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Abstract. In this paper, in order to establish the existence criteria for pos-
itive solutions of a multiple-point Dirichlet-Robin BVPs in Banach spaces on
time scales, first we prove a fixed point theorem on monotone operators and
the Ascoli-Arzela’s theorem on time scales. Then using the monotone opera-
tor method, we explore the existence criteria of positive solutions for a general
multiple-point Dirichlet-Robin BVPs in Banach spaces on time scales with the
singular sign-changing nonlinearities and higher-order derivatives. Finally an
example is illustrated to indicate the application of our main results, which
generalize some well-known results in the literature.
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1. Introduction

Since the work by Hilger [1] in 1988, it seems that the time scales calculus has
attracted much attention. The time scales approach not only unifies differential
and difference equations, but also solves some other problems powerfully, such
as a mix of stop-start and continuous behaviors [2, 3]. Nowadays the theory on
time scales has been widely applied to several scientific fields such as biology, heat
transfer, stock market, wound healing and epidemic models [2–5] etc. Recently,
considerable works have been undertaken in the existence problems of solutions to
dynamic systems on time scales, for details, see [6–13] and the references therein.

Consider the p-Laplacian operator ϕp(u):

ϕp(u) =

{

up−1, u ≥ θ,
(−1)p−2up−1, u < θ,

and

(ϕp)
−1 = ϕq,

where p > 1 and 1/p+ 1/q = 1. We make the blanket assumption that 0 and T are
points in T and the interval (0, T )T represents (0, T ) ∩ T. Other types of interval
can be defined in a similar way. Let us briefly recall some relevant results about
the existence of solutions to the p-Laplacian boundary value problems (BVPs). For
the existence of positive solutions to the BVPs with sign changing nonlinearities
on differential equations, there is a number of works, for example, [14–16] etc
concerning this problem by using the method of upper and lower solutions and
the critical point theory. For the existence of positive solutions to the singular p-
Laplacian m-point BVPs with sign changing nonlinearities on time scales, sufficient
conditions are established through developing various fixed point theory and the
iterative approach [9,10]. Some results in [9,10,14–16] may be of interest to those
who study positive solutions of boundary value problems as well as to those who
study non-Newtonian fluid theory and turbulent flows of gases in porous media.

In order to better understand the background of the singular p-Laplacian m-
point BVPs, here we would like to review some results in our previous works [9,10].
In [9], Su et.al investigated the following m-point singular p-Laplacian BVPs on
time scales

(1.1)
(ϕp(u

∆(t)))∇ + q(t)f(t, u(t)) = 0, t ∈ (0, T )T,

u(0) = 0, u(T ) −
∑m−2

i=1 ψi(u(ξi)) = 0,

where f(t, x) : [0, T ]
T
× (0,∞) → R is continuous and the singularity may occur

at u = 0. Some existence criteria for positive solutions of the BVPs (1.1) are
established by using the Schauder fixed point theorem and by extending the method
of upper and lower solutions. In [10], Su et.al discussed the following m-point
singular p-Laplacian the BVPs with the sign changing nonlinear terms on a time
scale T:
(1.2)

(ϕp(u
∆(t)))∇ + q(t)f(t, u(t), u∆(t)) = 0, t ∈ (0, T )T,

u(0) = 0,
∑m1

j=1 φj(u(ξ
∗
j )) −

∑m2

i=1 ψi(u
∆(ξi)) = 0, m1, m2 ∈ {1, 2, . . .},

where f(t, x, y) : (0, T )
T
× (0,∞) × R → R is continuous, and the singularity may

occur at u = 0, t = 0 and t = T . Some existence criteria for positive solutions
of the general multi-point Dirichlet-Robin BVPs (1.2) are presented by using the
monotone iterative method.
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It is notable that results on time scales in [6–13] are mainly concerned with
the existence of positive solutions to the BVPs with the nonlinear terms which
do not involve the higher-order derivatives explicitly and the nonlinear function
f has continuity (rd-continuity), so that the corresponding solution operator has
continuity (rd-continuity). It is obvious that weakening the existence conditions
of the BVPs has been an interesting subject in differential equations and related
dynamical systems, especially when the function f(t, x, y) or f(t, x) is only contin-
uous with respect to t in Banach spaces. So far, to the best of our knowledge, it
appears that there is few literature which considers the existence of positive solu-
tions to the singular p-Laplacian BVPs with sign-changing nonlinearities involving
the higher-order derivatives on time scales in Banach spaces, although there are a
vast number of works [17–19] etc to study the existence of solutions to BVPs on
differential equations in Banach spaces. Therefore, it is natural and necessary to
do extensive research on the singular p-Laplacian BVPs on time scales in Banach
spaces. Here we focus on the existence of positive solutions for the p-Laplacian
dynamic equations with the nonlinear terms involving the higher-order derivatives
explicitly in Banach spaces on time scales and the nonlinearity is only continuous
with respect to t.

More precisely, in this paper we consider the multiple-point singular p-Laplacian
BVPs in the compact Banach space E1 on time scales:

(1.3) (ϕp(u
∆(t)))∇ + q(t)f

(

t, u(t), u∆(t), . . . , u∆n

(t)
)

= θ, t ∈ (0, T )T,

(1.4) u(0) = θ,
∑m1

j=1 φj(u(ξ
∗
j )) −

∑m2

i=1 ψi(u
∆(ξi)) = 0, m1, m2 ∈ {1, 2, . . .},

where θ is a zero element of E1, φj and ψi : E1 → R are nondecreasing, φj

and ψi may be nonlinear, and 0 < ξ∗1 < ξ∗2 < . . . < ξ∗m1−1 < ξ∗m1
= T and

0 < ξ1 < ξ2 < . . . < ξm2
≤ T . The function f : (0, T )

T
× P1 × En

1 → E1 is
continuous with respect to t, where P1 = {u ∈ X |u ≥ θ} and X = C ([0, T ]

T
, E1)∩

C∆ ((0, T ]
Tκ , E1) ∩ . . . ∩ C∆n

((0, T ]
Tκn , E1) . The singularity may occur at u = θ,

t = 0 or t = T, and the nonlinearity is allowed to change sign and contain the higher-
order derivatives explicitly. It is continuous with respect to t only. Apparently, the
boundary condition (1.4) includes the Dirichlet boundary condition and the Robin
boundary condition as particular cases. By applying a monotone operator method,
we obtain some new existence criteria for positive solutions of the BVPs (1.3)–(1.4)
in Banach spaces on time scales. Our results are even new for the corresponding
differential equations (T = R) and difference equations (T = Z), as well for the
general time scales setting.

As an application, an example is given to illustrate our main results. In par-
ticular, if f(t, u, u∆, . . . , u∆n

) = f(t, u), our results generalize some known results
in [14] when T = R and E1 = R, and extend some results in [16] when p = 2.
When f(t, u, u∆, . . . , u∆n

) = f(t, u) and E1 = R, our results improve some existing
results in [7,9]. When f(t, u, u∆, . . . , u∆n

) = f(t, u, u∆) and E1 = R, our results
also generalize the recent results in [10].

This paper is organized as follows. In Section 2, we introduce some useful def-
initions and prove a fixed point theorem on monotone operators in Banach spaces.
In Section 3, we present some definitions and theorems in Banach spaces on time
scales. In particular, the Ascoli-Arzela’s theorem is generalized to Banach spaces
on time scales. In Section 4, by using the monotone operator method, we obtain
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the existence of positive solutions of the problem (1.3) and (1.4). In Section 5, we
introduce a technical method to show how to construct a lower solution and an
upper solution under certain conditions. In Section 6, as an application, we present
an examples to illustrate our main results.

Throughout this paper, we assume that

(H1): f(t, x0, x1, . . . , xn) : (0, T )
T
×P1×En

1 → E1 is continuous with respect
to t, where En

1 = E1 × E1 . . . E1 and E1 is a compact Banach space;

(H2): q(t): (0, T )
T
→ (0,∞) is continuous and satisfies

∫ T

0
q(t)∇t <∞;

(H3): φj and ψi: E1 → R are continuous and nondecreasing, where j =
1, 2, . . . ,m1 and i = 1, 2, . . . ,m2.

We need these three assumptions to prove the existence of positive solutions of
system (1.3)-(1.4) when we use the lower and upper solutions for the nonsingular
problem.

2. Preliminaries

In order to present our results in a straightforward manner, we start with several
basic definitions and useful theorems, which can be found in references [20–23].
Then we prove the existence criteria for monotone operators.

Let E be a real Banach space and the norm in E is denoted as ‖ · ‖E .

Definition 2.1. [20, 21] Let E be a real Banach space and ≤ is a partial
ordering defined in E. Suppose that

(i) if a ≤ b ∈ E, then the set [a, b] = {v ∈ E|a ≤ v ≤ b} is an order interval in E;
(ii) A is a monotone operator in E if and only if

v, w ∈ E and v ≤ w.

Then Av ≤ Aw holds.

Let E be a partial ordering set with ≤ and A1 ⊂ E. If for ∀ x, y ∈ A1, we
have x ≤ y or x ≥ y, then we say that A1 is a complete partial ordering set. When
x0 ∈ E, we say that x0 is a maximum element in A1 if x ≤ x0 for ∀ x ∈ A1.

Theorem 2.2. [20,22] (Zorn’s Lemma) Let X be a partial ordering set. If
every complete partial ordering set of X is super bounded in X , then X has a
maximum element.

Definition 2.3. [20,22] Let E be a real Banach space. A nonempty, closed,
and convex set P ⊂ E is said to be a cone provided that the following two conditions
are satisfied:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ;
(ii) if x ∈ P and −x ∈ P, then x = 0.

Let A: E → E be an operator. We have two definitions here:

Definition 2.4. [20,21] We say that u is a fixed point of A if u = Au; u∗ is
said to be a minimal fixed point of A, if there exist a fixed point u0 of A such that
u0 ≤ u∗, then we have u0 = u∗. Similarly, we can define the maximal fixed point
of A.

Definition 2.5. [20, 21] An ordered Hausdorff topological space X1 with
ordering ≤, is an ordering compatible space. If both {an} and {bn} (an ≤ bn) are
convergent sequences in X1 with limits a and b respectively, then we have a ≤ b.
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If E possesses a cone, then E is an ordering compatible space. Now let us prove
the following theorem which plays a crucial role in the proof of our main results
described in the next section.

Theorem 2.6. Let P ⊂ E be a cone and E be a Banach space with the partial
ordering induced by P . Assume that u0, v0 ∈ E, u0 ≤ v0, D = [u0, v0], and A:
D → E satisfies the following conditions:

(i) A is a monotone operator;
(ii) A(D) is compact in E.

If u0 ≤ Au0 and Av0 ≤ v0, then there exist a minimal fixed point x∗ and a maximal
point x∗ of A in [u0, v0] respectively. Moreover, if un = Aun−1 and vn = Avn−1,
n = 1, 2, ..., then we have

u0 ≤ u1 ≤ ... ≤ un ≤ ... ≤ vn ≤ ... ≤ v1 ≤ v0,

and

x∗ = lim
n→∞

un, x∗ = lim
n→∞

vn

.

Proof of Theorem 2.6. SetG = {x ∈ D|x ≤ Ax}. Note thatG is nonempty
and u0 ∈ G. Letting M be a complete partial ordering set in G, we will prove that
M has a bound in G. According to conditions of Theorem 2.6, A(D) is precompact
and A(D) is separable. Suppose that {yn} is dense in A(D). Let y1 = z1 and
zn = max{zn−1, yn}, n = 2, 3, .... Since M is a complete partial ordering set, we
have {zn} ⊂ A(M) and

z1 ≤ z2 ≤ ... ≤ zn ≤ ....

By condition (ii), we see that {zn} is compact, so there exists a z̄ ∈ E such that
zn → z̄ as n→ ∞. For ∀ n ∈ N we have

(2.1) zn ≤ z̄ and yn ≤ zn ≤ z̄.

For ∀ y ∈ A(M), there exists {ynk
} ⊂ {yn} such that ynk

→ y as k → ∞. According
to (2.1), we find

(2.2) y ≤ z̄, ∀ y ∈ A(M).

Since M ⊂ D = [u0, v0], we have {zn} ⊂ A(M) ⊂ A(D) ⊂ [Au0, Av0], and Au0 ≤
znk

≤ Av0. This implies z̄ ∈ D. For ∀ x ∈ M and Ax ∈ A(M), according to (2.2)
we have x ≤ Ax ≤ z̄, so z̄ is a supper bound of M .

Next we prove that z̄ ∈ G. We know that u0 ≤ z̄ ≤ v0. Let zn = Axn when
xn ∈ M . Then we have xn ≤ Axn = zn ≤ z̄. Since A is increasing, we have
zn = Axn ≤ Az̄. By Definition 2.5, we deduce z̄ ≤ Az̄ and z̄ ∈ G. According to
Zorn’s Lemma, there exists a x∗ ∈ G such that for ∀ x ∈ G we have x ≤ x∗. Since
x∗ ∈ G, x∗ ≤ Ax∗ and Ax∗ ≤ A(Ax∗) hold, it implies that Ax∗ ∈ G and x∗ < Ax∗.
This yields a contradiction. Thus, we have x∗ = Ax∗.

Finally, we prove that there exist a maximal fixed point and a minimal fixed
point of A in E, respectively. Setting Q = {x ∈ D|x = Ax}, we know that Q
is nonempty. Set G1 = {x ∈ D|x ≤ Ax, x ≤ u, ∀ u ∈ Q}. It is obvious that
Au0 ∈ G1 and G1 6= ∅. Letting M1 be a complete partial ordering set of G1 and
using the same argument as the above, we can find a z̄ such that z̄ ∈ D and z̄ ≤ Az̄.
Since {xn} ⊂M1 ⊂ G1, for ∀ u ∈ Q we have xn ≤ u and

zn = Axn ≤ Au, z̄ ≤ Au, z̄ ≤ u.
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So z̄ is a supper bound of M1 in G1. According to Zorn’s Lemma, there exists a
w ∈ G1 such that we have u′ ≤ w for ∀ u′ ∈ G1. Apparently, w = Aw and w is a
minimal fixed point of A. Using an analogous argument, we can obtain that there
exists a maximal fixed point of A. �

Remark 2.7. Under the assumptions of Theorem 2.6, we can not conclude that
there exists only one fixed point of A. The feature of this theorem lies in the fact
that unlike the classical results in [20–22] we do not need the continuity of A.

In order to prove the Ascoli-Arzela’s Theorem on time scales in Banach spaces,
we introduce the following definition and theorem.

Definition 2.8. [20] Assume that S is a bounded set in E. We define

α(S) = inf

{

δ > 0

∣

∣

∣

∣

S can be expressed as the union S = ∪m
i=1Si

of a finite number of sets Si with diameter diam(Si) ≤ δ

}

.

Theorem 2.9. [20] Let S be a bounded set of E, then α(S) = 0 ⇔ S is a
relatively compact set.

3. Some Definitions and Theorems on Time Scales

In this section, first we introduce some definitions concerning the calculus on
time scales, which can be found in references [24,25]. Then we present some new
definitions and results in Banach spaces on time scales.

Definition 3.1. [24,25] A time scale T is a nonempty closed subset of R. It
follows that the jump operators σ, ρ : T → T defined by σ(t) = inf {τ ∈ T : τ > t}
and ρ(t) = sup {τ ∈ T : τ < t} (supplemented by inf ∅ := sup T and sup ∅ := inf T)
are well defined. The point t ∈ T is left-dense, left-scattered, right-dense, right-
scattered if ρ(t) = t, ρ(t) < t, σ(t) = t and σ(t) > t, respectively. If T has a
right-scattered minimum m, we define Tκ = T − {m}; otherwise, we set Tκ = T.
If T has a left-scattered maximum M, we define T

κ = T − {M}; otherwise, we
set T

κ = T. The forward graininess is µ(t) := σ(t) − t. Similarly, the backward
graininess is ν(t) := t− ρ(t).

Similar to Definition 1.10 in [25], we can define the following delta (nabla)
derivative of x: T → E at the point t ∈ T

κ (t ∈ Tκ).

Definition 3.2. The operator x: T → E is called an abstract function on time
scales.

Definition 3.3. Let x : T → E be an abstract function and t ∈ T
κ. We define

the delta derivative of x(t), denoted by x∆(t), to be the value z0 ∈ E (provided it
exists), with the property that, for any ε > 0, there is a neighborhood U of t such

that
∥

∥

∥

[x(σ(t))−x(s)]−x∆(t)[σ(t)−s]
σ(t)−s

∥

∥

∥

E
< ε for all s ∈ U. For x : T → E and t ∈ Tκ,

we define the nabla derivative of x(t), denoted by x∇(t), to be the value z1 ∈ E
(provided it exists), with the property that, for any ε > 0, there is a neighborhood

V of t such that
∥

∥

∥

[x(ρ(t))−x(s)]−x∇(t)[ρ(t)−s]
ρ(t)−s

∥

∥

∥

E
< ε for all s ∈ V.

In order to describe abstract functions that are integrable in the Banach space
E on time scales, we use the following notations: the set of the function that x:
T → E is continuous, is denoted by C(T, E). The set of the function x: T → E
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that is differentiable and whose delta (nabla) derivative is continuous, is denoted
by C∆

rd(T, E) (C∇
rd(T, E)).

Remark 3.4. The function x: T → E is continuous if it is continuous as a
map of the topological space T into the topological space E.

A simpler alternative approach is to construct the integral directly through
the standard Lebesgue integration. We can give the following definition which is
motivated by [26].

Definition 3.5. Letting a := inf{s : s ∈ T} and b := sup{s : s ∈ T}, we define
an abstract function Ψ : [a, b] → E by

Ψ(t) := sup{s ∈ T : s ≤ t} for t ∈ [a, b].

Suppose that f : T
κ → E is an arbitrary abstract function on T

κ. Then the abstract
function f ◦Ψ : [a, b) → E is an extension of f to [a, b), and is a constant on “gap”
in T

κ, with the constant equal to the value of f at the left-hand end of the gap.
Suppose that f : T

κ → R is an arbitrary function on T
κ, if f ◦ Ψ is integrable on

the real interval [a, b) in the Lebesgue sense, then we say that f is integrable.

Let L1(T) denote the set of such integrable functions on T. For any f ∈ L1(T),
we define the integral of f as

∫ t

s
f∆τ :=

∫ t

s
f ◦ Ψdτ for s, t ∈ T,

with the norm defined by

‖f‖L1(T) =

∫ b

a

|f |∆t for f ∈ L1(T).

Definition 3.6. Assume that f(t) : T → E is an abstract function and b, t ∈
T. If F∆(t) : T

κ → E and F∆(t) = f(t), then we define the delta integral by
∫ t

b
f(s)∆s = F (t) − F (b). If F∇(t) : Tκ → E and F∇(t) = f(t), then we define the

nabla integral by
∫ t

b
f(s)∇s = F (t) − F (b).

The following theorem is essential to prove the Ascoli-Arzela’s Theorem on
time scales. It can be proved by using a similar argument as that of Theorem 1.2.4
in [20].

Theorem 3.7. Assume that H ⊂ C([a, b]T, E) is bounded and equicontinuous,
then the following statements are true:

(i) αc(H) = α(H([a, b]T)), where αc denotes the noncompactness measure in
C([a, b]T, E);

(ii) α(H([a, b]T)) = maxt∈[a,b]T α(H(t)).

Now we are ready to introduce and prove the Ascoli-Arzela’s Theorem on time
scales.

Theorem 3.8. H ⊂ C([a, b]T, E) is relatively compact if and only if H is
equicontinuous and for each t ∈ [a, b]T, H(t) is relatively compact set in E.

Proof of Theorem 3.8. Assume thatH is relatively compact in C ([a, b]T, E).
Clearly, H(t) is a relatively compact set in E for each t ∈ [a, b]T. According to the
Hausdorff theorem, for any ε > 0, there is a finite subsetH0 = {x1, x2, . . . , xm} ⊂ H
such that there exists a xi ∈ H0 which satisfies

(3.1) ‖x− xi‖E < ε for x ∈ H.
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It is easy to see that xi(t) (i = 1, 2, . . . ,m) are uniformly continuous on [a, b]T.
Hence, there exists a δ > 0 such that

‖xi(t) − xi(t
′)‖ < ε whenever |t− t′| < δ,

where i = 1, 2, . . . ,m. For any x ∈ H , if t, t′ ∈ [a, b]T satisfy |t− t′| < δ, we choose
xi ∈ H0 such that (3.1) holds, then we have

‖x(t) − x(t′)‖ ≤ ‖x(t) − xi(t)‖ + ‖xi(t) − xi(t
′)‖ + ‖xi(t

′) − x(t′)‖,

≤ 2‖x− xi‖E + ‖xi(t
′) − xi(t

′)‖ < 3ε,

which implies that H is equicontinuous.
Conversely, if H is equicontinuous and H(t) is a relatively compact set in E

for each t ∈ [a, b]T, it is easy to show that H(t) is a bounded set in C ([a, b]T, E).
According to Theorem 2.9, we have α(H(t)) = 0 for all t ∈ [a, b]T. Then it follows
from Theorem 3.7 that

αc(H) = max
t∈[a,b]T)

α(H(t)) = α(H([a, b]T)) = 0.

By applying Theorem 2.9 again, H is relatively compact in C([a, b]T, E). Conse-
quently, the proof is completed. �

Similar to definitions 1.8 and 1.10 in [24], we can give the following definitions
on abstract functions.

Definition 3.9. We say that an abstract function f : T → E is right-increasing
at a point t0 ∈ T\{max T} (max T is the maximum value in T) provided that

(i): if t0 is right-scattered, then f(σ(t0)) − f(t0) > θ;
(ii): if t0 is right-dense, then there is a neighborhood U of t0 such that f(t)−
f(t0) > θ for all t ∈ U with t > t0.

Similarly, we say that f is right-decreasing if f(σ(t0))− f(t0) < θ in (i) and f(t)−
f(t0) < θ in (ii).

Definition 3.10. We say that an abstract function f : T → E attains its local
right maximum at point t0 ∈ T\{maxT} provided that

(i): if t0 is right-scattered, then f(σ(t0)) − f(t0) ≤ θ;
(ii): if t0 is right-dense, then there is a neighborhood U of t0 such that f(t)−
f(t0) ≤ θ for all t ∈ U with t > t0.

Similarly, we say that f attains its local right minimum if f(σ(t0)) − f(t0) ≥ θ in
(i) and f(t) − f(t0) ≥ θ in (ii).

By using the closely similar proofs as that of Theorems 1.9, 1.11 and 1.12
in [24], we can obtain the following Theorems on abstract functions on time scales.
We will use these theorems in the proof of our main result in the next section.

Theorem 3.11. Suppose that the abstract function f : T → E is differential at
a point t0 ∈ T\{maxT}. If f∆(t0) > θ, then f is right-increasing. If f∆(t0) < θ,
then f is right-decreasing.

Theorem 3.12. Suppose that the abstract function f : T → E is differential at
a point t0 ∈ T\{maxT}. If f∆(t0) > θ, then f attains a local right-minimum at t0.
If f∆(t0) < θ, then f attains a local right-maximum at t0.
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Theorem 3.13. Suppose that the abstract function f : T → E is differential at
a point t0 ∈ T\{maxT}. If f attains a local right-minimum at t0, then f∆(t0) ≥ θ.
If f attains a local right-maximum at t0, then f∆(t0) ≤ θ.

4. Existence of Positive Solutions

Let E1 be a compact real Banach space and define the norm as ‖ · ‖E1
. Let

X = C ([0, T ]
T
, E1) ∩C∆ ((0, T ]

Tκ , E1) ∩ . . . ∩C∆n

((0, T ]
Tκn , E1) , and define the

norm as

‖u‖X = max
{

‖u(t)‖E1
,
∥

∥u∆(t)
∥

∥

E1
, . . . , ‖u∆n

(t)‖E1

}

,

where u ∈ X , then X is a Banach space.
Define P1 = {u ∈ X |u ≥ θ}, then P1 is a cone in X . The partial ordering ≤ in

X can be defined as: for ∀ v, w ∈ E1, v ≤ w if w − v ∈ P1.
To demonstrate the existence of positive solutions to the problem (1.3)-(1.4),

our idea is to approximate the singular problem by means of a sequence of nonsingu-
lar problems and by using the lower and upper solutions of the nonsingular problem
in conjunction with Theorem 2.6, then we establish the existence of solutions to
each approximating problem.

Now we state our main result as follows:

Theorem 4.1. Let n0 ∈ {1, 2, . . .} be fixed. Assume that (H1)-(H3) hold and
the following conditions are satisfied:

(A1): let e be the unit element in the Banach space E1. For each n ∈
{n0, n0 + 1, . . .} ≡ N1, there exists a sequence {ρne} ⊂ X such that {ρn}
is a strictly monotone decreasing sequence with limn→∞ ρn = 0, and

q(t)f (t, ρne, θ, . . . , θ) ≥ θ for t ∈
[

1
2n+1 , T − 1

2n+1

]

T
,

where ρn ∈ R;
(A2): there exists a function α(t) ∈ X and ϕp(α

∆(t)) ∈ C∇((0, T )
T
, E1)

such that α(0) = θ, α(t) > θ on (0, T ]
T
, and

∑m1

j=1 φj(α(ξ∗j )) −
∑m2

i=1 ψi(α
∆(ξi)) ≤ 0,

together with (ϕp(α
∆(t)))∇ + q(t)f

(

t, α(t), α∆(t), . . . , α∆n

(t)
)

≥ θ for t ∈
(0, T )

T
;

(A3): there exists a function β(t) ∈ X and ϕp(β
∆(t)) ∈ C∇((0, T )

T
, E1)

such that

β(t) ≥ α(t) and β(t) ≥ ρn0
e for t ∈ [0, T ]

T
,

m1
∑

j=1

φj(β(ξ∗j )) −
m2
∑

i=1

ψi(β
∆(ξi)) > 0,

(ϕp(β
∆(t)))∇+q(t)f

(

t, β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈

[

1

2n0+1
, T −

1

2n0+1

]

T

,

(ϕp(β∆(t)))∇ + q(t)f
(

1
2n0+1 , β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈
(

0, 1
2n0+1

)

T
,

and

(ϕp(β
∆(t)))∇ + q(t)f

(

T −
1

2n0+1
, β(t), β∆(t), . . . , β∆n

(t)

)

≤ θ for t ∈

(

T −
1

2n0+1
, T

)

T

.
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Then the BVPs (1.3)–(1.4) has at least a positive solution u(t) ∈ X such that

ϕp(u
∆(t)) ∈ C∇ ((0, T )

T
, E1) with u(t) ≥ α(t) for t ∈ [0, T ]

T
.

Proof of Theorem 4.1. Since the cone P1 = {u ∈ X |u ≥ θ} induces the
partial ordering ≤ in X . Let ξ = min{ξ1, ξ∗1}. Without loss of generality, fixing
n ∈ N1, we suppose that inft∈[ξ,T ]

T
α(t) ≥ ρne. Let tn ∈ (0, ξ)T satisfy

α(tn) = ρne and α(t) ≤ ρne for t ∈ [0, tn]
T
,

and

(4.1) αn(t) =

{

ρne if t ∈ [0, tn]
T
,

α(t) if t ∈ [tn, T ]
T
,

here α(tn) = ρne.

Assume that ωn =
[

1
2n+1 , T − 1

2n+1

]

T
, then we have

ωn(t) =

{

max
{

1
2n+1 , t

}

, for t ∈
[

0, T − 1
2n+1

]

T
,

min
{

T − 1
2n+1 , t

}

, for t ∈
[

T − 1
2n+1 , T

]

T
,

and

fn(t, x0, x1, . . . , xn) = max {f(t, x0, x1, . . . , xn), f (ωn(t), x0, x1, . . . , xn)} .

We define a sequence hn0
(t, x0, x1, . . . , xn) = fn0

(t, x0, x1, . . . , xn) and

hn(t, x0, x1, . . . , xn) = min {fn0
(t, x0, x1, . . . , xn), . . . , fn(t, x0, x1, . . . , xn)} ,

where n = n0 + 1, n0 + 2, . . . .
Then, for (t, x0, x1, . . . , xn) ∈ (0, T )T × P1 × En

1 we have

f(t, x0, x1, . . . , xn) ≤ . . . ≤ hn+1(t, x0, x1, . . . , xn),

≤ hn(t, x0, x1, . . . , xn),

≤ . . . ≤ hn0
(t, x0, x1, . . . , xn).(4.2)

For (t, x0, x1, . . . , xn) ∈ (0, T )T × P1 × En
1 we get

hn(t, x0, x1, . . . , xn) = f(t, x0, x1, . . . , xn).

Consider the BVPs

(4.3) (ϕp(u
∆
n0

(t)))∇ + q(t)h∗n0

(

t, un0
(t), u∆

n0
(t), . . . , u∆n

n0
(t)

)

= θ, t ∈ (0, T )T,

(4.4) u(θ) = ρn0
e,

∑m1

j=1 φ
∗
j (un0

(ξ∗j )) −
∑m2

i=1 ψ
∗
i (u∆

n0
(ξi)) = ρn0

,

where
(4.5)

h∗n0
=







hn0

(

t, αn0
(t), α∆

n0
(t), . . . , α∆n

n0
(t)

)

+ r(αn0
(t) − un0

(t)), u(t) ≤ αn0
(t),

hn0

(

t, un0
(t), u∆

n0
(t), . . . , u∆n

n0
(t)

)

, αn0
(t) ≤ un0

(t) ≤ β(t),
hn0

(

t, β(t), β∆(t), . . . , β∆n

(t)
)

+ r(β(t) − un0
(t)), un0

(t) ≥ β(t),

φ∗j (z
∗
j ) =







φj(α(ξ∗j )), z∗j ≤ αn0
(ξ∗j ) = α(ξ∗j ),

φj(z
∗
j ), αn0

(ξ∗j ) ≤ z∗j ≤ β(ξ∗j ),
φj(β(ξ∗j )), z∗j ≥ β(ξ∗j ),

j = 1, . . . ,m1 − 1,

and

ψ∗
i (zi) =







ψi(α
∆(ξi)), zi ≤ α∆

n0
(ξi) = α∆(ξi),

ψi(zi), α∆
n0

(ξi) ≤ zi ≤ β∆(ξi),
ψi(β

∆(ξi)), zi ≥ β∆(ξi).
i = 1, . . . ,m2,
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Let r(u) : E1 → BE1
(θ, 1) = {x : x ∈ E1 and ‖x‖E1

≤ 1} be the radial
retraction function defined by

r(u) =

{

u, ‖u‖E1
≤ 1,

u
‖u‖E1

, ‖u‖E1
> 1.

Assume that

C∆n

θ ([0, T ]
Tκn , E1) = {u ∈ X : u(0) = θ} ,

and

C∆n

ρn0
([0, T ]

Tκn , E1) = {u ∈ X : u(0) = ρn0
e} .

We define the mappings Lp, F : C∆n

ρn0
([0, T ]

Tκn , E1) → C∆n

θ ([0, T ]
Tκn , E1) as

Lpu(t) =
(

ϕp(u
∆(t)) − ϕp(u

∆(0)),
∑m1

j=1 φ
∗
j (u(ξ

∗
j )

)

,

and

Fu(t) =
(

−
∫ t

0
q(x)h∗n0

(

x, u(x), u∆(x), . . . , u∆n

(x)
)

∇x,
∑m2

i=1 ψ
∗
i (u∆(ξi)) + ρn0

)

.

Moreover, if

Lpv = (u, γ) for u ∈ C∆n

θ ([0, T ]
Tκn , E1) ,

then we have

γ =
∑m1

i=1 φ
∗
j

(

ρn0
+

∫ ξ∗

j

0 ϕq

(

u(x) −
∑m1

j=1 φ
∗
j (u(ξ

∗
j ))

)

∆x
)

.

This yields v(t) = ρn0
+

∫ t

0 ϕq

(

u(x) −
∑m1

j=1 φ
∗
j (u(ξ

∗
j ))

)

∆x. Hence L−1
p exists. It is

clear that solving the BVPs (4.3)–(4.4) is equivalent to finding a fixed point of un0
=

L−1
p Fun0

≡ Nun0
, where N = L−1

p F : C∆n

ρn0
([0, T ]

Tκn , E1) → C∆n

ρn0
([0, T ]

Tκn , E1)

is monotone because of inequality (4.2). In order to apply Theorem 2.6, we only
need to prove that conditions (ii) and (iii) of Theorem 2.6 hold.

For ∀ t ∈ [0, T ]
Tκ , the bounded set B in C∇n

ρn0
((0, T )

T
, E1), if u(t) ∈ B, we

deduce that

sup
t

‖L−1
p Fu(t)‖E1

≤ sup ‖L−1
p F‖‖u‖E1

<∞.

For ∀ t1, t2 ∈ [0, T ]Tk , we obtain that
∥

∥L−1
p Fu(t1) − L−1

p Fu(t2)
∥

∥

E1

=
∥

∥

∥
L−1

p (
∫ t2

t1
q(x)h∗n0

(

x, u(x), u∆(x), . . . , u∆n

(x))∆x
)

∥

∥

∥

E1

,

≤ sup
∥

∥L−1
p

∥

∥

∫ t2
t1

‖q(x)h∗n0

(

x, u(x), u∆(x), . . . , u∆n

(x)
)

‖E1
∆x,

→ 0 as t1 → t2.

It follows from Theorem 3.8 that N is compact, so the condition (ii) holds.
In the following, we shall show that

(4.6) αn0
(t) ≤ un0

(t) for t ∈ [0, T ]
T
.

If inequality (4.6) is not true then the abstract function un0
(t) − αn0

(t) has a
local right minimum at some τ ∈ (0, T ]

T
. We consider two cases, that is, τ ∈ (0, T )

T

and τ = T.
Case I. Assume that τ ∈ (0, T )

T
, then we claim

(4.7) (ϕp(u
∆
n0

))∇(τ) − (ϕp(α
∆
n0

))∇(τ) ≥ θ.
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Since the abstract function un0
(t) − αn0

(t) has a local right minimum at some
τ ∈ (0, T )

T
, in view of Theorems 3.11–3.13, we have u∆

n0
(τ)−α∆

n0
(τ) ≥ θ and there

exists a δ with τ − δ ∈ [0, τ)
T

such that u∆
n0

(t)−α∆
n0

(t) ≤ θ for t ∈ [τ − δ, τ)T. Thus
we have

ϕp(u
∆
n0

(τ)) − ϕp(α
∆
n0

(τ)) −
(

ϕp(u
∆
n0

(t)) − ϕp(α
∆
n0

(t))
)

≥ θ for t ∈ [τ − δ, τ)T,

which leads to

(4.8) ϕp(u∆
n0

(t))−ϕp(u∆
n0

(τ))

t−τ ≥
ϕp(α∆

n0
(t))−ϕp(α∆

n0
(τ))

t−τ for t ∈ [τ − δ, τ)T.

If τ is left-dense, for t ∈ [τ − δ, τ) we derive that

(ϕp(u
∆
n0

))∇(τ) = lim
t→τ

ϕp(u
′
n0

(t)) − ϕp(u
′
n0

(τ))

t− τ
,

≥ lim
t→τ

ϕp(α
′
n0

(t)) − ϕp(α
′
n0

(τ))

t− τ
,

= (ϕp(α
′
n0

))′(τ) = (ϕp(α
∆
n0

))∇(τ).

If τ is left-scattered, by virtue of (4.8) we deduce that

(ϕp(u
∆
n0

))∇(τ) =
ϕp(u

∆
n0

(τ)) − ϕp(u
∆
n0

(ρ(τ)))

τ − ρ(τ)
,

≥
ϕp(α

∆
n0

(τ)) − ϕp(α
∆
n0

(ρ(τ)))

τ − ρ(τ)
,

= (ϕp(α
∆
n0

))∇(τ).

Hence, we see that inequality (4.7) is true.
However, by (4.1), (4.5) and un0

(τ) − αn0
(τ) < θ, we obtain

(ϕp(u
∆
n0

(τ)))∇ − (ϕp(α
∆
n0

(τ)))∇

= −

[

q(τ)hn0
(τ, αn0

(τ), α∆
n0

(

τ), . . . , α∆n

n0
(τ)

)

+q(τ)r(αn0
(τ) − un0

(τ)) + (ϕp(α
∆
n0

(τ)))∇
]

,

=







































− [q(τ)hn0
(τ, ρn0

e, θ, . . . , θ) + q(τ)r(ρn0
e− un0

(τ))] ,
τ ∈ (0, tn0

)T,

−q(τ)hn0

(

τ, α(τ), α∆(τ), . . . , α∆n

(τ))

−q(τ)r(α(τ) − un0
(τ)

)

+(ϕp(α
∆(τ)))∇, τ ∈ [tn0

, T )T.

Assume that τ ∈
[

1
2n0+1 , T − 1

2n0+1

]

T
, then we have

hn0
(τ, x0, x1, . . . , xn) = f(τ, x0, x1, . . . , xn), for (x0, x1, . . . , xn) ∈ P × En−1

1 .

It follows from (A1), (A2) and q(τ) > 0 that

(ϕp(u
∆
n0

(τ)))∇ − (ϕp(α
∆
n0

(τ)))∇

=







− [q(τ)f(τ, ρn0
e, θ, . . . , θ) + q(τ)r(ρn0

e− un0
(τ))] , τ ∈ (0, tn0

)T,
−q(τ)f(τ, α

(

τ), α∆(τ), . . . , α∆n

(τ)
)

−q(τ)r(α(τ) − un0
(τ)) − (ϕp(α

∆(τ)))∇, τ ∈ [tn0
, T )T.

< θ.
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This yields a contradiction with (4.7).
Similarly, assume that τ ∈

(

0, 1
2n0+1

)

T
∪

(

T − 1
2n0+1 , T

)

T
, then we have

hn0
(τ, x0, x1, . . . , xn)

= fn0
(τ, x0, x1, . . . , xn),

= max {f(τ, x0, x1, . . . , xn), f(ωn0
(τ), x0, x1, . . . , xn)} ,

= max

{

f

(

1

2n0+1
, x0, x1, . . . , xn

)

,

f

(

T −
1

2n0+1
, x0, x1, . . . , xn

)

, f(τ, x0, x1, . . . , xn)

}

.

In view of (A1), (A2) and q(τ) > 0, we deduce that

(ϕp(u
∆
n0

(τ)))∇ − (ϕp(α
∆
n0

(τ)))∇

≤























−
[

q(τ)f
(

1
2n0+1 , ρn0

e, θ, . . . , θ
)

+ q(τ)r(ρn0
e− un0

(τ))
]

, τ ∈ (0, tn0
)T,

−
[

q(τ)f
(

τ, α(τ), α∆(τ), . . . , α∆n

(τ)
)

+ (ϕp(α
∆(τ)))∇

]

−q(τ)r(α(τ) − un0
(τ)), τ ∈

[

tn0
, T − 1

2n0+1

)

T
,

−
[

q(τ)f
(

T − 1
2n0+1 , ρn0

e, θ, . . . , θ
)

+ q(τ)r(ρn0
e− un0

(τ))
]

,
τ ∈

[

T − 1
2n0+1 , T

)

T
,

< θ.

This gives another contradiction with (4.7).
Case II. Assume that τ = T. It gives, αn0

(T ) − un0
(T ) > θ, which implies

φm1
(αn0

(T )) − φm1
(un0

(T )) > 0. By using the closely similar discussion as that
used in [10] we can obtain the same contradiction.

Thus, in cases I and II inequality (4.6) is true. In particular, since α(t) ≤ αn0
(t),

for t ∈ [0, T ]
T

we obtain α(t) ≤ αn0
(t) ≤ un0

(t) for t ∈ [0, T ]
T
. Essentially, by the

same discussion as that for inequality (4.6) we have un0
(t) ≤ β(t) for t ∈ [0, T ]

T
.

Hence, we obtain that

(4.9) α(t) ≤ αn0
(t) ≤ un0

(t) ≤ β(t) for t ∈ [0, T ]
T
.

Now, we discuss the BVPs

(ϕp(u
∆
n0+1(t)))

∇ + q(t)h∗n0+1

(

t, un0+1(t), u
∆
n0+1(t), . . . , u

∆n

n0+1(t)
)

= θ, t ∈ (0, T )T,

un0+1(0) = ρn0+1e,
∑m1

j=1 φ
∗
j (un0+1(ξ

∗
j )) −

∑m2

i=1 ψ
∗
i (u∆

n0+1(ξi)) = ρn0+1,

where

h∗n0+1

(

t, un0+1(t), u
∆
n0+1(t), . . . u

∆n

n0+1(t)
)

=























hn0+1

(

t, αn0+1(t), α
∆
n0+1(t), . . . , α

∆n

n0+1(t)
)

+r(αn0+1(t) − un0+1(t)), u(t) ≤ αn0+1(t),
hn0+1

(

t, un0+1(t), u
∆
n0+1(t), . . . u

∆n

n0+1(t)
)

, αn0+1(t) ≤ un0+1(t) ≤ un0
(t),

hn0+1

(

t, un0
(t), u∆

n0
(t), . . . , u∆n

n0
(t)

)

+r(un0
(t) − un0+1(t)), un0+1(t) ≥ un0

(t),

φ∗j (z
∗
j ) =







φj(α(ξ∗j )), z∗j ≤ αn0+1(ξ
∗
j ) = α(ξ∗j ),

φj(z
∗
j ), αn0+1(ξ

∗
j ) ≤ z∗j ≤ un0

(ξ∗j ),
φj(un0

(ξ′j)), z∗j ≥ un0
(ξ∗j ),

j = 1, . . . ,m1 − 1.
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and

ψ∗
i (zi) =







ψi(α
∆(ξi)), zi ≤ α∆

n0+1(ξi) = α∆(ξi),
ψi(zi), α∆

n0+1(ξi) ≤ zi ≤ u∆
n0

(ξi),
ψi(u

∆
n0

(ξi)), zi ≥ u∆
n0

(ξi).
i = 1, . . . ,m2.

Applying the same argument as that of inequality (4.9), we derive

α(t) ≤ αn0+1(t) ≤ un0+1(t) ≤ un0
(t) for t ∈ [0, T ]

T
.

Assume that we have uk(t) for some k ∈ {n0 + 1, n0 + 2, . . .} satisfying

αk(t) ≤ uk(t) ≤ uk−1(t) for t ∈ [0, T ]
T
.

Then we consider the BVPs

(ϕp(u
∆
k+1(t)))

∇ + q(t)h∗k+1

(

t, uk+1(t), u
∆
k+1(t), . . . , u

∆n

k+1(t)
)

= θ, t ∈ (0, T )T,

uk+1(0) = ρk+1e,
∑m1

j=1 φj(u(ξ
∗
j )) −

∑m
i=1 ψ

∗
i (u∆

k+1(ξi)) = ρk+1,

where

h∗k+1

(

t, uk+1(t), u
∆
k+1(t), . . . , u

∆n

k+1(t)
)

=























hk+1

(

t, αk+1(t), α
∆
k+1(t), . . . , α

∆n

k+1(t)
)

+r(αk+1(t) − uk+1(t)), uk+1(t) ≤ αk+1(t),
hk+1

(

t, uk+1(t), u
∆
k+1(t), . . . , u

∆n

k+1(t)
)

, αk+1(t) ≤ uk+1(t) ≤ uk(t),
hk+1(t, uk(t), u∆

k (t), . . . , u∆n

k (t))
+r(uk(t) − uk+1(t)), uk+1(t) ≥ uk(t),

φ∗j (z
∗
j ) =







φj(α(ξ∗j )), z∗j ≤ αk+1(ξ
∗
j ) = α(ξ∗j ),

φj(z
∗
j ), αk+1(ξ

∗
j ) ≤ z∗j ≤ uk(ξ∗j ),

φj(uk(ξ∗j )), z∗j ≥ uk(ξ∗j ),
j = 1, . . . ,m1 − 1.

and

ψ∗
i (zi) =







ψi(α
∆(ξi)), zi ≤ α∆

k+1(ξi) = α∆(ξi),
ψi(zi), α∆

k+1(ξi) ≤ zi ≤ u∆
k (ξi),

ψ∆
i (uk(ξi)), zi ≥ u∆

k (ξi).
i = 1, . . . ,m2.

Again applying the same discussion as that for inequality (4.9) we find

α(t) ≤ αk+1(t) ≤ uk+1(t) ≤ uk(t) for t ∈ [0, T ]
T
.

For n ∈ {n0, n0 + 1, . . .} , by applying mathematical induction, we can obtain the
sequence {un(t)}n∈N1

with

α(t) ≤ αn(t) ≤ un(t) ≤ un−1(t) ≤ . . . ≤ un0
(t) ≤ β(t) for t ∈ [0, T ]

T
.

Thus, the condition (iii) holds.
From the above, we obtain that there exists at least one solution of the BVPs

(4.3)–(4.4). It still remains to show that u(t) is continuous at θ.
First, it follows from limn→∞ un(0) = θ that there exists an n1 ∈ {n0, n0 + 1, . . .}

with ‖un1
(0)‖E1

< ε
2 . Since un1

(t) ∈ C ([0, T ]T, E1) and 1
2n ∈ T, then we have

σ(0) = 0 and there is a δn1
∈ (0, T )T with ‖un1

(t)‖E1
< ε

2 for t ∈ [0, δn1
)
T
. By the

monotonicity of {un(t)}n∈N0
for each t ∈ [0, T ]

T
, we have ‖α(t)‖E1

≤ ‖un(t)‖E1
≤

‖un1
(t)‖E1

< ε
2 for t ∈ [0, δn1

)
T

and n ≥ n1, which means ‖α(t)‖E1
≤ ‖u(t)‖E1

<
ε
2 for t ∈ [0, δn1

)
T
. This implies that u(t) is continuous at θ. Consequently, we have

completed the proof. �
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Note that if we replace
[

1
2n+1 , T − 1

2n+1

]

T
with t ∈

[

0, T − 1
2n+1

]

T
, then the

singularity occurs at u = θ and t = T . If we replace
[

1
2n+1 , T − 1

2n+1

]

T
with

t ∈
[

1
2n+1 , T

]

Tκ , then the singularity occurs at u = θ and t = 0. If we replace
[

1
2n+1 , T − 1

2n+1

]

T
with t ∈ [0, T ]

Tκ , then the singularity occurs at u = θ.

Remark 4.2. Note that if we adjust (A3) appropriately, then one can replace
t ∈

[

1
2n+1 , T − 1

2n+1

]

T
in (A1) by

t ∈
[

0, T − 1
2n+1

]

T
,

(4.10) t ∈
[

1
2n+1 , T

]

Tκ ,

or

t ∈ [0, T ]
Tκ .

For example, if (4.10) occurs, then (A3) is replaced by

(A3’): There exists a function β(t) ∈ X and ϕp(β
∆(t)) ∈ C∇ ((0, T )

T
, E1)

which satisfies β(t) ≥ α(t) and β(t) ≥ ρn0
e for t ∈ [0, T ]

T
and

m1
∑

j=1

φj(β(ξ∗j )) −
m2
∑

i=1

ψi(β
∆(ξi)) > 0,

with

(ϕp(β
∆(t)))∇ + q(t)f

(

t, β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈ (0, T )
T
,

and

(ϕp(β
∆(t)))∇ + q(t)f

(

1
2n0+1 , β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈
(

0, 1
2n0+1

)

T
.

Assume that (H1)-(H3), (A1) and (A2) hold. Suppose that the following con-
ditions are satisfied:

(A4): (ϕp(α
∆(t)))∇ + q(t)f

(

t, u(t), u∆(t), . . . , u∆n

(t)
)

> θ for
(

t, u(t), u∆(t), . . . , u∆n

(t)
)

∈ (0, T )T × (0, α(t)] × En
1 ,

where u(t) ∈ X ;
(A5): There exists a function β(t) ∈ X and ϕp(β

∆(t)) ∈ C∇ ((0, T )
T
, E1)

such that β(t) ≥ ρn0
e for t ∈ [0, T ]

T
,

∑m1

j=1 ψi(β(ξ∗j ))−
∑m2

i=1 ψi(β
∆(ξi)) >

0, and

(ϕp(β
∆(t)))∇ + q(t)f

(

t, β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈ (0, T )
T
,

(ϕp(β
∆(t)))∇ + q(t)f

(

1
2n0+1 , β(t), β∆(t), . . . , β∆n

(t)
)

≤ θ for t ∈
(

0, 1
2n0+1

)

T
,

and

(ϕp(β
∆(t)))∇ + q(t)f

(

T −
1

2n0+1
, β(t), β∆(t) . . . , β∆n

(t)

)

≤ θ

for t ∈
(

T − 1
2n0+1 , T

)

T
;

(A6): β(T ) ≥ α(T ).
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Then the conclusion in Theorem 4.1 is also true. This follows immediately from
Theorem 4.1 if we show that (A3) holds. Assume that it is not true. In view
of (A6), we obtain there is a τ1 ∈ (0, T )

T
such that β(t) − α(t) has a local right

minimum at τ1 ∈ (0, T )T, so (β − α)∆(τ1) ≥ θ. Using the same reasoning as that
of inequality (4.7), we have

(4.11) (ϕp(α
∆))∇(τ1) − (ϕp(β

∆))∇(τ1) ≤ θ.

However, by (A4), (A5) and

α(τ1) > β(τ1) > θ,

we get

(ϕp(α
∆))∇(τ1) + q(τ1)f

(

τ1, β(τ1), β
∆(τ1), . . . , β

∆n

(τ1)
)

> θ.

Hence, we deduce

(ϕp(α
∆))∇(τ1) − (ϕp(β

∆))∇(τ1)

≥ (ϕp(α
∆))∇(τ1) + q(τ1)f

(

τ1, β(τ1), β
∆(τ1), . . . , β

∆n

(τ1)
)

,

> θ,

which gives a contradiction with inequality (4.11).

Corollary 4.3. Let n0 ∈ {1, 2, . . .} be fixed. Suppose that (H1)-(H3), (A1),
(A2) and (A4)-(A6) hold, then the BVPs (1.3)–(1.4) has at least a positive solution
u(t) ∈ X and ϕp(u

∆(t)) ∈ C∇ ((0, T )
T
, E1) with u(t) ≥ α(t), where t ∈ [0, T ]

T
.

5. Construction of α(t) and β(t)

In this section we will consider how to construct a lower solution α(t) and an
upper solution β(t) under certain conditions. We assume that

(5.1)
∑m2

i=1 ψi(xi) −
∑m1−1

j=1 φj(x
∗
j ) ≥ 0 for xi, x

∗
j ∈ R.

Lemma 5.1. If there exists a nonincreasing sequence {εne} ⊂ E1 which sat-
isfies εn > 0 (εn ∈ R) and limn→∞εn = 0, then there exists a function λ(t) ∈
C∆ ([0, T ]

T
, E1) and it satisfies

(i):

ϕp(λ
∆(t)) ∈ C∇ ([0, T ]

T
, E1) ,

λ(t) > θ for t ∈ (0, T ]T and
∥

∥(ϕp(λ
∆(t)))∇

∥

∥

E1
> 0 for t ∈ (0, T )T;

(ii): λ(0) = θ,
∑m1

j=1 φj(λ(ξ
∗
j )) −

∑m2

i=1 ψi(λ
∆(ξi)) < 0 and θ < λ(t) ≤ εne

for t ∈ (0, T )T.

Proof of Lemma 5.1. Let Ln =
[

1
2n+1 , T − 1

2n+1

]

T
(n ≥ n0). Assume that

r : [0, T ]T → {u ∈ X |u ≥ θ} satisfies

r(0) = θ,

r(t) = εp−1
n e/(2T )p+1 for t ∈ Ln \ Ln−1, n ≥ n0,

and

r(t) = εp−1
n0

e/(2T )p+1 for t ∈

[

1

2n0
, T −

1

2n0

]

T

.
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We define

u(t) =

∫ t

0

r(s)∆s, v(t) =

[
∫ t

0

u(s)∇s

]

1
p−1

, w(t) =

∫ t

0

v(s)∆s.

Assume that τ2 ∈ Ln \ Ln−1 for n ≥ n0, and τ3 ∈ (0, T )T with τ2 < τ3 and
2τ3 − T ≥ τ2. It is easy to show that

u, v, w : [0, τ2]T → {u ∈ X |u ≥ θ}

are continuous and increasing. Denote

a(t) = e [c0 (τ3 − t) + c1t]
1

p−1 for t ∈ [τ2, T ]T,

where

c0 = −
τ2
τ3
u(τ2) +

1

τ3
(v(τ2))

p−1 and c1 =
τ3 − τ2
τ3

u(τ2) +
1

τ3
(v(τ2))

p−1.

Hence, we deduce that a(t) > θ for t ∈ [τ2, T ]T and is nondecreasing. Define

b(t) : [τ2, τ3]T → {u ∈ E1|u ≥ θ},

by

b(t) =

∫ t

τ2

a(s)∆s+ w(τ2),

B1(t) =

{

b(t), t ∈ [τ2, τ3]T,
b(2τ3 − t), t ∈ [τ3, T ]T,

λ(t) =

{

w(t), t ∈ [0, τ2]T,
B1(t), t ∈ [τ2, T ]T.

It is easy to see that

w(τ2) = B1(τ2), w∆(τ2) = B∆
1 (τ2), (ϕp(w

∆))∇(τ2) = (ϕp(B
∆
1 ))∇(τ2),

w ∈ C∆([0, τ2]T, E1), B1 ∈ C∆([τ2, T ]T, E1),

and

ϕp(w
∆) ∈ C∇([0, τ2]T, E1), ϕp(B

∆
1 ) ∈ C∇([τ2, T ]T, E1).

Thus, we know λ ∈ C∆([0, T ]T, E1) and ϕp(λ
∆) ∈ C∇([0, T ]T, E1) with

∥

∥(ϕp(λ
∆))∇(t)

∥

∥

E1
> 0.

Since w(t) > θ for t ∈ (0, τ2]T and B1(t) > θ for t ∈ [τ2, T ]
T
, we have λ(t) > θ

for t ∈ (0, T ]
T
. On the other hand, we know that

u (τ2) =

∫ τ2

0

r(s)∆s <
εp−1

n e

(2T )p
,

v (τ2) =

[
∫ τ2

0

u(s) ∇s

]
1

p−1

<
εne

2
p

p−1T
,

w (τ2) < τ2 ×
εne

2
p

p−1T
<
εne

2
.

By virtue of the monotonicity of P1(t) on [τ2, τ3]T and [τ3, T ]T, we have

λ (τ3) = max
t∈[τ2,T ]

T

λ (t) ,

=

∫ τ3

τ2

a(s)∆s+ w (τ2) ,

≤ (τ3 − τ2) max
t∈[τ2,τ3]T

e [c0 (τ3 − t) + c1t]
1

p−1 + w (τ2) ,
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≤ (τ3 − τ2)
[

(τ3 − τ2)u(τ2) + (v(τ2))
p−1

]
1

p−1 + w (τ2) ,

< T

[

T
εp−1

n e

(2T )p
+

εp−1
n e

2(2T )p−1

]

1
p−1

+
εne

2
<
εne

2
+
εne

2
= εne.

Hence, we derive

(5.2) θ < λ(t) ≤ εne, t ∈ (0, T )T.

From (5.2), we have

0 < φm1−1(λ(t)) ≤ φm1−1(εne), t ∈ (0, T ]T.

Using the inequality
∑m2

i=1 ψi(λ
∆(ξi)) −

∑m1−1
j=1 φj(ξ

∗
j ) ≥ φm1−1(εne) > φm1

(

λ
(

ξ∗m1

))

= φm1
(λ (T )) ,

we obtain

φm1

(

λ
(

ξ∗m1

))

+
∑m1−1

j=1 φj(ξ
∗
j ) −

∑m2

i=1 ψi(λ
∆(ξi)) < 0.

Consequently, this completes our proof. �

Now we discuss how to construct a lower solution α(t) in (A2) and (A4). As-
sume that

(A7): for each n ∈ {1, 2, . . .} , there exist a constant k0e ∈ E with k0 > 0
and a strictly monotone decreasing constant sequence {ρne} ⊂ E with
limn→∞ ρn = 0, such that

q(t)f
(

t, u(t), u∆(t), . . . , u∆n

(t)
)

≥ k0e,

and
(

t, u(t), u∆(t), . . . , u∆n

(t)
)

∈

[

1

2n+1
, T −

1

2n+1

]

T

× {u(t) ∈ X : u(t) ≤ ρne} × E
n
1 ;

(A8): there exists a function

β(t) ∈ X, ϕp(β
∆(t)) ∈ C∇ ((0, T )

T
, E1) ,

such that β(t) ≥ θ for t ∈ [0, T ]
T

and

m1
∑

j=1

φj(β(ξ∗j )) −
m2
∑

i=1

ψi(β
∆(ξi)) > 0,

−(ϕp(β
∆(t)))∇ ≥ q(t)f

(

t, β(t), β∆(t), . . . , β∆n

(t)
)

for t ∈ (0, T )T,

−(ϕp(β∆(t)))∇ ≥ q(t)f
(

1
2n0+1 , β(t), β∆(t), . . . , β∆n

(t)
)

for t ∈
(

0, 1
2n0+1

)

T
,

and

−(ϕp(β∆(t)))∇ ≥ q(t)f
(

T − 1
2n0+1 , β(t), β∆(t), . . . , β∆n

(t)
)

for t ∈
(

T − 1
2n0+1 , T

)

T
.

Theorem 5.2. Let n0 ∈ {3, 4, . . .} be fixed. If (H1)-(H3), (5.1) and (A7)-(A8)
hold, then the BVPs (1.3)–(1.4) has at least a solution u(t) ∈ X and ϕp(u

∆(t)) ∈
C∇ ((0, T )

T
, E1) with u(t) ≥ α(t), where t ∈ [0, T ]

T
.
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Proof of Theorem 5.2. By Corollary 4.3, we only need to show that con-
ditions (A1), (A2), and (A4)-(A6) are satisfied. Without loss of generality, we
suppose that
(5.3)

β(t) > ρn0
e for t ∈ [0, T ]

T
and

∑m1

j=1 φj(β(ξ∗j )) −
∑m2

i=1 ψi(β
∆(ξi)) > ρn0

.

By virtue of (A7), (A8) and (5.3), we know that (A1) and (A5) hold.
From Lemma 5.1 there exists a function λ(t) ∈ C∆([0, T ]

T
, X) satisfying

(i): ϕp(λ
∆(t)) ∈ C∇([0, T ]

T
, E1), λ(t) > θ for t ∈ (0, T ]T and

R1 =
∥

∥(ϕp(λ
∆(t)))∇

∥

∥

E1
> 0;

(ii): λ(0) = θ,
∑m1

j=1 φj(λ(ξ
∗
j )) −

∑m2

i=1 ψi(λ
∆(ξi)) < 0 and λ(t) ≤ ρne for

t ∈ (0, T )T.

Assume that

m = min

{

e,
(

k0e
2R1

)1/(p−1)

,
ρn0

e

‖λ(t)‖E1

}

.

Let α(t) = mλ(t) for t ∈ [0, T ]
T
.Then we have α(t) ∈ X, ϕp(α

∆(t)) ∈ C∇((0, T )T, E1)

and α(0) = θ with θ < α(t) ≤ λ(t) ≤ ρne for t ∈
(

1
2n+1 , T

]

T
. Furthermore, we have

∑m1

j=1 φj(α(ξ∗j )) −
∑m2

i=1 ψi(α
∆(ξi)) < 0.

For an arbitrary
(

t, u, u∆, . . . , u∆n)

∈ (0, T ]T × (0, α(t)] × En
1 ,

there exists an n ∈ {n0, n0 + 1, . . .} such that
(

t, u, u∆, . . . u∆n)

∈
[

1
2n+1 , T − 1

2n+1

]

T
× (0, α(t)] × En

1 .

So we have

q(t)f
(

t, u(t), u∆(t), . . . , u∆n

(t)
)

+ (ϕp(α
∆(t)))∇

≥ k0e+ (ϕp(mλ
∆(t)))∇,

= k0e+mp−1(ϕp(λ
∆(t)))∇,

≥ k0e−mp−1
∥

∥(ϕp(λ
∆(t)))∇

∥

∥

E1
,

≥ k0e−
k0e

2R1

∥

∥(ϕp(λ
∆(t)))∇

∥

∥

E1
,

=
k0e

2
> θ.

Thus, we see that (A4) holds and (A2) is true if u(t) = α(t). Since α(T ) ≤
‖α(t)‖E1

= m‖λ(t)‖E1
≤ ρn0

, we have β(T ) ≥ ρn0
≥ α(T ), so (A6) is fulfilled. By

Corollary 4.3, the BVPs (1.3)–(1.4) has at least a solution

u(t) ∈ X, ϕp(u
∆(t)) ∈ C∇ ((0, T )

T
, E1) with u(t) > θ,

where t ∈ [0, T ]
T
. �

According to Theorem 5.2, it may be difficulty for us to construct β in a
straightforward way due to the assumption (A8). The following theorem may enable
us to find β by replacing (A8) with a simply verified condition.
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Theorem 5.3. Let n0 ∈ {1, 2, . . .} be fixed. Suppose that (H1)-(H3), (A1) and
(A2) hold, and that the following conditions are satisfied:

M1e > θ and M2e > max {α(t), ρn0
e} , where M1,M2 ∈ R,

(5.4)







q(t)f(t,M1et+M2e,M1e, θ, . . . , θ) ≤ θ for t ∈ (0, T )T,
q(t)f

(

1
2n0+1 ,M1et+M2e,M1e, θ, . . . , θ

)

≤ θ for t ∈
(

0, 1
2n0+1

)

T
,

q(t)f
(

1
2n0+1 ,M1et+M2e,M1e, θ, . . . , θ

)

≤ θ for t ∈
(

T − 1
2n0+1 , T

)

T
,

and

(5.5)
∑m1

j=1 φj

(

M1eξ
∗
j +M2e

)

−
∑m2

i=1 ψi(M1e) > 0.

Then the BVPs (1.3)-(1.4) has at least a solution

u(t) ∈ X, ϕp(u
∆(t)) ∈ C∇ ((0, T )

T
, E1) with u(t) > θ,

where t ∈ [0, T ]
T
.

Proof of Theorem 5.3. Denote β(t) = M1et+M2e for t ∈ [0, T ]
T
, then we

have β(t) ∈ X, ϕp(β
∆(t)) ∈ C∇((0, T )

T
, E1) and β(t) ≥ α(t) and β(t) ≥ ρn0

e for
t ∈ [0, T ]

T
. A direct calculation gives

m1
∑

j=1

ψi(β(ξ∗j )) −
m2
∑

i=1

ψi(β
∆(ξi)) > 0,

(ϕp(β
∆(t)))∇ + q(t)f

(

t, β(t), β∆(t), . . . β∆n

(t)
)

≤ θ for t ∈ (0, T )T,

(ϕp(β
∆(t)))∇ + q(t)f

(

1
2n0+1 , β(t), β∆(t), . . . β∆n

(t)
)

≤ θ for t ∈
(

T − 1
2n0+1 ,

1
2n0+1

)

T
,

and

(ϕp(β
∆(t)))∇ + q(t)f

(

1
2n0+1 , β(t), β∆(t), . . . β∆n

(t)
)

≤ θ for t ∈
(

0, 1
2n0+1

)

T
.

This implies that (A3) holds. By virtue of Theorem 4.1, we complete the proof. �

From Theorems 5.2 and 5.3 we can obtain the following theorem directly.

Theorem 5.4. Let n0 ∈ {1, 2, . . .} be fixed. Suppose that (H1)–(H3), (5.1) and
(A7) hold, and that there exist real constants M1e, M2e ∈ E1 such that (5.4) and
(5.5) are true, where M1 and M2 are positive. Then the BVPs (1.3)-(1.4) has at
least a solution u(t) ∈ X, ϕp(u

∆(t)) ∈ C∇((0, T )
T
, E1) and u(t) > θ for t ∈ (0, T ]

T
.

Proof of Theorem 5.4. Without loss of generality, we suppose that ρn0
e <

M2e. From (A7), we know that (A1) holds and

(5.6) M2e > ρn0
e > ρn0+1e > . . . and lim

n→∞
ρne = θ.

By using a similar argument as that of Theorem 5.2, there exists a function α(t) ∈
X, and ϕp(α

∆(t)) ∈ C∇((0, T )
T
, E1) with α(0) = θ,

m1
∑

j=1

φj(α(ξ∗j )) −
m2
∑

i=1

ψi(α
∆(ξi)) < 0,

and α(t) > θ for t ∈ (0, T ]
T
, such that

(ϕp(α
∆(t)))∇ + q(t)f

(

t, α(t), α∆(t), . . . , α∆n

(t)
)

≥ θ

for t ∈ (0, T )
T

and α(t) ≤ ρn0
e. This together with (5.6) gives that

M2 > max {α(t), ρn0
e} .
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This implies that all conditions of Theorem 5.3 are fulfilled. Consequently, we
complete the proof. �

6. One Example

In this section, we present an example to illustrate our main results.
Let E1 = l∞ = {u = (u1, u2, . . . , un, . . .)| supn |un| < +∞} with norm ‖u‖E1

=
supn |un| and E1 is a finite dimensional space. Define

P1 = {u = (u1, u2, . . . , un, . . .)|un ≥ 0, n = 1, 2, . . .},

then P1 is a normal cone in the compact Banach space E1.
Assume that

T = {0} ∪ {(1/2)N} ∪ [1/2, 1].

Consider the following boundary value problem in E1 of the form:
(6.1)

(

ϕ4

(

u∆(t)
))∇

+ q(t)f
(

t, u(t), u∆(t)
)

= θ for t ∈ (0, 1)T,
u(0) = θ, u(1) + 1

5u
(

1
8

)

− 1
5u

∆
(

1
8

)

− 1
10u

∆
(

1
4

)

− 1
5u

∆
(

3
4

)

− 1
10u

∆ (1) = 0.

It is obvious that T = 1, p = 4, ϕ1(x) = ψ1(x) = 1
5x, ψ2(x) = 1

10x, ψ3(x) = 1
5x and

ψ4(x) = x. Denote q(t) = t4 + 4 and

f
(

t, u, u∆
)

=
te

u7(t)
+ u8(t) + (tu∆(t))2 − λ2e, t ∈ [0, 1]T, u ∈ E1, λ ∈ R,

where λ2 ≥ 10 and e = (1, 1, . . . , 1 . . .). Letting

n0 ∈ {1, 2, . . .} , ρn =

(

1

2n+1(λ2 + a1)

)1/7

and k0 = a1 > 0, we have ρn0
≤ 1. Note that (H1)-(H3) and (5.1) hold. For

n ∈ {1, 2, . . .} , t ∈
[

1
2n+1 , 1 − 1

2n+1

]

T
and θ < u ≤ ρne, we have

q(t)f
(

t, u, u∆
)

≥ (t4 + 4)

(

e

2n+1ρ7
n

− λ2e

)

,

≥ (t4 + 4)
(

λ2e+ a1e− λ2e
)

,

> a1e > θ,

which indicates that (A7) is satisfied.
Now we show that (A8) holds with β(t) = t1/7e, t ∈ [0, 1]T. Notice that if

t ∈ (1/2, 1]T, then we have

β∆(t) = β′(t) =
1

7
t−6/7e,

ϕ4

(

β∆(t)
)

=
(

1
343 t

− 18
7

)

e,

and
(

ϕ4

(

β∆(t)
))∇

= −
(

18
2401 t

− 25
7

1

)

e ≤ θ.

If t = 1/2, then we get

β∆(t) = 1
7 t

−6/7e,

ϕ4

(

β∆(t)
)

=
(

1
343 t

− 18
7

)

e,
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and
(

ϕ4

(

β∆(t)
))∇

=
(

2
343

(

1
2

)− 18
7 − 2

343

)

e ≈ −0.1714e ≤ θ.

When t = 1/2n (n = 2, 3, . . .), we deduce that σ(t) = 2t, ρ(t) = t
2 , µ(t) = t,

ν(t) = t
2 , and

β∆(t) = 1
t

[

(2t)1/7 − t1/7
]

e, ϕ4

(

β∆(t)
)

= 1
t3

[

(2t)1/7 − t1/7
]3

e.

By induction, we can derive that
(

ϕ4

(

β∆(t)
))∇

= 24n+1

[

(

1

2n−1

)1/7

−

(

1

2n

)1/7
]3

e− 24n+4

[

(

1

2n

)1/7

−

(

1

2n+1

)1/7
]3

e,

≤ θ.

Thus, for t ∈ (0, 1]T we have
(

ϕ4

(

β∆(t)
))∇

+ q(t)f
(

t, β(t), β∆(t)
)

≤











(t4 + 4)
(

t
te+ t

8
7 e+

(

1
7 t

1/7
)2
e− λ2e

)

, t ∈
[

1
2 , 1

]

T
,

(t4 + 4)

(

t
te+ t

8
7 e+

(

(2t)
1/7 − t1/7

)2

e− λ2e

)

, t ∈ {1/2n, n = 2, 3, . . . , },

≤ (t4 + 4)(10e− λ2e),
≤ θ.

For t ∈
(

0, 1
2n0+1

)

T
, we have

(

ϕ4

(

β∆(t)
))∇

+ q(t)f
(

1
2n0+1 , β(t), β∆(t)

)

≤ (t4 + 4)

(

1
2n0+1t

e+
(

t1/7
)8
e+

(

(2t)
1/7 − t1/7

)2

e− λ2e

)

,

≤ (t4 + 4)
(

10e− λ2e
)

,
≤ θ.

Moreover, we obtain

β(1) + ϕ1(β
(

1
8 )

)

− ψ1

(

β∆
(

1
8

))

− ψ2

(

β
(

1
4

))

− ψ3

(

β∆
(

3
4

))

− ψ4 (β (1)) > 0.

Hence, all conditions of Theorem 5.2 are satisfied. As a result, the problem (6.1)
has at least a solution u ∈ E1 = l∞ with ϕ4(u

∆(t)) ∈ C∇((0, T )
T
, E1) and u(t) > θ

for t ∈ (0, T ]
T
.
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