
Dynamics of PDE, Vol.8, No.2, 127-147, 2011

Invariant measure for the cubic wave equation on the unit ball of �3

Anne-Sophie de Suzzoni
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A. This paper deals with the invariance of a measure on Sobolevspaces of low
regularity under the flow of the cubic non linear wave equation on the unit ball of�3 under
the assumption of spherical symmetry. It presents two aspects, an analytic one which
includes the treatment of local properties of the flow, and a probabilistic one, which is
mainly related to the global extension of the flow and the invariance of the measure.
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1. Introduction

The goal here is to prove the invariance of the measureρ constructed in [9], II, under
the flow of the cubic non linear wave equation on the unit ball of �3, hence answering the
remark 6.3 of the paper by Nicolas Burq and Nikolay Tzvetkov.

The equation studied is :

(1)

{
∂2

t f − ∆B3 f + f 3
= 0 (t, x) ∈ � × B3

f |t=0 = f0 ∂t f |t=0 = f1
,

wheref is real, radial,B3 is the unit ball in�3, and∆B3 is the Laplace-Beltrami operator on
B3 with Dirichlet boundary conditions. Though, it is soon to bechanged into its complex
form, that is, writingH =

√
−∆B3 andu = f − iH−1∂t f ,
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128 ANNE-SOPHIE DE SUZZONI

(2)

{
i∂tu+ Hu+ H−1(Reu)3

= 0
u|t=0 = u0 = f0 − iH−1 f1

.

In order to define the measure invariant under the flow of (2), asequence of indepen-
dant complex centered and normalised (lawN(0, 1)) (gn)n is introduced, along with the
measureµ, which is the image measure of the (well-defined) map from a probability space
to the Sobolev spaceHσ, σ < 1

2 :

ϕ(ω, r) =
∞∑

n=1

gn

πn
en

whereen are the radial eigenfunctions of∆B3 with eigenvaluesπ2n2. It makesµ a sort of
limit of gaussian on�N whenN goes to infinity.

The measureρ is then defined as :

dρ(u) = e
− 1

4 ||u||4L4(B3) dµ(u)

absolutely continuous wrtµ. It has been proved thatρ is genuine, the norm|| . ||L4(B3) being
µ - almost surely finite.

It comes from [9] :

T 1 (Burq,Tzvetkov).Let σ < 1
2. There exists a setΣ ⊆ Hσ of full µ or ρ

(which is equivalent) measure such that for any initial datau0, the flow is globally well-
defined and what is more the solution of (2) is unique in S(t)u0 + Hs where S(t) is the flow
of the linear equation i∂tu+ Hu = 0 and s is some real number s> 1

2.

Using the ideas of the proof of this theorem and the local property of the solution, the
following theorem will be proved.

T 2. There exists a setΠ ⊆ Hσ of full ρ measure such that the solution of (2)
is strongly globally well-defined for any initial data takenin Π and that all measurable set
A included inΠ satisfies at all time t :

ρ(ψ(t)A) = ρ(A) .

Before going further, it has to be understood thatρ is built to be invariant under the
flow of the non linear wave equation. Actually, by applying a cut-off on the frequency
of the Lapace-Beltrami operator with radial symmetry and Dirichlet boundary conditions
of the unit ball in�3, the NLW is approached by PDE in finite dimension, suceptibleto
finite dimension theory, like Cauchy-Lipschitz theorem. Indeed, callEN the space linearly
spanned byN first eigen functions of the radial Laplace-Beltrami operator on the unit ball
of �3 with Dirichlet boundary conditions, by using projectors onEN, or, better to say,
operators that sendHs into EN which are more regular than mere orthogonal projectors,
the non linear wave equation can be reduced onto a problem onEN, which admits a unique
maximal condition thanks to Cauchy-Lipschitz theorem thatcan be proved to be a global
one thanks to the existence of a conserved positive energy. The reduction is chosen such
that the solutions converges in the space of distributions towards a solution of the non linear
wave equation.

Then, finding a measureρN on EN which is invariant under the flow of this equation
relies mostly on the existence of a conserved energy and Liouville theorem. It happens that
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the sequenceρN extended toHσ converges towards a non trivial measureρ on Hσ. The
measureρ being a limit ofρN, it is expected to be invariant under the flow of NLW.

In previous works, like [6, 3, 4, 11], the strategy applied to prove the invariance of the
measure in infinite dimension used the fact that the initial datum was taken in spacesH
such that the orthogonal projectorsΠN onEN were uniformly bounded, that is to say, there
existsC independant fromN, such that||ΠN||H→H ≤ C. So the projectionsΠNu converged
towardu inH uniformly in every compact subset ofH . In these cases, by approaching the
the initial data inH by its projections, the flow with initial datau0 could be approached
by the finite dimensional flow ofΠNu0, the convergence being uniform on any compact set
of initial data inH . However, here, the control that ensures the existence of global strong
solution in [9] is the norm :

||S(t)u0||Lp

t∈[0,2],x∈B3
,

and thus the convergence ofΠNu0 in Hσ does not ensure the convergence of this norm
applied toΠNu0 and thus not the uniform (regarding the initial data) convergence of finite
dimensional solutions towards the global solution.

This problem can be solved though by introducing slightly different “finite” measures
and dimensional equations. Instead of entirely reducing the problem to a problem onEN,
only its non linear part will, that is to say, the initial datawill be taken inHσ but the non
linear part will be projected onEN. Therefore, the reduced problem will present two parts
: a linear and of infinite dimension one and a finite dimensional though non linear one.
Then, the reduced measureρN, instead of being defined onEN will be defined on allHσ

(and still invariant under the flow). The initial data, thus,will not have to be approached,
only the flow will, like in [8]. Unlike in [8] though, considerations on the reversibility of
the flow will be confined to the linear treatment. Indeed, the flow of the linear equation
is defined on allHσ which makes it easier to manipulate. The afore-mentioned strategy
using the uniform bound of the projectors will be used to prove the invariance ofµ under
the linear flow. Nevertheless, the flow of the NLW being definedonly on a subsetΣ of Hs,
this subset has to be invariant under the flow if the reversibility of the flow must be used.

To sum up, [9] will provide the topological framework and the local results of ex-
istence for the non linear wave equation, [8] the descriptions of the “new” partly finite
dimensional measures, [11] a guideline to prove the invariance of the measureµ under the
linear flow, [2] the main ideas and properties about random gaussian series, and thanks to
all these results, the invariance ofρ shall be proved.

Plan of the paper. The first part is a reminder of the results of[9, 11, 8] rewritten in a
slightly different form in order to fit with the framework. The results of [9] are stated at the
beginning to display the theorems that compose the startingpoint. Then, the approximation
of the non linear wave equation by finite dimensional problems is detailed. Finally, the first
part of the proof of theorem (2) is given, that is, the construction of the measuresµ andρ
and the invariance ofµ under the linear flow.

The second part is mainly analytical, it deals with the localproperties of the flow.
First, the local existence of the flow is derived from [9], then a result of local (in time)
uniform (for the initial data) convergence of the approchedflow towards the local flow of
NLW is given, which leads to a result of local invariance ofρ under the local flow.

The last one is dedicated to the extension of the local solution to a global one when the
initial data is taken inΠ and then of the extension of the local invariance result to a global
one.
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2. Existence of solution for the cubic NLW

2.1. Statement of the main results.In [9], Nicolas Burq and Nikolay Tzvetkov have
proved that there existed a large subset ofHσ with σ < 1

2 that could be taken as initial data
for the 3D-non linear wave equation :

(3) (∂2
t − ∆)u+ u3

= 0

with u a radial function and∆ the Laplace-Beltrami operator on the unit ball of�3.

The first paper shows the existence of local solution using a randomization of the
initial data.

The randomization is given by :

D 2.1. Lets≥ 8
21, f = ( f1, f2) ∈ Hs × Hs−1 andαn, βn the sequences defined

as :

f1 =
∑

n

αnen , f2 =
∑

n

βnen

with en the eigenfunctions of∆ on the unit ball with Dirichlet or Neumann conditions.

Then, lethn, ln be sequences of real centered gaussian variables, independant from
each other on a probability spaceΩ,P. Set :

fω = ( fω1 , fω2 )

with

fω1 =
∑

n

hn(ω)αnen , fω2 =
∑

n

ln(ω)βnen .

Then, a local solution exists :

T 2.2. Assume s≥ 8
21 and f ∈ Hs × Hs−1. Set fω defined according to the

previous randomization. There exists a regularity parameter σ ≥ 1
2 such that for almost

all ω ∈ Ω, there is a time Tω > 0 such that there is a unique solution to (3) in

cos(
√
−∆t) fω1 +

sin(
√
−∆t)

√
−∆

fω2 + C([−Tω,Tω],Hσ) .

The second one is dedicated to the global extension of these solutions (with Dirichlet
boundary conditions). It states :

T 2.3. Fix p ∈]4, 6[. Let fω1 and fω2 be :

fω1 =
∑

n

hn(ω)
nπ

en , fω2 =
∑

n

ln(ω)en .

Then, for all s< 1
2 and almost allω ∈ Ω, the problem (3) has a unique global solution

in

C(�t,H
s) ∩ Lp

loc(�t, L
p) .
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To prove this theorem, a cutoff on the frequencies of the Laplace-Beltrami operator is
used. The idea is to solve the equation on finite dimensional functional spaces, spanned by
theN first eigenfunctions of the Laplacian. Then, by taking limits of the finite dimensional
solutions, a subset ofΩ of full measure appears into which the norms of the local solutions
with initial data of the formf0(ω, . ), f1(ω, . ) are controlled as the limits of finite dimen-
sional solutions whose norms are themselves controlled. Therefore, this set of full measure
provides a set of functions such that the local solution can be extended. The way these sets
of control at finite times are built will inspire the construction of other sets onto which not
the flow is strongly globally defined but also onto which the measure that we will define is
invariant under this flow.

Before going further, the way the problem is reduced to a finite dimensional one will
be described, as the definitions involved shall prove themselves useful for the sequel.

D 2.4. Letχ be aC∞c function with support included in [−1, 1] and satisfying

χ ≡ 1

on [−1
2 ,

1
2]. Then, for allN ∈ � we callSN the operatorχ(−∆N2 ) that is to say the operator

that maps

∑

n

cnen

to

∑

n

cnχ(
n2

N2
)en .

The set linearly spanned by{en | n ≤ N} is now calledEN andΠN is the orthogonal
projection onEN.

P 2.5. The operators SN are uniformly continuous from Lp to EN normed
by Lp, that is to say that there exists a constant C independant from N such that for all
f ∈ Lp,

||SN f ||Lp ≤ C|| f ||Lp .

Also, for all f ∈ Lp, the sequence(SN f )N converges towards f in Lp.

The proof of this proposition can be found in [7].

The reduced problem in finite dimension becomes :

(4)

{
i∂tu+ (−∆)−1/2u+ SN((SNReu)3) = 0
u|t=0 = u0 = f1 + i(−∆)−1/2 f1

.

This should be explained in the next subsection.

2.2. Approximation of the flow by finite dimensional problems. First, one should
see how the equation (4) is derived from the non linear wave equation on the unit ball.
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Conserved quantities. The initial equation is :

(5)

{
∂2

t f − ∆B3 f + f 3
= 0 t, r ∈ � × B3

f |t=0 = f0 (∂t f )|t=0 = f1

whereB3 is the unit ball of�3 and∆B3 is the Laplace-Beltrami operator onB3 with Dirich-
let boundary conditions.

Now, by settingH =
√
−∆B3, u0 = f0 − iH−1 f1 andu = f − iH−1∂t f , u satifies :

(6)

{
i∂tu+ Hu+ H−1(Reu)3

= 0
u|t=0 = u0

P 2.6. The equation (6) is a Hamiltonian equation with energy :

E(u) =
1
2

∫

B3
|Hu|2(r)r2dr +

1
4

∫

B3
|Reu|4r2dr .

The operatorSN is then introduced in order to reduce the problem into an almost finite
dimensional one.

D 2.7. SetEN the quantity :

EN(u) =
1
2

∫

B3
|Hu|2r2dr +

1
4
|SNReu|4r2dr .

This quantity is the hamiltonian of the equation

i∂tu+ Hu+ SN(H−1(SNReu)3) = 0 .

P 2.8. Set u0 ∈ Hσ with σ < 1
2 and S(t) = eiHt the flow of the linear

equation i∂tu+ Hu = 0 and consider the equation :

(7)

{
i∂tv+ Hv+ SNH−1((SN(S(t)u0 + v))3)
v|t=0 = 0

.

There exists a global strong solution called vN.
Furthermore, uN = S(t)u0 + vN satisfies

i∂tuN + HuN + SN(H−1(SNReuN)3) = 0

with initial data u0. The flow of this equation is written uN(t) = ψN(t)(u0).

The equation (onv) i∂tv + Hv + SNH−1((SN(S(t)u0 + v))3) is on EN and thus the
Cauchy-Lipschitz theorem holds and shows that it admits a local unique solution for any
initial conditionv0, and withu0 fixed. Then, the quantityEN(ΠNS(t)u0+v) does not depend
on time and controlsv, which implies that the local solution does not explode and therefore
the solutionvN is global.

2.3. Building invariant measures. Now, invariant measures under the flowsψN are
built. First, callen(r) = sinnπr√

πr
the eigenfunctions of the Laplacian with Dirichlet boundary

conditions. Then, letΩ,P be a probability space and (gn)n a sequence of independant
centered and normalized gaussian variables. Set :

ϕN(ω, r) =
N∑

n=1

gn(ω)
nπ

en(r) .
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The image measureµN of ϕN on EN is absolutely continuous wrt the Lebesgue mea-
sure onEN and :

dµN(
N∑

n=1

(an + ibnen)) = dN

N∏

n=1

e−(nπ)2(a2
n+b2

n)/2dandbn

= dNe−
∫

B3 |H
∑

(an+ibn)en|2
N∏

n=1

dandbn

wheredN is a normalization factor.

Thanks to this point of view, it appears thatµN is invariant under the flotS(t) on EN.
Indeed, by Liouville theorem, the Lebesgue measure onEN is invariant under the flow and
the quantity1

2

∫
|Hu|2 is invariant underS(t).

Furthermore, the sequenceϕN converges inL2
Ω
,Hσ

r for all σ < 1
2. Denote its limit by

ϕ and callµ the image measure onHσ of ω 7→ ϕ(ω, .).

Also, considering the measureµ⊥N on E⊥N (the orthogonal being taken inHσ) such that

µ = µN ⊗ µ⊥N ,

it comes that onE⊥N, µ⊥N is the image measure of

ϕN : ω 7→
∞∑

n=N+1

gn(ω)
nπ

en .

L 2.9. Let U be an open (for the trace topology of Hσ on E⊥M) set of E⊥M and call
µM

N the image measure of

ϕM
N : ω 7→

N∑

n=M+1

gn(ω)
nπ

en

on EM
N the space linearly spanned by{eM+1, . . . , eN}, such thatµ⊥M = µ

N
M ⊗ µ⊥N. It comes,

µ⊥M(U) ≤ lim inf
N→∞

µM
N (U ∩ EM

N ) .

In particular, for M = 0, this leads to, for all open set U of Hσ,

µ(U) ≤ lim inf
N→∞

µN(U ∩ EN) .

P. Letσ < σ1 <
1
2. Let A be the set ofΩ, A = (ϕM)−1(U) andAN = (ϕM

N )−1(U ∩
EM

N ).

If A is empty, thenµ⊥M(U) = 0 = µM
N (U ∩ EM

N ).

If not, letω ∈ A. SinceU is an open set, there exists a ball of radiusǫ > 0 such that
ϕM(ω) + Bǫ ∩ E⊥M ⊆ U. Also,

||ϕM
N (ω) − ϕM(ω)||Hσ ≤ Nσ−σ1 ||ϕ(ω)||Hσ1 .

The norm||ϕ||L2
ω,Hσ1 being finite, fot almost allω, the||ϕ(ω)||Hσ1 is finite. So, for almost

all ω ∈ A, there existsN0 ≥ 0 such that for allN ≥ N0, ϕM
N (ω) ∈ ϕM(ω) + Bǫ ∩ E⊥M ⊆ U, as

ϕM
N − ϕM(ω) ∈ E⊥M, that is there existsN0 such that for allN ≥ N0
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ω ∈ AN that is to sayω ∈ lim inf AN .

So,A ⊆ lim inf AN with the possible exception of a negligible set. By Fatou lemma,

µ⊥M(U) = P((ϕM)−1(U)) = P(A) ≤ P(lim inf AN) ≤ lim inf P(AN) = lim inf µM
N (U ∩ EN) .

�

R 2.1. For all closed set F of E⊥M,

µ⊥M(F) ≥ lim supµM
N (F ∩ EM

N ) .

P 2.10. The measuresµ⊥M are invariant under the flow S(t)|E⊥M . Therefore,
with M = 0, µ is invariant under S(t).

P. Let F be a closed set ofE⊥M and for allǫ > 0, call BM
ǫ = Bǫ ∩ E⊥M with Bǫ

the open ball ofHσ of radiusǫ. For all t ∈ �, S(t) is a linear isometry ofHσ andE⊥M is

invariant underS(t). Thus, asF + BM
ǫ is a closed set ofE⊥M, S(t)F + BM

ǫ = S(t)(F + BM
ǫ ) is

also closed :

µ⊥M(S(t)F + BM
ǫ ) = µ(S(t)(F + BM

ǫ )) ≥ lim supµM
N (S(t)(F + Bǫ) ∩ EM

N )

and asS(t)A∩ EM
N = S(t)(A∩ EM

N ),

µ⊥M(S(t)F + BM
ǫ ) ≥ lim supµM

N (S(t)(F + BM
ǫ ∩ EM

N )) .

Then,µM
N is invariant under the flowS(t)|EM

N
for the same reasons asµN, so

µ⊥M(S(t)F + BM
ǫ ) ≥ lim supµM

N (F + BM
ǫ ∩ EM

N ) ≥ lim inf µM
N (F + BM

ǫ ∩ EM
N )

µ⊥M(S(t)F + BM
ǫ ) ≥ lim inf µM

N (F + BM
ǫ ∩ EM

N ) .

As F + BM
ǫ is open inE⊥M,

µ⊥M(S(t)F + BM
ǫ ) ≥ µ⊥M(F + BM

ǫ ) ≥ µ⊥M(F)

and by the dominated convergence theorem whenǫ → 0,

µ⊥M(S(t)F) ≥ µ⊥M(F) .

The linear equation is reversible on allE⊥M andS(t)F is closed so,

µ⊥M(F) = µ⊥M(S(−t)S(t)F) ≥ µ⊥M(S(t)F)

which gives

µ⊥M(F) = µ⊥M(S(t)F)

for all time t and all closed setF.

Then, again becauseS(t) is an isometry onE⊥M and thus preserves the topology, this
equality is stable under the passage to the complementary and to denombrable union.
Therefore, this property is true for all measurable setA and all timet. �
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As the quantity1
4

∫
B3 |SNReu|4 is µ almost surely finite (see [9]) the measure

dρN(u) = e−
1
4

∫
B3 |SNReu|4dµ(u)

is well-defined on allHσ.

P 2.11. The measureρN is invariant under the flowψN globally defined in
proposition (2.8)ψN(t) : Hσ → Hσ.

P. Consider a measurable setA of initial datau0. For eachu0 in A, we can write :

u0 = ΠNu0 + Π
⊥
Nu0

whereΠ⊥N is the orthonormal projector (inHσ) on E⊥N. It suffices to considerA of product
type, that is of the type :

A = {u0 | ΠNu0 ∈ B , Π⊥Nu0 ∈ C}
with B andC measurable sets of respectivelyEN andE⊥N since the topology (and so the
measurable sets) ofHσ is the same as the one of the cartesian productEN × E⊥N.

Therefore,

ψN(t)u0 = S(t)ΠNu0 + S(t)Π⊥Nu0 + v(t) = ψN |EN (t)(ΠNu0) + S(t)|E⊥NΠ
⊥
Nu0

and thus

ψN(t)(A) = ψN |EN (t)(B) × S(t)E⊥N
(C) .

So, the invariance ofρN underψN is reduced to the invariance ofµ⊥N underS(t) and the

invariance ofe−
1
4

∫
B3 |SNReu|4dµN(u) (on EN) underψN |EN . The first invariance has already

been dealt with. For the second one, allB ⊆ EN measurable satisfies:

∫

ψN |EN (t)(B)
e−

1
4

∫
B3 |SNReu|4dµN(u) =

∫

ψN |EN (t)(B)
e−

1
2

∫
B3 |Hu|2− 1

4

∫
B3 |SNReu|4dLN(u)

=

∫

ψN |EN (t)(B)
e−EN(u)dLN(u)

whereLN is the Lebesgue measure onEN. By Liouville theorem,LN is invariant under
ψN |EN , therefore the following change of variableu = ψN |EN (t)(w) holds :

∫

ψN |EN (t)(B)
e−

1
4

∫
B3 |SNReu|4dµN(u) =

∫

B
eEN(ψN |EN (t)(w))dLN(w) .

Then, remarking that onEN, EN(ψN|EN (t)(w)) can be derived overt and is equal to
EN(w), the measure is invariant and so,ρN is invariant underψN.

�

D 2.12. Let fN and f be the application onHσ defined as :

fN(u) = e−
1
4

∫
B3 |SNReu|4 and f (u) = e−

1
4

∫
B3 |Reu|4 .

The following statement comes from the analysis of [8].
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P 2.13. The quantity

1
4

∫

B3
|Reu|4

is finite forµ-almost all u∈ Hσ.
Besides, fN converges towards f in L1µ norm.

Therefore, the measureρ can be introduced as :

P 2.14. The measureρ such that :

dρ(u) = f (u)dµ(u)

is well defined and non trivial. And for all A measurable,

ρ(A) = lim
N→∞

ρN(A) .

The proof of the convergence is very similar to the one in the case of the defocusing
NLS, as can be found in [8], and then :

ρ(A) =
∫

A
f (u)dµ(u)

|ρ(A) − ρN(A)| ≤
∫

A
| f (u) − fN(u)|dµ(u) ≤ || f − fN ||L1

ω
.

The fact that there exists a set of fullρ measure onto which the flow of (6) is well-
defined has been proved in [9].

Now, the fact that the measureρ is invariant under the flow shall be seen.

3. Uniform convergence of the approached flows

3.1. Toolbox.
Sobolev embedding. For a start, here is the fondamental Sobolev embedding theorem

on�n.

T 3.1. Let n∈ � and s∈ �. Set p∈ [2,∞[ such that12 =
1
p +

s
n. The functional

space Hs(�n) is continuously embedded into Lp(�n). That is to say, there exists a constant
C(s) such that for all f∈ Hs(�n),

|| f ||Lp ≤ C|| f ||Hs .

R 3.1. By considering f radial and with compact support on B3 the unit ball
in dimension3, as a particular case of the precedent theorem for all f radial and with
compact support on B3 and in Hs(�3), that is to say for all f∈ H s, it comes :

|| f ||Lp(B3) ≤ C|| f ||Hs(B3)

as long as1
2 =

1
p +

s
3.

The proof of Sobolev embedding thorem can be found in [1].
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Deep into the local existence of solution for the cubic NLW. The goal here is to show
that on certain sets, the flowsψN converges uniformly towardsψ. So, first, determistic
Strichartz estimates and needed properties of the flow are described.

D 3.2. Letp > 2, q such that1p +
1
q =

1
2, T > 0 ands= 2

p . Call

Xs
T = C0([−T,T],Hs(B3)) ∩ Lp((−T,T), Lq(B3))

whereB3 is the unit ball in�3 and

Ys
T = L1([−T,T],H−s(B3)) + Lp′ ((−T,T), Lq′(B3))

its dual wherep′ andq′ are the conjugate numbers ofp andq.

P 3.3. Let p∈]4, 6[ and s= 3
2 −

4
p . There exists a constant C such that for

all T ∈]0, 1] and all f ,

|| f ||Lp([0,T],Lp(B3)) ≤ C|| f ||Xs
T

and || f ||Ys
T
≤ C|| f ||Lp′ ([−T,T]×B3) .

The proof comes from a particular case of interpolation between the two functional
spaces described in the definition ofXs

T .
Thanks to a combination of Sobolev embedding theorem and Strichartz inequality (see

[10] for further details), the following property holds :

P 3.4. Let p∈]4, 6[ and s defined as s= 3
2 −

4
p , there exists C≤ 0 such that

for all T ∈ [0, 1] and all f ∈ Hs :

||S(t) f ||Lp([−T,T]×B3) ≤ C|| f ||Hs .

P 3.5. Let p∈]4, 6[, p1 ∈]4, 6[ such that p1 > p, s= 3
2−

4
p and s1 = 3

2−
4
p1
>

s. There exists C such that for all T∈]0, 1] and all f ,

∫ t

0
S(t − u)H−1 f (u)du||Xs

T
≤ C|| f ||Y1−s

T

||(1− SN)
∫ t

0
H−1S(t − u) f (u)du||Xs

T
≤ CNs−s1|| f ||

Y
1−s1
T

.

The proof can be found in [9]. The last crucial result needed from this article is
the local existence theorem, and its implication regardingthe Xs

T norms of the function
v(t) = ψ(t)u0 − S(t)u0 whereψ(t) would be defined as the flow of

i∂tu+ Hu+ H−1(Reu)3
= 0

that is to sayv is the solution of

(8)

{
i∂tv+ Hv+ H−1((Re(S(t)u0 + v(t)))3) = 0
v|t=0 = 0

.

T 3.6. Choose a real number p∈]4, 6[ and define s as s= 3
2 −

4
p . There exists

C > 0, c > 0, γ = 1 − 4
p such that for any arbitrary large number A, there exists a time

of existenceτ ∈]0, 1] depending on A asτ = c(1 + A)−γ such that for all initial data u0
satisfying||S(t)u0||Lp

t,x∈[0,2]×B3 ≤ A, there exist unique solutions of the equations (7) and (8),
vN and v, belonging to Xsτ and satisfying :
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||v||Xs
τ
, ||vN||Xs

τ
≤ CA .

Also, as S(t) is 2 periodic (the eigenvalues of the Laplacian on B3 with Dirichlet
boundary conditions are of the form(nπ)2, n ∈ �∗) and thanks to the proposition (3.4),
there exists another constant C′ such that for each t∈ [−τ, τ] :

||S(t′)(u(t))||Lp
t′,x
, ||S(t′)(uN(t))||Lp

t′,x
≤ ||S(2t′)u0||Lp

t′,x
+ ||S(t′)v(t)||Lp

t′,x
≤ C′A

and if u0 ∈ Hσ, the solutions satisfies :

||u(t)||Hσ , ||uN(t)||Hσ ≤ C′||u0||Hσ

with u(t) = S(t)u0 + v and uN(t) = S(t)u0 + vN.

Remarks on sets’ measurements. The local results of existence will provide local prop-
erties of uniform convergence of the sequence of flowsψN toward the flowψ and then
induce properties on the invariance of the flow that will remain local. In order to extend
those next to appear local properties into a global invariance of the flow, we will have to
control the quantity denoted asA in the previous theorem. But this control has to satisfy
certain properties, such as the set that describes the initial data that lead to a controlled
solution must be of full measure.

To this purpose, consider the following proposition.

P 3.7. Letσ < 1
2, let p∈]4, 6[, let D ≥ 0 and consider the sets :

B(D)c
= {u0 ∈ Hσ | ||S(t)u0||Lp

t,x
> D }

and

E(D)c
= {u0 ∈ Hσ | ||u0||Hσ > D} .

There exists c> 0 independant from D such that :

ρ(B(D)c), ρN(B(D)c) ≤ µ(B(D)c) ≤ e−cD2

and

ρ(E(D)c), ρN(E(D)c) ≤ µ(E(D)c) ≤ e−cD2
.

The proof depends on the lemma 3.3 that can be found in [8].

R 3.2. It will appear that the timeτ1 < τ such that there is local convergence
on Xs

τ1
depends on D. It will then be necessary to prove thatτ1 is big enough to control

u(t) at some finite times tk with k ∈ � cover all times, and still have a set of initial data of
full ρ measure.

3.2. Local uniform convergence.We now want to prove that the flowsψ andψN are
such thatψ(t)u0 − ψN(t)u0 converges inXs

τ1
for someτ1 uniformly in u0.

L 3.8. Letσ ∈]0, 1
2[ ,p ∈]4, 6[ and s defined as s= 3

2−
4
p. Fix D ≥ 0 and consider

A(D) the set

A(D) = {u0 ∈ Hσ | ||S(t)u0||Lp ≤ D and ||u0||Hσ ≤ D}.
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There exists c1 > 0 andγ1 > 0 such that by fixingτ1 = min(c1(1+ D)−γ1, τ), whereτ
is the time provided by the theorem (3.6) for allǫ > 0, there exists N0 ≥ 0 such that for all
u0 ∈ A(D) and all N≥ N0,

||ψ(t)u0 − ψN(t)u0||Xs
τ1
< ǫ ,

that is to say thatψN(t)u0 converges uniformly in u0 ∈ A(D) in Xs
τ1

.

P. Let u0 ∈ A(D) andv andvN be such that

ψ(t)u0 = S(t)u0 + v(t) andψN(t)u0 = S(t)u0 + vN(t) .

The functionsv andvN are both inXs
τ so the norm

||ψ(t)u0 − ψN(t)u0||Xs
τ1
= ||v− vN ||Xs

τ1

is finite for allτ1 ≤ τ.
For all t ≤ τ :

v(t) − vN(t) =
∫ t

0
S(t − s)H−1

(
(Reψ(s)u0)3 − SN((SNReψN(s)u0)3)

)
ds

that is to sayv− vN = IN + II N with

IN = (1− SN)
∫ t

0
S(t − s)H−1

(
(Reψ(s)u0)3

)
ds

and

II N =

∫ t

0
S(t − s)SNH−1

(
(Reψ(s)u0)3 − (ReSNψN(s)u0)3

)
ds .

Thanks to proposition (3.5), forT ≤ τ ands1 > s

||IN||Xs
T
≤ CNs−s1||(Reψu0)3||

Y
1−s1
T

with C independant fromD, T, andN. Let p1 be such that 1− s1 =
3
2 −

4
p1

. The condition

s1 > s is equivalent top1 <
2p
p−2 . Hence :

||IN||Xs
T
≤ CNs−s1||(Reψu0)3||

L
p′1
t,x

||IN||Xs
T
≤ CNs−s1 ||(Reψu0)||3

L3p′1
.

To majore this norm, the condition 3p′1 ≤ p is wanted. This condition is equivalent to
p1 ≥ p

p−3 , which meansp1 has to be chosen in the interval [p
p−3 ,

2p
p−2 [. But sincep > 4,

p
p−3 <

2p
p−2, and so, such a choice is possible, and in particular, by choosing p1 =

p
p−3, or

3p′1 = p, it comes :

||IN||Xs
T
≤ CNs−s1 (||S(t)u0||Lp + ||v||Lp)3

||IN||Xs
T
≤ CNs−s1

(
||S(t)u0||Lp + ||v||Xs

T

)3

and thanks to theorem (3.6),||v||Xs
T
≤ CD with C independant fromD andT as long as

T ≤ τ so



140 ANNE-SOPHIE DE SUZZONI

||IN||Xs
T
≤ CNs−s1D3 .

Therefore, for allǫ > 0, there existsN0 such that for allu0 ∈ A(D), all T ≤ τ and all
N ≥ N0,

||IN||Xs
T
≤ ǫ .

Once more, thanks to (3.5),

||II N||Xs
T
≤ ||
(
(Reψ(s)u0)

3 − (ReSNψN(s)u0)
3
)
||Y1−s

T

and withp2 such that 1− s= 3
2 −

4
p2

that isp2 =
2p
p−2,

||II N||Xs
T
≤ ||
(
(Reψ(s)u0)3 − (ReSNψN(s)u0)3

)
||

Lp′2 .

Since

|(Reψ(s)u0)3−(ReSNψN(s)u0)3| ≤ 3
2
|Reψ(s)u0−ReSNψN(s)u0|

(
(Reψ(s)u0)2

+ (ReSNψN(s)u0)2
)
,

by Hölder inequality with1
p′2
=

1
3p′2
+

2
3p′2

,

||II N||Xs
T
≤ ||Reψ(s)u0 − ReSNψN(s)u0||L3p′2 ||(Reψ(s)u0)2

+ (ReSNψN(s)u0)2||
L3p′2/2

≤ ||Reψ(s)u0 − ReSNψN(s)u0||L3p′2

(
||(Reψ(s)u0)2||

L3p′2/2 + ||(ReSNψN(s)u0)2||
L3p′2/2

)

As 3p′2 =
6p
p+2 < p and

||(Reψ(s)u0)2||
L3p′2/2 = ||Reψ(s)u0||2L3p′2 ≤ T2γ2 ||ψ(s)u0||2Lp

with γ2 =
p−4
6p , it comes that :

||II N||Xs
T
≤ CD2T2γ2 ||Reψ(s)u0 − ReSNψN(s)u0||L3p′2

with C independent fromD andT as long asT ≤ τ.
Now, the quantity||Reψ(s)u0−ReSNψN(s)u0||L3p′2 ≤ αN+βN remains to be considered,

with αN = ||(1− SN)ψ(s)u0|| andβN = ||SN(ψ(s)u0 − ψN(s)u0)||.
By the same convex inequalities as precedently,

βN ≤ CTγ2 ||ψ(s)u0 − ψN(s)u0||Lp ≤ CTγ2 ||ψ(s)u0 − ψN(s)u0||Xs
T
.

Choose 2< p3 <
3

3/2−σ ∈]2, 3[ and callσ3 = 3
(

1
2 −

1
p3

)
< σ. As p3 < 3 < 3p′2 < p

so, there existsθ ∈]0, 1[ such that 1
3p′2
=

θ
p3
+

1−θ
p , thus

αN ≤ ||(1− SN)ψ(s)u0||θLp3 ||(1− SN)ψ(s)u0||1−θLp

||(1− SN)ψ(s)u0||Lp ≤ C(||S(t)u0||Lp + ||v||Xs
T
) ≤ CD

and by Sobolev embedding theorem :

||(1− SN)ψ(s)u0||Lp3 ≤ ||(1− SN)ψ(s)u0||Lp3
t ,H

σ3
x

Now, for all s,
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||(1− SN)ψ(s)u0||Hσ3 ≤ CNσ3−σ||ψ(s)u0||Hσ ≤ CDNσ3−σ

and so

αN ≤ CNθ(σ3−σ)DθD1−θ
= CNθ(σ3−σ)D .

Therefore, for allǫ > 0, there existsN0 such that for allu0 ∈ A(D), all T ≤ τ, and all
N ≥ N0,

αN ≤ ǫ .
Now, let us sum up these inequalities.

||ψ(t)u0−ψN(t)u0||Xs
T
≤ IN+CD2T2γ2(αN+βN) ≤ IN+CαN+CD2T3γ2 ||ψ(t)u0−ψN(t)u0||Xs

T
.

Set γ1 = max(γ, 2
3γ2

) and τ1 = min(τ,C−1/(3γ2)(1 + D)−γ1), such thatCD2τ
3γ2

1 <

CD2τ
2/γ1

1 < 1, hence

||ψ(t)u0 − ψN(t)u0||Xs
τ1
≤ C(IN + αN)

so for allǫ > 0 there existsN0 such that for allu0 ∈ A(D) and allN ≥ N0

||ψ(t)u0 − ψN(t)u0||Xs
τ1
≤ ǫ .

�

R 3.3. Note that the construction ofγ1 ensures thatγ1 ≥ γ but thatτ1 is still a
power of D.

3.3. Local invariance. Let us show that the measure is invariant under the flow lo-
cally in time. That is, as long as the sequenceψN(t)u0 converges uniformly on some sets, it
will appear thatρ(ψ(t)A) ≥ ρ(A). This is the first step in order to reach a global invariance
result for the measure.

L 3.9. Letσ ∈]0, 1
2[, p ∈]4, 6[, s= 3

2 −
4
p , and D> 0. Set A(D) the set described

in (3.8), τ = c(1 + D)−γ the local exitence time coming from theorem (3.6) andτ1 =

min(τ, c1(1+ D)−γ1) the local time of uniform convergence, all three depending only on D
and p. Then, for all A⊆ A(D) measurable, and all t∈ [−τ1, τ1], the setψ(t)A is measurable
and :

ρ(ψ(t)A) = ρ(A) .

P. First, for allA measurable,ψ(t)A is also measurable thanks to the local conti-
nuity of the flow. Assume now thatA is a closed set ofHσ included inA(D) and setǫ > 0.
By lemma (3.8), there existsN0 such that for allu0 ∈ A(D) and allN ≥ N0

||ψ(t)u0 − ψN(t)u0||Xs
τ1
≤ ǫ .

But by definition,|| . ||Xs
τ1
≥ || . ||C0([−τ1,τ1],Hs(B3)). So for allt ∈ [−τ1, τ1],

||ψ(t)u0 − ψN(t)u0||Hs ≤ ǫ .
Let Bǫ be the ball inHs of center 0 and radiusǫ, asA ⊆ A(D), for all N ≥ N0, and all

t ∈ [−τ1, τ1],
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ψN(t)(A) ⊆ ψ(t)(A) + Bǫ

therefore

ρN(ψN(t)(A)) ≤ ρN(ψ(t)(A) + Bǫ) .

Then, since the measureρN is invariant under the flowψN, as it is stated in proposition
(2.11),

ρN(ψN(t)A) = ρN(A)

and thus

ρN(A) ≤ ρN(ψ(t)A+ Bǫ) .

Then, using the fact that (proposition (2.13)), for allµ measurable setB,

ρ(B) = lim
N→∞

ρN(B) ,

and as the propertyρN(A) ≤ ρN(ψ(t)A+ Bǫ) is true for allN ≥ N0, by taking the limit :

ρ(A) ≤ ρ(ψ(t)A+ Bǫ)

and then by makingǫ tend toward 0, thanks to the dominated convergence theorem,

ρ(A) ≤ ρ(ψ(t)A)

and that for allt ∈ [−τ1, τ1]. Indeed,ψ(−t) = ψ(t)−1 is continuous inHσ, soψ(t)A is closed
in Hσ.

For the reverse inequality, use the fact that indeed,ψ(t)A ⊆ ψN(t)A + Bǫ for all u0 ∈
A(D) andn ≥ N0. It is also true that the ball̃Bǫ of radiusǫ in Hσ containsBǫ asσ < 1

2 < s,
so :

ψ(t)A ⊆ ψN(t)A+ B̃ǫ .

Then, the fact that the equation is reversible, and soψN(t)−1
= ψN(−t) is used. Also,

thanks to the continuity of the local flow onHσ, there exists a constantC depending on the
time t but not onǫ or N such that :

ψN(−t)(ψN(t)A+ B̃ǫ) ⊆ A+ B̃Cǫ

so

ψ(t)A ⊆ ψN(t)A+ B̃ǫ ⊆ ψN(t)(A+ B̃Cǫ)

and

ρN(ψ(t)A) ≤ ρN

(
ψN(t)(A+ B̃Cǫ)

)
= ρN(A+ B̃Cǫ)

thanks to the invariance ofρN underψN.

By passing to le limitN ≥ N0→ ∞,

ρ(ψ(t)A) ≤ ρ(A+ B̃Cǫ)

and thenǫ → 0,

ρ(ψ(t)A) ≤ ρ(A)
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so for all closed setA of Hσ included inA(D),

ρ(ψ(t)A) = ρ(A) .

Then, remark thatA(D) is a closed set ofHσ, so

ρ(ψ(t)A(D)) = ρ(A(D))

and thus the property of invariance under the flow passes to the complementary and the
denombrable unions. It holds on every measurable set. �

4. Measure invariance

4.1. Building sets of full measure with global existence.We now need to build a
set of fullρ measure such that in this set not only the local invariance result holds but also
can be extended to a global one, that is to say that in this set the flow must be globally well
defined.

D 4.1. Let

Di, j = (i + j1/γ1)1/2

with i, j ∈ � and setTi, j =
∑ j

l=1 τ1(Di,l). Let

ΠN,i = {u0 | ∀ j ∈ � , ψN(±Ti, j) ∈ A(Di, j+1)}
and

Πi = lim sup
N→∞

ΠN,i

and finally

Π =

⋃

i∈�
Πi .

P 4.2. The setΠ is of full ρ measure.

P. Let us compute the measure of the complementary set ofΠ.

First, as

ΠN,i =

⋂

j∈�
ψN(±Ti, j)−1(A(Di, j+1)) ,

ρ(Πc
N,i) ≤ || f − fN ||L1

µ
+ ρN(Πc

N,i)

and

ρN(Πc
N,i) ≤

∞∑

j=0

ρN(
(
ψN(±Ti, j)−1(A(Di, j+1)

)c
) .

Then, using that
(
ψN(±Ti, j)−1(A(Di, j+1)

)c
= ψN(±Ti, j)−1(A(Di, j)c), it becomes clear

that theρN measures of these sets are equal and asρN is invariant under the flowψN :

ρN(Πc
N,i) ≤ 2

∑

j

ρN(A(Di, j)c) ≤ 2
∑

j

µ(A(Di, j)c)

But, A(D)c
= B(D)c ∪ E(D)c with B andE the sets defined in (3.7) so
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µ(A(D)c) ≤ µ(B(D)c) + µ(E(D)c) ≤ 2e−cD2

so

ρN(ΠN,i) ≤ C
∑

j

e−cD2
i, j

and so

ρ(Πc
N,i) ≤ Ce−ci

∑

j

e−c j1/γ1 ≤ Ce−ci

ase−c j1/γ1 is the general term of a convergent series.

Therefore :

ρ(Πc
i ) = ρ(lim inf Πc

N,i) ≤ lim inf ρ(Πc
N,i) = e−cD2i

+ lim inf || f − fN ||L1
µ
= Ce−ci

and then

ρ(Πc) = ρ(
⋂

i

Π
c
i ) ≤ lim ρ(Πc

i ) = 0

that is to say thatΠ is of full measure. �

L 4.3. Let u0 ∈ Πi , the flowψ(t)u0 is strongly globally defined and for all j∈ �
andψ(±Ti, j)u0 belongs to A(Di, j+1).

P. As u0 ∈ Πi = lim supΠN,i , there exists a sequenceNk → ∞ such that for allk,
u0 ∈ ΠNk,i , which is equivalent toψNk(±Ti, j)u0 ∈ A(Di, j) for all j ∈ �.

Then, by recurrence overj, it can be proved thatψ(t)u0 is defined on [−Ti, j,Ti, j] and
thatψ(±Ti, j)u0 − ψNk(±Ti, j)u0 converges toward 0 inH s whenk→ ∞.

For j = 0, Ti,0 = 0 and sou0 = ψNk(±Ti,0)u0 ∈ A(Di,1 andψ(Ti,0)u0 − ψNk(Ti,0)u0 = 0
converges toward 0 inHs.

Suppose that at rankj,ψ(t)u0 strongly exists on [−Ti, j,Ti, j] andψ(±Ti, j)(u0)−ψNk(±Ti, j)(u0)
converges toward 0 inHs. Let us show that the property holds at rankj + 1. As

||ψ(±Ti, j)(u0) − ψNk(±Ti, j)(u0)||Hσ ≤ ||ψ(±Ti, j)(u0) − ψNk(±Ti, j)(u0)||Hs

and

||S(t)
(
ψ(±Ti, j)(u0) − ψNk(±Ti, j)(u0)

)
||Lp

t,x
≤ ||ψ(±Ti, j)(u0) − ψNk(±Ti, j)(u0)||Hs

and for allk,

||ψNk(±Ti, j)(u0)||Hσ ≤ Di, j+1

and

||S(t)
(
ψNk(±Ti, j)(u0)

)
||Lp

t,x
≤ Di, j+1 ,

by taking the limits whenk→ ∞, it comes thatu± := ψ(±Ti, j)u0 ∈ A(Di, j+1).

So, thanks to theorem (3.6)ψ(t)u± is strongly defined on [−τ1, τ1] ⊆ [−τ, τ] and thanks
to lemma (3.8),
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ψ(t)u± − ψNk(t)u±
converges toward 0 inXs

τ1(Di, j+1). In particular,

ψ(±τ1(Di, j+1)u± − ψNk(±τ1(Di, j+1))u±
converges toward 0 inHs.

Then, as

ψ(±Ti, j+1)u0 − ψNk(±Ti, j+1)u0 = ψ(±τ1(Di, j+1))u± − ψNk(±τ1(Di, j+1))u±+

ψNk(±τ1(Di, j+1))u± − ψNk(±τ1(Di, j+1))(ψNk(±Ti, j)u0

and sincev 7→ ψN(±τ1(Di, j+1))v is uniformly in N continuous fromHs∩ A(Di, j+1) to Hs, it
implies that

ψNk(±τ1(Di, j+1))u± − ψNk(±τ1(Di, j+1))(ψNk(±Ti, j)u0

also converges toward 0 inHs. Therefore,

ψ(±Ti, j+1)u0 − ψNk(±Ti, j+1)u0

converges toward 0 inHs and as it has precedently been seen, it implies thatψ(±Ti, j+1) ∈
A(Di, j+2). �

4.2. Global invariance. Now, a first result of global invariance can be proved.

P 4.4. Let A be a measurable set included inΠi . Then for all t ∈ �, we
have

ρ(ψ(t)(A)) = ρ(A) .

P. In order to prove such a fact, it is required that the sequence Ti, j wherei is
fixed diverges.

Indeed,

τ1(Di, j) = min(τ(Di, j, c1(1+ Di, j)
−γ1) = min(c(1+ Di, j)

−γ, c1(1+ Di, j)
−γ1)

and Di, j =
√

i + j1/γ1 diverges. Therefore, asγ1 ≥ γ, above a certain rankτ1(Di, j) =
c2(1+ Di, j)−γ1 with c2 = c1 if γ < γ1 or c2 = min(c, c1) otherwise.

So,τ1(Di, j) behaves likej−1/2 when j → ∞ and so the sequenceTi, j diverges.

Let t ∈ �, there existsj such thatt ∈ [Ti, j,Ti, j+1] if t ≥ 0 or t ∈ [−Ti, j+1,−Ti, j]. Let us
show by recurrence overj that for allt ∈ [Ti, j,Ti, j+1] ∪ [−Ti, j+1,−Ti, j],

ρ(ψ(t)A) = ρ(A)

.
For j = 0, we haveTi,0 = 0, Ti,1 = τ1(Di,1) and A = ψ(Ti,0)(A) ⊆ ψ(Ti,0)(Πi) ⊆

A(Di,1) thanks to lemma (4.3). So, the local invariance lemma (3.9)holds : for all t ∈
[−τ1(Di,1), τ1(Di,1)],

ρ(ψ(t)(A)) = ρ(A) .
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For j − 1 ⇒ j, ψ(±Ti, j)(A) ⊆ ψ(Ti, j)(Πi) ⊆ A(Di, j+1) (lemma (4.3)). So, by using
lemma (3.9), for allt ∈ [0, τ1(Di, j+1)],

ρ
(
ψ(±t)

(
ψ(±Ti, j)(A)

))
= ρ
(
ψ(±Ti, j)(A)

)
.

Then, by using the recurrence hyothesis,

ρ
(
ψ(±Ti, j)(A)

)
= ρ(A) .

And so, for all

t ∈ [Ti, j,Ti, j + τ1(Di, j+1)] ∪ [−Ti, j − τ1(Di, j+1),−Ti, j]

= [Ti, j,Ti, j+1] ∪ [−Ti, j+1,−Ti, j] ,

it comes

ρ(ψ(t)(A)) = ρ(ψ(t)(A)) .

�

T 4.5. For all ρ measurable set included inΠ, we have :

ρ(ψ(t)(A)) = ρ(A) .

P. AsΠ =
⋃

i Πi , andA ⊆ Π, A can be written :

A =
⊔

i∈�
Ai

with Ai ⊆ Πi , and theAi disjoint. So,

ψ(t)(A) =
⊔

i∈�
ψ(t)Ai

since the flow is strongly defined inΠ.

ρ(ψ(t)A) =
∑

i∈�
ρ(ψ(t)Ai) =

∑

i∈�
ρ(Ai) = ρ(

⊔

i∈�
Ai) = ρ(A) .

�
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