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On Schrödinger equations with modified dispersion
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ABSTRACT. We consider the nonlinear Schrödinger equation with a modified spatial dis-
persion, given either by an homogeneous Fourier multiplier, or by a bounded Fourier multi-
plier. Arguments based on ordinary differential equationsyield ill-posedness results which
are sometimes sharp. When the Fourier multiplier is bounded, we infer that no Strichartz-
type estimate improving on Sobolev embedding is available.Finally, we show that when
the symbol is bounded, the Cauchy problem may be ill-posed inthe case of critical regu-
larity, with arbitrarily small initial data. The same is true when the symbol is homogeneous
of degree one, where scaling arguments may not even give the right critical value.
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1. Introduction

For (t, x) ∈ R+ × R
d, we consider

(1.1) i∂tu+ P (D)u = λ|u|2σu ; u|t=0 = u0,

whereD = −i∇x, P : R
d → R, λ ∈ R andσ > 0. Since the Fourier multiplierP is

real-valued, the free flow (λ = 0) generates a unitary group oṅHs(Rd), s ∈ R:

S(t) = e−itP (D).

We study the local well-posedness for the Cauchy problem (1.1), defined as follows:
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DEFINITION 1.1 (From [22]). Let s ∈ R. The Cauchy problem(1.1) is well posed in
Hs(Rd) if, for all bounded subsetB ⊂ Hs(Rd), there existT > 0 and a Banach space
XT continuously embedded intoC([0, T ];Hs(Rd)) such that for allu0 ∈ Hs(Rd), (1.1)
has a unique solutionu ∈ XT , and the mappingu0 7→ u is uniformly continuous from
(B, ‖ · ‖Hs) toC([0, T ];Hs(Rd)).

Note that this definition is not quite universal, since for instance the uniformity on
balls rules out the critical cases. This definition is well suited for cases where the solution
is constructed by a fixed point argument, in a ball of a Banach space, whose radius is related
to the size of the initial data; in critical cases, not only the size of the initial data comes
into play, but also the profile of the initial data. We also point out that even in the case
of Schrödinger equations (P (ξ) = −|ξ|2), continuity is known only in a limited number
of cases (and implies uniform continuity in the above sense): see [28] for s = 0, [19] for
s = 1 ands = 2, and [9] for 0 < s < 1. However, when we deny the above notion of local
well-posedness, we will do so in a rather explicit way, in thesame fashion as in [8, 11].

We consider two cases in (1.1):

• P is homogeneous,P (µξ) = µmP (ξ), for all ξ ∈ R
d, µ > 0, withm > 1.

• P is bounded,P ∈ L∞(Rd).

The first case includes the standard Schrödinger operator (P (ξ) = −|ξ|2), and the fourth-
order Schrödinger operator (P (ξ) = |ξ|4), studied for instance in [2, 25, 26]. Smoothing
effects and dispersive estimates have been established forrather general Fourier multipliers
P in [4, 20]. The cased = 1, P (ξ) = ξ2j+1, j ∈ N, has been studied initially in [21];
the cased = 2, with P a polynomial of degreem = 3 has been studied in [3], revealing
different dispersive phenomena according to the precise structure ofP . The casem ∈ 2N,
with P elliptic and∇2P non-degenerate outside{ξ = 0}, appears as a particular case of
the framework in [15]. It is shown there that ifs > max(0, s0), then the Cauchy problem
(1.1) is locally well-posed inHs(Rd), where

(1.2) s0 =
d

2
−
m

2σ
.

This index corresponds to the one given by scaling arguments: if u solves (1.1), then for
anyΛ > 0, uΛ : (t, x) 7→ Λm/(2σ)u(Λmt,Λx) solves the same equation. The value ofs

for which theḢs(Rd)-norm is invariant underu 7→ uΛ is s = s0. We will see in§1.3 that
this scaling argument may not yield the sharp Sobolev regularity: if m = 1, the Cauchy
problem (1.1) may be strongly ill-posed inHs(Rd) for all s 6 d/2.

In [15], the proof of local well-posedness uses dispersive and Strichartz estimates for
S, established in [13] for d = 1, and in [14] for d > 2. Note that in the cased = 1,
dispersive and Strichartz estimates forS are proved in [18] for P (ξ) = |ξ|m andm > 2
(not necessarily an integer). By resuming arguments similar to those presented in [8, 11],
we prove that in this framework, the indexs0 is sharp, in the sense that the nonlinear flow
map fails to be uniformly continuous at the origin inHs(Rd), if s < s0. This property has
been established in [26] for the caseP (ξ) = |ξ|4 with (d, σ) = (3, 1). However, the index
s0 may not correspond to the critical Sobolev regularity (see§1.3).

The second case, whereP is bounded, is motivated by the results presented in [16],
whereP (ξ) = − 1

h arctan(h|ξ|2) is considered to construct numerical approximations of
the solution to the linear Schrödinger equation

i∂tu+ ∆u = V (x)u,



ON SCHRÖDINGER EQUATIONS WITH MODIFIED DISPERSION 175

and0 < h ≪ 1 denotes the time step. We will see below that in such a framework, no
Strichartz estimate is available, even if one is ready to paysome loss of derivative. Another
example of bounded symbol one may think of is

i∂tu+ ∆(1 − ∆)
−1
u = λ|u|2σu,

which is a possible envelope equation in geometric optics (see e.g. [12, 23]). In these
two examples,P is elliptic. We will see however that no Strichartz estimate(better than
Sobolev embedding) is available there, and that the critical regularity issc = d/2.

1.1. Norm inflation. Our result in this direction is:

THEOREM 1.2. Letd > 1, λ ∈ R, σ > 0. Assume that eitherσ is an integer, or that
there exists an integerr such that2σ > r > d/2. If σ ∈ N, fix an integerr > d/2.
1. Suppose thatP is m-homogeneous, withm > 1, and denotes0 = d/2 − m/(2σ).
Suppose thats0 > 0 and let0 < s < s0. There exists a family(uh

0 )0<h61 in S(Rd) with

‖uh
0‖Hs(Rd) → 0 ash→ 0,

0 < th → 0, and a strong solutionuh ∈ C([0, th];Hr(Rd)) to (1.1), such that:

‖uh(th)‖Hs(Rd) → +∞ ash→ 0.

2. If P is bounded, then the above conclusion remains true for any0 < s < d/2.

Theorem 1.2 is proved in§2, by adapting the ordinary differential equation mechanism
used in, e.g., [8, 11]. However, the critical Sobolev regularitysc may satisfysc > s0 (see
§1.3): in view of [15] and Theorem 1.2, we havesc = s0 at least whenP (ξ) = µ|ξ|m,
µ ∈ R \ {0},m ∈ 2N \ {0}. We also refer to [6] where a different result concerning the
lack of well-posedness is established for a broad variety ofdispersive equations, even in
the linear case.

1.2. Absence of Strichartz estimates.In this paragraph, we focus our discussion on
the case whereP is bounded. Fors > d/2,Hs(Rd) being an algebra, local well-posedness
inHs(Rd) is straightforward, provided that the nonlinearity is sufficiently smooth (see e.g.
[27]). Therefore, the critical threshold issc = d/2, and from Theorem 1.2, no dispersive
property is present to decrease this number. More precisely, no Strichartz estimate is avail-
able forS(·), even if one is ready to pay some loss of regularity which is not worse than
the result provided by Sobolev embedding. To state this property precisely, we recall the
standard definition.

DEFINITION 1.3. A pair (p, q) 6= (2,∞) is admissible ifp > 2, q > 2, and

2

p
= d

(

1

2
−

1

q

)

.

By Sobolev embedding, for all(p, q) (not necessarily admissible) with2 6 q < ∞,
there existsC > 0 such that for allu0 ∈ Hd/2−d/q(Rd), and all finite time intervalI,

‖S(·)u0‖Lp(I;Lq(Rd)) 6 C‖S(·)u0‖Lp(I;Hd/2−d/q(Rd))

6 C‖u0‖Lp(I;Hd/2−d/q(Rd)) = C|I|1/p‖u0‖Hd/2−d/q(Rd).

WhenP is bounded, this estimate cannot be improved:
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COROLLARY 1.4. Let d > 1, andP ∈ L∞(Rd;R). Suppose that there exist an
admissible pair(p, q), an indexk ∈ R, a time intervalI ∋ 0, |I| > 0, and a constant
C > 0 such that

‖S(·)u0‖Lp(I;Lq(Rd)) 6 C‖u0‖Hk(Rd), ∀u0 ∈ Hk(Rd).

Then necessarily,k > 2/p = d/2 − d/q.

The fact that no standard Strichartz estimate (with no loss)is available forS(·) is rather
clear, since the dispersion relation is given byτ = P (ξ), and defines a characteristic variety
which is bounded inτ . However, one could expect the existence of Strichartz estimates
with loss of regularity, in the same fashion as in [1, 5, 7] (where the geometric framework
— the space variable belongs to a compact manifold — rules outthe existence of the
standard dispersive properties). The fact that this is not so is a rather direct consequence
of Theorem 1.2 (whereσ > 0 is arbitrary), and of the argument given in [7] to prove
Proposition 3.1. It may seem surprising to prove Corollary 1.4 as a consequence of a
nonlinear analysis; we insist on the fact that the proof of Theorem 1.2 is rather simple, and
the deduction of Corollary 1.4 involves another nonlinear result, whose proof is also quite
short (see Proposition 3.1 below).

1.3. Critical cases.In [10], local well-posedness inHsc(Rd) for small data is estab-
lished for Equation (1.1) in the caseP (ξ) = −|ξ|2, where

sc =
d

2
−

1

σ

coincides withs0 in that case, sincem = 2. In [24], local well-posedness inHd/2(Rd)
for small data is established for the same operator, with nonlinearities which are allowed
to grow exponentially. In these two papers, the proof uses Strichartz estimates (in Besov
spaces). On the other hand, whenP is bounded, the Cauchy problem may be ill-posed
in Hd/2(Rd), even for nonlinearities growing algebraically. Moreover, whenP is m-
homogeneous withm = 1, the critical Sobolev regularity may not bes0, butsc = d/2 >
s0, with ill-posedness fors = sc.

PROPOSITION1.5. Let λ ∈ R \ {0}, σ > 0. Assume that eitherσ is an integer, or
that there exists an integerr such that2σ > r > d/2. In either of the two cases:

• P (ξ) = c · ξ, c ∈ R
d, or

• P is constant,

for all δ > 0, there existsu0 ∈ Hd/2(Rd) with ‖u0‖Hd/2(Rd) 6 δ such that(1.1) has a

solutionu ∈ C(R+;D′(Rd)), and for anyt > 0, u(t, ·) 6∈ Hd/2(Rd).

For comparison with other results, note that in the first case, P is not elliptic if d > 2.
In the second case,P 6= 0 is elliptic, but∇2P = 0 is obviously degenerate.

Unlike what happens in the presence of Strichartz estimates([10, 24]), this result
yields examples where local well-posedness fails in the critical cases = sc, even for small
data. We prove Proposition 1.5 in§4: we present the casesd = 2, σ > 0, andd > 1,
σ = 1/2, only, for the convenience of the exposition, but the argument can be extended to
any space dimension, up to more intricate computations.

In the casem = 1 (at least), the mere assumption thatP is m-homogeneous is not
enough to characterize the critical Sobolev regularity in (1.1), or the existence of Strichartz
estimates. Indeed, the symbolP (ξ) = |ξ| corresponds to the wave equation, for which
Strichartz estimates are available whend > 2, and sosc < d/2. See e.g. [17]. This
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suggests that also whenm > 1, the values0 may not be sharp whenP is not proportional
to |ξ|m, but for instance of the form|ξ|m−1c · ξ, c ∈ R

d, or more generally whenP is not
elliptic; see also [3, 4, 20] for remarks in this direction.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 proceeds along the same lines as in [8, 11] (see also [27]).
Fix s as in Theorem 1.2. Consider initial data of the form

uh
0 (x) = hs−d/2κha0

(x

h

)

,

with 0 < h≪ 1, a0(x) = e−|x|2, and

κh =

(

log
1

h

)−θ

for someθ > 0 to be fixed later. We have‖uh
0‖Hs(Rd) −→

h→0
0.

Fix r > d/2 an integer: inHr(Rd), the nonlinearity can be viewed as a pertur-
bation, and sincea0 ∈ S(Rd), there existsT h > 0 and a unique, strong, solution
uh ∈ C([0, T h];Hr(Rd)) to (1.1) (see e.g. [27]). At this stage, we have no estimate
on the dependence ofT h uponh ash→ 0. Introduce the scaling

ψ(τ, y) = hd/2−suh
(

h2+ατ, hy
)

,

for someα to be precised later:

‖ψ(τ)‖Ḣs(Rd) = ‖uh
(

h2+ατ
)

‖Ḣs(Rd).

Denoteε = h2σ(d/2−s)−2−α. The functionψ solves the Cauchy problem

(2.1) iε∂τψ + h2σ(d/2−s)P
(

h−1Dy

)

ψ = λ|ψ|2σψ; ψ|τ=0 = κha0.

2.1. Choice ofα. WhenP ism-homogeneous, Equation (2.1) simplifies to

iε∂τψ + h2σ(d/2−s)−mP (Dy)ψ = λ|ψ|2σψ; ψ|τ=0 = κha0.

Forω > 0, we set

2 + α =
1

m+ ω

(

(m− 1 + ω) 2σ

(

d

2
− s

)

+m

)

,

in which case we have:

ε = h2σ(s0−s)/(m+ω).

Therefore,ε→ 0 ash→ 0 sinces < s0. We also compute

h2σ(d/2−s)−m = εm+ω.

WhenP is bounded, we consider2 + α = σ(d/2 − s). Therefore,

2σ

(

d

2
− s

)

− 2 − α > 0 (henceε→ 0 ash→ 0), and2 + α > 0.
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2.2. The ODE approximation. Introduce the solution to

iε∂τϕ = λ|ϕ|2σϕ; ϕ|τ=0 = κha0.

It is given by

ϕ(τ, y) = κha0(y) exp
(

−iλ
τ

ε

(

κh
)2σ

|a0(y)|
2σ
)

.

Sincea0 is a Gaussian,ϕ ∈ C∞(R × R
d) regardless ofσ > 0, and for anyr > 0,

(2.2) ‖ϕ(τ)‖Hr(Rd) .
(

κh
)1+2σr

(τ

ε

)r

+ κh.

LEMMA 2.1. Let r > d/2 be an integer, with in additionr 6 2σ if σ 6∈ N. In either
of the cases of Theorem 1.2, we can findδ > 0 independent ofθ > 0 such that forε > 0
sufficiently small,ψ ∈ C([0, ε(log 1/ε)δ];Hr(Rd)), and

sup
06τ6ε(log 1

ε )
δ

‖ψ(τ) − ϕ(τ)‖Hr(Rd) −→
ε→0

0.

PROOF. Denote byw = ψ − ϕ the error. It solves

iε∂τw + h2σ(d/2−s)P
(

h−1Dy

)

w = h2σ(d/2−s)P
(

h−1Dy

)

ϕ

+ λ
(

|w + ϕ|2σ(w + ϕ) − |ϕ|2σϕ
)

,

with w|τ=0 = 0. Using the facts thatP is real-valued,z 7→ |z|2σz is sufficiently smooth,
andHr(Rd) is an algebra, we find

‖w(τ)‖Hr(Rd) .
1

ε

∫ τ

0

∥

∥

∥
h2σ(d/2−s)P

(

h−1Dy

)

ϕ(τ ′)
∥

∥

∥

Hr(Rd)
dτ ′

+
1

ε

∫ τ

0

(

‖w(τ ′)‖2σ
Hr(Rd) + ‖ϕ(τ ′)‖2σ

Hr(Rd)

)

‖w(τ ′)‖Hr(Rd)dτ
′.

In the case whereP ism-homogeneous, we have
∥

∥

∥
h2σ(d/2−s)P

(

h−1Dy

)

ϕ(τ ′)
∥

∥

∥

Hr(Rd)
. h2σ(d/2−s)−m ‖ϕ(τ ′)‖Hr+m(Rd)

. h2σ(s0−s) ‖ϕ(τ ′)‖Hr+m(Rd) .

In the case whereP is bounded, we have
∥

∥

∥
h2σ(d/2−s)P

(

h−1Dy

)

ϕ(τ ′)
∥

∥

∥

Hr(Rd)
. h2σ(d/2−s) ‖ϕ(τ ′)‖Hr(Rd)

. h2σ(s0−s) ‖ϕ(τ ′)‖Hr(Rd) ,

where we sets0 = d/2 in this case.

In both cases, we check that there existsβ > 0 (independent ofθ) such that

h2σ(s0−s) = ε1+β .

It is given by the formula

β =
2σ(s0 − d/2) + 2 + α

2σ(d/2 − s) − 2 − α
.

In the homogeneous case, this formula becomesβ = m− 1 + ω, and whenP is bounded,
β = 1. Therefore, in view of (2.2) and sinceκh 6 1, there existβ, γ > 0 such that

∥

∥

∥
h2σ(d/2−s)P

(

h−1Dy

)

ϕ(τ ′)
∥

∥

∥

Hr(Rd)
6 ε1+β

((τ

ε

)γ

+ 1
)

.
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So long as‖w(τ)‖Hr (Rd) 6 1, with τ as above, we infer from (2.2):

‖w(τ)‖Hr(Rd) .

∫ τ

0

εβ

((

τ ′

ε

)γ

+ 1

)

dτ ′ +
1

ε

∫ τ

0

(

1 +

(

τ ′

ε

)r)

‖w(τ ′)‖Hr(Rd)dτ
′.

Gronwall’s Lemma yields

‖w(τ)‖Hr (Rd) . εβ
((τ

ε

)γ

+ 1
)

eCτ/ε+C(τ/ε)r+1

. εβe2Cτ/ε+C(τ/ε)r+1

.

By choosingδ > 0 sufficiently small, the right hand side is controlled by, say, εβ/2, for

all 0 6 τ 6 ε
(

log 1
ε

)δ
. The condition‖w(τ)‖Hr(Rd) 6 1 is verified for such timesτ ,

provided thatε is sufficiently small. This bootstrap argument implies in particular that for
ε sufficiently small,ψ ∈ C([0, ε(log 1/ε)δ];Hr(Rd)), which is not obvious from the very
start. The lemma follows. �

2.3. Conclusion.Let r > d/2 as in Lemma 2.1. Withδ > 0 given by Lemma 2.1,
we have, sinces < d/2:
∥

∥

∥

∥

∥

uh

(

h2+αε

(

log
1

ε

)δ
)
∥

∥

∥

∥

∥

Hs(Rd)

>

∥

∥

∥

∥

∥

ϕ

(

ε

(

log
1

ε

)δ
)
∥

∥

∥

∥

∥

Hs(Rd)

− C

∥

∥

∥

∥

∥

ϕ

(

ε

(

log
1

ε

)δ
)

− ψ

(

ε

(

log
1

ε

)δ
)
∥

∥

∥

∥

∥

Hr(Rd)

.

On the other hand, similar to (2.2), we have:

‖ϕ(τ)‖Hs(Rd) &
(

κh
)1+2σs

(τ

ε

)s

− Cκh,

and so,
∥

∥

∥

∥

∥

ϕ

(

ε

(

log
1

ε

)δ
)∥

∥

∥

∥

∥

Hs(Rd)

> C

(

log
1

ε

)sδ−θ−2σθs

− o(1).

Forθ > 0 sufficiently small,sδ − θ − 2σθs > 0, and Lemma 2.1 yields
∥

∥

∥

∥

∥

uh

(

h2+αε

(

log
1

ε

)δ
)
∥

∥

∥

∥

∥

Hs(Rd)

−→
h→0

+∞.

Theorem 1.2 follows, with

th = h2+αε

(

log
1

ε

)δ

= Ch2σ(d/2−s)

(

log
1

h

)δ

−→
h→0

0.

3. Proof of Corollary 1.4

We argue by contradiction, by using a slight generalizationof [7, Proposition 3.1].

PROPOSITION3.1. Letd > 1, P : R
d → R. Suppose that there exist an admissible

pair (p, q), an indexk < 2/p = d/2 − d/q, T0 > 0, and a constantC > 0 such that

(3.1) ‖S(·)u0‖Lp([0,T0];Lq(Rd)) 6 C‖u0‖Hk(Rd), ∀u0 ∈ Hk(Rd).

Then for all

k +
d

q
< s <

d

2
, 0 < σ <

p

2
,

and provided that eitherσ is an integer, or there exists an integerr such that2σ > r > d/2,
the Cauchy problem for(1.1) is well posed inHs(Rd).
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Since in Theorem 1.2, we can always considerσ = 1, Theorem 1.2 and Proposition 3.1
imply Corollary 1.4 in the non-endpoint casep > 2. The endpoint case then follows by
interpolation with the case(p, q) = (∞, 2): if an endpoint Strichartz estimate (with some
loss) was available, then an non-endpoint would be as well.

PROOF. For0 < T 6 T0, introduce

XT = C
(

[0, T ];Hs(Rd)
)

∩ Lp
(

[0, T ];W ℓ,q(Rd)
)

,

whereℓ = s− k. By assumption,ℓ > d/q, so we have

XT ⊂ Lp
(

[0, T ];L∞(Rd)
)

.

This space is equipped with the norm

‖u‖XT = sup
06t6T

‖u(t)‖Hs(Rd) +
∥

∥

∥
(1 − ∆)ℓ/2u

∥

∥

∥

Lp([0,T ];Lq(Rd))
.

We construct the solution to (1.1) by a fixed point argument. Set

Φ(u)(t) = S(t)u0 − iλ

∫ t

0

S(t− τ)
(

|u(τ)|2σu(τ)
)

dτ.

We prove that forT ∈]0, T0] sufficiently small,Φ is a contraction on some ball ofXT

centered at the origin. We have directly

‖Φ(u)‖C([0,T ];Hs(Rd)) . ‖u0‖Hs(Rd) +

∫ t

0

∥

∥|u(τ)|2σu(τ)
∥

∥

Hs(Rd)
dτ.

Now (3.1) implies the inhomogeneous estimate:
∥

∥

∥

∥

∫ t

0

S(t− τ)f(τ)dτ

∥

∥

∥

∥

Lp([0,T ];Lq(Rd))

. ‖f‖L1([0,T ];Hk(Rd)).

Indeed, settingFτ (t) = 1τ6tS(t− τ)f , Minkowski inequality yields
∥

∥

∥

∥

∥

∫ T

0

Fτdτ

∥

∥

∥

∥

∥

Lp([0,T ];Lq(Rd))

6

∫ T

0

‖Fτ‖Lp([0,T ];Lq(Rd))dτ 6 C

∫ T

0

‖f(τ)‖Hk(Rd)dτ.

We infer

‖Φ(u)‖XT
. ‖u0‖Hs(Rd) +

∫ t

0

∥

∥|u(τ)|2σu(τ)
∥

∥

Hs(Rd)
dτ

. ‖u0‖Hs(Rd) +

∫ t

0

‖u(τ)‖
2σ
L∞(Rd) ‖u(τ)‖Hs(Rd) dτ

. ‖u0‖Hs(Rd) + T γ ‖u‖
2σ
Lp([0,T ];L∞(Rd)) ‖u‖L∞([0,T ];Hs(Rd)) ,

with γ = 1 − 2σ/p > 0. Therefore,

‖Φ(u)‖XT
6 C‖|u0‖Hs(Rd) + CT γ ‖u‖

2σ+1
XT

.

Similarly,

‖Φ(u) − Φ(v)‖XT
6 CT γ

(

‖u‖2σ
XT

+ ‖v‖2σ
XT

)

‖u− v‖XT
.

This yields the local well-posedness result stated in Proposition 3.1. �
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4. Ill-posedness

The key remark is that all the cases of Proposition 1.5 boil down to an ordinary differ-
ential equation mechanism. Denote byv the solution to

i∂tv = λ|v|2σv; v|t=0 = u0.

WhenP (ξ) = c · ξ, we have

u(t, x) = v (t, x+ ct) ,

and whenP (ξ) = c, we have

u(t, x) = v(t, x)eict,

so it suffices to prove Proposition 1.5 in the caseP = 0. For fixedx ∈ R
d,

(4.1) v(t, x) = u0(x)e
−iλt|u0(x)|2σ

is a solution; it is the only solution for which the multiplicationv × |v|2σv is well-defined
and real-valued, since theniv∂tv ∈ R, hence∂t|v|

2 = 0. The idea is then thatHd/2(Rd)
is not an algebra.

Consider

(4.2) u0(x) = δ ×

(

log
1

|x|

)α

χ
(

|x|2
)

, x ∈ R
d,

with χ ∈ C∞
0 (R), χ = 1 near the origin, andsuppχ ⊂] − 1, 1[. We compute

∇v(t, x) = e−iλt|u0(x)|2σ

∇u0(x) − 2iσλt|u0(x)|
2σ∇u0(x).

We split the proof into three cases: ford = 2, the proof is straightforward, ford > 4 even,
the proof is similar but we omit the details of computations,and ford odd, we simply
sketch the argument.

Cased = 2. First, u0 ∈ H1(R2) provided thatα < 1/2. Now Proposition 1.5
follows if we can chooseα < 1/2 so that|u0|

2σ∇u0 6∈ L2(R2). Near the origin, we have,
leaving out the constants,

∣

∣|u0(x)|
2σ∇u0(x)

∣

∣

2
≈

1

|x|2
(log |x|)

4ασ+2α−2
.

The right hand side fails to be inL1
loc(R

2) if we impose4ασ+2α > 1. So Proposition 1.5
follows, with

1

4σ + 2
6 α <

1

2
.

Cased > 4 even. The argument is the same as in the cased = 2, with more computa-
tions that we simply sketch. We check by induction that fork > 1, there exist coefficients
(βjk)16j6k such that near the origin,

∂k
r u0(x) =

1

rk

k
∑

j=1

βjk

(

log
1

|x|

)α−j

, with β1k = (−1)k−1(k − 1)!α.

Therefore, the asymptotic behavior of∂k
r u0 near the origin is given by:

∂k
r u0(x) ∼

r→0
(−1)k−1(k − 1)!

α

rk

(

log
1

|x|

)α−1

.
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Like in the cased = 2, u0 ∈ Hd/2(Rd) provided thatα < 1/2. We compute, fort > 0,
and asx→ 0:

(4.3) |∂k
r v(t, x)| =

1

rk

(

ck(t)

(

log
1

|x|

)γk

+ O

(

(

log
1

|x|

)γk−ωk
))

,

with ck(t) > 0, ωk > 0, and

γk = max ((2σk + 1)α− k, (2σ + 1)α− 1) .

Fort > 0, v(t, ·) 6∈ Hd/2(Rd) if, for k = d/2, the first term in (4.3) is almost inL2
loc(R

d),
but not quite: we chooseα so that2γd/2 = −1. We find (like ford = 2)

α =
1

4σ + 2
,

which is consistent with the requirementα < 1/2. Thus, the first term in (4.3) is not in
L2

loc(R
d) due to a logarithmic divergence, while the remainder term isin L2

loc(R
d), since

ωk > 0.

The case whend is odd. We keepu0 of the same form as in even dimensions, since
we have found a value forα which does not depend ond even:

u0(x) = δ ×

(

log
1

|x|

)1/(4σ+2)

χ
(

|x|2
)

, x ∈ R
d.

Recall the characterization ofHs(Rd) whens ∈]0, 1[: a functionf ∈ L2(Rd) belongs to
Hs(Rd), s ∈]0, 1[, if and only if

∫∫

Rd×Rd

|f(x) − f(x+ y)|
2

|y|d+2s
dxdy <∞.

Whend = 1, we check thatu0 ∈ H1/2(R). We can also check that fort > 0, v(t, ·) 6∈
H1/2(R).

Whend > 3, we compute∂k
r u0 and∂k

r v in the same fashion as above, and check that

∇[d/2]u0 ∈ H1/2(Rd), and fort > 0, ∇[d/2]v(t, ·) 6∈ H1/2(Rd).

We leave out the details, since the technicalities are more involved than in the even dimen-
sional case, and we believe that proving Proposition 1.5 in details is not worth such an
effort.
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