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Weighted energy decay for 1D Dirac equation

E. A. Kopylova
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Abstract. We obtain a dispersive long-time decay in weighted energy norms
for solutions of the 1D Dirac equation with generic potential. The decay
extends the results obtained by Jensen, Kato and Murata for the Schrödinger
equations.
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1. Introduction

In this paper, we establish a dispersive long time decay for solutions to 1D
Dirac equation

(1.1) iψ̇(x, t) = Hψ(x, t) := iαψ′(x, t)+mβψ(x, t)+V(x)ψ(x, t), x ∈ R, m > 0

in weighted energy norms. Here ψ(x, t) ∈ C2 for (x, t) ∈ R2,

(1.2) α =

(

−1 0
0 1

)

, β =

(

0 1
1 0

)

,

and V(x) is a given hermitian matrix potential:

(1.3) V(x) =

(

V11(x) V12(x)
V21(x) V22(x)

)

, V11(x), V22(x) ∈ R, V21(x) = V12(x), x ∈ R.
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The matrices α and β satisfy the relations

(1.4) α2 = β2 = I, αβ + βα = 0.

For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R) the weighted Sobolev spaces [1], with
the finite norms

‖u‖Hs
σ

= ‖〈x〉σ〈d/dx〉su‖L2(R) <∞, 〈x〉 = (1 + |x|2)1/2.

We assume that

(1.5) |V11(x)| + |V22(x)| + |V12(x)| + |V ′
12(x)| ≤ C〈x〉−ρ, x ∈ R

for some ρ > 5. Then the multiplication by V12 is bounded operators H1
s → H1

s+ρ

for any s ∈ R.
We restrict ourselves to “nonsingular case” when the truncated resolvent of the

operator H is bounded at the edge points λ = ±m of the continuous spectrum.
Our main result is the following long time decay of the solutions to (1.1): in

the nonsingular case

(1.6) ‖Pcψ(t)‖L2
−σ

= O(|t|−3/2), t→ ±∞

for initial data ψ0 = ψ(0) ∈ L2
σ := H0

σ ⊗ C2 with σ > 5/2 where Pc is a Riesz
projection onto the continuous spectrum of the operator H. The decay is desirable
for the study of asymptotic stability and scattering for solutions to nonlinear Dirac
equations.

Let us comment on previous results in this direction. The decay of type (1.6)
in weighted energy norms has been established first by Jensen and Kato [7] for the
Schrödinger equation in the dimension n = 3. The result has been extended to
all other dimensions by Jensen and Nenciu [5, 6, 8], and to more general PDEs
of the Schrödinger type by Murata [12]. For the Klein-Gordon equations in the
dimensions n = 1, 2, 3 the decay of type (1.6) has been proved in [9]-[11] and for
3D Dirac equation in [3]. For 1D Dirac equation the decay was not obtained before.

Let us comment on our techniques. We extend our approach [9] to the Dirac
equation. It is well known that the decay (1.6) violates for the free 1D Dirac equa-
tion corresponding to V(x) = 0 when the solutions slow decay, like ∼ t−1/2. The
slow decay is caused by the “zero resonance function” ψ(x) = const corresponding
to the edge points λ = ±m of the continuous spectrum of the free Dirac opera-
tor H0 = iα d

dx +mβ. Hence, the decay (1.6) cannot be deduced by perturbation
arguments from the corresponding estimate for the free equation.

The main idea of our approach is a spectral analysis of the “bad” term, with
the slow decay ∼ t−1/2. Namely, we show that the bad term does not contribute
to the high energy component of solution to the free equation, and the high energy
component decays like t−3/2. Then we prove the decay ∼ t−3/2 for the high en-
ergy component of solution to perturbed equation (1.1) using finite Born series and
convolutions. For the proof we apply a gauge transformation to obtain a suitable
expression for the resolvent of the operator H via the resolvent of the corresponding
”squared Dirac operator” which is a matrix Schrödinger operator with a perturba-
tion. The perturbation does not contain differential operators which allows us to
apply the estimates (3.15) obtained in [7] for the Schrödinger operator.

For the low energy component of solution to (1.1), the decay ∼ t−3/2 follows
in the nonsingular case by methods [7, 12].
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Our paper is organized as follows. In Section 2 we obtain the time decay for
the solution to the free Dirac equation and state the spectral properties of the
free resolvent which follow from the corresponding known properties of the free
Schrödinger resolvent. In Section 3 we obtain spectral properties of the perturbed
resolvent and prove the decay (1.6).

2. Free Dirac equation

First, we consider the free Dirac equation:

(2.1) iψ̇(x, t) = H0ψ(x, t) := iαψ′(x, t) +mβψ(x, t).

Denote by U(t) : ψ(·, 0) → ψ(·, t) the dynamical group of equation (2.1). It is
a strongly continuous group in L2 := L2(R) ⊗ C2. The group is unitary that
corresponds to the charge conservation.

2.1. Spectral properties. We state spectral properties of the free dynamical
group U(t) applying known results of [1, 12] which concern the spectral properties
of the free Schrödinger dynamical group. For t > 0 and ψ0 = ψ(0) ∈ L2, the solution
ψ(t) to free equation (2.1) admits the spectral Fourier-Laplace representation

(2.2) θ(t)ψ(t) =
1

2πi

∫

R

e−i(ω+iε)tR0(ω + iε)ψ0 dω, t ∈ R

with any ε > 0 where θ(t) is the Heaviside function, R0(ω) = (H0 − ω)−1 is
the resolvent of the operator H0. The representation follows from the stationary
equation ωψ̃+(ω) = H0ψ̃

+(ω) + iψ0 for the Fourier-Laplace transform ψ̃+(ω) :=
∫

R

θ(t)eiωtψ(t)dt, where ω ∈ C+ := {Imω > 0}. The solution ψ(t) is a continuous

bounded function of t ∈ R with the values in L2. Hence, ψ̃+(ω) = −iR0(ω)ψ0 is
an analytic function of ω ∈ C+ with the values in L2, bounded for ω ∈ R + iε.
Therefore, integral (2.2) converges in the sense of distributions of t ∈ R with the
values in L2. Similarly to (2.2),

(2.3) θ(−t)ψ(t) = − 1

2πi

∫

R

e−i(ω−iε)tR0(ω − iε)ψ0 dω, t ∈ R.

The resolvent R0(ω) can be expressed in terms of the resolventR0(ζ) = (−∂2
x−ζ)−1

of the free Schrödinger operator. Indeed, (1.4) implies

(2.4) (H0 − ω)(H0 + ω) = (iα∂x +mβ − ω)(iα∂x +mβ + ω) = (−∂2
x +m2 − ω2).

Therefore,

(2.5) R0(ω) = (iα∂x +mβ + ω)R0(ω
2 −m2)

where R0(ζ) is the operator with the integral kernel

(2.6) R0(ζ, x − y) = −exp(i
√
ζ|x− y|)

2i
√
ζ

, ζ ∈ C \ [0,∞), Im ζ1/2 > 0.

Denote by L(B1, B2) the Banach space of bounded linear operators from a Banach
space B1 to a Banach space B2. Explicit formula (2.6) obviously implies the prop-
erties of R0(ζ) (cf. [1, 12]):
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i) R0(ζ) is an analytic function of ζ ∈ C \ [0,∞) with the values in L(H0, H2);
ii) For ζ > 0, the convergence holds

(2.7) R0(ζ ± iε) → R0(ζ ± i0), ε→ 0+

in L(H0
σ , H

2
−σ) with σ > 1/2, uniformly in ζ ≥ r for any r > 0.

iii) In L(H0
σ;H2

−σ) with σ > 5/2 the asymptotics hold

R0(ζ) = A0ζ
−1/2 +A1 + O(ζ1/2), R′

0(ζ) = −1

2
A0ζ

−3/2 + O(ζ−1/2),

R′′
0 (ζ) = O(ζ−5/2)(2.8)

as ζ → 0, ζ ∈ C \ [0,∞). Here

A0 = Op
[ i

2

]

∈ L(H0
σ ;H2

−σ), σ > 1/2,(2.9)

A1 = Op
[

− 1

2
|x− y|

]

∈ L(H0
σ;H2

−σ), σ > 3/2.

iv) For l = 0, 1, k = 0, 1, 2, ... and σ > 1/2 + k the asymptotics hold

(2.10) ‖R(k)
0 (ζ)‖L(H0

σ ,Hl
−σ

) = O(|ζ|− 1−l+k
2 ), ζ → ∞, ζ ∈ C \ (0,∞).

Let us denote Γ := (−∞,−m) ∪ (m,∞), The properties i) – iv) and formula (2.5)
imply

Lemma 2.1. i) The resolvent R0(ω) is an analytic function of ω ∈ C \ Γ with
the values in L(L2, L2).
ii) For ω ∈ Γ, the convergence holds

(2.11) R0(ω ± iε) → R0(ω ± i0), ε→ 0+

in L(L2
σ, L

2
−σ) with σ > 1/2, uniformly in |ω| ≥ m+ r for any r > 0.

iii) In L(L2
σ;L2

−σ) with σ > 5/2 the asymptotics hold
(2.12)

R0(ω) = A±
0 (ω ∓m)−1/2 + A±

1 + O((ω ∓m)1/2)

R′
0(ω) = − 1

2A
±
0 (ω ∓m)−3/2 + O((ω ∓m)−1/2)

R′′
0 (ω) = O((ω ∓m)−3/2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω → ±m, ω ∈ C \ Γ.

Here

A±
0 = Op

[ i
√
m√
±2

(

±1 1
1 ±1

)

]

∈ L(L2
σ;L2

−σ), σ > 1/2,

(2.13)

A±
1 = Op

[−m|x− y|
2

(

±1 1
1 ±1

)

− 1

2

(

sgn(x − y) 0
0 sgn(x− y)

)

]

∈ L(L2
σ;L2

−σ), σ > 3/2.(2.14)

iv) For k = 0, 1, 2, ... and σ > 1/2 + k the asymptotics hold

(2.15) ‖R(k)
0 (ω)‖L(L2

σ,L2
−σ

) = O(1) ω → ∞, ω ∈ C \ Γ
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Corollary 2.2. For t ∈ R and ψ0 ∈ L2
σ with σ > 1/2, the group U(t) admits

the integral representation

(2.16) U(t)ψ0 =
1

2πi

∫

Γ

e−iωt
[

R0(ω + i0) −R0(ω − i0)
]

ψ0 dω

where the integral converges in the sense of distributions of t ∈ R with the values
in L2

−σ.

Proof. Summing up representations (2.2) and (2.3), and sending ε→ 0+, we
obtain (2.16) by the Cauchy theorem and lemma 2.1. �

2.2. Time decay. Here we prove time decay (1.6) for the free Dirac equation
(2.1). Let G(t) = Op[G(x− y, t)], where G(x, t) is the fundamental solution to the
Klein-Gordon operator ∂2

t − ∂2
x +m2:

G(x, t) =
1

2
θ(t− |x|)J0(m

√

t2 − x2).

where J0 is the Bessel function. Since

(∂t + α∂x − imβ)(∂t − α∂x + imβ) = ∂2
t − ∂2

x +m2

we have for the integral kernel U(x − y, t) of the operator U(t)

(2.17) U(x, t) = (∂t + α∂x − imβ)G(x, t).

The asymptotics of the Bessel functions [13] imply

G(x, t) ∼ t−1/2, ∂tG(x, t) ∼ t−1/2, ∂xG(x, t) ∼ t−1/2, x ∈ R, t→ ∞
Hence (2.17) implies

U(x, t) ∼ t−1/2, x ∈ R, t→ ∞
and then the free group U(t) decays like t−1/2.
The operator G(t) admits the integral representation similar to (2.16):
(2.18)

G(t)ψ0 =
1

2π

∫

Γ

e−iωt
[

R0((ω + i0)2 −m2) −R0((ω − i0)2 −m2)
]

ψ0 dω, t ∈ R

for ψ0 ∈ L2
σ with σ > 1/2. Let us introduce the low energy and high energy

components of G(t) and U(t):

Gl(t) =
1

2π

∫

Γ

e−iωtl(ω)
[

R0((ω + i0)2 −m2) −R0((ω − i0)2 −m2)
]

dω(2.19)

Gh(t) =
1

2π

∫

Γ

e−iωth(ω)
[

R0((ω + i0)2 −m2) −R0((ω − i0)2 −m2)
]

dω(2.20)

Ul(t) =
1

2πi

∫

Γ

e−iωtl(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω(2.21)

Uh(t) =
1

2πi

∫

Γ

e−iωth(ω)
[

R0(ω + i0) −R0(ω − i0)
]

dω(2.22)

where l(ω) ∈ C∞
0 (R) is an even function, supp l ∈ [−m − 2ε,m + 2ε], l(ω) = 1 if

|ω| ≤ m + ε, and h(ω) = 1 − l(ω). In [9] we have proved that Gh(t) decays like
t−3/2. Here we will prove that Uh(t) also decays like t−3/2.
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Theorem 2.3. Let σ > 5/2. Then the decay holds

(2.23) ‖Uh(t)‖L(L2
σ;L2

−σ
) ≤ C(1 + |t|)−3/2, t ∈ R.

Proof. First, taking into account (2.17), (2.20), (2.22) we obtain that

(2.24) Uh(t) = (∂t + α∂x − imβ)Gh(t).

Further, [9, Theorem 2.7] implies that for σ > 5/2

(2.25) ‖Gh(t)‖L(H0
σ ;H1

−σ
) + ‖∂tGh(t)‖L(L2

σ;L2
−σ

) ≤ C(1 + |t|)−3/2), t ∈ R.

Then (2.24) and (2.25) imply (2.23). �

3. Perturbed equation

To prove a long time decay for the perturbed equation, we first establish the
spectral properties of its generator H.

3.1. Spectral properties. Similarly to [12, formula (3.1)], let us introduce
a generalized eigenspaces M± of the operator H:

M± = {ψ ∈ H1
−1/2−0 : (1 + A±

1 V)ψ ∈ ℜ(A±
0 ), A±

0 Vψ = 0}
where A±

0 and A±
1 are defined in (2.14), and ℜ(A±

0 ) denotes the range of A±
0 . Below

we assume that

(3.1) M± = 0

Denote by R(ω) = (H− ω)−1, ω ∈ C \ Γ, the resolvents of the operators H. Next
lemma is the vector version of [12, Theorem 7.2].

Lemma 3.1. Let conditions ( 1.5) and ( 3.1) hold. Then the families {R(±m+
ε) : ±m + ε ∈ C \ Γ, |ε| < δ} are bounded in the operator norm of L(L2

σ, L
2
−σ) for

any σ > 3/2 and sufficiently small δ.

Asymptotics (2.12) and lemma 3.1 imply

Proposition 3.2. Let the conditions ( 1.5) and ( 3.1) hold. Then the asymp-
totics hold

(3.2)
R(ω) −R(±m) = O(|ω ∓m|1/2)

R′(ω) = O(|ω ∓m|−1/2)

R′′(ω) = O(|ω ∓m|−3/2)

∣

∣

∣

∣

∣

∣

ω → ±m, ω ∈ C \ Γ

in L(L2
σ, L

2
−σ) with σ > 5/2.

Proof. Lemma 3.1 implies that for any σ > 3/2 the operators (1+R0(ω)V)−1 =
1 − R(ω)V and (1 + VR0(ω))−1 = 1 − VR(ω) are bounded in L(L2

−σ, L
2
−σ) and

in L(L2
σ, L

2
σ) respectively for |ω ∓ m| < δ, ω ∈ C \ Γ with δ sufficiently small.

Asymptotics (2.12) imply

R(ω) =
(

1 + R0(ω)V
)−1R0(ω)

=
(

1 + R0(ω)V
)−1(A±

0

1√
ω ∓m

+ O(1)
)

R(ω) = R0(ω)
(

1 + VR0(ω)
)−1

=
(

A±
0

1√
ω ∓m

+ O(1)
)(

1 + VR0(ω)
)−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω→ ±m, ω ∈ C \ Γ
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in L(L2
σ, L

2
−σ) with σ > 3/2. Hence, the boundedness of R(ω), (1 + R0(ω)V)−1

and (1 + VR0(ω))−1 at the points ω = ±m in the corresponding norms imply that

(1 + R0(ω)V)−1A±
0 = O(

√
ω ∓m),

A±
0 (1 + VR0(ω))−1 = O(

√
ω ∓m), ω→ 0, ω ∈ C \ Γ(3.3)

in L(L2
σ, L

2
−σ) with σ > 3/2. Therefore,

(3.4) ‖(1 +R0(ω)V )−1[1]‖L2
−σ

= O(
√
ω ∓m), ω → ±m, ω ∈ C \Γ, σ > 3/2

and for any f ∈ L2
σ with σ > 3/2

(3.5)
∫

[(1 + VR0(ω))−1f ](x)dx = O(
√
ω ∓m), ω → ±m, ω ∈ C \ Γ, σ > 3/2.

Taking into account the identities

R′ = (1+R0V)−1R′
0(1+VR0)

−1, R′′ =
[

(1+R0V)−1R′′
0 −2R′VR′

0

]

(1+VR0)
−1

we obtain from (3.4)-(3.5) asymptotics (3.2) for R′(ω) and R′′(ω). Finally, asymp-
totics (3.2) for R(ω) follow by integration of asymptotics (3.2) for R′(ω). �

To obtain other properties of R(ω), we express R(ω) in the resolvent of a matrix

Schrödinger operator. First, we introduce the operator H̃ similar to H with matrix
potential Ṽ(x) satisfying Ṽ11(x) = Ṽ22(x) = 0. Namely, let us introduce the matrix
of gauge transformation

(3.6) C =









exp
(

− i
x
∫

−∞

V11(y)dy
)

0

0 exp
(

i
x
∫

−∞

V22(y)dy
)









.

This matrix function is bounded by conditions (1.3), and

(3.7) C−1HC = H̃
where

(3.8) H̃ := iα∂x + Ṽ, Ṽ =

(

0 Ṽ12

Ṽ21 0

)

with

(3.9) Ṽ12(x) = exp
(

i

x
∫

−∞

(V11(y) + V22(y))dy
)

(V12(x) +m), Ṽ21(x) = Ṽ12(x)

By (3.7), the spectral properties of H and H̃ are identical. Further, we have

(H̃ − ω)(H̃ + ω) = (iα∂x + Ṽ(x) − ω)(iα∂x + Ṽ(x) + ω)

=

(

−∂2
x +m2− ω2+ 2mReV12 + |V12|2 −iṼ ′

12

iṼ ′
21 −∂2

x +m2− ω2+ 2mReV12 + |V12|2
)

= H−(ω2−m2).(3.10)

Here H = H0 + V is the matrix Schrödinger operator with
(3.11)

H0 =

(

−∂2
x 0

0 −∂2
x

)

, V =

(

2mReV12 + |V12|2 −iṼ ′
12

iṼ ′
21 2mReV12 + |V12|2

)

.
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Remark 3.3. Due to ( 1.3), the perturbation V is hermitian and does not con-
tain differential operators. This fact is essential for obtaining high energy decay
( 3.31), ( 3.33), and ( 3.35).

Formula (3.10) implies the following representation for the resolvent R̃(ω) =

(H̃ − ω)−1:

(3.12) R̃(ω) = (H̃ + ω)R(ω2 −m2) = (iα∂x + Ṽ(x) + ω)R(ω2 −m2)

where R(ζ) = (H − ζ)−1, ζ ∈ C \ [0,∞), the resolvent of the operators H.

Due to (3.7), we have R̃(ω) = CR(ω)C−1. The resolvent R̃(ω) admits the low
energy asymptotics of type (3.2) since matrix function (3.6) is bounded. Namely

(3.13)

R̃(ω) − R̃(±m) = O(|ω ∓m|1/2)

R̃′(ω) = O(|ω ∓m|−1/2)

R̃′′(ω) = O(|ω ∓m|−3/2)

∣

∣

∣

∣

∣

∣

ω → ±m, ω ∈ C \ Γ

in L(L2
σ, L

2
−σ) with σ > 5/2.

Below we need a limiting absorption principle and a high energy decay for the
resolvent R̃(ω). First, we obtain these properties for the resolvent R(ζ) of the
matrix Schrödinger operator H.

Lemma 3.4. Let conditions ( 1.5) and ( 3.1) hold. Then
i) R(ζ) is a meromorphic function of ζ ∈ C \ [0,∞).
ii) For ζ > 0, the convergence (limiting absorption principle) holds

(3.14) R(ζ ± iε) → R(ζ ± i0), ε→ 0+

in L(H0
σ , H

2
−σ) with σ > 1/2.

iii) For l = 0, 1, the asymptotics hold

(3.15) ‖R(k)
j (ζ)‖L(H0

σ ,Hl
−σ

) = O(|ζ|− 1−l+k
2 ), ζ → ∞, ζ ∈ C \ [0,∞)

with σ > 1/2 + k for k = 0, 1, 2.

Proof. Step i) The statement i) follows from lemma 2.1-i), the Born splitting

(3.16) R(ζ) = R0(ζ)(1 + V R0(ζ))
−1

and the Gohberg-Bleher theorem [2, 4] since the operators V R0(ζ) are compact
operators in L2 for ζ ∈ C \ [0,∞).
Step ii) Convergence (3.14) follows from a vector version of Agmon’s theorem [1,
Theorem 3.3 and Lemma 4.2] taking into account the absence of embedded eigen-
values which follows from the theory of ordinary differential equations since V ∈ L1.
Step iii) The asymptotics (3.15) follows from (2.10) by a vector version of [7, The-
orem 9.2]. �

Lemma 3.4 and formula (3.12) imply

Lemma 3.5. Let conditions ( 1.5) and ( 3.1) hold. Then

i) R̃(ω) is a meromorphic function of ω ∈ C \ Γ with the values in L(L2, L2);
ii) For ω ∈ Γ, the convergence (limiting absorption principle) holds

(3.17) R̃(ω ± iε) → R̃(ω ± i0), ε→ 0+

in L(L2
σ, L

2
−σ) with σ > 1/2;

iii) For k = 0, 1, 2 and σ > 1/2 + k the asymptotics hold

(3.18) ‖R̃(k)(ω)‖L(L2
σ,L2

−σ
) = O(1), |ω| → ∞, ω ∈ C \ Γ.
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Remark 3.6. The reduction to the Schrödinger operator H allow us to deduce
lemma 3.5 from lemma 3.4 applying known results of Agmon [1] and Jensen-Kato
[7].

3.2. Time decay. In this section we combine spectral properties of the per-
turbed resolvent R(ω) and the time decay for the unperturbed dynamics using the
(finite) Born perturbation series. Denote by Σ the set of eigenvalues of the oper-
ators H. Lemma 3.1 imply that the eigenvalues cannot accumulate to the points
±m and then the set Σ is finite. Our main result is the following.

Theorem 3.7. Let conditions ( 1.5) and ( 3.1) hold. Then

(3.19) ‖e−itH −
∑

ωj∈Σ

e−iωjtPj‖L(L2
σ,L2

−σ
) = O(|t|−3/2), t→ ±∞

with σ > 5
2 , where Pj are the Riesz projections onto the corresponding eigenspaces

of the operator H.

Proof. By (3.7) it suffices to prove that for σ > 5/2

(3.20) ‖e−itH̃ −
∑

ωj∈Σ

e−iωjtP̃j‖L(L2
σ,L2

−σ
) = O(|t|−3/2), t→ ±∞

where P̃j = C−1PjC are the Riesz projectors onto the corresponding eigenspaces

of operator H̃ . Lemma 3.5 and asymptotics (3.13) imply similarly to (2.16), that
(3.21)

e−itH̃ψ0−
∑

ωj∈Σ

e−iωjtP̃jψ0 =
1

2πi

∫

Γ

e−iωt
[

R̃(ω+i0)−R̃(ω−i0)
]

ψ0 dω = ψl(t)+ψh(t)

where

P̃jψ0 := − 1

2πi

∫

|ω−ωj|=δ

R̃(ω)ψ0dω

with a small δ > 0, and

(3.22) ψl(t) =
1

2πi

∫

Γ

l(ω)e−iωt
[

R̃(ω + i0) − R̃(ω − i0)
]

ψ0 dω,

(3.23) ψh(t) =
1

2πi

∫

Γ

h(ω)e−iωt
[

R̃(ω + i0) − R̃(ω − i0)
]

ψ0 dω

where l(ω) and h(ω) are defined in Section 2.2. Further we analyze ψl(t) and ψh(t)
separately.

3.2.1. Low energy decay. We consider the integral (3.22 over (m,m+ 2ε) only.
The integral over (−m − 2ε,−m) is dealt with in the same way. We prove the
desired decay of ψl(t) using a special case of lemma 10.2 from [7]. Denote by B a
Banach space with the norm ‖ · ‖ .

Lemma 3.8. Let F ∈ C([m, a], B), satisfy

(3.24) F (m) = F (a) = 0, ‖F ′′(ω)‖ = O(|ω −m|−3/2), ω → m.

Then

(3.25)

a
∫

m

e−itωF (ω)dω = O(t−3/2), t→ ∞.
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Due to (3.13), we can apply lemma 3.8 with F = l(ω)
(

R̃(ω+ i0)−R̃(ω− i0)
)

,

B = L(L2
σ, L

2
−σ), a = m+ 2ε with a small ε > 0 and σ > 5/2, to get

(3.26) ‖ψl(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ0‖L2
σ

t ∈ R, σ > 5/2.

3.2.2. High energy decay. The resolvents R(ζ), R0(ζ) are related by the Born
perturbation series

(3.27) R(ζ) = R0(ζ)I −R0(ζ)V R0(ζ) +R0(ζ)V R0(ζ)V R(ζ), ζ ∈ C \ [0,∞)

which follow by iteration of R(ζ) = R0(ζ)I −R0(ζ)V R(ζ). Then by (3.12) we have

R̃(ω) = (iα∂x + Ṽ(x) + ω)
[

R0(ω
2 −m2)I −R0(ω

2 −m2)V R0(ω
2 −m2)(3.28)

+ R0(ω
2 −m2)V R0(ω

2 −m2)V R(ω2 −m2)
]

.

Let us substitute series (3.28) into spectral representation (3.23) for ψh(t):

ψh(t) =
1

2πi

∫

Γ

e−iωth(ω)(iα∂x + Ṽ(x) + ω)
[

R0(ζ+) −R0(ζ−)
]

ψ0 dω

+
1

2πi

∫

Γ

e−iωth(ω)(iα∂x + Ṽ(x) + ω)
[

R0(ζ+)V R0(ζ+) −R0(ζ−)V R0(ζ−)
]

ψ0dω

+
1

2πi

∫

Γ

e−iωth(ω)(iα∂x + Ṽ(x) + ω)

[

R0(ζ+)V R0(ζ+)V R(ζ+) −R0(ζ−)V R0(ζ−)V R(ζ−)
]

ψ0dω

= ψh1(t) + ψh2(t) + ψh3(t), t ∈ R

where ζ+ = (ω + i0)2 − m2, ζ− = (ω − i0)2 − m2. We analyze each term ψhk,
k = 1, 2, 3 separately.
Step i) For the first term ψh1(t) we have by (2.5), (2.20) and (2.22)

ψh1(t) = −i(Ṽ(x) −mβ)Gh(t)ψ0 + Uh(t)ψ0.

Hence, (2.23) and (2.25) imply that

(3.29) ‖ψh1(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2.

Step ii) We represent the second term ψh2(t) as

(3.30) ψh2(t) = ϕ1(t) + ϕ2(t)

where

ϕ1(t) =
1

2πi

∫

Γ

e−iωth(ω)(Ṽ −mβ)
[

R0(ζ+)V R0(ζ+) −R0(ζ−)V R0(ζ−)
]

ψ0dω,

ϕ2(t) =
1

2πi

∫

Γ

e−iωth(ω)(iα∂x +mβ+ω)
[

R0(ζ+)V R0(ζ+)−R0(ζ−)V R0(ζ−)
]

ψ0dω

=
1

2πi

∫

Γ

e−iωth(ω)
[

R0(ω + i0)V R0(ζ+) −R0(ω − i0)V R0(ζ−)
]

ψ0dω.

Consider the first term ϕ1(t). Denote

P (ω) = h(ω)(Ṽ−mβ)
[

R0(ζ+)V R0(ζ+) −R0(ζ−)V R0(ζ−)
]

ψ0.



WEIGHTED ENERGY DECAY 123

We have

supp P (ω) ∈ Γε := (−∞,−m− ε) ∪ (m+ ε,∞),

and P ′′ ∈ L1(Γε;L(L2
σ, L

2
−σ)) with σ > 5/2 by (2.10) with l = 0 and k = 2 since

V does not contain differential operators, see Remark 3.3. Then, two times partial
integration implies that

(3.31) ‖ϕ1(t)‖L2
−σ

≤ C(1 + |t|)−2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2.

Now we consider the second term ϕ2(t). Denote h1(ω) =
√

h(ω) (we can assume
that h(ω) ≥ 0 and h1 ∈ C∞

0 (R)). We set

φh1 =
1

2πi

∫

Γ

e−iωth1(ω)
[

R0(ζ+) −R0(ζ−)
]

ψ0 dω = −iGh1
(t)ψ0

For φh1 inequality (3.29) obviously holds: Namely,

‖φh1(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2.

The term ϕ2(t) can be rewritten as a convolution.

Lemma 3.9. (cf. [9, Lemma 3.11]) The convolution representation holds

(3.32) ϕ2(t) = i

t
∫

0

Uh1
(t− τ)V φh1(τ) dτ, t ∈ R

where the integral converges in L2
−σ with σ > 5/2.

Applying theorem 2.3 with h1 instead of h to the integrand in (3.32), we obtain
that

‖Uh1
(t− τ)V φh1(τ)‖L2

−σ
≤
C‖V φh1(τ)‖L2

σ′

(1 + |t−τ |)3/2

≤
C1‖φh1(τ)‖L2

σ′
−β

(1 + |t−τ |)3/2
≤

C2‖ψ0‖L2
σ

(1+ |t−τ |)3/2(1 + |τ |)3/2
(3.33)

where σ′ ∈ (5/2, β − 5/2). Therefore, integrating in τ , we obtain by (3.32) that

(3.34) ‖ϕ2(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2

Step iii) Denote by Q(ω) the integrand in ψh3. Since Q′′ ∈ L1(Γε;L(L2
σ, L

2
−σ))

with σ > 5/2 by (2.10) and (3.15) then, two times partial integration implies that

(3.35) ‖ψh3(t)‖L2
−σ

≤ C(1 + |t|)−2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2.

Finally, bounds (3.29), (3.31), (3.34) and 3.35) imply

‖ψh(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ0‖L2
σ
, t ∈ R, σ > 5/2.

Theorem 3.7 is proved. �

Corollary 3.10. Asymptotics ( 3.20) imply ( 1.6) with the projector

(3.36) Pc := 1 − Pd, Pd =
∑

ωj∈Σ

Pj
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4. Application to asymptotic completeness

We apply the obtained results to prove an asymptotic completeness by standard
Cook’s argument.

Theorem 4.1. Let conditions ( 1.5) and ( 3.1) hold. Then
i) For the solution to ( 1.1) with the initial function ψ(0) ∈ L2, the long time
asymptotics hold

(4.1) ψ(t) =
∑

ωj∈Σ

e−iωjtψj + U(t)φ± + r±(t)

where ψj are the corresponding eigenfunctions, φ± ∈ L2 are the scattering states,
and

(4.2) ‖r±(t)‖L2 → 0, t→ ±∞.

ii) Furthermore,

(4.3) ‖r±(t)‖L2 = O(|t|−1/2)

if ψ(0) ∈ L2
σ with σ > 5/2.

Proof. Denote Xd := PdL
2, Xc := PcL

2. For ψ(0) ∈ Xd asymptotics (4.1)
obviously hold with φ± = 0 and r±(t) = 0. Hence, it remains to prove for ψ(0) ∈ Xc

the asymptotics

(4.4) ψ(t) = U(t)φ± + r±(t)

with the remainder satisfying (4.2). Moreover, it suffices to prove asymptotics (4.4),
(4.3) for ψ(0) ∈ Xc ∩ L2

σ with σ > 5/2 since the space L2
σ is dense in L2, while the

group U(t) is unitary in L2. In this case theorem 3.7 implies the decay

(4.5) ‖ψ(t)‖L2
−σ

≤ C(1 + |t|)−3/2‖ψ(0)‖L2
σ
, t→ ±∞.

The function ψ(t) satisfies equation (1.1),

iψ̇(t) = (H0 + V)ψ(t).

Hence, the corresponding Duhamel equation reads

(4.6) ψ(t) = U(t)ψ(0) +

t
∫

0

U(t− τ)Vψ(τ)dτ, t ∈ R.

Rewrite (4.6) as
(4.7)

ψ(t) = U(t)
[

ψ(0) +

±∞
∫

0

U(−τ)Vψ(τ)dτ
]

−
±∞
∫

t

U(t− τ)Vψ(τ)dτ = U(t)φ± + r±(t).

It remains to prove that φ± ∈ L2 and (4.3) holds. Consider the sign “+” for the
concreteness. The unitarity of U(t) in L2, condition (1.5) and decay (4.5) imply
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that for σ′ ∈ (5/2,min{σ, β})
∞
∫

0

‖U(−τ)Vψ(τ)‖L2 dτ ≤ C

∞
∫

0

‖Vψ(τ)‖L2 dτ

≤ C1

∞
∫

0

‖ψ(τ)‖L2

−σ′

dτ ≤ C2

∞
∫

0

‖ψ(0)‖L2
σ
dτ

(1 + τ)−3/2
<∞

since |V(x)| ≤ C〈x〉−β ≤ C′〈x〉−σ′

. Hence, φ+ ∈ L2. Estimate (4.3) follows
similarly. �
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