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Issues of Chaos and Recurrence in Infinite Dimensions

Y. Charles Li

Dedicated to the Memory of Jerry Marsden

ABSTRACT. Various issues with regard to chaos and recurrence in infinite di-
mensions are discussed. The doctrine we are trying to derive is that Sobolev
spaces over bounded spatial domains do host chaos and recurrence, while
Sobolev spaces over unbounded spatial domains are lack of chaos and recur-
rence. Local Sobolev spaces over unbounded spatial domains can host chaos
and are natural phase spaces e.g. for fluid problems, but are very challenging

to study.
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1. Introduction

The first time I knew Jerry Marsden’s work was through the article [2] co-
authored with Phil Holmes. Early in the 1960s, Melnikov derived a simple inte-
gral measuring the splitting of stable and unstable manifolds in 2D near-integrable
Hamiltonian systems. Holmes and Marsden realized the “potential” of this simple
integral in proving the existence of chaos for specific differential equations. The sim-
ple Melnikov integral is actually the key! From the beginning, Holmes and Marsden
eyed partial differential equations [3] and possible link to turbulence. They studied
a beam equation following a natural approach by reducing it to pieces of ordinary

1991 Mathematics Subject Classification. Primary 35, 37; Secondary 76.
Key words and phrases. Chaos, recurrence, fluids, soliton equation, Hamiltonian system.

(©2011 International Press
69



70 Y. CHARLES LI

differential equations. About 10 years later, I was working on my Ph.D. thesis at
Princeton, we aimed at near-integrable soliton equations, which can be viewed as
near-integrable Hamiltonian partial differential equations. This became the topic
of my thesis [6], and my main research until now [10].

Simple yet important results are undoubtly the most beautiful mathematical
works. Quoting from an Arnold’s writing, Landau once said, along the line, that the
most beautiful scientific proof should use mathematical tools not above calculus.
In nowaday’s mathematical society, there is a trend that a small group of mathe-
maticians only focus on improving technicalities in other mathematician’s papers.
There is also a small group of mathematical journals only focusing on technicalities
and problem solving. What happens to creation and innovation? While they are
too difficult! Someone once made a simile: “some mathematicians are like dung-
beetles competing who can dig a little deeper.” This trend is poisonous to young
mathematicians.

Jerry Marsden is one of the few mathematicians who do mathematical research
until their last days. He is one of the “true mathematicians”. Such a valuable
mathematician is very rare in the global contemporary mathematical community,
yet his value is so precious for the future of mathematics! In nowaday’s mathe-
matical society, there is too much political nonsense carried out by mathematicians
who quitted research long ago.

WEell, enough for academic and political talk, the materials below are about
chaos in infinite dimensional dynamical systems which is probably Jerry’s true
scientific love.

Many systems in applications are infinite dimensional systems. Infinite di-
mensional systems are still not well studied or understood. Infinite dimensional
dynamical systems have many novel features in contrast to finite dimensional dy-
namical systems, for example, different norms, and boundary conditions. Boundary
conditions turn out to be very crucial to the dynamics, in particular whether or
not the dynamics can be chaotic. For instance, decaying boundary conditions over
an unbounded spatial domain severely limit the development of chaotic dynamics.
The commonly observed chaotic dynamics in nature, e.g. in fluid flows, does not
obey any decaying boundary condition at infinity.

There are many ways to describe chaos. Here we utilize the description by
its two phenotypes: sensitive dependence on initial data and recurrence. Sensitive
dependence on initial data means that no matter how small the initial condition
changes, after sufficiently long time, the change will reach order one. This phe-
notype can also be observed in non-chaotic systems, for example, in an explosive
system. Together with the second phenotype, it can often identify chaos. Re-
currence means that the orbit repeatedly re-visits the neighborhood of its initial
point.

Utilizing the phenotypes, one can often judge which dynamical system can host
chaos and which cannot. In infinite dimensions, the dynamical systems are often
defined by the Cauchy problems of partial differential equations. Here two key
components influence the dynamics dramatically: the boundary condition and the
norm of the phase space. As shown later on, periodic boundary condition (or other
boundary conditions posed on a finite spatial domain) can often foster chaos, while
decaying boundary condition (resulting in a Sobolev space on an infinite spatial
domain) can hardly support chaos. For infinite spatial domain problems, relaxing
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the norm, say from a Sobolev space to a local Sobolev space, can bring chaos back
into the larger phase space. But now the phase space is much more difficult to deal
with.

2. Lack of Recurrence for Unbounded Domain Problem

Here we take the nonlinear Schriodinger equation (NLS) as the example, of
course, the illustration is true for many other nonlinear wave equations.

where ¢ is a complex-valued function of two real variables (¢, ). The NLS can be
written in the Hamiltonian form

—iqy = Tqa

where
i = [ llaf? - lalYdo
D

and D is either T! or R!, in either case, the NLS is globally well-posed in the
Sobolev space H(D).

For the unbounded domain R!, the natural phase space is for example a Sobolev
space H'(R!). Now we have a Hamiltonian flow defined by the Cauchy problem of
NLS in the phase space H*(R'). The natural question is: Is there recurrence? Let
us look at a traveling wave solution (say a soliton),

q=Q(z —ct) cisa constant.

It is clear that the Sobolev norm [|Q| gs®1) (s > 0 integer) of the traveling wave
solution is independent of time t. Thus the traveling wave solution travels on the
surface of a sphere S, in H*(R'). It is also clear that as the time ¢ approaches
infinity, the traveling wave solution Q(x — ct) has no limit in the phase space
HY(R'). That is, the traveling wave solution Q(x — ct) travels on the surface of the
sphere S, one way and never returns — no recurrence. On the other hand, in finite
dimensional Hamiltonian systems, orbits on a sphere are always recurrent.

Of course, there is a sequence of reasons to explain the new phenomenon in
infinite dimensions. First, the finite dimensional invariant volume measure has no
limit in infinite dimensions, therefore, the finite dimensional recurrence argument
of Poincaré is not valid in infinite dimensions [15]. Second, the Sobolev sphere
S, in H*(R') is not compact in H*(R!'), so that the compactness argument for
recurrence fails [14]. Third, the Sobolev sphere S, in H*(R') (s > 0 integer) is not
compactly embedded in H°(R') since R! is an unbounded spatial domain where
the Rellich embedding fails, so that the argument of [14] for recurrence in HY(R?!)
fails.

In fact, general solutions of the NLS in H!(R!) are asymptotic to multiple
soliton solutions of the form

g=Q(x —cit, -+ ,x —cut) c¢jis aconstant for j=1,--- ,n;

which also travel one way and never returns. Due to the lack of recurrence, one
should not expect chaos in H!'(R!) when the NLS is under perturbations. This
claim should be true for general nonlinear wave equations in H*(R™).



72 Y. CHARLES LI

3. Recurrence for Bounded Spatial Domain Problem

Now we turn to the bounded spatial domain problem, e.g. the periodic domain
T!. We will show that the NLS flow is recurrent in H(T?).

THEOREM 3.1. For any q € HY(TY), any 6 > 0, and any T > 0; there is a
g« € HY(TY) such that

Fri'(q) € Bi(g.) = {gr € H(T") | |1 — gl 2y < 6}

where {n;} is an infinite sequence of positive integers, and F' is the evolution
operator of the NLS.

Before proving the theorem, we like to remark that the theorem roughly says
that any H'(T!) solution to the NLS returns repeatedly to an arbitrarily small
L?(T*') neighborhood.

PROOF. In order for the proof in [14] to go through, we need to show that the
H(T?!) norm is controlled by the two invariants of NLS, the Hamiltonian H and
the L?(T') norm. Then any solution in H*(T*) shall stay in a bounded region B in
HY(T?) for all time. By the Rellich embedding theorem, B is compactly embedded
in L2(T'). Thus one can expect recurrence of the solution in L?(T!) as shown in
[14]. By the Gagliardo-Nirenberg interpolation inequality [18] [19],

1/4 3/4
(3.1) lallze < CullgelliB lal3%" + Collgll 2-

Using Young’s inequality, one gets
lallzs < Cllazllzzllallzz + llallz2)

1
< C(ullalze + —lallz: + llallz2)

1
§||qx|\%z +2C?q)|%2 + Cllall 72
by choosing k = % Thus,
lallF < 2H + [lq]Z: +4C?|ql|72 +2C gl
This completes the proof. O

For the unbounded domain R!, the H!(R') norm of ¢ is still controlled by
the two invariants of NLS, the Hamiltonian H and the L?(R!) norm. In this
case, Co = 0 in (3.1). Unfortunately, as mentioned before, unlike the periodic
domain T' case, H'(R') is not compactly embedded in L?(R') due to the failure
of Rellich’s embedding theorem; and the compactness argument in [14] cannot be
carried through.

Next, we want to discuss the NLS under a Hamiltonian perturbation

—iqr = S—If, H=H+H
0q
where H; is the perturbation. The same argument as in Theorem 3.1 and in [14]
implies the following theorem.

THEOREM 3.2. If (a). the L*(T') norm of q is still an invariant for the per-
turbed NLS, (b). the H'(T") norm of q is controlled by H and llgll2¢rry; then the
recurrence theorem 3.1 holds for the perturbed NLS.

A simple condition that guarantees the invariance of ||g||z2(m1) is: ¢ ‘55;1 is real.
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4. Local Sobolev Phase Spaces

Sobolev space H?(R™) seems not able to host chaos. The decaying boundary
condition at infinity limits the development of chaos. The natural next candidate to
study is the local Sobolev space H; .(R™). Since it contains the subspace H*(T"),
H} .(R™) can certainly host chaos. On the other hand, H; .(R") is a large space
that is difficult to study. Usually there is no invariant manifold structure in it.
One can often expects an invariant manifold structure in a Banach space with a
countable base in which case the flow is equivalent to a system of infinite ordinary
differential equations. Here H}} (R™) does not have a countable base. In fact, often
the unstable, center and stable subspaces in H (R™) are not separated from each
other [12]. Even though it is challenging to study, H; .(R™) is often the natural
phase space in applications, for example, in fluid dynamics. Take the plane Couette
flow as the specific example. The plane Couette flow is governed by the Navier-
Stokes equations
(4.1) atui +UjU; ;= =Pt UGG, Uiy = 0;

)

where (u1,us,us) are the three components of the fluid velocity along (z,y, 2)
directions, p is the pressure, and € = 1/R is the inverse of the Reynolds number.
The boundary condition is

(4.2) wi(z,a,2) =a, wi(z,bz)=p, uj(z,az)=ujzbz)=0,(0=23);

where a < b, a < 8, and u; (i = 1,2,3) are bounded in z and z. In this case, the
natural phase space (manifold) is

I{lsoc(}R1 X [a7b] X Rl)

under the constraint of the boundary condition (4.2). Due to the difficulty in
studying this phase space, current studies (both numerical and analytical) focus
upon the restriction that wu is periodic in x and z in which case the spatial domain
is bounded and the phase space (manifold) is simplified to

H*(T! x [a,b] x T!)

under the constraint of the boundary condition (4.2).
An interesting subspace of Hj (R') is the space of spatially quasi-periodic
functions:

H;uasi(Rl) = {q S Hlsoc(Rl) | q(x) = Q(wlx,wav e vwnx)}

where (w1,wa, -+ ,wy,) is a quasi-periodic base. Even though it still does not have
a countable base, the special nature of ngasi(Rl) may make it easier to study.
Again take the NLS (2.1) as the example, one can obtain an explicit expression for
a homoclinic orbit which is spatially quasi-periodic [12]:

(4.3) q(t,z) = Q + qo(t) sin oIl /11
where

(4.4) qo(t) = ae®® | 0(t) = —[2a%t + 1] ,
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and a is the amplitude and -~y is the phase;

Q = qo(t)[1+sindy sechr cos X]™[cos 20,
—isin 20g tanh 7 — sin ¥J¢ sechr cos X] ,

I, = |(sindg)?(1+ sindy sechr cos X)? + é(sin 290)? (secht)?(1 — cos 2X)
(1 + sin Jg sech? cos )A() — % sin 29, sin 20 sechr sech?
(14 sin g sechr cos X) sin X sin X + (sin )2 [1 + 2sin vy
secht cos X + [(cos X)? — (cos1g)?] (sechT)Q}
(1 + sin Jo sech? cos X) — 2sin g sin Y {cos Yo cos Vo

tanh 7 tanh 7 4 (sin ¥y + sechr cos X)(sindg + sech? cos )A()}
(1 4 sindg secht cos X) ,

« 1
I, = [— 2(sin )2 (1 4 sin ¥y sechr cos X)? + l(sin 2099)?(sechr)?

(1 — cos 2X)] (sindy + sech? cos X + i cos Ug tanh 7)

+2(sin 190)2(— cos Yy tanh 7 + ¢ sindy + ¢ sechr cos X)2
(sin Jo + sech? cos X — i cos g tanh 7) + 2sin ¥y (sin Jg
+ secht cos X + i cos g tanh 7)[2 sin Jg (1 + sin g sechr cos X)

(14 sindg sech? cos X) — sin 20, cos Uy sechr sech? sin X sin X] ,

L4 iy/a? — 32 = ae'° s +iy/a? — (2 = ae'°
5 1 ’ 2 ’

T=4 a2_ﬁ%ﬁ1t_pa T=4 a2_ﬂ%52t_ﬁ7
X =260 +9 -9 +7/2, X:262$+1§—1§0+7r/2;

and

and 0 < 31,02 < a, a, v, p, p, ¥, and ¥ are real parameters. As t — 00,
qlt,z) — qo(t)e:FizwD“%),

that is, ¢(¢,z) is homoclinic to the uniform periodic orbit ¢o(¢) (4.4) up to phase
translations. The unstable, center and stable subspaces in H, ;uasi(Rl) of the uni-
form periodic orbit go(¢) (4.4) are not separated from each other [12]. The inter-
esting question here is: Does the homoclinic orbit (4.3) induce chaos when the NLS

is under perturbations ?

5. Temporal v.s. Spatial Evolutions

From a dynamical system point of view, a natural evolution in infinite di-
mensions is a temporal one posed by the Cauchy problem of a partial differential
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equation. For such a Cauchy problem, looking at its spatial evolution is often awk-
ward and ill-posed. Take the simple example: u; = uz,, © € R. For temporal
evolution, one may choose the phase space to be the local space H l?’oc (RY). A simple
orbit in H} (R') is ]
7wy = coskz, ke R

If this were a nonlinear equation, one could ask the question of sensitive dependence
of u on the initial data wug, and the existence of temporal chaos. For all the orbits
in H} (R'), one can also look at their spatial evolution (development may be a
better word). For example, one can rewrite the simple orbit as

U = uge

_ 2
uw=1u’coskz, u’ =e " keR.

One can equip a temporal topology to these orbits, e.g. C°(RT) topology: ||ul/co =
sup;cp+ |u(t)|. Obviously

u = et ¢ CO(R"), and u € C*(R™) for any z € R.

If this were a nonlinear equation, one could ask the question of sensitive dependence
of u on the initial data u° under the topology C°(R*), and the existence of spatial
chaos.

6. Tubular Chaos

The two phenotypes of chaos can often be realized near a homoclinic orbit (or
a heteroclinic cycle). When the stable and unstable manifolds of a saddle intersect
transversally and form a tangle with a homoclinic orbit, recurrence can occur near
the homoclinic orbit. The Lyapunov exponents near the homoclinic orbit will be
positive due to the transversality of the intersection between the stable and unstable
manifolds along the homoclinic orbit. The positive Lyapunov exponents lead to
sensitive dependence upon initial data.

In higher dimensions, it is natural to study homoclinic tubes (heteroclinically
tubular cycles) instead of homoclinic orbits (heteroclinic cycles). It turns out that
like homoclinic orbits (heteroclinic cycles), homoclinic tubes (heteroclinically tubu-
lar cycles) can also lead to chaos — tubular chaos [7] [8] [9] [13]. Such a tubular
chaos is represented by a Bernoulli shift dynamics on a Cantor set of submanifolds
instead of points. These submanifolds can still contain finer scale chaos inside them,
and continuing this process can lead to a chain of finer and finer scale chaos and
form a chaos cascade [9]. The existence of tubular chaos shows that taking the av-
erages of solutions with respect to a neighborhood of initial data will not eliminate
the chaotic nature of the dynamics.

7. Ubiquity of Fluid Instability

One common feature of fluid flows is that it is easy for them to become unstable.
Rarely there is a fluid flow that is stable for all values of its parameters. So there
must be something universal (generic) that makes fluid flows unstable. The spatial
oscillation e’ could be the thing. Since e’*? is a Fourier mode, it is certainly
universal. Often the larger the k is, the more unstable modes the oscillation e?**
induces. This will lead to more spatial disorder - more turbulent states. Next we
mention some examples.

For the 2D Kolmogorov flow (with a periodic boundary condition in each direc-
tion and an artificial force), spatially oscillatory shears (cos ky, 0) are steady states.
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It turns out that the larger the k is, the more unstable modes the shear has [5]
[12]. For the 2D plane Couette flow, even though the linear shear (y,0) is linearly
stable for all values of the Reynolds number [20], adding “small” spatial oscillations
(y + % sin(4nmy),0) will end up linearly unstable shears (they are steady for the
inviscid flow, and slowly drifting for the viscous flow) for any n and A € (%, ﬁ)
[16]. The larger the n is, the more unstable modes it has.

Intuitively it is very easy to understand the destablizing effect of the small-
amplitude high-frequency spatial oscillations. By the well-known Rayleigh criterion,
a necessary condition for a shear U(y) to have inviscid linear instability is that it
has an inflection point. If a shear U(y) does not have any inflection point, adding
the small-amplitude high-frquency spatial oscillations can create inflection points
even though such oscillations do not change the original velocity profile much. That
is, the slight modification on the velocity profile U(y),

A
U(y) =U(y) + —sin(ny) for large n
n
can have a significant modification on its second derivative U” (y),

U"(y) = U"(y) — Ansin(ny) for large n

and creates a lot of inflection points and the potential of linear instabilities. Both
shears U(y) and U (y) are steady states under the Euler dynamics. Under the
Navier-Stokes dynamics, they may not be steady rather drift slowly in time. Such
slowly drifting states can still play an important role in transient turbulence,

In some sense, spatial oscillations are recurrent motions — spatial shakings.
Even small amplitude but high frequency spatial oscillations can generate consid-
erable vorticities. Derivatives of vorticities are even higher. Such structures not
only make the fluid flows unstable, but also create a lot of unstable modes leading
to more turbulent spatial disorders. Temporally oscillatory forcings are also known
to generate instabilities of fluid flows, for example the well-known Faraday wave
generation [1] [4] [21].
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