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Geometry of nonabelian charged fluids

François Gay-Balmaz and Tudor S. Ratiu

Dedicated to the memory of our dear friend and mentor Jerry Marsden

Abstract. The goal of this paper is to derive the Hamiltonian structure of
polarized and magnetized Euler-Maxwell fluids by reduction of the canonical
symplectic form on phase space, and to generalize the dynamics to the non-
abelian case. The Hamiltonian function we propose in this case, allows us to
unify and relate in a simple way the main models of nonabelian charged fluids
and their Hamiltonian structures.
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1. Introduction

It is well-known that many conservative equations arising in hydrodynamics can
be written in a Hamiltonian form, relative to noncanonical Poisson structures. A
fundamental example consists of the adiabatic fluid and its magnetohydrodynamic
(MHD) extension. Recall that this system consists of the motion equation for a
fluid moving under the combined effects of pressure gradient and the net Lorentz
force of the magnetic field created by the fluid in motion; the continuity equation
for the mass density; advection of the specific entropy. In addition, the hypothesis
of infinite conductivity leads to the conclusion that magnetic lines are frozen in the
fluid, i.e., that they are transported along the particle paths.
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The noncanonical Hamiltonian structure for the adiabatic flow and its magne-
tohydrodynamic (MHD) extension was found by [20], [2], and [10]. One way to
understand the occurrence of these noncanonical brackets is to obtain them from
canonical ones. A first attempt in this direction is provided in [19] and [11], where
the Poisson bracket is derived from Clebsch variables. A definitive answer is given
in [17], [18], where it is shown that these brackets naturally arise by Poisson reduc-
tion of the canonical Poisson bracket in Lagrangian representation, the phase space
of these systems being given by a semidirect product involving the diffeomorphism
group Diff(D) of the fluid domain. For the incompressible Euler equations, this
point of view is consistent with Arnold’s treatment of perfect fluids [1]; see also
[16].

Another important model in charged fluid dynamics is the Euler-Maxwell (EMF)
fluid. This system consists of the motion equation for a charged fluid moving under
the combined effects of pressure gradient and Lorentz forces; the continuity equa-
tion for the mass density; advection of the specific entropy; and Maxwell’s equations
for the electromagnetic fields E and B in the moving fluid medium, whose polariz-
ability and magnetization are neglected. The Hamiltonian structure of this system
was determined in [21], [22], and further studied in [11], [17]. The two Poisson
structures obtained in these papers where shown in [4] to arise by reduction of the
same canonical Poisson structure, at two different stages of the reduction process.

Poisson structures were also obtained for nonabelian fluid models such as Yang-
Mills magnetohydrodynamics (YM-MHD) and spin glass hydrodynamics (SGH) in
[12], [13], for chromohydrodynamics (CHD) in [7], and complex fluids (CF) (such
as liquid crystals) in [9]. These brackets were explained in [4] (for CHD), [5] and
[6] (for YM-MHD, SGH, and CF) by reduction of the canonical structure on phase
space. The basic idea is to consider as symmetry group the semidirect product
Diff(D)sF(D,O) of the diffeomorphism group with the gauge group, where D
is the fluid domain and O is the structure group of the theory. For example,
nematic liquid crystals, spin glass hydrodynamics or chromohydrodynamics involve
the orthogonal group SO(3) whereas superfluids such as 4He involve O = U(1).

Consider now Euler-Maxwell dynamics in the more realistic case when the po-
larizability and magnetization of the moving fluid medium are not neglected. In
this case, the Maxwell equations involve the four fields E,B,H,D, and the charged
fluid moves under the effect of pressure gradient and moving-material effects, more
complicated than the Lorentz force. The noncanonical Poisson structure of this
system is determined in [8] and a nonabelian generalization was suggested in [13].
This bracket is not one of the abstract form described above, since it is neither an
affine Lie-Poisson bracket (e.g. YM-MHD, SGH, and CF) nor the direct product
of a Lie-Poisson bracket and a canonical one (e.g. EMF or CHD). The goal of
this paper is to derive this Poisson bracket by reduction of the canonical symplec-
tic form on phase space and to generalize the dynamics to the nonabelian case.
Moreover, the Hamiltonian function we propose in this case, allows us to unify the
dynamics of charged fluids (in the standard and in the nonabelian case). Indeed,
by particularizing this Hamiltonian, we recover MHD and electrohydrodynamics
and their Hamiltonian structures, in the standard and in the nonabelian case. We
also show that this Poisson bracket is isomorphic to that of CHD and how CHD is
recovered by a using particularization of this same Hamiltonian. These results are
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summarized in Theorem 3.3 and could be useful for the Hamiltonian formulation
of the electrodynamics of liquid crystal flows.

2. Hamiltonian reduction

The configuration space. The configuration space of the nonabelian charged
fluid on a domain D in the presence of a self consistent Yang-Mills (YM) field with
symmetry group O is

Q = [Diff(D)sF(D,O)] × Ω1(D, o) ∋ (η, χ,A).

Here Diff(D)sF(D,O) denotes the semidirect product of the diffeomorphism
group Diff(D) with the group of O-valued functions F(D,O); the group multi-
plication is

(η1, χ1)(η2, χ2) = (η1 ◦ η2, (χ1 ◦ η2)χ2), η1, η2 ∈ Diff(D), χ1, χ2 ∈ F(D,O),

and Ω1(D, o) denotes the space of o-valued one-forms on D. The physical mean-
ing of the variables is the following: the diffeomorphism η : D → D describes the
Lagrangian motion of the fluid’s particles, the gauge variable χ : D → O describes
internal degree of freedom in Lagrangian representation (nonabelian charge in the
present case), and A ∈ Ω1(D, o) is the YM magnetic potential. The YM mag-

netic induction B ∈ Ω2(D, o) in Lagrangian representation is the curvature of A
interpreted as a connection, namely:

B = dA+ [A,A].

By definition, for any µ, ν ∈ Ω1(D, o) the bracket [µ, ν] ∈ Ω2(D, o) is defined by
[µ, ν](x)(u, v) := [µ(x)(u), ν(x)(v)] for any x ∈ D and u, v ∈ TxD.

To simplify the presentation, we will include the usual variables ρ (mass density)
and S (entropy density) only later. The phase space of the charged fluid (ignoring
ρ and S) is thus

T ∗Q = T ∗ (Diff(D)sF(D,O)) × T ∗Ω1(D, o) ∋ (mη, κχ, A,Y),

where the variable Y canonically conjugated to A is related to the YM electric

displacement field D in Lagrangian representation by the relation D = −Y . Here
we have identified the cotangent bundle T ∗Ω1(D, o) with Ω1(D, o) × X(D, o∗) by
using the L2-paring associated to a fixed volume form on D, where X(D, o∗) denotes
the space of o∗-valued vector fields on D, i.e., contravariant o∗-valued one-tensor
fields.

The phase space is endowed with the canonical symplectic form on T ∗Q so that
the equations of motion are the canonical Hamilton equations, symbolically written
as

q̇ =
∂H

∂q
, ṗ = −

∂H

∂q
,

where q corresponds to (η, χ,A) and p corresponds to (mη, κχ,Y).
Symmetry and Poisson reduction. Consider the natural action of the groupG =

Diff(D)sF(D,O) ∋ (ψ, φ) on the configuration space given by right multiplication
on the first two factors and gauge transformation of the connection, namely

(2.1) (η, χ,A) · (ψ, φ) :=
(

η ◦ ψ, (χ ◦ ψ)φ,Adφ−1 ψ∗A+ φ−1Tφ
)

.
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If H is a G-invariant Hamiltonian on T ∗Q relative to the cotangent lifted action,
then it induces a reduced Hamiltonian on the quotient space T ∗Q/G. We will
identify the quotient space with

(X(D)sF(D, o))
∗
× T ∗Ω1(D, o) ∋ (m,κ,A,Y)

relative to the quotient map
(

mη, κχ, A,Y
)

7→ (m,κ,A,Y) :=
(

mη, κχ, A,Y
)

· (η, χ)−1

so that the reduced variables are

m = (mη ◦ η
−1)Jη−1 ∈ Ω1(D), κ = (κχχ

−1 ◦ η−1)Jη−1 ∈ F(D, o∗),

A = ψ∗

(

AdφA+ φTφ−1
)

∈ Ω1(D, o), Y = ψ∗

(

Ad∗

φ−1 Y
)

∈ X(D, o∗),

where Jη is the Jacobian determinant of the diffeomorphism η. This sort of re-
duction is sometimes called metamorphosis reduction since in the context of diffeo-
morphism group it was first developed for the metamorphosis approach to image
dynamics ([14], [3]). Note that in the present case the Lie symmetry group is the
semidirect product and not the diffeomorphism group only.

Note also that the symmetry group and the configuration space are the same
as the ones used for the Euler-Yang-Mills (EYM) fluid in [4]. However, the action
is not the same since, contrary to the EYM case, the group also acts on the YM
fields.

In order to obtain the reduced Poisson structure, we shall use the following
abstract reduction process (see §10 in [15]). Let G be a Lie group acting on the
right on a Poisson manifold P and denote by p 7→ pg this action. Endow the space
T ∗G × P with the direct product Poisson structure. Consider the reduced space
g∗ × P with quotient map (αg, p) 7→ (αgg

−1, pg−1). Then the reduced Poisson
bracket {f, g}red on g∗ × P is the sum of three terms

(2.2) {f, g}+ + {f, g}P + {f, g}coupling,

where the first term is the (+) Lie-Poisson structure on g∗, the second term is the
Poisson structure of P , and the coupling term is

{f, g}coupling =

〈

δg

δp
,

(

δf

δµ

)

P

〉

−

〈

δg

δp
,

(

δf

δµ

)

P

〉

,

where ξP ∈ X(P ), for ξ ∈ g, denotes the infinitesimal generator of the G-action on
P . We now apply this result to our case by choosing the groupG = Diff(D)sF(D,O)
and the Poisson manifold P = T ∗Ω1(D, o).

The reduced Poisson bracket has thus the form (2.2), where the Lie-Poisson
structure is
(2.3)

{f, g}+(m,κ) =

〈

m,

[

δf

δm
,
δg

δm

]〉

+

〈

κ,

[

δf

δκ
,
δg

δκ

]

+ d
δf

δκ
·
δg

δm
− d

δg

δκ
·
δf

δm

〉

,

and the Poisson structure on P is the canonical bracket

(2.4) {f, g}can(A,Y) =

〈

δf

δA
,
δg

δY

〉

−

〈

δg

δA
,
δf

δY

〉

.

To obtain the coupling term, we use the formula of the infinitesimal generator

(u, ν)T∗Ω1(A,Y) = (− adν A+ £uA+ dν, ad∗

ν Y + £uY + Y div u)
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of the cotangent lifted action on (A,Y) so that the coupling term is

{f, g}coupling(m,κ,A,Y)

=

〈(

δg

δA
,
δg

δY

)

,

(

δf

δm
,
δf

δκ

)

T∗Ω1

(A,Y)

〉

(2.5)

−

〈(

δf

δA
,
δf

δY

)

,

(

δg

δm
,
δg

δκ

)

T∗Ω1

(A,Y)

〉

=

〈

δg

δA
,dA

δf

δκ
+ £ δf

δm
A

〉

+

〈[

δf

δκ
,
δg

δY

]

−£ δf
δm

δg

δY
,Y

〉

−

〈

δf

δA
,dA

δg

δκ
+ £ δg

δm
A

〉

−

〈[

δg

δκ
,
δf

δY

]

−£ δg
δm

δf

δY
,Y

〉

,(2.6)

where we used the notation dAν := dν + [A, ν] for the covariant differential of a
function ν ∈ F(D, o) relative to the connection A.

Adding the advected variables. As we said before, we need to add the usual
advected quantities ρ (mass density) and S (entropy density) to the above variables.
This means that the unreduced Hamiltonian H is now defined on

T ∗[Diff(D)sF(D,O)] ×F(D)2 × T ∗Ω1(D, o)

, where the space F(D)2 ∋ (ρ, S) has been added. The Poisson structure is given
by the sum of the canonical symplectic form on the cotangent bundles and the zero
Poisson bracket on F(D)2. The symmetry group

Diff(D)sF(D,O) ∋ (ψ, φ)

acts on (ρ, S), only through its first factor, as (ρ, S) 7→ ((ρ◦ψ)Jψ, (ρ◦ψ)Jψ). Note
that H is no longer on a cotangent bundle; however, using the tools of semidirect
product reduction ([18]), we can obtain this space by reduction of a canonical
cotangent bundle. When the variables ρ and S are included, the reduced space
becomes

(X(D)sF(D, o))
∗
×F(D)2 × T ∗Ω1(D, o) ∋ (m,κ, ρ, S,A,Y)

whose Poisson bracket is now the sum of (2.3), (2.4), and (2.5) plus the additional
term

〈

ρ,d
δf

δρ
·
δg

δm
− d

δg

δρ
·
δf

δm

〉

+

〈

S,d
δf

δS
·
δg

δm
− d

δg

δS
·
δf

δm

〉

.

Reduced Hamilton equations. We now give the reduced Hamilton equations
ḟ = {f, h} associated to the Poisson bracket obtained above and to a given reduced
Hamiltonian h. These equations naturally involve the covariant divergence operator
divA : X(D, o∗) → F(D, o∗) defined as minus the L2 adjoint of dA and given by

divAY = div Y − Tr(ad∗

AY). The operators dA and divA extend naturally to
o-valued k-forms and o∗-valued k-vector fields. For example, we will use below the
formulas

(2.7) dAdAν = [B, ν] and divA divAY = Tr(ad∗

B Y) =
∑

i<j

ad∗

Bij
Yij ,

where B := dAA = dA+ [A,A] is the curvature two-form.
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A long but straightforward computation yields the reduced Hamilton equations

(2.8)











































































ṁ+ £
d
δh
δm

m+ κ · d
δh

δκ
+ ρd

δh

δρ
+ S d

δh

δS
+ i δh

δA
B

+ divA
δh

δA
· A− iYd

δh

δY
− div Y ·

δh

δY
= 0

κ̇+ ad∗
δh
δκ
κ+ div

(

κ
δh

δm

)

+ divA
δh

δA
+ Tr

(

ad∗
δh
δY

Y
)

= 0

ρ̇+ div

(

ρ
δh

δm

)

= 0, Ṡ + div

(

S
δh

δm

)

= 0

Ȧ+ dA
δh

δκ
+ £ δh

δm
A =

δh

δY
, Ẏ + ad∗

δh
δκ

Y + £
d
δh
δm

Y = −
δh

δA
,

where we used the notation £
d
uα = ∇uα+∇uT ·α+α div u for the Lie derivative of

a one-form thought of as a one-form density. In matrix notation and with respect
to local coordinates these equations are equivalently written as

(2.9)

















ṁi

κ̇a
ρ̇

Ṡ

Ȧai
Ẏi
a

















=−B

















(δh/δm)k

(δh/δκ)b

δh/δρ
δh/δS

(δh/δA)jb
(δh/δY)bj

















,

where the matrix B is given by
(2.10)

B =

















mk∂i + ∂kmi κb∂i ρ∂i S∂i ∂jA
b
i −Abj,i Y

j
b∂i − ∂kY

k
b δ
j
i

∂kκa κcC
c
ba 0 0 δba∂j − CbcaA

c
j CcbaY

j
c

∂kρ 0 0 0 0 0
∂kS 0 0 0 0 0

Aak∂i +Aai,k δab ∂i + CacbA
c
i 0 0 0 −δab δ

j
i

∂kY
i
a − Yj

aδ
i
k∂j CcbaY

i
c 0 0 δbaδ

i
j 0

















.

This recovers the noncanonical Poisson structure suggested in [13], matrix (2.33),
for the dynamics of nonabelian charged fluids. The approach we present here jus-
tifies this choice since we show how it arises naturally by Poisson reduction of the
canonical symplectic form on phase space.

This noncanonical Poisson structure is a natural generalization of the one of
Yang-Mills MHD and spin glasses hydrodynamics discovered in [13], and obtained
by affine Lie-Poisson reduction in [5], [6]. This structure is recovered from the
present one by simply ignoring the variable Y. We note that using the formula
Ḃ = dAȦ, the equation for the curvature B reads

Ḃ +

[

B,
δh

δκ

]

+ £vB = dA
δh

δY
.
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3. Dynamics of nonabelian charged fluids

Review of the Abelian case. In the abelian case, the Hamiltonian for the charged
magnetized and polarized fluid is (see [8], eq. (11))

h(m, ρ, S,A,Y) =

∫

D

(

−
1

2
ρ|v|2 +m · v + ε(ρ, S,B,D,v)

)

,

where D := −Y is the electric displacement vector and B = curlA, is the magnetic

induction. As we will show later, to generalize this Hamiltonian to the nonabelian
case, we first need to slightly modify it by adding a dependence on the abelian

charge κ and by replacing m by m − κA in the expression of h. Consistently, in
the abelian case the same equations emerge if we use the modified Hamiltonian,
since the condition κ = 0 is preserved by the dynamics and thus can be imposed at
initial time. This is no longer true in the nonabelian case.

3.1. Nonabelian case. For general nonabelian fluids we thus choose the
Hamiltonian

(3.1) h(m,κ, ρ, S,A,Y) =

∫

D

(

−
1

2
ρ|v|2 + (m− κA) · v + ε(ρ, S,B,D,v, κ)

)

,

where v = v(m, ρ, S,A,Y) is the vector field defined by the implicit condition

(3.2) m− κA− ρv♭ +
∂ε

∂v
(ρ, S,B,D,v, κ) = 0.

Note that we have allowed a κ-dependence in the internal energy ε since this does
not introduce further difficulties. By the implicit function theorem, the above
relation defines a unique vector field v, provided the function ε verifies the condition
that

ux 7→
∂2ε

∂v2
(r, s, Bx, Dx, vx, k) · ux − rux

is a bijective linear map in every fiber TxD.
We will use the following notations for the partial derivatives of the internal

energy:

µ :=
∂ε

∂ρ
∈ F(D), T :=

∂ε

∂S
∈ F(D), g := −

∂ε

∂v
∈ Ω1(D), ζ := −

∂ε

∂κ
∈ F(D, o),

E∗ :=
∂ε

∂D
∈ Ω1(D, o), H∗ :=

∂ε

∂B
∈ X2(D, o∗),

where the derivatives are understood as fiber derivatives. The physical interpre-
tation is the following: T is the temperature, µ is the chemical potential, g is the
electromagnetic momentum, E∗ represents the Yang-Mills electric field intensity,
and H∗ represents the Yang-Mills magnetic field as measured in the fluid rest
frame. The Yang-Mills electric field intensity E ∈ Ω1(D, o) and the Yang-Mills

magnetic field H ∈ X2(D, o∗) as measured in the fluid rest frame are defined by the
relations

(3.3) E∗ = E − ivB, H∗ = H + D ∧ v.

Note that from (3.2), the total momentum is m = ρv♭ + κA+ g.
If a Riemannian metric g is fixed on D, the derivative of the function x ∈ D 7→

ε(ρ(x), S(x), B(x),D(x),v(x)) ∈ R is the one-form given by

d (ε(ρ, S,B,D,v)) = µdρ+ T dS + E∗ · ∇ D +H∗ : ∇ B − g · ∇ v + ζ dκ,
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where the symbol “ : ” means contraction on both indices. We have also assumed
here that the horizontal partial derivative of ε vanishes, i.e., relative to the cho-
sen Riemannian metric on D, the function ε does not depend on the base point
explicitly, as is the case in Euclidean space.

In order to obtain the motion equations for the nonabelian polarized and mag-
netized fluid, we compute the reduced equations (2.8) associated to the Hamiltonian
(3.1). The functional derivatives are

δh

δm
= v,

δh

δκ
= ζ −A · v,

δh

δρ
= −

1

2
|v|2 + µ,

δh

δS
=
∂ε

∂S
= T,

δh

δA
= −κv − divA

∂ε

∂B
= −κv − divAH∗,

δh

δY
= −

∂ε

∂D
= −E∗,

so that (2.8) reads
(3.4)











































ṁ+ £
d
vm+ κ · d(ζ −A · v) + ρd

(

−1/2|v|2 + µ
)

+ S dT − κ · ivB

−idivA H∗B − Tr (ad∗

B H
∗) · A− divA(κv) · A− iDdE∗ − div D ·E∗ = 0

κ̇+ ad∗

ζ−A·v κ+ div (κv) − divA(κv) − Tr (ad∗

B H
∗) + Tr (ad∗

E∗ D) = 0

ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0

Ȧ+ dA(ζ −A · v) + £vA = −E∗, Ḋ + ad∗

ζ−A·v
D + £

d
v
D = − divAH∗ − κv.

We now rewrite the two last equations in terms of the fields E and H defined
in (3.3). Using the formula £vA = dA(A · v) + ivB, the first equations reads

Ȧ = −E − dAζ which yields

(3.5) Ḃ = −dAE − [B, ζ].

For the second equation, we use the identity divA(D ∧ v) =
(

divAD
)

v −£
d
v
D +

ad∗

A·v D, to get

(3.6) Ḋ = − divAH −
(

divAD + κ
)

v + ad∗

ζ D.

Note that the κ-equation simplifies to κ̇+ ad∗

ζ κ− Tr (ad∗

B H
∗) + Tr (ad∗

E∗ D) = 0.

Using the formula Tr(ad∗

B D ∧ v) = −Tr(ad∗

ivB D), this can be written in terms of
E and H as

(3.7) κ̇+ ad∗

ζ κ− Tr (ad∗

B H) + Tr (ad∗

E D) = 0.

In order to rewrite the first equation of system (3.4) in a conservative form, we
need to recall some facts concerning the divergence operator of tensor fields.

Divergence operator. Recall that the divergence of a vector field X on a Rie-
mannian manifold (D, g) is defined as the trace of the Levi-Civita covariant reriva-
tive, that is, div(X) := Tr(∇X) =

〈

dxi,∇∂i
X

〉

= (∇X)ii = ∂iX
i + ΓiijX

j. Simi-

larly, the divergence divS of a (q, p) tensor field with p ≥ 1 is the (p− 1, q) tensor
field div(S) defined as the trace of the bilinear map (α, v) 7→ ∇vS(α, ) so that in
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coordinates this reads

div(S)
i1...ip−1

j1...jq
= (∇S)

ki1...ip−1

j1...jqk

= ∂kS
ki1...ip−1

j1...jq
+ ΓkklS

li1...ip−1

j1...jq
+ Γi1klS

kli2...ip−1

j1...jq
+ all upper indices

− Γlkj1S
ki1...ip−1

lj2...jq
− Γlkj2S

ki1...ip−1

j1l...jq
− all lower indices.

We will need the following formulas, that are generalizations of the identity div(fX) =
df ·X + f div(X).

Lemma 3.1. Let ∇ be a torsion free covariant derivative on D.

(1) Given X ∈ X(D, o∗) and α ∈ Ω1(D, o), we have

div(α⊗X) = ∇Xα+ α divX = iXdα+ α divX + ∇ α ·X

= iXdα+ α divX + d (α ·X) − α · ∇ X,

where (α⊗X)ij = αjX
i.

(2) Given B ∈ Ω2(D, o) and b ∈ X2(D, o∗), we have

div(B · b) = −idiv bB + b : ∇ B − b : i dB

= −idivA bB − 〈A,Tr(ad∗

B b)〉 + b : ∇ B − b : i dAB,

where (B · b)ij = Bjkb
ik and B : b =

∑

i<j Bijb
ij.

Proof. (1) The first identity follows easily from the definition. The second
and third equalities follow, respectively, from the formulas iXdα = ∇Xα−∇ α ·X
and d(α ·X) = ∇ α ·X + α · ∇ X .
(2) Using the definition of div and the properties of the covariant derivatives, we
have

div(b ·B) · u = Tr(∇(b ·B)) · u =

Tr(∇Tr(b⊗B)) · u = ∇∂i
Tr(b⊗B)(dxi,u)

= Tr
(

∇∂i
(b⊗B)(dxi,u)

)

= Tr (∇∂i
b⊗B) (dxi,u) + Tr (b⊗∇∂i

B) (dxi,u)

= ∇∂i
b(dxi, dxk)B(u, ∂k) + b(dxk, dxi)∇∂i

B(∂k,u)

= B(u, div b) + b : ∇uB − b : iudB

To obtain the last two terms, we used the formula

dB(X,Y, Z) = ∇XB(Y, Z) + ∇Y B(Z,X) + ∇ZB(X,Y )

to conclude that b(dxk, dxi)∇∂i
B(∂k,u) = b : ∇uB − b : iudB.

The second identity in terms of the connection A is obtained by using the
formulas

(divA b)j = (div b)j − ad∗

Ai
bij

dAB(X,Y,X) = dB(X,Y, Z) + [A(X), B(Y, Z)]

+ [A(Y ), B(Z,X)] + [A(Z), B(X,Z)],

for X,Y, Z ∈ X(D). �
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Using this lemma, we can now rewrite the first equation of (2.8) in a conserva-
tive form. We have

κ · d(ζ −A · v) − κ · ivB − divA(κv) ·A

= κ · dζ − κ · (dA(A · v) + ivB) − div(κv) ·A

= κ · dζ − κ ·£vA− div(κv) ·A

= κ · dζ − div(κA⊗ v) − κA · ∇ v,

so, using m = ρv♭ + κA+ g, we can write

£
d
vm+ κ · d(ζ −A · v) + ρd

(

−
1

2
|v|2 + µ

)

+ S dT − κ · ivB − divA(κv) · A

= κ · dζ − div(κA⊗ v) − κA · ∇ v + div(m⊗ v) + (m− ρv♭)∇ v + ρdµ+ SdT

= d(ζκ+ ρµ+ sT )− µdρ− TdS + g∇ v + div((m− κA) ⊗ v).

Since dAB = 0, we have −idivA H∗B − Tr(ad∗

B H
∗) · A = div(B ·H∗) −H∗ : ∇ B

and −iDdE∗−div D ·E∗ = − div(E∗⊗D)+d(E∗ ·D)−E∗ ·∇ D, so that defining
the (1, 1) tensor

T := (m−κA)⊗v+B ·H∗−E∗⊗D+ q δ, with q := ρµ+ST +E∗ ·D+ ζκ−ε,

where δ is the (1, 1) tensor δ = δij
∂
∂xi ⊗ dxj , the first equation reads

(3.8) ṁ+ div(T) = 0.

Remark 3.2 (Three dimensional case). On a three dimensional Riemannian
manifold D, the Yang-Mills magnetic field B ∈ X(D, o) and the Yang-Mills induc-
tion field H∗ ∈ X(D, o∗) are defined by

(3.9) B = (⋆B)♯ and H∗ = ⋆H∗,

where ⋆ is the Hodge star operator acting on Ωk(D, o) or, by duality, on Xk(D, o∗).
Using the identity

B ·H∗ = (B♭ · H∗)δ − B♭ ⊗ H∗,

the stress energy tensor T takes the familiar expression

T = (m− κA) ⊗ v − B♭ ⊗ H∗ − E∗ ⊗ D + p δ,

with p := ρµ+ ST + ζκ+ B♭ · H∗ + E∗ ·D − ε �

Returning to the general case and using (3.5), (3.6), (3.7), and (3.8), equations
(3.4) can be written as

(3.10)















































ṁ+ div(T) = 0

κ̇+ ad∗

ζ κ− Tr (ad∗

B H) + Tr (ad∗

E D) = 0

ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0

Ḃ = −dAE − [B, ζ]

Ḋ = − divAH −
(

divAD + κ
)

v + ad∗

ζ D.
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Charge conservation. The total nonabelian charge is defined by

Q := divAD + κ

Using the formula divA(ad∗

ν D) = ad∗

ν divAD + Tr(ad∗

dAν D) and the A-equation

Ȧ = −E − dAζ, we compute the equation for Q. We have

Q̇ = divA Ḋ− Tr(ad∗

Ȧ
D) + κ̇

= − divA divAH − divA(Qv) − divA ad∗

ζ D

+ Tr(ad∗

E D) + Tr(ad∗

dAζ D) + κ̇

= −Tr(ad∗

B H) − divA(Qv) − ad∗

ζ divAD + Tr(ad∗

E D) + κ̇

= − divA(Qv) − ad∗

ζ divAD − ad∗

ζ κ = − divA(Qv) − ad∗

ζ Q.

We have thus obtained the equation of conservation of the charge

Q̇+ divA(Qv) + ad∗

ζ Q = 0, ζ =
∂ε

∂κ
.

Consequently, the equations of motion can be equivalently written as

(3.11)































ṁ+ div(T) = 0

Q̇+ divA(Qv) + ad∗

ζ Q = 0

ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0

Ḃ = −dAE − [B, ζ], Ḋ = − divAH −Qv + ad∗

ζ D.

These are the equations for magnetized and polarized nonabelian charged fluids.
In the physics literature, ζ = ∂ε

∂κ
is usually chosen to be zero.

Abelian case. We now consider the special case O = S1 and dim(D) = 3. Using
the definitions of the fields H and B given in (3.9), we recover the equations

Ḃ = − curlE, Ḋ = curlH− qv, div B = 0,

where q = div D+ κ. Note that the equation for κ reads κ̇ = 0, therefore, choosing
κ = 0 as initial condition, the stress energy tensor reads T = m ⊗ v − B♭ ⊗ H∗ −
E∗ ⊗ D + p δ as in [8]. Therefore, in the abelian case, our equations consistently
recover the equations for polarized and magnetized charged fluids (see equations
(1a)-(1j) in [8]).

Particular case. Returning to the general nonabelian case, in the particular
situation when g = 0, that is, when ε does not depend on the velocity v, we have
v♭ = 1

ρ(m− κA) so that the Hamiltonian (3.1) becomes

h(m,κ, ρ, S,A,Y) =

∫

D

1

2ρ
|m− κA|2 + ε(ρ, S,B,D, κ).

As we will show in §3.3, the same Hamiltonian, but used with a different Poisson
bracket, yields the EYM equation for chromohydrodynamics ([7], [4]).

3.2. Recovering YM-MHD & YM-EHD. It was shown in [8] that, in
the abelian case, ideal magnetohydrodynamics (MHD) and electrohydrodynamics
(EHD) both emerge in Hamiltonian form as a regular limit of the charged polarized
and magnetized fluid, by particularizing ε. Remarkably, despite the fact that our
Hamiltonian slightly differs (even in the abelian case) this result still holds and
generalizes to the nonabelian case.
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For YM-MHD, it suffices to choose

(3.12) ε(ρ, S,B,D,v, κ) := e(ρ, S) +
1

2
|B|2,

in the Hamiltonian (3.1), where a bi-invariant inner product γ is used to compute

the norm of B. In this case, H is given by Hij
b = H∗ij

b = gingimγabB
a
mn, so that a

computation similar to the above yields the motion equations

(3.13)



















ρ(v̇ + ∇vv)♭ = idivA B+kvB − dp, p = ρµ+ ST − e

κ̇ = 0, ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0

Ḃ + £vB = 0.

These are the equations for YM-MHD, when the initial condition κ = 0 is chosen.
For YM-EHD, choosing

(3.14) ε(ρ, S,B,D,v, κ) := e(ρ, S) +
1

2
|D|2,

yields Ebi = E∗b
i = gijγ

abDj
a, and we get the equations

(3.15)


















ρ(v̇ + ∇vv)♭ = iDdE + div(D)E − dp, p = ρµ+ ST − e, Di
a = γabg

ijEbj

κ̇+ div (κv) = 0, ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0

Ḋ + £
d
v
D = 0.

These are the equations for YM-EHD, when the initial condition κ = 0 is chosen.
Note that in the three dimensional case, the first and last equations recover the
usual expressions

ρ(v̇ + ∇vv) = QE + curlE× D − gradp and Ḋ = curl(v × D) −Qv,

where Q = div D ∈ F(D, o∗) and E ∈ X(D, o) is defined by Eia := gijEaj . The

nonabelian charge Q verifies the conservation law Q̇+ div(Qv) = 0.

3.3. Relation with EYM fluids. The Euler-Maxwell equations for charged
fluids were extended to the nonabelian case in [7], where the corresponding Hamil-
tonian structure was also determined. These equations are known under the name
of Euler-Yang-Mills (EYM) or chromohydrodynamics. This Hamiltonian structure
was obtained by reduction of the canonical symplectic form in [4]. The reduction
is associated to the same phase space as the one described in Section 2 but relative
to a different symmetry, namely, the action (2.1) is replaced by the cotangent lifted
action

(3.16) (η, χ,A) · (ψ, φ) := (η ◦ ψ, (χ ◦ ψ)φ,A) ,

where now A is not acted on by the semidirect product. So the coupling term is
now absent from the reduced Poisson structure, which consists simply of the sum
of (2.3) and (2.4). In matrix representation, the Hamiltonian structure is therefore
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given by

(3.17) B =

















mk∂i + ∂kmi κb∂i ρ∂i S∂i 0 0
∂kκa κcC

c
ba 0 0 0 0

∂kρ 0 0 0 0 0
∂kS 0 0 0 0 0

0 0 0 0 0 −δab δ
j
i

0 0 0 0 δbaδ
i
j 0

















.

By applying a general result of [15] (see Proposition 10.3.2) to our case, there is a
Poisson diffeomorphism that relates the Hamiltonian structures (2.10) and (3.17).
It reads

(m,κ,A,Y) 7→ ((m,κ) + J(A,Y), A,Y)

=
(

m− iYdA−Adiv Y, κ− divAY, A,Y
)

(3.18)

Remarkably, the EYM equations emerge with the same Hamiltonian h as in
(3.1), by choosing the particular case

(3.19) ε(ρ, S,B,E,v, κ) =
1

2
|B|2 +

1

2
|E|2

(so g = 0) and using the Hamiltonian structure (3.17) instead of (2.10). Indeed, in
this case, the following equations are recovered

(3.20)



















ρ(v̇ + ∇vv)♭ = 〈κ,E − ivB〉 − dp, p = ρµ+ ST − e,

κ̇+ divA (κv) = 0, ρ̇+ div (ρv) = 0, Ṡ + div (Sv) = 0,

Ḃ = −dAE, Ė = − divAB − κv.

As shown in [4], Gauss’ law can be recovered by conservation of the momentum map
associated to the cotangent lift of the gauge transformation (η, χ,A) 7→ (η, χ,A) ·
ψ =

(

η, (ψ−1 ◦ η)χ,Adψ−1 A+ ψ−1Tψ
)

, ψ ∈ F(D,O) that commutes with (3.16).

This momentum map is Jgau(mη, κχ, A,Y) = −(κχχ
−1 ◦ η−1)Jη−1 − divAY and

thus induces the momentum map Jgau(m,κ,A,Y) = −κ− divAY. Gauss’ law

divAE = κ

is thus a consequence of Noether’s theorem at zero momentum value.
Note that one can add the term 1

2ρ
|κ|2 to the Hamiltonian, where the norm is

taken relative to a bi-invariant inner product γ on o, and still obtain the correct
equations (3.20). The resulting Hamiltonian

h(m,κ, ρ, S,A,Y) =

∫

D

1

2ρ
|m− κ · A|2 +

1

2ρ
|κ|2 + e(ρ, S) +

1

2
|E|2 +

1

2
|B|2,

was considered in [4] and has the advantage to be nondegenerate and has thus an
associated Lagrangian, the so called Kaluza-Klein Lagrangian

ℓ(v, ν, ρ, S,A,Y) =

∫

D

ρ

2
|v|2 +

ρ

2
|A · v + ν|2 − e(ρ, S) +

1

2
|E|2 −

1

2
|B|2.

We refer to [4] for the variational principle involved here as well as for the general-
ization to nontrivial principal bundles.

The results obtained in the paper are summarized in the following theorem.
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Theorem 3.3 (Geometry of nonabelian fluids). Consider the configuration

space Q = Diff(D)sF(D,O) × Ω1(D, o) of the nonabelian charged fluid and its

phase space T ∗Q endowed with the canonical symplectic form.

(1) Let the group Diff(D)sF(D,O) act on T ∗Q by cotangent lift of the action

(2.1). Then the associated reduced Poisson bracket yields the Hamiltonian structure

(2.10) of the nonabelian charged magnetized and polarized fluid. The equations of

motion are obtained by considering the Hamiltonian function

h(m,κ, ρ, S,A,Y) =

∫

D

−
1

2
ρ|v|2 + (m− κA) · v + ε(ρ, S,B,D,v, κ).

By specializing (see (3.12) and (3.14)) this Hamiltonian, two models of charged flu-

ids (YM-MHD and YM-EHD) as well as their Hamiltonian structure are obtained.

(2) Let the group Diff(D)sF(D,O) act on T ∗Q by cotangent lift of the action

(3.16). Then the associated reduced Poisson bracket yields the Hamiltonian struc-

ture (3.17) of EYM fluids. The equations of motion are obtained by specialization

(see (3.19)) of the same Hamiltonian h as above.

The Hamiltonian structures (2.10) and (3.17) obtained in (1) and (2) are related

by the Poisson diffeomorphism (3.18).
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