Equation (1.6). For this purpose, we
return to Equation (1.1) written in the original variables (z, ).

Suppose that w; and wy are two solutions of Equation (1.1) such that wy(0,2) =
wa(0, x) = wo(x) and let u; and uz be the velocity fields associated to the vorticities
wi and wsy respectively.

Then, w = w; — we satisfies the following equation

(5.18)
Or(w — aAw) — vAw + u1.V(w — aAw) + (u1 —u2).V(ws — aAwsy) =0
w(0,2) = 0

According to Lemma 2.3, we have that
ur —uzllr2 < O [ 2 | w] 2.

This indicated that the uniqueness of solutions should be proved by using a weighted
norm.

Before we start the proof of the uniqueness of solutions, we will give the following
bounds, which will be useful later.

Using the Fourier transform of u and the continuous injection of L?(2) into L!(R?),
we can write

C|Vui|zr < Cllwr]|rs

5.19 HvulHL*”" v
(5:19) Cllwrllr22) < ClJwilz2 + [[Aws|[z2) < C,

INIA

where C > 0 is a constant.
We also have by Lemma 2.1 part(d) that

[Auillee < CllAun|lgr < C([|Aullzz + [|VAu ]| 2)

5.20
(5:20) < C(IVunllze + |Aw|22) < C.

As we have explained before, in order to prove that w = 0, we will write an energy
estimation of w in the space L?(2). As a first step, we begin by performing an
estimation of ||w|| 2 + v/a||Vw]|| 2. For this purpose, we take the scalar product of
Equation (5.18) with w. We obtain, after some integrations by parts,

30 ([wlZ: + allVwll72) + v Vwll7.

< C||Vur|| o< Vw32 + Clluy — ug|| o< || Awe]| 2 | V| 2

Therefore, using (5.19) and Lemma 2.2 part a), then applying the Cauchy-Schwarz
inequality, we obtain

L0, (lwll2: + ol Vull2a) + v][ Vel 2.
1 1
(5.21) < ClIVwllZe + Cllwl gy 10l Vool 2

< ClIVwlZs + Cllwll 2@ llwl e

In order to obtain an estimation of w in L?(2), it remains to bound the L?*-norm
of | z | w. For this purpose, we write Equation (5.18) in another form:

Ow —v(I — aA)PAw + (I — aA) " (u1.V(w — aAw))
(5.22)
+ (I — @A) (g — u2).V(wz — aAws)) =0
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Now, taking the scalar product of the above equation with | z |* w, we get
%&H |z 2 w|3. — V((I —aA)tAw, | x| w)
(5.23) + ((I — aA) Hu1.V(w — aAw)), | z [* w)
+ ((I = aA)"H((u1 — u2).V(wz — alAwy)), |z [* w) =0

We begin by computing the term I; = —((I — aA) "' Aw, | z |* w).
Let z = (I — aA)~!w. Integrating by parts, we can write

L=—[pAz |zt zde+ o fp Az |z | Az de
=1z > Valz. =8|l | 2]. + ol [z |* Az||7.
(5.24)
=1z P VI —ad)  wl. =8|l |2 | (I — o) wl,
+ol |z [* A - ad) w7
Next, we estimate the term I = ((I — aA) ™! (u1.V(w — aAw)), | = [* w). We have
I = [pour. V(I —al)?z (I —aA)™ |z [* (2 — aAz)dx
= [rour. V(I —aA)22.(I —aA)H{I —ad)(|z |* 2)
+aA(| z [Nz +2aV(| z |1).Vz]da
= [peur. V(I —al)?z. |z |* zdx
+a [p(I —al) H(u. V(I — al)?2).(16 |z |* 2+ 8| = |* 2.Vz)dx
Let
S = [peur. V(I —al)z |z |* zde
= [ (u1.Vz — 201, VAz + 0u1 . VA?2). | 2 |* zdx
Integrating by parts and using (4.45) and Lemma 2.2 part a), we obtain

| fpewr Vz x|t zde | = | =2 [poura|x]?| 2] de|
(5.25)

IN

Cllutllzllzll72(2) < Cllzll72(2)
We also have

| Joz w1 VAZ |z |* zdz |

=| — fpeur.Vz |z |* Azdr — 4 [, ur.xAz | @ |* zda |
(5.26)
< Cllurlli=| |22 Azlla(l | 2 2 Vla + | |2 | ll22)

<Oz |? Azllzz(ll | = [ Va2 + 12l z22)
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Finally, integrating by parts several times, we get

Jpz w1 VA?z |z |* 2 de = [, Auy.VAz |z |* 2 d
+ Jpe ur. VAZA(l 2 [* 2)dz + 23, [ge Our. VAZ.O(| z |* 2)da
= — Jp Aur. V(| @ [* 2)Az dz — [ us VA(| z [* 2)Az da

=23 fo2 Okur.VO(| 2 |1 2)Az dz

A simple computation and the application of the Holder inequality allow us to write
that

| Joz 1. VA2 |z |* 2 da |

< CllAm||zall | = 2 Azflea(l |2 |* Vzllza + ||| 2 | 2[|z4)
+Cllua ]|z~ [HAZHL?(H |z |zl |2 [2 Vel |2 2 Azl | 2 | Azl

+CVurll=ll [ * Azlrz(lzlize + [ 2 | Vallzz + || | 2 [* Azllz2)

Thus, inequalities (5.19) and (5.20) imply that
(5.27)
| Jpz ur. VA?z |z |* 2 d |

<Clla P Azl 12 P Vel + [ |2 | 2)lm)
+ 12l (lell oy + 1 12 2 Vallza) + 1 |2 2 Asll el Az oo |
+Cl 2 |? Azl r2(l2llre + 1IV2lL2g) + I | & 2 Azl z2)

<Oz P Azllez(lzllz22) + 1V2llL22) + A2 222))

+ Cll Azl 22l 22y + | [ @ 2 Vzl|L2).

Then, adding the inequalities (5.25), (5.26) and (5.27), we can write the following
bound on J;

| Ji|<
CllzllF29) + aCll [ = [* Azll 2 (2]l 222y + (1 + @) [V2]1202) + al| Azl 2(2))

+a2Cl|Azlla(llzll L2y + | [ |* V2l L2)
Therefore, Lemma 5.1 implies that
(5.28) | 1] < Callwllag),

where C,, = C(1 + ya+a + HTS) and C is a positive constant.

Now, let Jo = a [po (I — @A) H(ur. V(I — aA)?2).(16 |z |* 2+ 8 | x |* 2.V z)dx.



220 BASMA JAFFAL-MOURTADA

Integrating by parts and applying the Holder inequality, we can write
| 2 |= | 3 fo (T — aA) " Huy (I — a)?2).(3222 4 24 | x |? ;2

+ 162,2.Vz + 8 | x |2 2.V0;2)dz |
<aC(| |2 | zllze + 1 T2 * Vzllz2) 35 (1 — al) " uwi(I — ad)?2)| 2

+aC([ |2 | Vallze + | |2 [ Azlp2) 3 1 2 | (1 — ad) ™ (uri(I — al)?2)] 12
Using Lemma 5.2 parts a), we can write

I = @)™ (uri (I — ald)?z)]| 2

< (I = aA) " Hu (I — ald)?2) — ugjwl| g2 + ||ugw| 2
(5.29)
< Co[[Aus| 2wl g + [Vual sl Vel L2) 4+ Cllua || Lo ||w]] 2
< Colwla
On the other hand, Lemma 5.2 parts b) allows us to write
2| (I —ad)™ (ui(l — ad)?z)|Le
<[ =ad) N un(l — ad)?2) —uw]||pz + || | @ | wiiw] 2
(5.30) < Callwllm + Cal[[Au|[pa]l | 2 | wlL2 + [[Vurll Lo [wlz22))
+Clurllzee |l | [ wll L2
< Ca(wllm + lwllzze)
Thus, Inequalities (5.29) and (5.30), together with Lemma 5.1 imply that
(5.31) | 2 |< Callwllrz@llwllm + [wlFz)
Finally, we estimate the term
I3 = ((I - ozA)fl((ul —u2).V(ws — aAws)),| = |4 w)
Applying the Holder inequality and using Lemma 5.2 parts ¢) and d), we can write
| I < 2> (I —ad) " ((u1 = u2).V(wz — alws))| 2] | @ |* w2

(5.32) < Callur —uap< |l | 2 [* wlr2(IVwallz2(2) + | Awz|z2(2))

1 1
< CallwlZapllwliZall | 2 2wl 22

Therefore, collecting the inequalities (5.24), (5.28), (5.31) and (5.32), we can write
Equality (5.23) as follows
(5.33)

30 [ 2 wllf + vl T2 2 VI = ad) wllf + av] |2 2 A — ad) " w2,

1 1
< Callwllzz@llwla + 1wllfe (o) + CallwlZa lwllzall T2 12 wlire
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Taking the sum of Inequalities (5.21) and (5.33) and applying the Cauchy-Schwarz
inequality, we obtain

50wl fa ) + el VwlZ:) + vIVwl: + vl [ 2 2 VI — ad)~ w2,

+av| [z P AT - ad)  w|fz < (Ca + Ca)lwllFzgz) + Callwll?)

Finally, integrating the above inequality between 0 and ¢ > 0 and using the Gronwall
lemma, we deduce that w = 0 and thus, the solution of Equation (1.1) is unique.

5.3. Proof of Corollary 1.2. In the proof of Corollary 1.2, we use the propo-
sition B.1 of [16], that we recall here.

PROPOSITION 5.3. Let w € L*(m*) for some m* > 0 and denote by v the
velocity field obtained from w via the Biot-Savart law. Assume that either 1) 0 <
m* <1, or

2)1<m*<2, and / w(§)dE =0
R2
If m* ¢ N, then for all 2 < q < 0o, there exists C > 0 such that

<C
La

1

(14 €)% a0

m_

|+ €)% ul

L2’

For the proof of the above proposition, see [16].

Now, let w(x,t) be the solution of (1.1) with w(z,0) = wo(z) and let W (&, 1)
be the solution of (1.6) with Wy(£) = T wo(x) as initial data. We recall that L?(2)
is continuously embedded into LP (R2), forall 1 <p<2.

Then, using (1.3) and Theorem 1.1, we obtain

(1= gAY (w(t) — B,

=5 (T + )75 ||(1 — ae "A) (W (log(T +1)) — BG)| .,
(5.34) )
< O(T+ )75 (1 - ae " A)(W (log(T + 1)) — BG)|| 25

<C(T +t)~ 705

Using Lemma 2.1 part a), we see that (1.13) holds for all 2 < ¢ < cc.

In order to show that (1.13) holds also for all 1 < ¢ < 2, we use Proposition 5.3.
Now, assume that 1 < ¢ < 2 and fix m* € (%, 2).

Therefore, using Proposition 5.3 and the Holder inequality, we obtain

[(1 = ae " A)(V (r) = BVE (7)) 1

<@+ 1ePyETa - aeTa)V(n) - BVE(r)|

(5.35) L

<O+ €)% (1 —ae TA)W(r) = BG(7))]| ..

< (1= ae )W (r) = GGl sy < Ce
Finally, using the change of variables (1.4), we obtain (1.13) for all 1 < ¢ < 2.
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