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Invariant measure for the cubic wave equation on the unit ball of R3
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Asstract. This paper deals with the invariance of a measure on Solsplages of low
regularity under the flow of the cubic non linear wave equata the unit ball ofR3 under

the assumption of spherical symmetry. It presents two @spaa analytic one which
includes the treatment of local properties of the flow, andababilistic one, which is
mainly related to the global extension of the flow and theriavece of the measure.
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1. Introduction

The goal here is to prove the invariance of the measwenstructed indg], 11, under
the flow of the cubic non linear wave equation on the unit belkd, hence answering the
remark 6.3 of the paper by Nicolas Burg and Nikolay Tzvetkov.

The equation studied is :

1)

0 —Agef+3=0 (t,x) e RxB?
fli-o = fo Oifli-o=f1 ’

wheref is real, radial B% is the unit ball inR3, andAgs is the Laplace-Beltrami operator on
B® with Dirichlet boundary conditions. Though, it is soon todf&nged into its complex
form, that is, writingH = vV=Ags andu = f — iH 14, f,
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@ { iou+ Hu+ HY(Reu)®* =0

Ult=o = Up = fo — iH71f1

In order to define the measure invariant under the flovidof (Bgcquence of indepen-
dant complex centered and normalised (&40, 1)) (gn)n is introduced, along with the
measure:, which is the image measure of the (well-defined) map fronmobalility space

1

to the Sobolev spade”, o < 5 :

- On
(,D((L), r) = _en

whereg, are the radial eigenfunctions afs with eigenvalues?n?. It makesu a sort of
limit of gaussian orRN whenN goes to infinity.

The measurp is then defined as :

SELLLN
do(u) = e *E du(u)
absolutely continuous wit. It has been proved thatis genuine, the norm. || «gs) being
u - almost surely finite.

It comes fromlg] :

Tueorem 1 (Burq,Tzvetkov).Let o < % There exists a s&t ¢ H” of full u or p
(which is equivalent) measure such that for any initial dagathe flow is globally well-
defined and what is more the solution[df (2) is unique [)® + H® where St) is the flow
of the linear equationd:u + Hu = 0 and s is some real numbebs%.

Using the ideas of the proof of this theorem and the local @riypof the solution, the
following theorem will be proved.

Tueorem 2. There exists a sdl € H” of full p measure such that the solution OF (2)
is strongly globally well-defined for any initial data takenI1 and that all measurable set
Aincluded inlI satisfies at all time t ;

PWOA) = p(A) .

Before going further, it has to be understood thas built to be invariant under the
flow of the non linear wave equation. Actually, by applyingw-off on the frequency
of the Lapace-Beltrami operator with radial symmetry anddbiet boundary conditions
of the unit ball inR3, the NLW is approached by PDE in finite dimension, suceptible
finite dimension theory, like Cauchy-Lipschitz theorendéerd, calEy the space linearly
spanned bW first eigen functions of the radial Laplace-Beltrami operan the unit ball
of R3 with Dirichlet boundary conditions, by using projectors Bg, or, better to say,
operators that send* into Ey which are more regular than mere orthogonal projectors,
the non linear wave equation can be reduced onto a probldsy pwhich admits a unique
maximal condition thanks to Cauchy-Lipschitz theorem tteat be proved to be a global
one thanks to the existence of a conserved positive enelgg.rdduction is chosen such
that the solutions convergesin the space of distributiowatds a solution of the non linear
wave equation.

Then, finding a measuggy on Ey which is invariant under the flow of this equation
relies mostly on the existence of a conserved energy and/llietheorem. It happens that
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the sequencey extended tdH converges towards a non trivial measpren H?. The
measure being a limit ofpy, it is expected to be invariant under the flow of NLW.

In previous works, likeld,[3,[4 [ 11, the strategy applied to prove the invariance of the
measure in infinite dimension used the fact that the init&lich was taken in spacés
such that the orthogonal projectdig on Ey were uniformly bounded, that is to say, there
existsC independant fronlN, such that|TIy||lx_ < C. So the projectionEyu converged
towardu in H uniformly in every compact subset &f. In these cases, by approaching the
the initial data inH by its projections, the flow with initial data, could be approached
by the finite dimensional flow dfiyup, the convergence being uniform on any compact set
of initial data inH. However, here, the control that ensures the existenceobigbtrong
solution in [9] is the norm :

IS(®)uoll» ;

te[0,2]. xeB3
and thus the convergence Ofjup in H does not ensure the convergence of this norm
applied tollyug and thus not the uniform (regarding the initial data) cogeece of finite
dimensional solutions towards the global solution.

This problem can be solved though by introducing slightljedent “finite” measures
and dimensional equations. Instead of entirely reduciegtioblem to a problem oBy,
only its non linear part will, that is to say, the initial datéll be taken inH” but the non
linear part will be projected oky. Therefore, the reduced problem will present two parts
. a linear and of infinite dimension one and a finite dimendidmaugh non linear one.
Then, the reduced measysg, instead of being defined day will be defined on alH”
(and still invariant under the flow). The initial data, thusll not have to be approached,
only the flow will, like in [8]. Unlike in [8] though, considerations on the reversibility of
the flow will be confined to the linear treatment. Indeed, toe/fof the linear equation
is defined on alH” which makes it easier to manipulate. The afore-mentionedesty
using the uniform bound of the projectors will be used to prthe invariance of under
the linear flow. Nevertheless, the flow of the NLW being definaty on a subset of H?,
this subset has to be invariant under the flow if the revditsitmf the flow must be used.

To sum up, [9] will provide the topological framework and the local resubf ex-
istence for the non linear wave equatiofl] fhe descriptions of the “new” partly finite
dimensional measure& J] a guideline to prove the invariance of the measutsder the
linear flow, [2] the main ideas and properties about random gaussian ,s@néshanks to
all these results, the invariance@s$hall be proved.

Plan of the paper. The first part is a reminder of the resulfS,6f1,[§ rewritten in a
slightly different form in order to fit with the framework. The resultsi@fdre stated at the
beginning to display the theorems that compose the stgsting. Then, the approximation
of the non linear wave equation by finite dimensional proldéetailed. Finally, the first
part of the proof of theoreniil(2) is given, that is, the corctan of the measurgs andp
and the invariance qf under the linear flow.

The second part is mainly analytical, it deals with the Igualperties of the flow.
First, the local existence of the flow is derived frofj, [then a result of local (in time)
uniform (for the initial data) convergence of the approcfied towards the local flow of
NLW is given, which leads to a result of local invarianceoafnder the local flow.

The last one is dedicated to the extension of the local wiuti a global one when the

initial data is taken il and then of the extension of the local invariance result ttobaj
one.
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2. Existence of solution for the cubic NLW

2.1. Statement of the main results.In [9], Nicolas Burg and Nikolay Tzvetkov have
proved that there existed a large subset6fwith o= < % that could be taken as initial data
for the 3D-non linear wave equation :

(3) @ -Au+u=0

with u a radial function ana the Laplace-Beltrami operator on the unit ballRo.

The first paper shows the existence of local solution usingr@l@mization of the
initial data.

The randomization is given by :

DeriniTion 2.1. Lets > 2% f = (f1, f2) € HSx H> ! anday, B, the sequences defined
as:

f1 = Za’nen , fo= Z,Bnen
n n

with e, the eigenfunctions ok on the unit ball with Dirichlet or Neumann conditions.

Then, leth,, I, be sequences of real centered gaussian variables, indepenoim
each other on a probability spa®eP. Set :

f@ = (2, fy)
with

i = > h(@)angn , 5 = ) In(@)Baen -

Then, a local solution exists :

THEOREM 2.2. ASsume $> 2% and f € HSx HS1. Set # defined according to the
previous randomization. There exists a regularity paramnet > % such that for almost
all w € Q, there is a time J > 0 such that there is a unique solution [d (3) in

sin(V-At)
V-A

The second one is dedicated to the global extension of tlodstons (with Dirichlet
boundary conditions). It states :

cos(V-At)fy” + £ +C([-Tw, Tul, HY) .

Tueorem 2.3. Fix p €]4,6[. Let £ and £’ be :
w _ hn(w) w _
f] —znlven, fy = zn:|n(w)en-
Then, for all s< % and almost allw € Q, the problem[{8) has a unigue global solution

in

C(R, H) N L? (R, LP).

loc



INVARIANT MEASURE 131

To prove this theorem, a cutmon the frequencies of the Laplace-Beltrami operator is
used. The idea is to solve the equation on finite dimensiamaitional spaces, spanned by
theN first eigenfunctions of the Laplacian. Then, by taking lsof the finite dimensional
solutions, a subset @1 of full measure appears into which the norms of the localtsmis
with initial data of the formfy(w, . ), f1(w, . ) are controlled as the limits of finite dimen-
sional solutions whose norms are themselves controlleetefbre, this set of full measure
provides a set of functions such that the local solution eaextended. The way these sets
of control at finite times are built will inspire the consttion of other sets onto which not
the flow is strongly globally defined but also onto which theaswgre that we will define is
invariant under this flow.

Before going further, the way the problem is reduced to afidimensional one will
be described, as the definitions involved shall prove tharaseaiseful for the sequel.

DeriniTion 2.4, Lety be aCg® function with support included in{1, 1] and satisfying

x=1

on [3, 3]. Then, for allN € N we call Sy the operatoy(5?>) that is to say the operator
that maps

D caen
n

to

2
Z va(%)en :

The set linearly spanned g, | n < N} is now calledEy andIly is the orthogonal
projection onEy.

ProrosiTion 2.5. The operators § are uniformly continuous fromfL.to Ey normed
by LP, that is to say that there exists a constant C independant fkbsuch that for all
f e LP,

ISk flle < ClIfflLe -

Also, for all f € LP, the sequencésy f)y converges towards f infl

The proof of this proposition can be found Iirff
The reduced problem in finite dimension becomes :

(4) i0u + (—A)2u + Sn((SnReu)®) = 0
Ulo = Ug = fy +i(—A)"Y2f;

This should be explained in the next subsection.

2.2. Approximation of the flow by finite dimensional problems First, one should
see how the equatiofl(4) is derived from the non linear wavaton on the unit ball.
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Conserved quantities. The initial equation is :

5) 0 —Agef+3=0 t,reRxB?

flt=o = fo (0tf)h=0 = f1
whereB? is the unit ball ofR® andAgs is the Laplace-Beltrami operator &3 with Dirich-
let boundary conditions.

Now, by settingH = v=Ags, Up = fo — iH*f; andu = f — iH %, f, u satifies :
iou+Hu+HY(Reu)®> =0
(6) _
U0 = Uo

ProposiTion 2.6. The equation{6) is a Hamiltonian equation with energy :

8(U)=}f |Hu|2(r)r2dr+}f [Rey*r?dr .
2 B3 4 B3

The operatoBy is then introduced in order to reduce the problem into an atifiiite
dimensional one.

DeriniTioN 2.7. Set€y the quantity :

1 1
En(u) = > j;3 [Hul?r?dr + ZlSNReu|4r2dr .

This quantity is the hamiltonian of the equation

idu+ Hu+ Sy(H(SyReu)®) = 0.

ProposiTion 2.8. Set iy € H? with o < % and t) = €™t the flow of the linear
equation d;u + Hu = 0 and consider the equation :

i0v + HV + SyHL((Sn(S(t)ug + V)3)

(M 0
Vlt=0 =

There exists a global strong solution calleg. v

Furthermore, y = S(t)ug + vy satisfies

idiuy + Huy + Sy(H™Y(SyRew)®) = 0
with initial data w. The flow of this equation is writteny(t) = v (t)(Up).
The equation (orv) idv + Hv + SyHY((Sn(S(t)up + V))®) is on Ey and thus the
Cauchy-Lipschitz theorem holds and shows that it admitsal lonique solution for any
initial conditionvg, and withug fixed. Then, the quantity (ITyS(t)ug+V) does not depend

on time and controlg, which implies that the local solution does not explode dnaaléfore
the solutionvy is global.

2.3. Building invariant measures. Now, invariant measures under the floyss are
built. First, calle,(r) = % the eigenfunctions of the Laplacian with Dirichlet boundar

conditions. Then, lef), P be a probability space andf), a sequence of independant
centered and normalized gaussian variables. Set :

N
enton =Y e ).
n=1
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The image measupgy of ¢y on Ey is absolutely continuous wrt the Lebesgue mea-
sure onEy and :

N N
d,uN(Z(an + |bnen)) = dN l_[ e—(n;r)z(a%+b2n)/2dandhq
n=1 n=1

N
= dye Je3 IH Z(an+ibn)enl? l_[ da,dby,
n=1

wheredy is a normalization factor.

Thanks to this point of view, it appears that is invariant under the flos(t) on Ey.
Indeed, by Liouville theorem, the Lebesgue measurggis invariant under the flow and
the quantity% f|Hu|2 is invariant undes(t).

Furthermore, the sequengg converges irL2, HY for all o < % Denote its limit by
¢ and callu the image measure di” of w — ¢(w, ).

Also, considering the measuug on Ey, (the orthogonal being taken ) such that

H=pN® Uy
it comes that orEy, uy; is the image measure of

Niwe Z gn(w)en.
nr
n=N+1

Lemma 2.9. Let U be an open (for the trace topology of ldn E;) set of g, and call
uy the image measure of

O i)
¢M LW :El —IL——eh
on EM the space linearly spanned g1, . . ., en}, such thajy, = /,z',\“,, ® py. It comes,

uy(U) < IiLninpr(U NEY).

In particular, for M = 0, this leads to, for all open set U of’H
u(U) < Iiminf un(U N Ey).

Proor. Leto < oy < 3. Let Abe the set of2, A = (¢M)~1(U) andAy = (¢N)2(U N
EM).

If Ais empty, thens;(U) = 0= uN (U N EN).

If not, letw € A. SinceU is an open set, there exists a ball of radius 0 such that
oM(w) + B.NEY € U. Also,

N (@) = @M (@)l < N7 ()l

The normilgl|, > -, being finite, fot almost alb, the|lp(w)lln- is finite. So, for almost

all w € A, there existd\No > 0 such that for alN > No, ¢ (w) € ¢™(w) + B.NEj; C U, as
oM — pM(w) € E}, that is there existhly such that for alN > No
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w € Ay thatisto sayw € liminf Ay .
So,A C liminf Ay with the possible exception of a negligible set. By Fatourfean

1(U) = P(™)X(U)) = P(A) < P(liminf Ay) < liminf P(Ay) = liminf (U N Ey) .
O

Remark 2.1. For all closed set F of i,

uiy (F) = limsupu (F N EY) .
Proposition 2.10. The measuregy, are invariant under the flow ®)le;. Therefore,
with M = 0, u is invariant under $t).

Proor. Let F be a closed set dEy, and for alle > 0, call BM = B.n Eyy with B.
the open ball oH” of radiuse. For allt € R, S(t) is a linear isometry oH” andEy; is

invariant undes(t). Thus, afF + BV is a closed set dEy, S(t)F + BM = S(t)(F + BM) is
also closed :

1y (SAF + BM) = u(S(O)(F + BM)) > lim supup (S()(F + Bo) N EN)
and asS(t)An EY = S(H(ANEN),

pia(SF + BY) > lim supuy (SO(F + BY n EY)) .
Then,,u,"\j1 is invariant under the fIO\B(t)|EM for the same reasons ag, so

17 (S)F + BM) > lim supud (F + BY N EN) > liminf xM (F + BY N EY)

iy (S(F + BM) > liminf uM(F + BM n EY) .
As F + BM is open inEy,,

H(SMF +BM) > iy (F + BY) > iy (F)
and by the dominated convergence theorem whenO0,

Hw(SMF) > py(F) .
The linear equation is reversible on B, andS(t)F is closed so,

i (F) = i (S(-DSHF) > uy (SHF)
which gives

um(F) = uw(S(HF)
for all timet and all closed sef.

Then, again becausg(t) is an isometry orky, and thus preserves the topology, this
equality is stable under the passage to the complementarycadenombrable union.
Therefore, this property is true for all measurablefsand all timet. O



INVARIANT MEASURE 135

As the quantity}1 fBS |SnReul* is 1 almost surely finite (se&]) the measure

don(u) = & 4 e SR8 )
is well-defined on alH’.

ProposiTion 2.11. The measurpy is invariant under the flowyy globally defined in
proposition ZB)/n(t) : HT — HY.

Proor. Consider a measurable gebf initial dataug. For eachug in A, we can write :

Uo = IINUg + HJN'UO
wherelly is the orthonormal projector (iH”) on Ey. It suffices to consideA of product

type, that is of the type :

A= {up | IIyup € B, TIjup € C}

with B andC measurable sets of respectivély and Ey since the topology (and so the
measurable sets) &f” is the same as the one of the cartesian proBnct Ey.

Therefore,

Yn(Uo = S(HTInUo + S(H)ITyUo + V(1) = ¥nle, (H)(TIno) + S()le; MTito
and thus
YNO(A) = Ynle, (D(B) X S(t)e, (C) -

So, the invariance gfy underyy is reduced to the invariance gf; underS(t) and the

invariance ofe s SvR&* g, () (on Ey) underynlg,. The first invariance has already
been dealt with. For the second one,B&lt Ey measurable satisfies:

f e 1 )3 |SNReJ|4dIuN(u) - f o3 Jes IHUP-§ fisIsuReu 4 Ly ()
Unley (D(B) Unley (O(B)

= f e UdLy(u)
Unley (D(B)

wherely is the Lebesgue measure &g. By Liouville theorem,Ly is invariant under
¥nley, therefore the following change of variahle= y|g, (t)(w) holds :

f e ik \SNRGJ\“dIuN(u) — feSN(ll/NIEN(t)(W))dLN(W) .
Unley O(B) B

Then, remarking that oy, En(¥nlg, (t)(W)) can be derived overand is equal to
En(w), the measure is invariant and gg, is invariant undegy.
m]

Dermnition 2.12. Letfy and f be the application okl” defined as :

fu(u) = e % ke ISVREU" gg ) = e s IREUT

The following statement comes from the analysi<8f [
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ProposiTion 2.13. The quantity

1
- Rey?
4 B3| 4

is finite foru-almost all ue H.
Besides, § converges towards f in&l_norm.

Therefore, the measupecan be introduced as :

ProposiTion 2.14. The measurp such that :

do(u) = f(u)du(u)
is well defined and non trivial. And for all A measurable,

p(A) = lim pn(A) .

The proof of the convergence is very similar to the one in theemf the defocusing
NLS, as can be found i8], and then :

mw=ﬁuwwm

) = (A = [ 150~ fu(Wlch(e) < If = ful
The fact that there exists a set of fplimeasure onto which the flow dfl(6) is well-
defined has been proved [€][
Now, the fact that the measysds invariant under the flow shall be seen.

3. Uniform convergence of the approached flows

3.1. Toolbox.
Sobolev embedding. For a start, here is the fondamentall8pbmbedding theorem
onR".

Tueorem 3.1. Letne N and se R. Set pe [2, oo such thaty = —;+ 2. The functional
space H(R") is continuously embedded int8(R"). That is to say, there exists a constant
C(s) such that for all fe HS(R"),

Ifllee < ClIfllns -

Remark 3.1. By considering f radial and with compact support ofitBe unit ball
in dimension3, as a particular case of the precedent theorem for all f rddiad with
compact support onBand in H(R3), that is to say for all fe S, it comes :

IfllLees) < ClifllHse?)
aslongas; = = + 3.

The proof of Sobolev embedding thorem can be foundjn [
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Deep into the local existence of solution for the cubic NLViieTgoal here is to show
that on certain sets, the flowsy converges uniformly towardg. So, first, determistic
Strichartz estimates and needed properties of the flow aaritded.

DermviTion 3.2. Letp > 2, ¢ such that% + é =1, T>0ands= % Call

X3 = C%[-T, T],H(B?) N LP((-T, ), LYB?)
whereB? is the unit ball inR3 and

Y§ = LY(-T.TLH™B%) + LP (=T, T), LY(BY)
its dual whergp’ andq’ are the conjugate numberspfindg.

Proposition 3.3. Let pe]4,6[ and s= 3 - i‘p. There exists a constant C such that for
all T €]0,1] and all f,

Iflleqo..Lreey < Cliflixs andllfilve < CllifllLw (o1 11x89) -

The proof comes from a particular case of interpolation leetwthe two functional
spaces described in the definitionX.

Thanks to a combination of Sobolev embedding theorem amchdttz inequality (see
[2Q) for further details), the following property holds :

ProposiTion 3.4. Let p€}4, 6] and s defined ass 3 - i;, there exists G 0 such that
forall T €[0,1]and all fe HS:
IS flleg-171x83) < ClIfllHs

Proposition 3.5. Let pe]4, 6], py €]4, 6[ suchthatp > p, s= g—i‘p andg =
s. There exists C such that for allg]0, 1] and all f,

NIw
|
Bla

t
f S(t— WHf (WUl < Clflls
0

t
I(2-S) [ H7IS(E- W FWdul < NIl
0 T

The proof can be found irl9]. The last crucial result needed from this article is
the local existence theorem, and its implication regardiregX; norms of the function
v(t) = ¥(t)ug — S(t)up wherey(t) would be defined as the flow of

idu+Hu+H(Reu)®=0
that is to say is the solution of

8 i0v + Hv + HY((ReS(t)up + v(1)))3) = 0
® Vo =0

Tueorem 3.6. Choose a real number g4, 6] and define sas s % - %. There exists
C>0c>0,y=1- % such that for any arbitrary large number A, there exists agtim
of existencer €]0, 1] depending on A as = ¢(1 + A)~” such that for all initial data g
satisfyinglIS(t)uollLp cjo.21xes < A, there exist unique solutions of the equatidils (7) &hd (8),
vy and v, belonging to Xand satisfying :
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[IMIxs, lIvnllxs < CA.

Also, as $t) is 2 periodic (the eigenvalues of the Laplacian oA Bith Dirichlet
boundary conditions are of the for(nr)?, n € N*) and thanks to the propositiofi.{3.4),
there exists another constant 8uch that for each € [, 7] :

ISE)UOIe - ISE) U@l < IS )olle -+ ISEWDIE < CA

and if iy € HY, the solutions satisfies :

U®lhe, Tun@llne < Clluollne
with u(t) = S(t)up + v and w(t) = S(t)up + vn.

Remarks on sets’ measurements. The local results of egesteill provide local prop-
erties of uniform convergence of the sequence of flgwstoward the flowy and then
induce properties on the invariance of the flow that will rémlacal. In order to extend
those next to appear local properties into a global invagasf the flow, we will have to
control the quantity denoted a@sin the previous theorem. But this control has to satisfy

certain properties, such as the set that describes thal iddta that lead to a controlled
solution must be of full measure.

To this purpose, consider the following proposition.

ProposiTioN 3.7. Leto < % let p€l4, 6], let D > 0 and consider the sets :

B(D)° = {Uo € H [ IS(t)uollp, > D }
and

E(D)° = {uo € H” | ||ull- > D} .
There exists ¢ 0 independant from D such that :

p(B(D)®), pn(B(D)®) < u(B(D)°) < &
and

P(E(D)). pn(E(D)?) < u(E(D)) < & .
The proof depends on the lemma 3.3 that can be fouri@lin [

Remark 3.2. It will appear that the timer; < 7 such that there is local convergence
on X depends on D. It will then be necessary to prove thas big enough to control
u(t) at some finite timeg with k € Z cover all times, and still have a set of initial data of
full p measure.

3.2. Local uniform convergence.We now want to prove that the flowsandyy are
such thaty(t)uo — ¥n(t)uo converges ink?, for somer; uniformly in uo.

Lemma 3.8. Leto €]0, [ ,p €]4, 6[ and s defined ass 2 - ﬂp. Fix D > 0 and consider
A(D) the set

A(D) = {to € H” | IS®)UollL < D and|iuglln- < D).
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There exists£> 0 andy; > 0 such that by fixing; = min(cy(1 + D)™, 1), wherer
is the time provided by the theoren{3.6) foral 0, there exists bl> 0 such that for all

Up € A(D) and all N> Np,
e (uo — ¥n(HUollxs, < €,
that is to say thai(t)up converges uniformly inge A(D) in X3 .
Proor. Letup € A(D) andv andvy be such that
Y(t)uo = S(t)Uo + V(t) andyn(t)uo = S(t)uo + Un(t) -
The functionss andvy are both inX? so the norm
e (t)uo — ¥n(HUollxs, = IIV = Unllxg,

is finite for all T < 7.
Forallt <t:

t
VO - w() = [ S(t- 9H ™ (Ru(9w)° - Su(SxRevm(9u)?)) ds
thatis to sayw — vy = Iy + [y with

t
In=(1-5) [ S(t-9H™ (Reu(9w))ds

and

t
= [ 8- 95uH ((Rev(9uo)® - (ReSmum(Suo)?) ds.
0
Thanks to propositiol (3.5), fof < r ands; > s

il < CN**|(Reyto) =
with C independant fronD, T, andN. Let p; be suchthat+ g = % - %. The condition

. . 2p .
st > sis equivalenttgp < o%5. Hence :

il < CN*S[I(Repuo)’ll

lnlixs < CN**||(Repuo)|%, -
To majore this norm, the conditiorpd < p is wanted. This condition is equivalent to

p1 > prg which meang; has to be chosen in the interv%lgg, %[. But sincep > 4,

P 2p ica i i i i ; _ b
53 < 52 and so, such a choice is possible, and in particular, bysihgp, = 530 OF

3p; = p, itcomes :

lInllxs < CNT= (ISt uollLe + [IVilLe)®

3
liinllxs < CN= (IS(t)uollLe + Ivilx:)
and thanks to theoreri (B.6)vllxs < CD with C independant fronD andT as long as

T<tso
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llinllxs < CNS D3,

Therefore, for alk > 0, there existdNy such that for alup € A(D), all T < 7 and all
N > N,

lInllxs < €.
Once more, thanks th(3.5),

Nl < 1l ((Rex(9)uo)® - (ReSnyn(9)uo)®) ly-s

and withp, such that +- s = § - 2 thatisp, = %

Nl < 1l ((Rex(9)uo)® — (ReSnyn(9)uo)®) I, -
Since

|(Rey(9)uo)*~(ReSnyn (o)’ < glReﬁ(S)Uo—Rele//N(S)Uol ((Rey(s)uo)* + (ReSnyn(9o)?)

o tvwithl — 1 . 2
by Holder inequality withs: = 55 + 55,

Il < [IRep()Uo — ReSnyn(S)Uoll, s [I(RE4()Uo)” + (RESnyn()Uo)ll 3552

< lIRej(s)uo — RESnn(S)Uoll =0, (II(RQﬁ(S)Uo)ZIILspr/z + ||(ReSN¢N(S)U0)2||L3p’2/z)

As3p’2=% < pand

I(Re(YUo)°l, 5152 = IR@H(S)UollZsyr2 < T2 ()0l
with y, = p6—‘p4, it comes that :

lI1nlixs < CDPT?2(|Rey(S)uo — ReSnyn(S)Uoll, =
with C independent fronD andT as long ad <.
Now, the quantity|Rey(s)ug— ReﬁszN(s)uolngpé < an +Bn remains to be considered,

with an = [I(1 = Sn)¥(S)uoll andBn = lISn(¥()uo — ¥n(S)Uo)Il-
By the same convex inequalities as precedently,

Bn < CT2|ly(S)uo — ¥n(S)UollLe < CT2[ly(S)uo — ¥n(SUollxs -

Choose 2< p; < 33— €]2,3[ and callos = 3(% - %) <o.Asps<3<3p,<p

S0, there exist8 €]0, 1[ such tha% =+ 1;p9 thus
2

an < [I(1 = S (9ol eslI(2 = Sn)¥(uolli’

I(1 = Sn)y(uolie < CIS(t)Uolle + [IVllxs) < CD
and by Sobolev embedding theorem :

I(2 = Sn)¥(9uolirs < 111~ Sn)y(S)Uoll s s
Now, for all s,
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(2 = Sn)¥()UgllHes < CNZ3 7|y (S)upllpr < CDN73™
and so

an < CNYe=9p?pl-? = CN*"s=9)p |

Therefore, for alk > 0, there existdNy such that for alug € A(D), all T < 7, and all
N > Ng,

aN < €.
Now, let us sum up these inequalities.

¥ (t)uo—Yn(Uollxs < In+CD*T??(an +pn) < In+Can+CDPT>2|ly(t)uo—¥n (t) Uollxs -

Sety1 = max(y,£;) andr1 = min(r,C"Y®2)(1 + D)), such thatCD?ry? <
CDZTi/” < 1, hence

e (uo — ¥n(HUollxs, < C(In + an)
so for alle > 0 there existdNy such that for allg € A(D) and allN > Ny

[l (t)uo — Yn(t)Uollxs, < €.
m}

Remark 3.3. Note that the construction o4 ensures thay; > y but thatr; is still a
power of D.

3.3. Local invariance. Let us show that the measure is invariant under the flow lo-
cally in time. That s, as long as the sequengét)uy converges uniformly on some sets, it
will appear thap(y(t)A) > p(A). This is the first step in order to reach a global invariance
result for the measure.

Lemma 3.9. Leto €]0, 3[, p€]4,6[, s= 3 - ﬂp, and D> 0. Set AD) the set described
in G8), r = c(1 + D)7 the local exitence time coming from theordm3.6) and=
min(r, c1(1 + D)) the local time of uniform convergence, all three dependinlg on D
and p. Then, for all A A(D) measurable, and all¢ [—71, 71], the set)(t)A is measurable
and:

PWOA) = p(A) .

Proor. First, for all A measurableaj(t)A is also measurable thanks to the local conti-
nuity of the flow. Assume now th& is a closed set dfl” included inA(D) and setk > 0.
By lemma[[3B), there existsy such that for alliy € A(D) and allN > N

e (uo — ¥n(HUollxs, < €.
But by definition,| . ||><Ts1 > || . lleoq-ry,ri.Hs(e2)- SO forallt € [-71, 7],

ll(uo — ¥n(DUollns < €.
Let B, be the ball inHS of center 0 and radius asA C A(D), for all N > No, and all
te [—Tl, T]_],
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YnO(A) S y(t)(A) + Be
therefore

PnUND(A) < on(D(A) + Be) -
Then, since the measysg is invariant under the flowy, as it is stated in proposition

1),

PN(UNDA) = pn(A)
and thus

PN(A) < pu(W (A +B.) .
Then, using the fact that (propositidn{2.13)), foriatheasurable se,

p(B) = lim pn(B),
and as the properp (A) < on(W (DA + B) is true for allN > Np, by taking the limit :

p(A) < p(Y()A+Be)
and then by making tend toward 0, thanks to the dominated convergence theorem,

p(A) < p(W(A)
and that for alt € [-71, 71]. Indeedy(-t) = y(t)~* is continuous irtH”, soy(t)Ais closed
in H?.
For the reverse inequality, use the fact that indeg9A < yn (A + B, for all up €
A(D) andn > Np. Itis also true that the bal, of radiuse in H? containsB, aso < % <s,
SO :

YA C yn(OA+ B. .
Then, the fact that the equation is reversible, anghgti) ' = ¥ (-t) is used. Also,
thanks to the continuity of the local flow d#f”, there exists a consta@tdepending on the
timet but not one or N such that :

Un(-DWnEA + Be) € A+ Bee
SO

Y(t)A C Yn(®A+ B C yn(t)(A + Bce)
and

N (DA) < pn (lﬁN(t)(A + Ece)) = pn(A+ Bee)
thanks to the invariance pf undenyy.
By passing to le limiN > Ny — oo,

P((DA) < p(A+ Bce)
and there — 0,

PWOA) < p(A)
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so for all closed seh of H” included inA(D),

PW(OA) = p(A) .
Then, remark thaf(D) is a closed set dfli“, so

pPW(MA(D)) = p(A(D))
and thus the property of invariance under the flow passesetedmplementary and the
denombrable unions. It holds on every measurable set. O

4. Measure invariance

4.1. Building sets of full measure with global existenceWe now need to build a
set of fullp measure such that in this set not only the local invariansgltr@olds but also
can be extended to a global one, that is to say that in thibedkiw must be globally well
defined.

DeriNiTiON 4.1. Let

Di,j — (i + jl/n)l/Z
withi, j e Nand sefl;j = 3/, 71(Dy). Let

Ini ={Uo | V] e N, yn(=Ti;j) € A(Djjs1)}
and

IT; = lim supIly;

N—oo

and finally
m={ .
ieEN
ProposiTion 4.2. The sefl is of full p measure.

Proor. Let us compute the measure of the complementary dét of

First, as
Tng = () on(T) ™ AD: )
jeN
P(HCN,i) <|If - fN|||_}} +PN(HcN,i)
and

pn(IIR;) < ZpN((lﬁN(iTi,i)’l(A(Di,m))c) -

=0
Then, using tha(sz(iTi,j)fl(A(Di,Hl))C = yn(xTi;) Y(A(Dij)°), it becomes clear
that theoy measures of these sets are equal ang,as invariant under the flowy :

Pn(TIR) < 2 ) (A )9 <2 ) u(AD)7)
j i

But, A(D)¢ = B(D)® U E(D)¢ with B andE the sets defined ifi.{3.7) so
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#(A(D)°) < u(B(D)°) + u(E(D)°) < 26
SO

pn(MTy) <C ) e
j
and so
p(II%;) < Ce® Z e < ce©
i

_cil/ . .
ase°I" is the general term of a convergent series.

Therefore :

p(I°) = pliminf I1S;) < liminf p(11;) = €% + liminf ||f - fulls = Ce®

and then

p(I1%) = p(( ) TIf) < lim p(I1f) = 0
i
that is to say thall is of full measure. O

Lemma 4.3. Let w € IT;, the flowy(t)uo is strongly globally defined and for all§ N
andy(+T; j)uo belongs to AD; j.1).

Proor. Asug € IT; = lim supIly;, there exists a sequenblg — oo such that for alk,
Uo € Iy, i, which is equivalent tg/n, (+T; j)uo € A(D; ;) for all j € N.

Then, by recurrence ovgr it can be proved thak(t)uo is defined on{T; ;, T; ;] and
thaty(+T; ;)uo — ¥n, (£Ti j)uo converges toward O i> whenk — co.

FOI’j =0, Ti,O =0 and sayg = lﬁNk(iTi,o)Uo € A(Di,l andlﬁ(Ti,o)Uo - ka(Ti,O)UO =0
converges toward 0 iH S,

Suppose that at ranjky (t)uo strongly exists on{T; j, Ti j] andy(+T; j)(Uo)—y¥n, (£ Ti,j)(Uo)
converges toward 0 iH®. Let us show that the property holds at rgnk 1. As

(T, ) (o) — Yn (£ Ti,j) Uo)lIHe < Il (£Tij)(Uo) — ¥ (=Ti ;) (Uo) I
and

IS() (w(£T11)(Uo) = U (ET15)(U0)) Ilep, < Ip(=Ti ) (Uo) — oy (< Ti j) (Uo)llis
and for allk,

I (i j)(Uo)lIHe < D jr1
and

IS(t) (ka(iTi,j)(Uo)) llp, < Dijjax
by taking the limits whek — oo, it comes thati, := y(£T; j)ug € A(D; j+1).
So, thanks to theorefa(3.6]t)u. is strongly defined or{r1, 1] € [-7, 7] and thanks
to lemmal3B),
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Y(Ou: — ¥ (DU

converges toward 0 ib(fl(Di )" In particular,

Y(=71(Dij+)Us — YN (£71(Di j41)) U
converges toward O iHlS.
Then, as

Y(=Ti j+1)Uo — YN (£Tij+1)Uo = Y(£71(Di js1))Us — YN (£71(Di j41))Us+

YN (£71(Di j+1))Us — Y (£72(Di 1)) Wn (=T j) Uo
and sinces = yn(£71(Dj j+1))Vis uniformly in N continuous fronH® N A(D; j,1) to HS, it
implies that

YN (£FT2(Di 1)) Us — YN (2T2(Dij+1)) (U (£ T j)Uo
also converges toward 0O kS, Therefore,

Y(£Ti j+1)Uo — ¥, (£ Ti j+1)Uo
converges toward 0 ifl® and as it has precedently been seen, it impliesykaT; j.1) €
A(Di j+2)- O
4.2. Global invariance. Now, a first result of global invariance can be proved.

ProrosiTionN 4.4. Let A be a measurable set includedlin Then for all te R, we
have

PWOA) = p(A) .
Proor. In order to prove such a fact, it is required that the seceidngwherei is
fixed diverges.
Indeed,

Tl(Di,j) = min(T(Di,,-, c(1+ Di’j)_”) = min(c(1l + Di,j)_y, c(l+ Di’j)_”)
andD;; = +/i + jY7 diverges. Therefore, ag > vy, above a certain ranky(D; ;) =
C2(1+ D; j)7 with ¢ = ¢y if v < y1 0r ¢z = min(c, ¢1) otherwise.

So,71(Dij) behaves likg /2 whenj — oo and so the sequendg; diverges.

Lett € R, there existg such that € [T; j, Tj j+1] if t > 0 ort € [-T; j+1, —Tij]. Letus
show by recurrence ovgrthat for allt € [T; j, Ti j+1] U [=Ti j+1, = Ti,j],

WA = p(A)
For j = 0, we haveTio = 0, Tiz = 71(Di1) andA = y(Tio)(A) € ¥(Tio)(IT) <
A(D; 1) thanks to lemmal[{4l3). So, the local invariance lemma (BdWis : for allt
[-71(Di.1), T1(Di1)],

P OA) = p(A) .
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Forj—1= j, y(&Ti))(A) € ¢(Ti)(L) € A(Dij.1) (lemma [ZB)). So, by using
lemmalZD), for alt € [0, 71(Di j+1)],

p (W) (WETHA)) = o (VT A) -
Then, by using the recurrence hyothesis,

p (VT NA) = p(A) .
And so, for all

t € [Tij, Tij + t1(Di j+1)] U [-Tij — t1(Di j+1), — Tij]

= [Tij, Tijerd U [=Tijes, =Tij]
it comes

P O(A) = p(B)(A) .

m]
Tueorem 4.5. For all p measurable set included I, we have :
pW®(A) = p(A) .
Proor. AsTI = |J; IT;, andA C T1, A can be written :
A=| |A
ieEN
with A; C TT;, and theA; disjoint. So,
p(OA) =] |pOA
ieN
since the flow is strongly defined In.
P MA) = > pMA) = > p(A) = p(_|A) = p(A).
ieEN ieEN ieN
O
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