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On Schrodinger equations with modified dispersion
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ABSTRACT. We consider the nonlinear Schrodinger equation with aifieadspatial dis-
persion, given either by an homogeneous Fourier multjmiely a bounded Fourier multi-
plier. Arguments based on ordinary differential equatigietd ill-posedness results which
are sometimes sharp. When the Fourier multiplier is boundlednfer that no Strichartz-
type estimate improving on Sobolev embedding is availaBleally, we show that when
the symbol is bounded, the Cauchy problem may be ill-poséhercase of critical regu-
larity, with arbitrarily small initial data. The same is @when the symbol is homogeneous
of degree one, where scaling arguments may not even givégtitecritical value.
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1. Introduction
For(t,r) € Ry x R%, we consider
(1.1) iOu+ P(D)u= Au[**u 5 up—o = uo,

whereD = —iV,, P: R — R, A € R ando > 0. Since @he Fourier multiplieP is
real-valued, the free flow\(= 0) generates a unitary group éf*(R%), s € R

S(t) = e~ P,
We study the local well-posedness for the Cauchy probleffi),(defined as follows:
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DEFINITION 1.1 (FromPZ)). Lets € R. The Cauchy probleq.1)is well posed in
H*(R?) if, for all bounded subseB C H*(R?), there existl’ > 0 and a Banach space
X7 continuously embedded in@([0, T; H*(R%)) such that for allug € H*(R%), (@)
has a unique solutiom € Xr, and the mapping, — w is uniformly continuous from
(B, - lm=) to C([0, T7; HS(Rd))'

Note that this definition is not quite universal, since fastance the uniformity on
balls rules out the critical cases. This definition is weltedd for cases where the solution
is constructed by a fixed point argument, in a ball of a Banpeles, whose radius is related
to the size of the initial data; in critical cases, not onlg #ize of the initial data comes
into play, but also the profile of the initial data. We alsorgaiut that even in the case
of Schrodinger equationsg®(&) = —|£]2), continuity is known only in a limited number
of cases (and implies uniform continuity in the above senseg P§] for s = 0, [19] for
s =1ands = 2,and g for 0 < s < 1. However, when we deny the above notion of local
well-posedness, we will do so in a rather explicit way, in shene fashion as il8[[1]].

We consider two cases in{l.1):

e Pis homogeneous? (&) = p™P(¢), forall ¢ € RY, p > 0, withm > 1.
e PisboundedP € L>*(RY).

The first case includes the standard Schrodinger operBtg) = —|¢|?), and the fourth-
order Schrodinger operatoP(¢) = |¢[*), studied for instance i@} [25,[2§. Smoothing
effects and dispersive estimates have been establisheadlier general Fourier multipliers
Pin [4,[240. The casel = 1, P(&) = ¢%11, j € N, has been studied initially if2[];
the casel = 2, with P a polynomial of degree» = 3 has been studied i8], revealing
different dispersive phenomena according to the preaigetste of P. The casen € 2N,
with P elliptic and V2 P non-degenerate outsid¢ = 0}, appears as a particular case of
the framework infL5]. It is shown there that if > max(0, s¢), then the Cauchy problem
(X3) is locally well-posed i7*(R%), where
d m

(12) S0 = 5 2%
This index corresponds to the one given by scaling arguméntssolves [T1L), then for
anyA > 0, up : (t,2) — A™/(9)y(A™t, Az) solves the same equation. The value of
for which theHS(Rd)—norm is invariant undet — u, is s = so. We will see ind.3 that
this scaling argument may not yield the sharp Sobolev retylaf m = 1, the Cauchy
problem L) may be strongly ill-posed f*(R?) for all s < d/2.

In [[15], the proof of local well-posedness uses dispersive aridHsirtz estimates for
S, established ind3] for d = 1, and in [I4] for d > 2. Note that in the casé = 1,
dispersive and Strichartz estimates foare proved in[1g] for P(¢) = |{|™ andm > 2
(not necessarily an integer). By resuming arguments sirntalthose presented i@ [[17],
we prove that in this framework, the index is sharp, in the sense that the nonlinear flow
map fails to be uniformly continuous at the originiif* (R?), if s < so. This property has
been established i2€] for the caseP(¢) = |¢|* with (d,0) = (3, 1). However, the index
s0 may not correspond to the critical Sobolev regularity (§£8).

The second case, whefeis bounded, is motivated by the results presente@éh [
whereP(¢) = — 4 arctan(h|¢[?) is considered to construct numerical approximations of
the solution to the linear Schrodinger equation

10w+ Au =V (x)u,
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and0 < h < 1 denotes the time step. We will see below that in such a framewo
Strichartz estimate is available, even if one is ready togoaye loss of derivative. Another
example of bounded symbol one may think of is

i+ A1 —A) " u=Au*u,

which is a possible envelope equation in geometric opties €sg. 12,[23). In these
two examplesp is elliptic. We will see however that no Strichartz estim@ietter than
Sobolev embedding) is available there, and that the critsgaularity iss. = d/2.

1.1. Norm inflation. Our result in this direction is:

THEOREM1.2. Letd > 1, A € R, 0 > 0. Assume that either is an integer, or that
there exists an integersuch thalo > r > d/2. If o € N, fix an integen > d/2.
1. Suppose thaP is m-homogeneous, witl: > 1, and denotesy = d/2 — m/(20).
Suppose thaty, > 0 and let0 < s < so. There exists a familju?)o<n<1 in S(R?) with

||Ug||Hs(Rd) — 0ash — 0,
0 < t" — 0, and a strong solution” € C([0,t"]; H"(R%)) to @), such that:
[ (") || g+ (Ray — +00 @sh — 0.
2. If P is bounded, then the above conclusion remains true folaqys < d/2.

TheoreniLIR is proved i, by adapting the ordinary differential equation mechanis
used in, e.g./d,[17]. However, the critical Sobolev regularity may satisfys. > so (see
g13): in view of [I5] and Theoreni 112, we hawe = s at least whenP (&) = plé|™,

w <€ R\ {0}, m € 2N\ {0}. We also refer taf] where a different result concerning the
lack of well-posedness is established for a broad varietjigdersive equations, even in
the linear case.

1.2. Absence of Strichartz estimatesin this paragraph, we focus our discussion on
the case wher® is bounded. Fos > d/2, H*(R?) being an algebra, local well-posedness
in H*(R%) is straightforward, provided that the nonlinearity is stiéfntly smooth (see e.g.
[24). Therefore, the critical threshold is = d/2, and from Theorer 112, no dispersive
property is present to decrease this number. More precisel$trichartz estimate is avail-
able forS(-), even if one is ready to pay some loss of regularity which iswarse than
the result provided by Sobolev embedding. To state thisgntggrecisely, we recall the
standard definition.

DEFINITION 1.3. A pair (p, q) # (2,00) is admissible ip > 2, ¢ > 2, and
2

)

By Sobolev embedding, for alp, ¢) (not necessarily admissible) with< ¢ < oo,
there exist<” > 0 such that for alkiy € H4/?~%/9(R%), and all finite time interval,

1S()uollr(r;zamayy < CIS(uollLo(r;ar2-aramay)
< Clluoll Ler;parz—asamay) = C'|I|1/p||UO||Hd/2*d/q(Rd)-

When P is bounded, this estimate cannot be improved:
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COROLLARY 1.4. Letd > 1,and P € L>(R%R). Suppose that there exist an
admissible pair(p, ¢), an indexk € R, a time intervall > 0, |I| > 0, and a constant
C > 0 such that

||S(')U0||LP(1;Lq(Rd)) < CHUOHHk(Rd)a Vug € Hk(Rd)-
Then necessarily; > 2/p =d/2 — d/q.

The fact that no standard Strichartz estimate (with no isssjailable forS(-) is rather
clear, since the dispersion relation is giverrby: P(¢), and defines a characteristic variety
which is bounded irr. However, one could expect the existence of Strichartmedés
with loss of regularity, in the same fashion aslIh¥,[l] (where the geometric framework
— the space variable belongs to a compact manifold — ruleghmiexistence of the
standard dispersive properties). The fact that this is 0a$ & rather direct consequence
of TheorenIP (where > 0 is arbitrary), and of the argument given [] fto prove
Proposition 3.1. It may seem surprising to prove Corollad 4s a consequence of a
nonlinear analysis; we insist on the fact that the proof cfd@ien{LP is rather simple, and
the deduction of Corollay~l.4 involves another nonlinesutlt, whose proof is also quite
short (see Propositidn3.1 below).

1.3. Critical cases.In [[L(], local well-posedness ifi *< (R?) for small data is estab-
lished for Equation{I11) in the cag&(¢) = —|£|?, where

d 1
Se=—=——

2 o

coincides withs, in that case, sincer = 2. In [24], local well-posedness ifif */2(R?)

for small data is established for the same operator, withimearities which are allowed
to grow exponentially. In these two papers, the proof usastiitrtz estimates (in Besov
spaces). On the other hand, whBris bounded, the Cauchy problem may be ill-posed
in H42(R%), even for nonlinearities growing algebraically. Moreqwehen P is m-
homogeneous witim = 1, the critical Sobolev regularity may not bg, buts. = d/2 >

so, with ill-posedness fos = s..

PROPOSITIONL.5. Let A € R\ {0}, o > 0. Assume that either is an integer, or
that there exists an integersuch thao > r > d/2. In either of the two cases:
o P(£) =c-&ceRYor
e Pis constant,

forall § > 0, there exista,y € H¥2(R%) with [|ug| a/2(ray < 6 such thatf) has a
solutionu € C(R.4; D'(RY)), and for anyt > 0, u(t,-) ¢ HY/?(R%).

For comparison with other results, note that in the first c&sis not elliptic if d > 2.
In the second casé, # 0 is elliptic, butV2P = 0 is obviously degenerate.

Unlike what happens in the presence of Strichartz estim@ié€s[24), this result
yields examples where local well-posedness fails in theaticases = s., even for small
data. We prove Propositidn_1.5 {fll: we present the caséds= 2, o > 0, andd > 1,
o = 1/2, only, for the convenience of the exposition, but the argutmean be extended to
any space dimension, up to more intricate computations.

In the casen = 1 (at least), the mere assumption thais m-homogeneous is not
enough to characterize the critical Sobolev regularitffid), or the existence of Strichartz
estimates. Indeed, the symhB(¢) = |£| corresponds to the wave equation, for which
Strichartz estimates are available whén> 2, and sos. < d/2. See e.g. 7). This
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suggests that also when > 1, the values, may not be sharp wheR is not proportional
to |¢|™, but for instance of the forrig|™1c - ¢, c € R4, or more generally wheR is not
elliptic; see also3,[4,[2() for remarks in this direction.

2. Proof of Theorem[I.2

The proof of Theorei 112 proceeds along the same lines &[] (see alsolZ4]).
Fix s as in Theorerf I12. Consider initial data of the form

ub(z) = ¥~ %khagy (%) ,

With 0 < h < 1, ap(z) = e~ 1*I*, and

—0
1
h
= 1 —
K (Ogh>

for somed > 0 to be fixed later. We havgug|| g7« (ra) h—éo'

Fix r > d/2 an integer: inH"(R%), the nonlinearity can be viewed as a pertur-
bation, and sincey € S(R?), there existsI > 0 and a unique, strong, solution
uh € ([0, T"; H"(RY)) to @) (see e.g. 7). At this stage, we have no estimate
on the dependence @ uponh ash — 0. Introduce the scaling

W(r,y) = pd/2=s,,h (hHO‘T, hy) 7
for somea to be precised later:
19T e ray = " (BF07) [l e (ray-
Denotes = h27(4/2=5)=2=a The function solves the Cauchy problem

(2.1) iedph + W27 2O P (WD) ¢ = A2y =0 = K"ao.

2.1. Choice ofo. WhenP is m-homogeneous, Equatidn{P.1) simplifies to
iedr ) + B2 W2=D=mP(Dy ) = A7 Ylr=o = K" ag.

Forw > 0, we set

1 d
2—|—a——<(m—1—|—w)20<——5) —|—m),
m+w 2

in which case we have:
c = hQJ(sofs)/(erw).

Thereforeg — 0 ash — 0 sinces < sg. We also compute

h20’(d/275)7m — gt

g

WhenP is bounded, we considér+ « = o(d/2 — s). Therefore,

d
20(§—S>—2—a>0 (hencez — 0ash — 0), and2+ « > 0.
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2.2. The ODE approximation. Introduce the solution to
iedrp = MNol*7 ;i ¢r—o = K"ag.
Itis given by
e(r,y) = K"ao(y) exp (=iAZ ()" Jao(y)|*7) -

Sinceay is a Gaussiany € C* (R x R%) regardless of > 0, and for anyr > 0,
14+20r /T\T"T
(22) lo i me S ()77 () + "

LEMMA 2.1. Letr > d/2 be an integer, with in addition < 20 if o ¢ N. In either
of the cases of Theordm1L.2, we can find 0 independent of > 0 such that for: > 0
sufficiently smallyy € C([0,(log 1/¢)°); H"(RY)), and

sup[o(7) = (7l (rety — 0-
OSTés(logé)é :

PROOF Denote byw = 1) — ¢ the error. It solves
ie0yw + h* W2~ p (h'Dy) w = h*7 /2P (h7'D,) ¢
A (lw+@* (w+ ) = ]*70) |

with w),—o = 0. Using the facts thaP is real-valuedz — |z|** z is sufficiently smooth,
andH"(RY) is an algebra, we find

1 T
Jw(r) ey S % [ |
0

dr’

hZU(d/Q—S)P h_lD ’
( w) e(7) Hr (R4)

1 " (e log
+2 / (o113 ety + 1) Fe ey ) () ey
In the case wher® is m-homogeneous, we have

< h20’(d/2—s)—
Hr(R4) ™

5 hQU(SO*S) H(p(T/)”Hrer(Rd) )

HhZG(d/Z—s)P (h_lDy) (p(T/)

"o resm (ma)

In the case wher® is bounded, we have

HhZG(d/Z—s)P (h_lDy) s0(7_/)

S o) | g may

S hQU(SO*S) |‘(p(7—/)HH7‘(Rd) ’

HT(R4)

where we sek, = d/2 in this case.
In both cases, we check that there exjsts 0 (independent of) such that
hQU(so—s) — €1+ﬁ'
Itis given by the formula
5= 20(so —d/2) + 2+«
- 20(d/2—5)—2—a
In the homogeneous case, this formula becomesm — 1 + w, and whenP is bounded,
B = 1. Therefore, in view ofl{Z12) and sineé < 1, there exis3, v > 0 such that

<o ((Z) )
Hr(R4) €

HhQU(d/Qfs)P (hley) 4/7(7'/)
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So long ag|w(r )HHT(Rd) < 1, with 7 as above, we infer froni.(2.2):

1 /7 Ay
() L sy ( 1) 1) ar'+ [ (1+<1) >||w<ff>|HT(Rd)dTa
€ e Jo €

Gronwall's Lemma yields
Y ” .
()| g @y S €° ((g) 4 1) (CT/e+C( /T < B 20T [+ Cr /o)

By choosings > 0 sufficiently small, the right hand side is controlled by, ,s#/2, for

all0 < 7 < e(log %)5 The condition||w(7)|| i wa) < 1 is verified for such times,
provided that is sufficiently small. This bootstrap argument implies imtjgalar that for
e sufficiently smallg) € C([0,e(log 1/¢)°]; H™(R%)), which is not obvious from the very
start. The lemma follows. O

2.3. Conclusion.Letr > d/2 as in Lemmd&Z2]1. Witld > 0 given by Lemmd& 211,

we have, since < d/2:
5 5
h <h2+°‘6 (1og 1) ) %) (E (1og 1) )
3 3
H*(R)
5 5
%) <5 <1og1> ) - <5 <logl> )
3 g

On the other hand, similar tb{2.2), we have:

Il 2 ()7 (2) - cnt,

1 5 1 s0—0—200s
© (E (1og—> ) =>C (1og—) —o(1).
‘ Hs(R4) ‘

For6 > 0 sufficiently small,sé — 6 — 206s > 0, and Lemm&Z]1 yields

°
h <h2+°‘6 (1og —) )

g
Theoreni_LP follows, with

1\’ 1\°
h _ h2+a5 (10g g) _ ChQU(d/Q—S) (10g E) —0.

>
H=(R4)

-C

H™(R%)

and so,

— +00.
h—0
Hs(R?)

h—0

3. Proof of Corollary .4
We argue by contradiction, by using a slight generalizatiof), Proposition 3.1].

PROPOSITION3.1. Letd > 1, P : RY — R. Suppose that there exist an admissible
pair (p,q), anindexk < 2/p =d/2 — d/q, Ty > 0, and a constan€' > 0 such that

(3.1) 1S (Yuoll o (o,1y): Laray) < Clluollgreray,  Vuo € HF(RT).

Then for all
d d P
k4 = Z z
+q<s< % O<a<2,
and provided that either is an integer, or there exists an integesuch thato > r > d/2,
the Cauchy problem fof)is well posed inf7*(R%).
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Since in Theorefi 112, we can always consigdler 1, TheorenfilIR and PropositibnB. 1
imply Corollary[T2 in the non-endpoint cape> 2. The endpoint case then follows by
interpolation with the cas@, ¢) = (o0, 2): if an endpoint Strichartz estimate (with some
loss) was available, then an non-endpoint would be as well.

ProOE For0 < T < Ty, introduce
Xy =C([0,T); H*(RY) n LP ([0,T]; W5(R?)),
wherel = s — k. By assumption{ > d/q, so we have
Xp C L ([0,T); L>(R%)) .
This space is equipped with the norm

e/zu‘

e = sup [lu()llme) +||(1 - 2)
o<t<T

Itx

Lr([0,T);L9(R4))

We construct the solution tb{1.1) by a fixed point argumeat. S

B(u)(t) = S(tuo — iA /0 St — 1) (Ju(r) P u(r)) dr.

We prove that forT' €]0, Tp] sufficiently small,® is a contraction on some ball dfr
centered at the origin. We have directly

t
H(I’(U)Hc([o,:r];Hs(Rd)) S llwoll s (ra) +/0 H|U(7')|20U(7’)||H3(Rd) dr.

Now (31) implies the inhomogeneous estimate:

Indeed, settind” (¢t) = 1.<:S(t — 7) f, Minkowski inequality yields

T
/ F.dr
0

We infer

S 2o, 1y 4 (R -

/ St —7)f(r)dr
0

Lr([0,T];L4(R%))

T T
< / | Frll o ooy dr < C / 17 ) e ey -
0 0

Lr([0,T];L9(R%))

t
1960 x, S ool + [ ) gy

t
20
S lluoll s (ra) +/0 ||U(T)||Loo(Rd) HU(T)HHs(Rd) dr

20
S HUOHHS(Rd) + 17 ||U||Lp([0,T];Loo(Rd)) HUHLOO([O,T];HS(Rd)) )

with v =1 — 20/p > 0. Therefore,
20+1
[2(w)llx, < Clllwollgs@e + CT” Jull¥," -

Similarly,

20 20
[@(w) = @), < CT7 (Il + 1013, ) 1w = vl

This yields the local well-posedness result stated in Psitipo[3.]. O
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4. lll-posedness

The key remark is that all the cases of Proposifiah 1.5 bailrtim an ordinary differ-

ential equation mechanism. Denotedbthe solution to

0w = Ao[*7v; v = uo.
WhenP (&) = ¢ &, we have

u(t,x) =v (t,z+ct),
and whenP(§) = ¢, we have
u(t, ) = v(t, z)e',

so it suffices to prove Propositi@nll.5 in the c#se- 0. For fixedz € RY,
(4.1) v(t,x) = uo(:v)e_i)‘tluo(m)‘%

is a solution; it is the only solution for which the multipitonv x |v|??v is well-defined
and real-valued, since thetd,v € R, henced;|v|? = 0. The idea is then thaf?/?(R?)
is not an algebra.

Consider
1 (0%
(4.2) ug(x) =6 % <1og m) x(lz°), zeRY
with x € C§°(R), x = 1 near the origin, anduppy C] — 1, 1[. We compute

Vou(t,x) = e iMtluo(@)|*7 Vuo(x) — 2io\tug(z)[* Vug(z).

We split the proof into three cases: fdr= 2, the proof is straightforward, faf > 4 even,
the proof is similar but we omit the details of computatioasd ford odd, we simply
sketch the argument.

Cased = 2. First,up € H'(R?) provided thata < 1/2. Now Propositio 115
follows if we can chooser < 1/2 so thatjug|?°Vug ¢ L?(R?). Near the origin, we have,
leaving out the constants,

o 2 1 daoc+2a—
|10 ()27 Vuo ()| %W(loglxl) e

The right hand side fails to be i .(R?) if we imposedao + 2a > 1. So PropositioB15
follows, with
1

<
4o + 2

< 1

« .

2

Cased > 4 even. The argumentis the same as in the case 2, with more computa-

tions that we simply sketch. We check by induction thatifor 1, there exist coefficients
(Bjx)1< <k such that near the origin,

k a—j
OFug(x) = ik Z <log > , With B = (=D 1k — 1)la.
Therefore, the asymptotic behavior@ffu, near the origin is given by:

k 01k — 112 (1o ail'
Do) ~ (1)~ 11 <1g||>

~J
r—0
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Like in the casel = 2, ugp € H%/?(R?) provided thatx < 1/2. We compute, fot > 0,
and asr — 0:

@3)  [0Fu(tz)] = Tik (ok(t) (1og é)v +0 <(10g é)wwk» ,

with ¢ (t) > 0, wr > 0, and
v = max ((20k+ 1)a—k, (20 + 1)a—1).
Fort > 0,u(t,-) ¢ HY?(R?)if, for k = d/2, the first term in[4B) is almost ih? _(R?),
but not quite: we choose so that2y,;,, = —1. We find (like ford = 2)
1
Tl
which is consistent with the requirement< 1/2. Thus, the first term if{413) is not in

L% (R?) due to a logarithmic divergence, while the remainder terim &2 . (R?), since
wi > 0.

The case wheni is odd. We keepug of the same form as in even dimensions, since
we have found a value far which does not depend eheven:

1 1/(40+2)
) x (|z]?), zeR™%

uo(x) =0 x (log —

||

Recall the characterization éf*(R<) whens €]0, 1[: a functionf € L?(R%) belongs to
H*(R?), s €]0, 1], if and only if

f(@) = f@+y)
//flded| (x) |y|d<(F:§S y)| dwdy<00

Whend = 1, we check that, € H'/?(R). We can also check that for> 0, v(t,-) &
H'2(R).
Whend > 3, we computeé)*u, andd*v in the same fashion as above, and check that
Vi 2y, € HY2(RY), andfort >0, VI¥2y(t,.) ¢ HY2(RY).

We leave out the details, since the technicalities are nmwa@hied than in the even dimen-
sional case, and we believe that proving Proposffioh 1.5etaits is not worth such an
effort.
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