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Abstract. For a class of quasilinear Schrödinger equations with harmonic
potential of the form

iϕt = −△ϕ + |x|2ϕ − |ϕ|p−1ϕ − 2(△|ϕ|2)ϕ, t ≥ 0, x ∈ R
N ,

we prove firstly the existence of stable standing waves for 1 < p < 3 + 4
N

and

then study the instability of standing waves for 3 + 4
N

≤ p < 3N+2
N−2

. Our

results indicate that the quasilinear term (△|ϕ|2)ϕ makes the standing waves
more stable than their counterpart in the semilinear case, which is consistent
with the physical phenomena and is in striking contrast with the classical
semilinear Schrödinger equations with potential.
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1. Introduction

In this paper, we consider a class of quasilinear Schrödinger equation with a
potential |x|2ϕ of the form

(1.1) iϕt = −△ϕ+ |x|2ϕ− |ϕ|p−1ϕ− 2(△|ϕ|2)ϕ, t ≥ 0, x ∈ R
N ,
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where i2 = 1, ϕ ≡ ϕ(t, x) : R+ × RN → C is a complex-valued function and △ =
∑N

j=1
∂2

∂x2
j

is the standard Laplacian operator. We are concerned with the stability

and the instability of standing waves of (1.1). The main results of the present paper
are to prove that the existence of stable standing waves for 1 < p < 3 + 4

N and

study the instability of standing waves for 3+ 4
N ≤ p < 2 · 2∗− 1, in here and after,

2∗ = 2N
N−2 for N ≥ 3 and 2∗ = +∞ for N = 1, 2; 2 · 2∗ = 4N

N−2 for N ≥ 3 and
2 · 2∗ = +∞ for N = 1, 2.

Problems of this kind have been derived as models in a lot of physical phe-
nomena. For example, (1.1) models the time evolution of the condensate wave
functions in superfluid film [23]. (1.1) has also appeared in plasma physics and
fluid mechanics, in the theory of Heisenberg ferromagnet and magnons, and in
dissipative quantum mechanics [20, 30, 34, 37].

Compared with the classical semilinear equation with a harmonic potential
|x|2ϕ of the form

(1.2) iϕt = −△ϕ+ |x|2ϕ− |ϕ|p−1ϕ, t ≥ 0, x ∈ R
N ,

(1.1) has an additional quasilinear term (△|ϕ|2)ϕ. This term is physically relevant
but creates great difficulties in mathematical studies. For example, given an initial
condition

(1.3) ϕ(t, x)|t=0 = ϕ0(x),

it is proved that the local solution of Eqs.(1.2)+(1.3) exists for any initial value ϕ0

in the energy space W 1,2(RN ) and 1 < p < 2∗ − 1, see e.g. [6]. But for Cauchy
problem (1.1)+(1.3), it is still unknown if the local solution exists for any initial
value ϕ0 ∈ W 1,2(RN ). Only when ϕ0 is sufficiently smooth, Poppenberg [28] has
proved the existence of local solutions of (1.1)+(1.3). For some other results on
the related Cauchy problems, we refer the interested readers to Kenig et al. [22]
and de Bouard et al. [3]. It is also known from [6] that, when 1 < p < 1 + 4

N ,

the solution of Eqs.(1.2)+(1.3) exists globally in time for any ϕ0 ∈ W 1,2(RN ); and
when 1 + 4

N ≤ p < 2∗ − 1, solutions of Eqs.(1.2)+(1.3) may blow up in finite time
for suitable initial value ϕ0, see e.g. [6, 15]. While for Eqs.(1.1)+(1.3), it is proved
that, when 3 + 4

N ≤ p < 2 · 2∗ − 1, the solution of Eqs.(1.1)+(1.3) may blow up in
a finite time for suitable ϕ0, see [19]. Moreover the existence of global solutions of
Eqs.(1.1)+(1.3) was an open problem for a long time. The main difficulty is due to
the presence of the quasilinear term (△|ϕ|2)ϕ.

In the present paper, we do not discuss the Cauchy problem of (1.1). We are
interested in the existence of stable and unstable standing waves of (1.1), which is
an important and interesting issue of nonlinear Schrödinger equations. Throughout
this paper, we make the following assumption:
Assumption (A): Suppose that k ≥ N

2 + 7 and ϕ0 ∈W k,2(RN )∩L2(RN , |x|2dx).
There is a maximal T > 0 and a unique solution ϕ(t, x) of Eqs.(1.1)+(1.3) such
that ϕ ∈ C([0, T ),W k,2(RN ) ∩L2(RN , |x|2dx)), and for all t ∈ [0, T ) there hold
∫

|ϕ(t, ·)|2 =
∫

|ϕ0|2, and E(ϕ(t, ·)) = E(ϕ0), where

E(ψ) =

∫

1

2

(

|∇ψ|2 + |x|2|ψ|2 + |∇|ψ|2|2
)

− 1

p+ 1

∫

|ψ|p+1

for any ψ ∈ W k,2(RN ) ∩ L2(RN , |x|2dx).
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We will prove the existence of stable standing waves for 1 < p < 3 + 4
N and

study the instability of standing waves for 3 + 4
N ≤ p < 2 · 2∗ − 1. Firstly, we recall

some results on the standing waves of (1.2). By a standing wave, we mean a special
periodic solution of the form eiµtu(x), where µ ∈ R and u ≡ u(x) is a minimal
action solution of the following elliptic equation

(1.4) −△u+ µu+ |x|2u = |u|p−1u, u→ 0 (|x| → ∞).

There are many results on the existence of standing waves of (1.2), see [31] and
the references therein. When 1 < p < 1 + 4

N , it is proved that standing waves of

Eq.(1.2) are orbital stable, see [7, 32, 40]. When 1 + 4
N < p < 2∗ − 1, Rose et al.

[32] and Fukuizumi [13] proved that there is a sequence {µn}n∈N with µn → −µ0

as n → ∞, such that the standing waves eiµntu(x) are orbital stable, where µ0 is
the first eigenvalue of the following eigenvalue problem

−△v + |x|2v = µv, v → 0 as |x| → ∞.

Also when 1 + 4
N < p < 2∗ − 1, Fukuizumi et al. [13, 14] have proven that there

is µ∗ > 0 such that for any µ > µ∗, the standing wave eiµtu(x) is orbital unstable.

It is also proved that if (N2 + 4 + 4
√
N2 + 1)/N2 < p < 2∗ − 1, then the standing

wave eiµtu(x) is unstable for all µ ∈ (0,+∞), see [13]. We also refer the interested
readers to Shatah et al. [33] and Grillakis et al. [16, 17] for related results about
the stability and instability of standing waves of semilinear Schrödinger equations
without potential of the form iϕt = −△ϕ− |ϕ|p−1ϕ.

Next we turn to the standing waves of the quasilinear Schrödinger equation
(1.1). Again by a standing wave, we mean a special periodic solution of the form
eiωtu(x), where ω ∈ R and u ≡ u(x) is a minimal action solution of the following
elliptic equation

(1.5) −△u+ ωu+ |x|2u− 2(△|u|2)u = |u|p−1u, u→ 0 (|x| → ∞).

Liu et al. [27] and Poppenberg et al. [29] have proved the existence of standing
waves of (1.1) for 1 < p < 2 · 2∗ − 1. However for the stability of standing waves of
(1.1), only a few results are known in the literature. When N = 1 and without the
term |x|2ϕ, Iliev et al. [21] have studied the stability of standing waves by using the
methods of Grillakis et al. [16, 17]. Also when N = 1 and without the term |x|2ϕ,
the strong instability of standing waves has been obtained in [9] by the variational
methods. While for N ≥ 2, the existence of stable and unstable standing waves of
(1.1) remain open for many years. On the other hand, when N ≥ 2, Guo et al.
[18] have proven that if 1 < p < 1 + 4

N then a standing wave of (1.1) is orbital

stable. But we only have blow-up results of Eqs.(1.1)+(1.3) for p ≥ 3+ 4
N , see Guo

et al. [19]. So it is reasonable to conjecture that there exist stable standing waves
for 1 + 4

N ≤ p < 3 + 4
N and there exist unstable standing waves for p ≥ 3 + 4

N .

For (1.1) with N ≥ 2 and without potential term |x|2ϕ, these phenomena have
been completely displayed by the authors in [10]. While the existence of stable
standing waves for 1 < p < 3 + 4

N and the existence of unstable standing wave for

3 + 4
N < p < 2 · 2∗ − 1 was obtained in [12] by different methods. The purpose

here is to show these phenomena for (1.1). Our main results are Theorem 4.4 and
Theorem 5.11. These results indicate that the quasilinear term (△|ϕ|2)ϕ makes the
standing waves more stable which is consistent with the physical phenomenon. One
by-product (see Theorem 3.1) of our results is that, for p = 1 + 4

N and any initial
data, the solution of Eqs.(1.1)+(1.3) is uniformly bounded with respect to the time
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of existence, which gives a striking contrast to the blow-up result of Eqs.(1.2)+(1.3)
obtained by Zhang [39].

This paper is organized as follows. In Section 2, some preliminaries are given.
Especially a variant of Gargliardo-Nirenberg’s inequality (see Theorem 2.2) is de-
rived, which will be used conveniently in the study of orbital stability of standing
waves of (1.1). In Section 3, we use the variant Gargliardo-Nirenberg’s inequality
to prove a uniform bound to the solution of Eqs.(1.1)+(1.3). In particular, we show
a quite different phenomenon from the results of Zhang [39]. The result obtained
in this section implies that the additional quasilinear term allows local solutions to
be extended easily to global ones. In Section 4, we prove the existence of an orbital
stable standing wave of (1.1) for N ≥ 1 and 1 < p < 3 + 4

N . The main result is
Theorem 4.4. In Section 5, we prove the instability of standing waves of (1.1) for
3 + 4

N ≤ p < 2 · 2∗ − 1 and suitable frequency ω. The main result is contained
in Theorem 5.11. In the final section, we give some concluding remarks and some
open problems.

Notations. Throughout this paper,
∫

· always means
∫

RN · dx. Different positive

constants might be denoted by the same letter C or Cj ; L
q(RN ) is the usual

Lebesgue space with the usual norm ‖ · ‖q. L
2(RN , |x|2dx) is a weighted Lebesgue

space. W k,2(RN ) (with k ≥ 1) is the standard Sobolev space with the norm ‖u‖2
W k,2

=
∫

(|u|2 +
∑k

j=1 |∇ju|2). ∇ju is the jth derivative of u. Hk = {u ∈ W k,2(RN ) :
∫

|x|2|u|2 < +∞}. On H1, we use the norm ‖u‖2
H1 =

∫

(|∇u|2 + |x|2|u|2 + |u|2).
Define Xk = {u ∈ Hk :

∫

|∇|u|2|2dx < +∞}. We also use the norm ‖u‖2
H1 on

X1. → denotes strong convergence and ⇀ denotes weak convergence. Re denotes
the real part and Im denotes the imaginary part; and, for any t ∈ R, the function
x 7→ ϕ(t, x) is simply denoted by ϕ(t), if no confusion occurs.

2. Preliminaries

In this section, we give some preliminaries which are useful in what follows. A
starting point is the following version of Gagliardo-Nirenberg inequality from [38].

Lemma 2.1. [38] Let 1 < q < 2∗ − 1. There is a positive constant C such that
for any u ∈W 1,2(RN ),

(2.1)

∫

|u|q+1 ≤ C

(
∫

|∇u|2
)

N(q−1)
4

(
∫

|u|2
)

2(q+1)−N(q−1)
4

.

Theorem 2.2. If 1 < p < 2 · 2∗ − 1, then there is a positive constant C such
that for any u ∈ X1, there holds

∫

|u|p+1 ≤ C

(
∫

|u|2
)

4N+(p+1)(2−N)
2N+4

(
∫

|∇|u|2|2
)

N(p−1)
2N+4

.

Proof. Firstly, when 3 < p < 2 ·2∗−1, we choose q = (p+1)/2−1. The choice
of q implies that 1 < q < 2∗ − 1. Since u ∈ X1, applying Lemma 2.1 to |u|2, one
gets that

∫

|u|p+1 =

∫

|u|2(q+1) ≤ C1

(
∫

|u|4
)

2(q+1)−N(q−1)
4

(
∫

|∇|u|2|2
)

N(q−1)
4

.
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From the standard interpolation inequality one obtains that

∫

|u|4 ≤ C2

(
∫

|u|2
)2θ1

(
∫

|u|2(q+1)

)

2(1−θ1)
q+1

,

where θ1 = (1
4 − 1

2(q+1) )/(
1
2 − 1

2(q+1) ). Therefore

2θ1 =
q − 1

q
and

2(1 − θ1)

q + 1
=

1

q
.

Hence, we deduce that

∫

|u|2(q+1) ≤ C3

(
∫

|u|2
)γ1

(
∫

|u|2(q+1)

)γ2
(

∫

|∇|u|2|2
)

N(q−1)
4

,

where

γ1 =
(q − 1)(2(q + 1) −N(q − 1))

4q
, γ2 =

2(q + 1) −N(q − 1)

4q
.

Therefore
(

∫

|u|2(q+1)

)1−γ2

≤ C3

(
∫

|u|2
)γ1

(
∫

|∇|u|2|2
)

N(q−1)
4

.

It is now deduced that
∫

|u|2(q+1) ≤ C

(
∫

|u|2
)γ3

(
∫

|∇|u|2|2
)γ4

,

where

γ3 =
2(q + 1) −N(q − 1)

N + 2
, γ4 =

Nq

N + 2
.

Recalling that p+ 1 = 2(q + 1), we get

(2.2)

∫

|u|p+1 ≤ C

(
∫

|u|2
)

4N+(p+1)(2−N)
2N+4

(
∫

|∇|u|2|2
)

N(p−1)
2N+4

.

Secondly, when 1 < p ≤ 3, we choose s such that 3 < s < 2 · 2∗ − 1 and use the
standard interpolation inequality to get that

‖u‖p+1
p+1 ≤ ‖u‖(p+1)θ2

2 ‖u‖(p+1)(1−θ2)
s+1 ,

where θ2 = ( 1
p+1 − 1

s+1 )/(1
2 − 1

s+1 ). Therefore

(2.3) ‖u‖p+1
p+1 ≤ ‖u‖

2(s−p)
s−1

2 ‖u‖
(s+1)(p+1)

s−1

s+1 .

For
∫

|u|s+1, one obtains from Eq.(2.2) that

(2.4)

∫

|u|s+1 ≤ C

(
∫

|u|2
)

4N+(s+1)(2−N)
2N+4

(
∫

|∇|u|2|2
)

N(s−1)
2N+4

.

Combining (2.4) with (2.3), one has that for 1 < p ≤ 3,

∫

|u|p+1 ≤ C

(
∫

|u|2
)

4N+(p+1)(2−N)
2N+4

(
∫

|∇|u|2|2
)

N(p−1)
2N+4

still holds. The proof is complete. �
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Proposition 1. [19] Let ϕ0 ∈ W k,2(RN ) with k ≥ N
2 + 7, | · |ϕ0(·) ∈ L2(RN )

and ϕ(t, x) be the solution of (1.1) with initial value ϕ(0, x) = ϕ0(x). Denote
D(t) =

∫

|x|2|ϕ|2. Then we have that, for all t ∈ [0, T ),

D′′(t) = 8

∫
(

|∇ϕ|2 − |x|2|ϕ|2 +
N + 2

2
|∇|ϕ|2|2 − N(p− 1)

2(p+ 1)
|ϕ|p+1

)

.

Lemma 2.3. [1, 31] Let N ≥ 1. The following embedding

H1 →֒ Lq+1(RN ) with 2 ≤ q + 1 < 2∗,

is compact.

3. Uniform bound of the solution

This section is concerned with the uniform bound with respect to the time
of existence to the solution of Eqs. (1.1) + (1.3). We point out that for the
semilinear equation (1.2), Zhang [39] proved that, when p = 1 + 4

N and ϕ0(x) =

λ
N
2 Ψ(λx) (where Ψ(x) is the minimal action solution of −△u + u = |u| 4

N u in
W 1,2(RN )), the solution of Eqs.(1.2)+(1.3) blows up in a finite time in the sense
that limt→T− ‖∇ϕ(t)‖2 = ∞ for some 0 < T < +∞. While for the quasilinear
equations (1.1)+(1.3), we will prove in the following theorem that the additional
quasilinear term prevents the blow-up from appearing for any initial data contained
in a dense subset of H1.

Theorem 3.1. Let ϕ0 ∈ Hk (with k ≥ N
2 + 7) and 1 < p < 3 + 4

N . If ϕ(t) is a

solution of Eqs.(1.1)+(1.3), then
∫

(|∇ϕ(t)|2 + |x|2|ϕ(t)|2 + |∇|ϕ(t)|2|2) is uniformly
bounded with respect to the time t of existence.

Proof. Since ϕ(t) is a solution of Eqs.(1.1)+(1.3), we obtain from the conserved
energy that

E(ϕ0) =

∫

1

2

(

|∇ϕ(t)|2 + |x|2|ϕ(t)|2 + |∇|ϕ(t)|2|2
)

− 1

p+ 1

∫

|ϕ(t)|p+1.

It is now deduced from Theorem 2.2 and Young inequality that

∫

(

|∇ϕ(t)|2 + |x|2|ϕ(t)|2 + |∇|ϕ(t)|2|2
)

≤ 2E(ϕ0) + C

(
∫

|ϕ(t)|2
)s

with s = 4N+(p+1)(2−N)
3N+4−Np , which implies that

∫

(|∇ϕ(t)|2 + |x|2|ϕ(t)|2 + |∇|ϕ(t)|2|2)

is uniformly bounded with respect to the existence time t ∈ [0, T ). �

Remark. Since k ≥ N
2 +7, the embedding Hk →֒ C1(RN ) is continuous. Hence, for

u ∈ Hk, we have that
∫

|∇|u|2|2 < ∞. Therefore, we get that for a dense subset
of H1,

∫

|∇ϕ(t)|2 is always uniformly bounded with respect to the time of existence.
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4. Stable standing waves

In this section, we study the existence of an orbital stable standing wave of
(1.1). Firstly we need the following definition.

Definition 4.1. A set S ⊂ X1 is said to be X1-stable with respect to (1.1) if
for any ε > 0, there is δ > 0 such that for any ϕ0 ∈ X1 ∩Hk with k ≥ N

2 + 7 and

inf
v∈S

(

‖ϕ0 − v‖H1 +

∣

∣

∣

∣

∫

|∇|ϕ0|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

< δ,

the solution ϕ(t, x) ∈ C([0, T ), Hk) of Eqs.(1.1)+(1.3) satisfies

sup
0≤t<T

inf
v∈S

(

‖ϕ(t, ·) − v‖H1 +

∣

∣

∣

∣

∫

|∇|ϕ(t, ·)|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

< ε.

Otherwise S is called X1-unstable. A standing wave eiωtu(x) is said to be orbital
stable if the set {eiθu(x); θ ∈ R} is stable.

4.1. Existence of standing waves. In this subsection, we study the exis-
tence of a standing wave of (1.1). We point out that Liu et al. [27, 11] have
got some results on the existence of standing waves of (1.1). However, due to the
presence of the quasilinear term, one can not do scaling arguments and hence the
results of Liu et al. [27, 11] seem to be not suitable for the study of the orbital
stability of standing waves of (1.1). Here, we use the method of Cazenave et al.
[7]. For any Λ > 0, we consider the following minimization problem

(4.1) mΛ = inf {F (u) : u ∈ X1 and h(u) = Λ} ,
where h(u) = 1

2

∫

|u|2 and

F (u) =

∫
(

1

2
|∇u|2 +

1

2
|x|2|u|2 +

1

2
|∇|u|2|2 − 1

p+ 1
|u|p+1

)

.

Before solving this minimization problem, we give several lemmas.

Lemma 4.2. Let {un}n∈N ⊂ X1 be a minimizing sequence of mΛ. If 1 < p <
3 + 4

N , then
∫

(|∇un|2 + |x|2|un|2 + |∇|un|2|2) is uniformly bounded with respect to
n ∈ N.

Proof. Since {un}n∈N ⊂ X1 is a minimizing sequence of mΛ, for n large enough,
one has that

(4.2) mΛ + o(1) = F (un) and h(un) = Λ.

From 1 < p < 3 + 4
N , Theorem 2.2 and Young inequality, one obtains that

(4.3)

∫

|un|p+1 ≤
(

∫

|un|2
)

4N+(p+1)(2−N)
2N+4

(
∫

|∇|un|2|2
)

N(p−1)
2N+4

≤ 1

4

∫

|∇|un|2|2 + C‖un‖β
2 ,

where β and C ≡ C(N, p) are positive constants whose exact value are not impor-
tant and do not depend on n ∈ N. Therefore for n large enough,

mΛ + 1 ≥ 1

4

∫
(

|∇un|2 + |x|2|un|2 + |∇|un|2|2
)

− C(2Λ)
β
2 ,



96 JIANQING CHEN AND EUGÉNIO M. ROCHA

which implies that
∫

(|∇un|2 + |x|2|un|2 + |∇|un|2|2) is uniformly bounded with
respect to n ∈ N. �

Theorem 4.3. Suppose 1 < p < 3 + 4
N . Then for any given Λ > 0, mΛ is

achieved at some u0 6= 0.

Proof. Let {un}n∈N ⊂ X1 be a minimizing sequence of mΛ. We know from
Lemma 4.2 that

∫

(|∇un|2+|x|2|un|2+|∇|un|2|2) is uniformly bounded with respect
to n ∈ N. Since

∫

|un|2 = 2Λ, we know that {un}n∈N is bounded in H1. Going if
necessary to a subsequence, still denoted by {un}n∈N, we may assume that un ⇀ u0

in H1 and un → u0 a.e. in R
N . By Lemma 2.3 we have that un → u0 strongly in

L2(RN ). Hence h(u0) = Λ and u0 6= 0. Moreover from Theorem 2.2, one has that

∫

|un|p+1 ≤
(

∫

|un|2
)

4N+(p+1)(2−N)
2N+4

(
∫

|∇|un|2|2
)

N(p−1)
2N+4

.

Note that
∫

|∇|un|2|2 is uniformly bounded with respect to n ∈ N. One obtains
that

un → u0 strongly in Lp+1(RN ) for 1 < p < 3 +
4

N
.

Next, we claim that as n→ ∞,
∫

|∇|un|2|2 ≥
∫

|∇|u0|2|2.

Indeed, whenN ≥ 3,
∫

|∇|un|2|2 can be regarded as the D1,2(RN ) norm of Ln(x) :=

|un(x)|2. Since Ln is bounded in D1,2(RN ), there is L0 ∈ D1,2(RN ) such that
Ln ⇀ L0 in D1,2(RN ). Also we may assert that un → u0 a.e. in RN and Ln → L0

a.e. in RN . From this we have L0 = |u0|2. Therefore for n large
∫

|∇|un|2|2 ≥
∫

|∇|u0|2|2.

When N = 2, we use the continuous embedding of W 1,2(RN ) into Lq(RN ) for any
2 ≤ q < ∞ (instead of using D1,2(RN )) and a similar argument works. When
N = 1, the proof of

∫

|(|un|2)′|2 ≥
∫

|(|u0|2)′|2 is similar but simpler. Using Brezis-
Lieb Lemma [4], we get that

(4.4)

mΛ + o(1) =

∫
(

1

2
|∇un|2 +

1

2
|x|2|un|2 +

1

2
|∇|un|2|2 −

1

p+ 1
|un|p+1

)

≥ 1

2

∫
(

|∇u0|2 + |x|2|u0|2 + |∇|u0|2|2
)

− 1

p+ 1

∫

|u0|p+1

+
1

2
lim inf
n→∞

∫
(

|∇(un − u0)|2 + |x|2|un − u0|2
)

≥ F (u0) ≥ mΛ since h(u0) = Λ.

Hence mΛ = F (u0). �

Next, we denote by GΛ the set of minimizers of mΛ. We know from Theorem
4.3 that for Λ > 0, GΛ is not empty. Let u0 ∈ GΛ. Note that for any φ ∈ C∞

0 (RN ),

Re

∫

(−△|u0|2)u0φ̄

= Re

∫
(

u0|∇u0|2φ̄+ ū0∇u0∇u0φ̄+ u2
0∇ū0∇φ̄ + |u0|2∇u0∇φ̄

)

.
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Since
∫

|u0|2|∇u0| ≤
∫

|u0|2(1 + |∇u0|2) < +∞ and

∫

|u0||∇u0|2 ≤
∫

|∇u0|2(1 + |u0|2) < +∞,

we have that Re
∫

∇(|u0|2)∇(u0φ̄) exists for any φ ∈ C∞
0 (RN ). The standard proof

of the Ljusternik’s Theorem on Lagrange multipliers [5] implies that there exists γ
such that u0 is a weak solution of

(4.5) −△u+ |x|2u− 2(△|u|2)u− |u|p−1u = γu, u ∈ X1.

Remark 1. We remark that we do not know the γ in (4.5) is zero or not since we
are facing with a quasilinear term. If γ 6= 0, then u(x) is a standing wave of (1.1).
In Section 6, we will discuss the conditions on Λ, p and N such that γ 6= 0.

4.2. Stability of standing waves. In this subsection, we prove the orbital
stability of the standing wave of (1.1) obtained in the above. From the previous
subsection, we know that for µ = −γ, eiµtu0(x) is a standing wave of (1.1). Hence
GΛ(u0) := {eiµtu0(x) : t > 0} is the orbit of u0. Moreover, if v ∈ GΛ(u0) then
eisv ∈ GΛ(u0) for any s ∈ R. Then the result of orbital stability is:

Theorem 4.4. Suppose 1 < p < 3 + 4
N . The set GΛ(u0) is X1-stable with

respect to (1.1) in the sense of Definition 4.1.

Proof. Suppose the conclusion is false. Then there exists a number ε0 > 0,
such that for any m > 0, there is ϕ0m ∈ X1 ∩Hk with k ≥ N

2 + 7 such that

(4.6) inf
v∈GΛ(u0)

(

‖ϕ0m − v‖H1 +

∣

∣

∣

∣

∫

|∇|ϕ0m|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

<
1

m

and

sup
0<t<Tm

inf
v∈GΛ(u0)

(

‖ϕm(t, ·) − v‖H1 +

∣

∣

∣

∣

∫

|∇|ϕm(t, ·)|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

≥ ε0,

where ϕm(t, ·) ∈ C([0, Tm), Hk) is the solution of (1.1) with initial condition ϕm(0, ·)
= ϕ0m. Hence, we can pick the first time tm such that

inf
v∈GΛ(u0)

(

‖ϕm(tm, ·) − v‖H1 +

∣

∣

∣

∣

∫

|∇|ϕm(tm, ·)|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

= ε0.

Since, ϕ0m converges to some element g∗ ∈ GΛ(u0) in the norm ‖ · ‖H1 and mΛ =
F (g) for all g ∈ GΛ(u0) and h(g) = Λ, we obtain from (4.6) that F (ϕ0m) → mΛ

and h(ϕ0m) → Λ as m → ∞. Thus we can find a sequence βm → 1 such that
h(βmϕ0m) = Λ for all m. Therefore, for qm = βmϕm(tm, ·), there holds h(qm) = Λ.
From (4.6) and the conserved energy, we have

lim
m→∞

F (qm) = lim
m→∞

F (ϕm(tm, ·)) = lim
m→∞

F (ϕ0m) = mΛ.

Therefore {qm} is a minimizing sequence for mΛ. The proof of Theorem 4.3 implies
that qm → q0 in the norm ‖ · ‖H1 and

lim
m→∞

∫

|∇|qm|2|2 =

∫

|∇|q0|2|2.
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Hence q0 ∈ GΛ((u0)) and we have that

ε0 ≤ ‖ϕm(tm, ·) − q0‖H1 +

∣

∣

∣

∣

∫

|∇|ϕm(tm, ·)|2|2 −
∫

|∇|q0|2|2
∣

∣

∣

∣

= | 1

βm
− 1|‖qm‖H1 + ‖qm − q0‖H1

+| 1

β4
m

− 1|
∫

|∇|qm|2|2 +

∣

∣

∣

∣

∫

|∇|qm|2|2 −
∫

|∇|q0|2|2
∣

∣

∣

∣

→ 0

as m→ ∞, which is a contradiction. �

Remark 2. We point out that the orbital stability of standing waves obtained here
is a generalized version of orbital stability of standing waves, see e.g. [7, 36]. The
main reason is that due to the presence of the quasilinear term (∆|u|2)u, we do not
know if the minimizer obtained in Theorem 4.3 is unique. We believe that the study
of uniqueness of the minimizer is an interesting problem, which will be studied in
the future.

Remark 3. Although we have proven that for any given Λ > 0, the standing wave
related with a minimizer of the minimization problem mΛ is orbital stable by Def-
inition 4.1, we do not know if the nonlinear stability in Theorem 4.4 is true for all
ground states with 1 < p < 3 + 4

N , because we can not do scaling argument due to

the presence of the quasilinear term (∆|u|2)u. We believe that this is an interesting
and complicated problem, which can be a problem for further study.

5. Instability of standing waves

In this section, we study the instability of standing waves of the quasilinear
equation (1.1). For ω > 0, we define on X1 the following functionals

J(u) =
1

2

∫
(

|∇u|2 + ω|u|2 + |x|2|u|2
)

+
1

2

∫

|∇|u|2|2 − 1

p+ 1

∫

|u|p+1,

I(u) =

∫
(

|∇u|2 + ω|u|2 + |x|2|u|2
)

+ 2

∫

|∇|u|2|2 −
∫

|u|p+1 and

Q(u) =

∫
(

|∇u|2 − |x|2|u|2
)

+
N + 2

2

∫

|∇|u|2|2 − N(p− 1)

2(p+ 1)

∫

|u|p+1.

Remark. Due to the quasilinear term
∫

|∇|u|2|2, the functionals J , I and Q may
not be continuous on X1.

Define the following Nehari type set

N1 = {u ∈ X1 : I(u) = 0 and u 6= 0}
and its related minimization problem

(5.1) d1 = inf
u∈N1

J(u).

From Liu et al. [27] we know that d1 > 0 and d1 is achieved by a v ∈ X1, which is
a minimal action solution of the following elliptic equation

(5.2) −△u+ ωu+ |x|2u− 2(△|u|2)u = |u|p−1u, u→ 0 (|x| → ∞).
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From an argument similar to [27, Lemma 5.10], one has that v ∈ C1(RN ). More-
over, there is θ > 0 such that

(5.3) |v(x)| ≤ C0e
−θ|x| and

∫

RN\B(0,R)

(

|∇v|2 + |v|2
)

≤ C0e
−θR.

Before studying the instability of standing waves, we introduce another mini-
mization problem. Define

dk = inf
u∈Nk

J(u), where Nk = {u ∈ Xk : I(u) = 0 and u 6= 0} .

The following lemmas are useful in what follows.

Lemma 5.1. [27] Let 3 ≤ p < 2 · 2∗ − 1. If u ∈ Nk, then J(u) ≥ J(su) for any
s > 0 and s 6= 1.

Lemma 5.2. [27] Let u 6= 0, u ∈ X1 and either p > 3 or p = 3 and 2
∫

|∇|u|2|2 <
∫

|u|p+1. Then there is a unique s > 0 such that su ∈ N1.

Next, denote Y := X1 ∩ C1(RN ). On Y , we introduce a new norm ‖u‖Y =
‖u‖H1 + ‖u‖C1(RN ), where ‖u‖C1(RN ) = sup0≤α≤1, x∈RN |Dαu|.

Lemma 5.3. The functionals J , I and Q are continuous on X1 ∩ C1(RN ).

Proof. It suffices to prove that the functional

u ∈ X1 ∩ C1(RN ) 7→
∫

|∇|u|2|2

is continuous. Let {un}n∈N ⊂ X1 ∩ C1(RN ) and un → u in X1 ∩ C1(RN ), that is
to say,

‖un − u‖H1 → 0 and sup
0≤α≤1, x∈RN

|Dαun −Dαu| → 0 (n→ ∞).

We denote un(x) = an(x) + ibn(x) and u(x) = a(x) + ib(x), where an(x), bn(x),
a(x) and b(x) are all real-valued functions. Moreover, we have

‖an − a‖H1 → 0, sup
0≤α≤1, x∈RN

|Dαan −Dαa| → 0

and

‖bn − b‖H1 → 0, sup
0≤α≤1, x∈RN

|Dαbn −Dαb| → 0.

Observe that
∫

|∇|un|2|2 = 4

∫

a2
n|∇an|2 + 8

∫

anbn∇an∇bn + 4

∫

b2n|∇bn|2.

In the first place, we have
∣

∣

∣

∣

∫

a2
n|∇an|2 −

∫

a2|∇a|2
∣

∣

∣

∣

≤
∫

|a2
n − a2||∇an|2 +

∫

a2||∇an|2 − |∇a|2|.

Since
∫

|∇an|2 is uniformly bounded with respect to n and

sup
0≤α≤1, x∈RN

|Dαan −Dαa| → 0,

we have that
∫

|a2
n − a2||∇an|2 → 0 as n→ +∞.
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From a ∈ X1 ∩C1(RN ) and ‖an − a‖H1 → 0, one gets that
∫

a2||∇an|2 − |∇a|2| → 0 as n→ +∞.

Therefore
∫

a2
n|∇an|2 →

∫

a2|∇a|2.
Similarly, one can prove that

∫

b2n|∇bn|2 →
∫

b2|∇b|2 and

∫

anbn∇an∇bn →
∫

ab∇a∇b.

Hence
∫

|∇|un|2|2 →
∫

|∇|u|2|2. The proof is complete. �

Lemma 5.4. Let 3 ≤ p < 2 · 2∗ − 1. Then d1 = dk for any k ≥ N
2 + 7.

Proof. From the definition of d1 and dk, we know that dk ≥ d1. Hence it
suffices to prove that d1 ≥ dk (with k ≥ N

2 + 7). Since d1 is achieved by v ∈ X1,
one only needs to prove that for any ε > 0,

(5.4) J(v) ≥ inf
u∈Nk

J(u) − ε.

The proof of (5.4) is divided into several steps.
Step 1. Constructing a sequence of functions in Hk by the properties of v.

In fact from v ∈ C1, we have v ∈ Y := X1 ∩ C1(RN ). Since Hk(RN ) is dense
in H1(RN ) and Hk(RN ) →֒ C1(RN ) for k ≥ N

2 + 7, we have a sequence ψn ∈ Hk

such that

ψn → v in H1 and ψn → v in C1.

Step 2. From the choice of ψn, it is easy to see that

lim
n→∞

∫
(

|∇ψn −∇v|2 + |x|2|ψn − v|2 + ω|ψn − v|2
)

= 0.

Step 3. We claim that

lim
n→∞

∫

|∇|ψn|2|2 =

∫

|∇|v|2|2.

Indeed, note that

lim
n→∞

∫

(

|∇|ψn|2|2 − |∇|v|2|2
)

≤ 4 lim
n→∞

∫

∣

∣|ψn|2 − |v|2
∣

∣ |∇ψn|2 + 4 lim
n→∞

∫

|v|2
∣

∣|∇ψn|2 − |∇v|2
∣

∣

≤ 4 lim
n→∞

(

sup
x∈RN

∣

∣|ψn|2 − |v|2
∣

∣

∫

|∇ψn|2
)

+4 sup
x∈RN

|v|2 lim
n→∞

∫

∣

∣|∇ψn|2 − |∇v|2
∣

∣ .

From ψn → v in X1 ∩ C1, one obtains that

lim
n→∞

∣

∣

∣

∣

∫

|∇|ψn|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

= 0.

The proof of Step 3 is complete.

Step 4. There is a sequence λn ∈ (0,+∞) such that λnψn ∈ Nk and limn→∞ λn = 1.
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Note that v is a solution of (5.2) and
∫

(

|∇v|2 + ω|v|2 + |x|2|v|2
)

+ 2

∫

|∇|v|2|2 =

∫

|v|p+1.

We obtain from Step 2 and Step 3 that for n large enough,

2

∫

|∇|ψn|2|2 <
∫

|ψn|p+1.

Hence, the existence of λn follows directly from Lemma 5.1 and Lemma 5.2. It
remains to prove that limn→∞ λn = 1.

Firstly, we claim that there is λ′ > 0 such that λn ≥ λ′ > 0 for n large enough.
Indeed, if this is not the case (that is to say, λn > 0 and λn → 0 as n → ∞), we
have from λnψn ∈ Nk that

(5.5)

∫
(

|∇ψn|2 + |x|2|ψn|2 + ω|ψn|2 + 2λ2
n|∇|ψn|2|2

)

=

∫

λp−1
n |ψn|p+1.

Therefore

lim
n→∞

∫
(

|∇ψn|2 + |x|2|ψn|2 + ω|ψn|2
)

= 0,

which contradicts the result claimed in Step 2 and v 6= 0.
Similarly, we can show that there is λ

′′

< +∞ such that λn ≤ λ
′′

< +∞ for
n large enough. Going if necessary to a subsequence, still denoted by {λn}n∈N, we
may assume that

lim
n→∞

λn = λ0 6= 0.

From the previous proof we have that λ0v ∈ N1. Since v ∈ N1, Lemma 5.1 and
Lemma 5.2 imply that λ0 = 1. This completes the proof of Step 4.

Step 5. The proof of (5.4).
From Step 2, Step 3 and Step 4, we know that there is n1 > 0 such that for

n > n1,

1

2

∫
(

|∇v|2 + |x|2|v|2 + ω|v|2
)

≥ 1

2

∫
(

|∇ψn|2 + |x|2|ψn|2 + ω|ψn|2
)

− ε

6

≥ 1

2

∫
(

|∇(λnψn)|2 + |x|2|λnψn|2 + ω|λnψn|2
)

− ε

3

and
1

2

∫

|∇|v|2|2 ≥ 1

2

∫

|∇|ψn|2|2 −
ε

6
≥ 1

2

∫

|∇|λnψn|2|2 −
ε

3
.

Using Theorem 2.2 and Step 4, one has n2 > 0 such that, for n > n2,

− 1

p+ 1

∫

|v|p+1 ≥ − 1

p+ 1

∫

|λnψn|p+1 − ε

3
.

Therefore, three exists n0 > max{n1, n2} such that

J(v) ≥ J(λn0ψn0) − ε.

Thus (5.4) holds since λn0ψn0 ∈ Nk. The proof is complete. �

Lemma 5.5. Let v be a minimizer of (5.1). Then Q(v) = 0.
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Proof. The idea is based on Pohozaev type identities. Define χ0 ∈ C∞
0 (R)

such that 0 ≤ χ0 ≤ 1 and χ0(s) = 1 if 0 ≤ |s| ≤ 1, χ0(s) = 0 if |s| ≥ 2. We set

χn(x) = χ0(
|x|2

n2 ), n ∈ N.
Noting firstly that v is a minimizer of problem (5.1) with value d1, one has that

(5.6)

∫
(

|∇v|2 + |x|2|v|2 + ω|v|2 + 2|∇|v|2|2 − |v|p+1

)

= 0.

Next, multiplying the following equation

(5.7) −ωv − |x|2v + △v + 2(△|v|2)v + |v|p−1v = 0

by x∇(χn(x)v) and integrating over RN , one obtains that
∫

x∇(χn(x)v)

(

− ωv − |x|2|v|2 + △v + 2(△|v|2)v + |v|p−1v

)

= 0.

Note that x∇(χn(x)v) = 2
n2 |x|2vχ′

n

(

|x|2

n2

)

+ χn(x)x∇v. It is deduced from inte-

grating by parts that
∫

x∇(χn(x)v)(−ωv) = −ω
∫

x|v|2∇(χn(x)) − ω

∫

vx∇v

= −ω
∫

2|x|2
n2

|v|2χ′
n

( |x|2
n2

)

+
N

2
ω

∫

|v|2.

Using Lebesgue dominated convergence theorem, one gets that

(5.8)

∫

x∇(χn(x)v)(−ωv) → N

2
ω

∫

|v|2 as n→ ∞.

Since
∫

x∇(χn(x)v)△v =

∫

△v(xv∇(χn(x)) + χn(x)x∇v)

=

∫

xv△v∇(χn(x)) +

∫

xχn(x)△v∇v,
∫

xχn(x)△v∇v = −
∫

∇v∇(xχn(x)∇v)

= −
∫

∇v∇(χn(x))(x∇v) −
∫

χn(x)∇v∇(x∇v),

and

−
∫

χn(x)∇v∇(x∇v) = −
∫

χn(x)|∇v|2 − 1

2

∫

χn(x)x∇|∇v|2

= −
∫

χn(x)|∇v|2 +

∫

x|∇v|2∇(χn(x)) +
N

2

∫

χn(x)|∇v|2

=

(

N

2
− 1

)
∫

χn(x)|∇v|2 +

∫

x|∇v|2∇(χn(x)),

using again Lebesgue dominated convergence theorem, one deduces that

(5.9)

∫

x∇(χn(x)v)△v →
(

N

2
− 1

)
∫

|∇v|2 as n→ ∞.

Similarly one can obtain that as n→ ∞

(5.10)

∫

|v|p−1vx∇(χn(x)v) → − N

p+ 1

∫

|v|p+1,
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(5.11)

∫

2(△|v|2)vx∇(χn(x)v) →
(

N

2
− 1

)
∫

|∇|v|2|2

and

(5.12)

∫

|x|2vx∇(χn(x)v) → −N + 2

2

∫

|x|2|v|2.

Therefore

(5.13)

N

2

∫

ω|v|2 +

(

N

2
− 1

)
∫

|∇v|2 +
N + 2

2

∫

|x|2|v|2 − N

p+ 1

∫

|v|p+1

+

(

N

2
− 1

)
∫

|∇|v|2|2 = 0.

Combining (5.6) with (5.13), one gets that

Q(v) =

∫
(

|∇v|2 − |x|2|v|2 +
N + 2

2
|∇|v|2|2 − N(p− 1)

2(p+ 1)
|v|p+1

)

= 0.

The proof is complete. �

Definition 5.6. Let v be a minimal action solution of (5.2). For ε > 0, we
define a tabular neighborhood around the orbit

{

eisv(x) : s ∈ R
}

by

U (1)
ε (v) =

{

ξ ∈ X1; inf
s∈R

(

‖ξ − eisv‖H1 +

∣

∣

∣

∣

∫

|∇|ξ|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

< ε

}

.

We also define

U (k)
ε (v) =

{

ξ ∈ Xk; inf
s∈R

(

‖ξ − eisv‖H1 +

∣

∣

∣

∣

∫

|∇|ξ|2|2 −
∫

|∇|v|2|2
∣

∣

∣

∣

)

< ε

}

.

Lemma 5.7. There exist ε0 > 0 and σ0 > 0 such that, for any ξ ∈ U
(1)
ε0 (v) ∩

C1(RN ) and λ ≡ λ(ξ) ∈ (1 − σ0, 1 + σ0), it holds

I(ξλ) = 0,

where we have used the notation uµ(x) = µ
N
2 u(µx) for µ > 0.

Proof. The proof is based on an application of the implicit function theorem.
In the first place, since I(v) = 0, one obtains that

I(ξλ)

∣

∣

∣

∣

λ=1,ξ=v

= I(v) = 0.

In the second place, one has

(5.14)

∂

∂λ
I(ξλ)

∣

∣

∣

∣

λ=1,ξ=v

= 2

∫

(

|∇v|2 − |x|2|v|2
)

+ 2(N + 2)

∫

|∇|v|2|2

−N
2

(p− 1)

∫

|v|p+1.

From Q(v) = 0, we get that

∂

∂λ
I(ξλ)

∣

∣

∣

∣

λ=1,ξ=v

= (N + 2)

∫

|∇|v|2|2

+

(

N(p− 1)

p+ 1
− N

2
(p− 1)

)
∫

|v|p+1.
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It is now deduced from I(v) = 0 that

∂

∂λ
I(ξλ)

∣

∣

∣

∣

λ=1,ξ=v

= −
∫

(

|∇v|2 + ω|v|2 + |x|2|v|2
)

+

(

N(p− 1)

p+ 1
− N(p− 1)

2
+N + 2

)
∫

|v|p+1.

Since p ≥ 3 + 4
N , we have that

N(p− 1)

p+ 1
− N(p− 1)

2
+N + 2 ≤ 0.

Therefore
∂

∂λ
I(ξλ)

∣

∣

∣

∣

λ=1,ξ=v

< 0.

Combining these with the implicit function theorem, we know that Lemma 5.7
holds. �

Lemma 5.8. Let v be the minimal action solution of (5.2) mentioned above. If

∂2

∂λ2
E(vλ)

∣

∣

∣

∣

λ=1

< 0,

then there exist ε1 > 0 and σ1 > 0 such that for any ξ ∈ U
(1)
ε1 (v)∩C1(RN ) satisfying

‖ξ‖2 = ‖v‖2, there exists λ ∈ (1 − σ1, 1 + σ1) such that

E(v) < E(ξ) + (λ− 1)Q(ξ).

Proof. Since ∂2

∂λ2E(vλ)

∣

∣

∣

∣

λ=1

< 0, there exist ε1 > 0 and σ1 > 0 such that

∂2

∂λ2
E(ξλ) < 0

holds for any λ ∈ (1−σ1, 1+σ1) and ξ ∈ U
(1)
ε1 (v)∩C1(RN ). After direct calculations,

we have that
∂

∂λ
E(ξλ)

∣

∣

∣

∣

λ=1

= Q(ξ).

At the same time, the Taylor expansion of E(ξλ) at λ = 1 is

(5.15) E(ξλ) = E(ξ) +Q(ξ)(λ − 1) +
1

2

∂2

∂λ2
E(ξλ)

∣

∣

∣

∣

λ=λ̃

(λ− 1)2

for some λ̃ ∈ (1 − σ1, 1 + σ1). From lemma 5.7, we can take 0 < ε1 < ε0 and 0 <

σ1 < σ0 such that I(ξλ) = 0 for any ξ ∈ U
(1)
ε1 (v)∩C1(RN ) and λ ∈ (1−σ1, 1+σ1).

On the other hand, for any ξ ∈ U
(1)
ε1 (v) ∩ C1(RN ) satisfying ‖ξ‖2 = ‖v‖2, one has

that

‖ξλ‖2 = ‖ξ‖2 = ‖v‖2.

Therefore, one obtains that

(5.16) E(ξλ) = J(ξλ) − ω

2

∫

|ξλ|2 ≥ J(v) − ω

2

∫

|v|2 = E(v).

Combining (5.15) with (5.16), we get the conclusion of Lemma 5.8. �
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Definition 5.9. Let v be the minimal action solution of (5.2) mentioned above.

For any ϕ0 ∈ U
(k)
ε1 (v), we define the maximal time of existence in U

(k)
ε1 (v) as follows

T (ϕ0) = sup
{

T > 0 : ϕ(t) ∈ U (k)
ε1

(v) and 0 ≤ t < T
}

,

where ϕ(t) is the solution of (1.1) with initial value ϕ0.

Define the set

Π =
{

ξ ∈ U (1)
ε1

(v) : E(ξ) < E(v), ‖ξ‖2 = ‖v‖2, and Q(ξ) < 0
}

.

Lemma 5.10. Let v be the minimal action solution of (5.2). If

∂2

∂λ2
E(vλ)

∣

∣

∣

∣

λ=1

< 0,

then for any ϕ0 ∈ Π ∩Hk, there exists σ3 > 0 such that the solution ϕ(t) of (1.1)
with initial value ϕ0 satisfies

Q(ϕ(t)) < −σ3 for 0 ≤ t < T (ϕ0).

Proof. Since ϕ0 ∈ Π∩Hk, ϕ0 satisfies E(ϕ0) < E(v), ‖ϕ0‖2 = ‖v‖2, Q(ϕ0) < 0.
Put σ2 = E(v) − E(ϕ0). Since ‖ϕ(t)‖2 = ‖ϕ0‖2, ϕ(t) ∈ Hk(RN ) for any 0 ≤ t <
T (ϕ0) and for k ≥ N

2 + 7,

Hk(RN ) →֒ C1(RN )

is continuous, we obtain that

ϕ(t) ∈ Π ∩C1(RN )

for 0 ≤ t < T (ϕ0) by the definition of T (ϕ0). It is deduced from Lemma 5.8 that

Q(ϕ(t))(λ − 1) + E(ϕ(t)) > E(v)

for any λ ∈ (1 − σ1, 1 + σ1) and 0 ≤ t < T (ϕ0). Then, by the identity of energy
conservation E(ϕ(t)) = E(ϕ0), we get that

Q(ϕ(t))(λ − 1) > E(v) − E(ϕ(t)) = E(v) − E(ϕ0) = σ2 > 0.

Thus
Q(ϕ(t)) 6= 0

for any λ ∈ (1−σ1, 1+σ1) and 0 ≤ t < T (ϕ0). Since ϕ(t) ∈ Hk for all 0 ≤ t < T (ϕ0)
and Hk →֒ C1(RN ) is continuous, we obtain from Lemma 5.3 that Q(ϕ(t)) is
continuous with respect to t. At the same time noting the fact that Q(ϕ0) < 0,
we have that Q(ϕ(t)) < 0 for any 0 ≤ t < T (ϕ0). Since λ − 1 ≥ −σ1 for any
0 ≤ t < T (ϕ0), one can obtain that

Q(ϕ(t)) < −σ2

σ1
for 0 ≤ t < T (ϕ0).

The proof is complete by setting σ3 := σ2

σ1
. �

Theorem 5.11. For all minimal action solutions v satisfying (5.1), if 3+ 4
N ≤

p < 2 · 2∗ − 1 and v satisfies

(5.17)

(

4 −N(p− 1)

)
∫

|∇v|2 +

(

4 +N(p− 1)

)
∫

|x|2|v|2

+

(

(N + 2)2 − N(N + 2)(p− 1)

2

)
∫

|∇|v|2|2 < 0,

then the standing wave eiωtv(x) is unstable.
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Proof. Since v is a minimal action solution (5.1), we know that Lemma 5.5,
Lemma 5.7, Lemma 5.8 and Lemma 5.10 hold for this v. Note that from Lemma
5.5, Q(v) = 0 and

∂2

∂λ2
E(vλ)

∣

∣

∣

∣

λ=1

=

∫
(

|∇v|2 + 3|x|2|v|2 +
N + 2

2
(N + 1)|∇|v|2|2

)

−N(p− 1)

2(p+ 1)

(

N

2
(p− 1) − 1

)
∫

|v|p+1.

We obtain that

(5.18)

∂2

∂λ2
E(vλ)

∣

∣

∣

∣

λ=1

=
4 −N(p− 1)

2

∫

|∇v|2 +
4 +N(p− 1)

2

∫

|x|2|v|2

+

(

(N + 2)2

2
− N(N + 2)(p− 1)

4

)
∫

|∇|v|2|2.

It is now deduced from (5.17) that

∂2

∂λ2
E(vλ)

∣

∣

∣

∣

λ=1

< 0.

In addition, from direct calculations, one has that E(vλ) < E(v) for λ > 1 and
Q(vλ) < Q(v) = 0 for λ > 1 and ‖vλ‖2 = ‖v‖2. Hence vλ ∈ Π as λ > 1. Since
Hk is dense in X1 ∩ C1(RN ), one has a ϕ0 ∈ Π ∩Hk. Assuming that the solution
ϕ(t) with initial data ϕ0 exists for all time, we obtain from Lemma 5.10 that there
exists σ3 > 0 such that the solution ϕ(t) of Eq.(1.1) corresponding with the initial
datum ϕ0 satisfies

Q(ϕ(t)) < −σ3 for 0 ≤ t < T (ϕ0).

It is now deduced from Proposition 1 that D′′(t) = 8Q(ϕ(t)) < −8σ3. Using the
standard argument of Glassey [15], we know that the standing wave eiωtv(x) is
unstable. �

6. Concluding remarks and open questions

In this concluding section, we give several remarks and questions.

Remark 6.1. In this remark, we prove that under what conditions, the γ obtained
in (4.5) is not zero. The proof is divided into two steps. In the first step, we verify
for which Λ in (4.1), mΛ < 0. To attain this goal, we have firstly from [27] that for
4 ≤ p+ 1 < 2 · 2∗, the following elliptic equation

(6.1) −△u+ |x|2u+ u− 2(△|u|2)u = |u|p−1u

has a minimal action solution w 6= 0 and w ∈ X1. Hence eitw(x) is a standing
wave of Eq.(1.1). Secondly for 2 < p+ 1 < 2 · 2∗, we know from [26] that there is
a sequence of θj → ∞, such that for any θj the following equation

(6.2) −△u+ |x|2u+ u− 2(△|u|2)u = θj |u|p−1u

has a minimal action solution wθj
6= 0 and wθj

∈ X1. Re-scaling these sequence

of solutions by u(x) := u(θ
−1/2
j x) we may assume that for a sequence of positive

numbers aj → 0 there is a sequence of solutions of

(6.3) −△u+ a2
j |x|2u+ au− 2(△|u|2)u = |u|p−1u.
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Let w0 be the solution corresponding to some 0 < a0 ≤ 1. We have the following
proposition.

Proposition 2. If

b = max

{

1

p+ 1
2

p2
−2p+5

4 ,
1

a0

}

and Λ satisfies

(AΛ)















(p+1
2 )

2
p−1 b−

N(p−1)−4
2(p−1) ≤ 2Λ

R

|w0|2
≤ ( 4

p+1b
N(p−3)−4

4 )
2

3−p if 1 < p < 3,

Λ ≥ 1
2

∫

|w|2(p+1
2 )

2
p−1 if p = 3,

Λ ≥ 1
2

∫

|w|2 max
{

(p+1
2 )

2
p−1 , (p+1

4 )
2

p−3

}

if 3 < p < 3 + 4
N ,

then mΛ < 0, where mΛ is defined in (4.1).

Proof. We firstly consider the case of 3 ≤ p < 3 + 4
N . Since w be the minimal

action solution of (6.1), we choose s such that 1
2

∫

|sw|2 = Λ, which implies that

s2 = 2Λ
R

|w|2
. Note that

F (sw) =
s2

2

∫

(|∇w|2 + |x|2|w|2) +
s4

2

∫

|∇|w|2|2 − sp+1

p+ 1

∫

|w|p+1

=

(

s2

2
− sp+1

p+ 1

)
∫

(|∇w|2 + |x|2|w|2) − sp+1

p+ 1

∫

|w|2

+

(

s4

2
− 2sp+1

p+ 1

)
∫

|∇|w|2|2.

One obtains that F (s(w) < 0 if

Λ ≥ 1

2

∫

|w|2(p+ 1

2
)

2
p−1 for p = 3

and

Λ ≥ 1

2

∫

|w|2 max

{

(
p+ 1

2
)

2
p−1 , (

p+ 1

4
)

2
p−3

}

for 3 < p < 3 +
4

N
.

Secondly we deal with the case 1 < p < 3. For b > 0, define wb(x) =

b
1

p−1w0(b
1
2x) and then wb is a solution of

(6.4) −△u+ b2a2
0|x|2u+ ba0u− 2b−

2
p−1 (△|u|2)u = |u|p−1u.

Choosing s > 0 such that 1
2

∫

|swb|2 = Λ, then we have

s =

(

2Λ
∫

|w0|2
)

1
2

b
N(p−1)−4

4(p−1) .

Using the fact that wb satisfies (6.4), we have that

F (swb) =
s2

2

∫

(|∇wb|2 + |x|2|wb|2) +
s4

2

∫

|∇|wb|2|2 −
sp+1

p+ 1

∫

|wb|p+1

=

(

s2

2
− sp+1

p+ 1

)
∫

|∇wb|2 + (
s2

2
− sp+1

p+ 1
)b2a2

0

∫

|x|2|wb|2

+

(

s4

2
− 2sp+1

p+ 1
b−

2
p−1

)
∫

|∇|w|2|2 − sp+1

p+ 1
ba0

∫

|wb|2.
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Hence F (swb) < 0 if







































p+ 1

2
≤

(

2Λ
∫

|w0|2
)

p−1
2

b
N(p−1)−4

4 ;

Λ ≥ 1

2

∫

|w0|2
(

p+ 1

2

)
2

p−1

b−
N(p−1)−4

2(p−1) a
− 4

p−1

0 b−
4

p−1 ;

Λ ≤ 1

2

∫

|w0|2
(

4

p+ 1

)
2

3−p

b−
2

p−1 .

These inequalities hold under our assumptions on Λ in the case of 1 < p < 3. Since
we have considered all cases, we prove that mΛ < 0. �

In the second step, we show under what conditions, the γ obtained in (4.5) is
not zero.

Proposition 3. γ 6= 0 provided one of the following conditions holds:

(i): mΛ < 0, N ≥ 1 and 3 ≤ p < 3 + 4
N ;

(ii): mΛ < 0, N = 2 and 2 ≤ p < 3 + 4
N .

Proof. We first prove case (i). Arguing by a contradiction, we assume that
γ = 0 in this case. Let u0 be a minimizer of mΛ. Then we have

∫

(|∇u0|2 +

|x|2|u0|2 + 2|∇|u0|2|2) =
∫

|u0|p+1. Since 3 ≤ p < 3 + 4
N , we have

F (u0) =
1

2

∫

(

|∇u0|2 + |x|2|u0|2 + |∇|u0|2|2
)

− 1

p+ 1

∫

(

|∇u0|2 + |x|2|u0|2 + 2|∇|u0|2|2
)

=

(

1

2
− 1

p+ 1

)
∫

(

|∇u0|2 + |x|2|u0|2
)

+

(

1

2
− 2

p+ 1

)
∫

|∇|u0|2|2 > 0,

which is a contradiction to F (u0) = mΛ < 0.
Next, we prove case (ii). Let u0 be a minimizer of mΛ. If γ = 0, on one hand

we have

(6.5)

∫

(|∇u0|2 + |x|2|u0|2 + 2|∇|u0|2|2) =

∫

|u0|p+1;

On the other hand, using an argument similar to the proof of Lemma 5.5, we have
that

(6.6)

∫
(

|∇u0|2 − |x|2|u0|2 +
N + 2

2
|∇|u0|2|2

)

=
N(p− 1)

2(p+ 1)

∫

|u0|p+1.

For N = 2, (6.5) and (6.6) imply that

∫

|∇|u0|2|2 =
p

2

∫

|x|2|u0|2 −
1

2

∫

|∇u0|2.
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Combining this with the assumption 2 ≤ p < 3 + 4
N , we deduce that

F (u0) =
1

2

∫

(

|∇u0|2 + |x|2|u0|2 + |∇|u0|2|2
)

− 1

p+ 1

∫

(

|∇u0|2 + |x|2|u0|2 + 2|∇|u0|2|2
)

=

(

1

2
− 1

p+ 1

)
∫

(

|∇u0|2 + |x|2|u0|2
)

+

(

1

2
− 2

p+ 1

)
∫

|∇|u0|2|2

=
1

4

∫

|∇u0|2 +

(

p

4
− 1

2

)
∫

|x|2|u0|2 > 0,

which contradicts to F (u0) = mΛ < 0. This proves γ 6= 0 in this case. �

Remark 6.2. We do not know whether γ 6= 0 for any Λ > 0, N ≥ 1 and any
1 < p < 3+ 4

N . We believe that this is a complicated problem due to the quasilinear
term.
Remark 6.3. We verify that in which case the (5.17) in Theorem 5.11 holds. Let
v be the minimal action solution of Eq.(5.2), so Q(v) = 0 and I(v) = 0. Denote

R(v,N) =

(

4 −N(p− 1)

)
∫

|∇v|2 +

(

4 +N(p− 1)

)
∫

|x|2|v|2

+

(

(N + 2)2 − N(N + 2)(p− 1)

2

)
∫

|∇|v|2|2.

Case I. If N = 2, we have that

(6.7)

∫

|∇v|2 −
∫

|x|2|v|2 + 2

∫

|∇|v|2|2 =
p− 1

p+ 1

∫

|v|p+1;

(6.8)

∫

|∇v|2 + ω

∫

|v|2 +

∫

|x|2|v|2 + 2

∫

|∇|v|2|2 =

∫

|v|p+1.

It is deduced from (6.7) and (6.8) that

(6.9)

∫

|∇|v|2|2 = −1

2

∫

|∇v|2 +
p

2

∫

|x|2|v|2 +
p− 1

2
ω

∫

|v|2.

Replacing (6.9) into R(v, 2), we get that

R(v, 2) = −4

∫

|∇v|2 − 2(p2 − 6p− 1)

∫

|x|2|v|2 + (10 − 2p)(p− 1)ω

∫

|v|2.

Therefore if ω > 0 and p ≥ 3 +
√

10, then R(v, 2) < 0. Thus condition (5.17) can

be verified in the case of ω > 0, N = 2 and p ≥ 3 +
√

10.

Case II. If N = 4, then we have from Q(v) = 0 and I(v) = 0 that

(6.10)

∫

|∇v|2 −
∫

|x|2|v|2 + 3

∫

|∇|v|2|2 =
2(p− 1)

p+ 1

∫

|v|p+1;

(6.11)

∫

|∇v|2 + ω

∫

|v|2 +

∫

|x|2|v|2 + 2

∫

|∇|v|2|2 =

∫

|v|p+1.

Thus, we obtain from (6.10) and (6.11) that

(6.12)

∫

|∇|v|2|2 =

(

p+ 1

2(7 − p)
− 1

2

)
∫

|∇v|2 +

(

3(p+ 1)

2(7 − p)
− 1

2

)

ω

∫

|v|2

+

(

5(p+ 1)

2(7 − p)
− 1

2

)
∫

|x|2|v|2.
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Substitute (6.12) into R(v, 4) we get that

R(v, 4) =

(

(8 − 4p) +
12(4 − p)(p− 3)

2(7 − p)

)
∫

|∇v|2

+
4

7 − p
(−10p2 + 46p− 12)

∫

|x|2|v|2 +
24(4 − p)(p− 1)

7 − p
ω

∫

|v|2.

Therefore, if ω > 0 and 23
10 +

√

409
100 ≤ p < 7, then R(v, 4) < 0. Hence, condition

(5.17) can be verified in the case of ω > 0, N = 4 and 23
10 +

√

409
100 ≤ p < 7 (since

when N = 4, 2 · 2∗ − 1 = 7).
Remark 6.4. From the previous section, we know that 3 + 4

N seems to be a
critical exponent of (1.1). For the semilinear equation (1.2), the critical exponent
is 1+ 4

N . The harmonic potential term |x|2ϕ makes the existence of stable standing

waves eiµntu(x) of (1.2) in the case of 1 + 4
N < p < 2∗ − 1, where µn → µ0, see

[32, 13] for details. It also makes the standing waves eiωtu(x) be unstable for any
frequency ω > 0 and suitable bigger p. The previous remark shows that for (1.1),
the harmonic potential term |x|2ϕ seems to play similar roles. However, due to the
quasilinear term, detailed characterizations of these are open.
Remark 6.5. We point out that if one replaces the perturbation (△|ϕ|2)ϕ in (1.1)
by a more general term (△|ϕ|2α)|ϕ|2α−2ϕ with α > 1

2 , one can also get the stable
and unstable standing wave by these methods. Indeed, one can prove that the
existence of stable standing wave for 1 < p < 4α−1+ 4

N and the unstable standing

wave for 4α− 1 + 4
N ≤ p < 2α · 2∗− 1. We left the details to the interested readers.

Acknowledgments. This work was partially done during the first author staying
in the Department of Mathematics, University of Aveiro, Portugal. He thanks the
warm hospitality of all the members of the department. J. Chen thanks Professor
Z.-Q. Wang for some helpful discussions and comments. This work was finan-
cially supported by NSF of China (10971026), NSF of Fujian (2009J06001) and the
Portuguese Foundation for Science and Technology (FCT) and the research unit
CIDMA.

References

[1] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic

problems on RN , Comm. Partial Differential Equations 20 (1995), 1725–1741.
[2] H. Berestycki and T. Cazenave, Instabilite des etats stationnaires dans les equations de

schrodinger et de Klein-Gordon non linearires, C. R. Acad. Sci. Paris, Serie I 293 (1981),
489–492.

[3] A. de Bouard, N. Hayashi and J. C. Saut, Global existence of small solutions to a relativistic

nonlinear Schrödinger equation, Commun. Math. Phys. 189 (1997), 73–105.
[4] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence

of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.
[5] F. E. Browder, Variational methods for nonlinear elliptic eigenvalue problems, Bull. Amer.

Math. Soc. 71 (1965), 176–183.
[6] T. Cazenave, Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences,

Vol. 10, Providence, Rhode Island, 2005.
[7] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear

Schrödinger equations, Commun. Math. Phys. 85 (1982), 549–561.

[8] X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short-

ultrains tense laser pulse in underdense plasma, Phys. Rev. Let. 70 (1993), 2082–2085.
[9] J. Chen and B. Guo, Blow-up and strong instability result for a quasilinear Schrödinger

equation, Appl. Math. Model. 33 (2009), 4192–4200.



EXISTENCE OF STABLE STANDING WAVES 111

[10] J. Chen, Y. Li and Z.-Q. Wang, Stability of standing waves for a class of quasilinear

Schrödinger equations, Submitted.
[11] M. Colin and L. Jeanjean, Solutions for a quasilinear Schröinger equation: a dual approach,
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