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Global existence for coupled reaction diffusion systems

modelling some reversible chemical reactions

Said Kouachi

Communicated by Y. Charles Li, received October 14, 2010.

Abstract. The purpose of this paper is to prove global existence of solutions
for coupled reaction diffusion equations describing some coupled reversible
chemical reactions. In this case the nonlinearities present a difficulties since
they change sign and so neither u nor v the concentrations of the two reactants
in question is a priori bounded or at least bounded in some Lp-space for p large.
Our techniques are based on Lyapunov functional method.
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1. Introduction

We consider the family of reaction-diffusion system

(1.1)

{

∂u
∂t -a∆u = f(u, v) in R+ × Ω,
∂v
∂t -b∆v = g(u, v) in R+ × Ω,

with the boundary conditions

(1.2)
∂u

∂η
=

∂v

∂η
= 0 on R

+ × ∂Ω,

and the initial data

(1.3) u(0, x) = u0(x), v(0, x) = v0(x) in Ω,
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where

(1.4) f(u, v) = − h1u
lvq + h2u

rvs, g(u, v) = h3u
lvq − h4u

rvs

hi, i = 1, 2, 3 and 4, l, q, r and s are positive constants. Ω is an open bounded

domain of class C
1 in R

n, with boundary ∂Ω,
∂

∂η
denotes the outward normal

derivative on ∂Ω and a and b are positive constants. The initial data are assumed
to be nonnegative.
The functions f and g are called the reaction terms or the nonlinearities of the
system (1.1).
System (1.1) may be a model for the chemical reaction

lA + qB
h

⇄
k

rA + sB.

More precisely, we have the following reaction diffusion system

(1.1)’

{

∂u
∂t -a∆u = (r − l)

[

λ1u
lvq − λ2u

rvs
]

in R+ × Ω,
∂v
∂t -b∆v = (q − s)

[

−λ1u
lvq + λ2u

rvs
]

in R+ × Ω

where u and v are the concentrations respectively of the reactants A and B and λ1

and λ2 are the reaction constants and r > l and q > s to get the same signs as in
(1.1).
The difficulty for this type systems is that the reaction terms do not have a constant
sign and this means that none of the equations are good in the sense that neither
u nor v is a priori bounded or at least bounded in some Lp-space for p large in
order to apply the well known regularizing effect and deduce the global existence
in time for problem (1.1)-(1.3).
In the case when the nonlinearities have a constant sign many results have been
obtained: When f(u, v) = −uvβ (witch implies the uniform boundless of u) and
g(u, v) = uvβ , N. Alikakos [2] established global existence and L∞-bounds of posi-

tive solutions when 1 < β < (n+2)
n . K. Masuda [14] showed that the solutions exist

globally for every β > 1. S. L. Hollis, R. H. Martin and M. Pierre [7] established
global existence of positive solutions for system (1.1) with the boundary conditions

(1.2)’ λ1u + (1 − λ1)
∂u

∂η
= β1, λ2v + (1 − λ2)

∂v

∂η
= β2 on R

+ × ∂Ω,

where

0 < λ1, λ2 < 1, λ1 = λ2 = 1, β1 ≥ 0 and β2 ≥ 0, or λ1 = λ2 = β1 = β2 = 0

under the conditions of the uniform boundedness of u on [0, Tmax] × Ω and

(1.5) f(r, s) + g(r, s) ≤ C(r, s) (r + s + 1) , for all r ≥ 0 and s ≥ 0,

with f and g can change sign and where C(r, s) is positive and uniformly bounded
function defined on R+× R+. Haraux and A. Youkana [4] simplified the proof of
K. Masuda while using techniques based on Lyapunov functional and while taking
nonlinearities f(u, v) = − g(u, v) = −uF (v) satisfying the condition

lim
s→+∞

[

log (1 + F (s))

s

]

= 0,
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where F (s) ≥ 0 for all s ≥ 0. S. Kouachi and A. Youkana [11] generalized the
results of A. Haraux and A. Youkana [4] while adding −c∆u to the right-hand side
of the second equation of system (1.1) and the condition

lim
s→+∞

[

log (1 + f(r, s))

s

]

< α∗, for any r ≥ 0,

where f(r, s) ≥ 0 for all r, s ≥ 0 and

α∗ =
2ab

n(a − b)2 ‖u0‖∞
,

condition reflecting the weak exponential growth of the reaction term f . One notices
that condition (1.5) is insufficient to prove global existence for solutions to system
(1.1) and authors impose to f (or g) to satisfy in addition the following analogous
condition

(1.5)’ f(r, s) (or g(r, s)) ≤ C′(r, s) (r + s + 1) , for all r ≥ 0 and s ≥ 0.

In the case when the nonlinearities do not have a constant sign, there are not many
results: A. J. Morgan [15] Generalized the results of S. L. Hollis, R. H. Martin and
M. Pierre [7] to show that solutions of the m-components reaction diffusion systems
exist globally (m ≥ 2) where also, in our case (m = 2), he imposed to f and f + g
conditions (1.5) under the boundary conditions (1.2)’. S. L. Hollis [6] extended the
results, under the same conditions, to the boundary conditions (1.2)’ but he took

0 ≤ λ1, λ2 ≤ 1, β1 ≥ 0 and β2 ≥ 0.

In S. Kouachi[ 13], respectively in S. Kouachi[14] and finally in S. Abdelmalek
and S. Kouachi[1], we generalized the above results respectively for two, three and
finally m components systems:insufficient to

(1.6)
∂ui

∂t
-di∆ui = fi(u1, ..., um) in R

+ × Ω; i = 1, ..., m,

under the unique condition

(1.7)

m
∑

i=1

Difi(u1, ..., um) ≤ C

[

1 +

m
∑

i=1

ui

]

for all positive constants Di sufficiently large, where C is positive constant and
we showed the global existence without imposing the boundedness of one of the
components of the solution.

2. Notations and preliminary observations

It is well known that to prove global existence of solutions to (1.1)-(1.3) (see
Henry [5]), it suffices to derive a uniform estimate of ‖f(u, v)‖p and ‖g(u, v)‖pon

[0, T ∗[ for some p > n/2. Our aim is to apply polynomial Lyapunov functional
method (see M. Kirane and S. Kouachi [8], [9] and [10], S. Kouachi and A. Youkana
[11] and S. Kouachi[ 13] and [14] and S. Abdelmalek and S. Kouachi[1]) according to
the solutions (u, v) of system (1.1), to carry out their Lp−bounds and deduct their
global existence. The nonnegativity of the solutions is preserved by application of
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classical results on invariant regions (see J. Smoller [18]), since the reaction (1.4) is
quasi-positive, i.e:

(2.1) f (0, v) ≥ 0, for all v ≥ 0 and g (u, 0) ≥ 0, for all u ≥ 0.

The usual norms in the spaces Lp(Ω), L∞(Ω) and C
(

Ω
)

are respectively denoted
by

‖u‖p
p =

1

|Ω|

∫

Ω

|u(x)|p dx,

‖u‖∞ =max
x∈Ω

|u(x)| .

Since the nonlinear right hand side of (1.1) is continuously differentiable on
R+× R+, then for any initial data in C

(

Ω
)

or Lp(Ω), p ∈ (1, +∞), it is easy
to check directly its Lipschitz continuity on bounded subsets of the domain of a
fractional power of the operator

(2.2)

(

−a∆ 0
0 −b∆

)

.

Under these assumptions, the following local existence result is well known (see A.
Friedman [3], D. Henry [5], A. Pazy [16], J. Smoller [18], and F. Rothe [19]).

Proposition 2.1. The system (1.1)-(1.3) admits a unique, classical solution
(u, v) on [0, Tmax[×Ω. If Tmax < ∞ then

(2.3) lim
tրTmax

{‖u(t, .)‖∞ + ‖v(t, .)‖∞} = ∞,

where Tmax denotes the eventual blowing-up time in L
∞(Ω).

We obtained in S. Kouachi[ 13], in particular for coupled reaction diffusion
systems the following result

Proposition 2.2. Suppose that the functions f(r, s) and g(r, s) have polyno-
mial growth and satisfy conditions (1.7). Then all positive solutions of (1.1)-(1.3)
with initial data in L∞(Ω) are global.

The main ingredient of the proof: We used the following polynomial func-
tional

(2.4) t −→ L(t) =

∫

Ω

[

p
∑

i=0

Ci
pθiu

ivp−i

]

dx.

By differentiating L with respect to t and then by simple use of Green’s formula
we got

(2.5) L′(t) = I + J,

where
(2.6)

I = −p(p−1)

p−2
∑

i=0

Ci
p−2

∫

Ω

uivp−2−i
(

aθi+2 |∇u|2 + (a + b) θi+1∇u∇v + bθi |∇v|2
)

dx
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and

(2.7) J =

∫

Ω

[

p

p−1
∑

i=0

(θi+1f(u, v) + θig(u, v))Ci
p−1u

ivp−1−i

]

dx.

Then we choose

(2.8)
θiθi+2

θ2
i+1

≥
(a + b)

2

4ab
, i = 0, 1, ...p − 2,

to get I ≤ 0 and while using conditions (1.7) for m = 2 to get

(2.9) J ≤ C5

∫

Ω

[

p−1
∑

i=0

(u + v + 1)Ci
p−1u

ivp−1−i

]

dx.

Then, the functional L satisfies the differential inequality

(2.10) L′(t) ≤ D1L(t) + D2L
(p−1)/p(t),

where D1 and D2 are positive constants. While putting

Z = L1/p,

one got

pZ ′ ≤ D1Z + D2.

The resolution of this linear differential inequality gives the uniform boundedness
of the functional L on the interval [0, Tmax[, what finished, by using the preliminary
observations of this section, the proof.
By direct application of proposition 2.2, we obtained, in the case h1 = h3 and
h2 = h4, the following result for problem (1.1)-(1.3):

Corollary 2.3. Suppose that

(2.11)







l + q ≤ 1 or r + s ≤ 1,
or r + s > l + q > 1 and l − r < sl − qr < s − q,
or l + q > r + s > 1 and s − q < sl − qr < l − r.

Then, solutions of (1.1) with the boundary conditions (1.2) and the positive initial
data (1.3) exist for all t > 0; that is Tmax = ∞.

Recently, M. Pierre [17] generalized our results, in the case where

(2.12) h2h3 ≤ h1h4

and proved global existence of solutions if

(2.13)

{

s > q and sl − qr ≤ s − q or s = q and l < r,
or l > r and sl − qr ≤ l − r or l = r and s < q

and global weak solutions (solutions that are not in L
∞(Ω) but continue to live in

L1(Ω)) for all l, q, r, s ≥ 1.
In this paper we present some generalizations of the above results and particularly
the case

(2.14)

{

s < q and l < r,
or s > q and l > r

which remains an open problem. We prove global existence without condition (2.12)
or (2.13) and solve the second case of (2.14).
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3. Statement and proof of the main results

The first result is the following

Proposition 3.1. 1. under conditions (2.11), the solutions of problem (1.1)-
(1.3) exists globally in time for all h1, h4, h2, h3 > 0.
2. under conditions (2.12) and for h1 or h4 sufficiently large or h2 or h3 sufficiently
small, the solutions of problem (1.1)-(1.3) exists globally in time for all l, q, r ,
s ≥ 0.

Proof. We begin by the first case

(1) By differentiating L given by (2.4) with respect to t, we get (2.5), where the
integral I given by (2.6) is negative under condition (2.8) on the sequence
{θi} . For the second integral J , we have

(3.1)

J = p

p−1
∑

i=0

∫

Ω

[

(−θi+1h1 + θih3)urvs + ( θi+1h2 − θih4)ulvq
]

Ci
p−1u

ivp−1−idx.

The case r + s ≤ 1 is trivial while applying young inequality to the term
urvs in the right hand side of the second equation of system (1.1) and
choosing θ1

θ0

sufficiently small such that

(3.2) θi+1h2 − θih4 ≤ 0, i = 0, 1, ...p − 1,

for p sufficiently large, then we get (2.9) which gives a differential in-
equality analogous to (2.10) and then the uniform boundedness of the
functional L on the interval [0, T ∗]. We treat by the same way the case
l + q ≤ 1 while exchanging the roles of r and s with l and q and choosing
θ1

θ0

sufficiently large such that

(3.3) −θi+1h1 + θih3 ≤ 0, i = 0, 1, ...p− 1,

for p sufficiently large.
Suppose that the second line of (2.11) is satisfied. We’ll prove that the
functional L given by (2.4) satisfies the differential inequality (2.10) and
deduce its uniform boundedness on the interval [0, T ∗]:
Put

ν1 =
r + s − 1

l + q − 1
and ν2 =

ν1

ν1 − 1
=

r + s − 1

(r + s) − (l + q)
,

then

ν1 > 1, ν2 and
1

ν1
+

1

ν2
= 1.

We can write

l = l1 + l2 and q = q1 + q2,

where

l1 =
r

ν1
=

l + q − 1

r + s − 1
r, l2 =

(sl − qr) − (l − r)

r + s − 1
,

q1 =
s

ν1
=

l + q − 1

r + s − 1
s and q2 =

(s − q) − (sl − qr)

r + s − 1
.
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By choosing θ1

θ0

sufficiently large such that (3.3) is satisfied; for the terms

for whom (3.2) is satisfied, we have

(−θi+1h1 + θih3)urvs + ( θi+1h2 − θih4)ulvq ≤ 0, i = 0, 1, ...p− 1.

For the remained terms, we apply Young inequality to get

(3.4) ulvq ≤

(

θi+1h1 − θih3

θi+1h2 − θih4

)

(

ul1vq1

)ν1

+ Ci

(

ul2vq2

)ν2

, i = 0, 1, ...p− 1,

where Ci (i = 0, 1, ...p − 1)are positive constants and
(

ul1vq1

)ν1

= urvs and ν2(l2 + q2) = 1.

Finally, while applying Young inequality another time to the second term
of the right hand side of inequality (3.4), one from there deducts that

(3.5)

[

(−θi+1h1 + θih3)urvs + ( θi+1h2 − θih4)ulvq
]

≤
C′

i(u + v), i = 0, 1, ...p− 1

where C′
i (i = 0, 1, ...p − 1) are positive constants. From this last inequal-

ity we deduce the uniform boundedness of the functional L on the interval
[0, Tmax[.
For the third line of (2.11), following the same reasoning while taking

ν1 =
l + q − 1

r + s − 1
and ν2 =

ν1

ν1 − 1
=

l + q − 1

(l + q) − (r + s)

one prove that there exists positive constants C′
i (i = 0, 1, ...p − 1) such

that

urvs ≤

(

θi+1h2 − θih4

θi+1h1 − θih3

)

(ur1vs1)ν1 + C′′
i (ur2vs2)ν2 , i = 0, 1, ...p− 1,

where C′′
i (i = 0, 1, ...p− 1) are positive constants.

r1 =
l

ν1
, r2 = r − r1, s1 =

q

ν1
and s2 = s − s1.

From these we have

(ur1vs1 )ν1 = ulvq and ν2(r2 + s2) = 1.

Finally we deduce an analogous inequality to (3.5), which gives the uni-
form boundedness of the functional L on the interval [0, Tmax[.

(2) We’ll prove that the functional L given by (2.4) is decreasing: By differen-
tiating it with respect to t, we get (2.5), where I given by (2.6) is negative
under condition (2.8) on the sequence {θi} .The integral J is negative if
we choose

(3.6)
h3

h1
≤

θi+1

θi
≤

h4

h2
, i = 0, 1, ...p− 1.

Then, if h1 or h4 sufficiently large or h2 or h3 sufficiently small, the interval
[

h3

h1
, h4

h2

]

is sufficiently large to construct in it, for p sufficiently large, the

first p elements of the sequence {θi} .This implies the uniform boundedness
of ‖f(u, v)‖p and ‖g(u, v)‖pon [0, T ∗[ and global existence becomes from
the regularizing effect principle. That completes the proof.

�
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Remark 3.2. The results of proposition 3.1, namely the second one, hold for
more general nonlinearities

(1.4)’ f(u, v) = − f1(u, v) + f2(u, v), g(u, v) = g1(u, v) − g2(u, v),

with fi ≥ 0, gi ≥ 0 satisfying

lim
|u|+|v|→+∞

f1g2

f2g1
= +∞

to get inequalities analogous to (3.6) for large integers p.

M. Pierre [17], proposed the following model

(1.1)”

{

∂u
∂t -a∆u = λulvq − urvs in R+ × Ω,
∂v
∂t -b∆v = −ulvq + urvs in R+ × Ω,

where λ ∈ [0, 1]. He proved global weak existence for all l, q, r , s ≥ 1 and global
existence only for sl − qr < l − r, but proposition 2.1 is applicable here by putting

λ = h2 and h1 = h3 = h4 = 1

to deduce the following result

Corollary 3.3. For sufficiently small λ, the solutions of problem (1.1)” with
boundary conditions (1.2) and positive uniformly bounded conditions (1.3) exist
globally in time for all l, q, r , s ≥ 0.

All the above results are not applicable to the case l > r and s > q (or l < r
and s < q). This case describes the chemical reaction diffusion model described by
(1.1)’. Here we have

h1h4 = h2h3 = (s − q) (l − r) λ1λ2

and hypothesis of proposition 3.1 are not satisfied. Actually, global existence of
solutions (even weak) is open. Namely, we have obtained the following result

Proposition 3.4. Suppose that l < r and s < q for some l, q, r , s ≥ 0 and
h1h4 = h2h3, then all solutions of system (1.1) with boundary conditions (1.2) and
positive uniformly bounded conditions (1.3) exist globally in time.

Proof. We can write the reaction as follows

(1.4)” f(u, v) = ulvq − hurvs, g(u, v) = k
(

−ulvq + hurvs
)

.

We have, for p, p′ > 1 and γ > 0

d

dt

∫

Ω

(

up + γvp′

)

dx

=

∫

Ω

(

apup−1∆u + bγp′vp−1∆v
)

dx +

∫

Ω

(

pup−1 − γp′kvp′−1
)

(

ulvq − hurvs
)

dx

= I + J.

By application of Green formula to the first integral and taking ulvs as factor in
the second, we get

I = −

∫

Ω

(

ap(p − 1)up−2 |∇u|2 + bγp′(p′ − 1)vp′−2 |∇v|2
)

dx
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and

J = −

∫

Ω

ulvs
(

pup−1 − γp′kvp′−1
)

(

hur−l − vq−s
)

dx

= −ph

∫

Ω

ulvs

(

up−1 −
γp′k

p
vp′−1

)

(

ur−l − h−1vq−s
)

dx

Then I ≤ 0. By choosing p and p′ satisfying

p − 1

r − l
=

p′ − 1

q − s
= µ,

and putting

U = ur−l and V = vq−s,

we get

J = −ph

∫

Ω

U
l

r−l V
s

q−s

(

Uµ −
γp′k

p
V µ

)

(

U − h−1V
)

dx.

By choosing γ satisfying
γp′k

p
= h−µ,

we can deduce that

Uµ −
γp′k

p
V µ =

(

Uµ −
(

h−1V
)µ

)

=
(

U − h−1V
)

µ−1
∑

i=0

Uµ−1−i
(

h−1V
)i

and this gives J ≤ 0. �

Remark 3.5. The large time behavior of this type of problems is standard and
can be obtained by using compactness theorems to prove that

lim u(
t→+∞

t, x) = u∗ and lim v(
t→+∞

t, x) = v∗,

where u∗ and v∗ are positive constants satisfying f(u∗, v∗) = g(u∗, v∗) = 0.
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