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Abstract. In this paper, we consider the six-dimensional focusing mass criti-

cal NLS: iut+∆u = −|u|
2
3 u with splitting-spherical initial data u0(x1, · · ·x6) =

u0(
q

x2
1 + x2

2 + x2
3,

q

x2
4 + x2

5 + x2
6). We prove that any finite mass solution

which is almost periodic modulo scaling in both time directions must have
Sobolev regularity H

1+
x . Moreover, the kinetic energy of the solution is local-

ized around the spatial origin uniformly in time. As important applications of
the results, we prove the scattering conjecture for solutions with mass smaller
than that of the ground state. We also prove that any two-way non-scattering
solution must be global and coincides with the solitary wave up to symmetries.
Here the ground state is the unique positive, radial solution of the nonlinear

elliptic equation ∆Q − Q + Q
5
3 = 0. To prove the smoothness of the solution,

we use a new local iteration scheme which first appears in [19].
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1. Introduction

1.1. Background and main results. The d-dimensional focusing mass-critical
nonlinear Schrödinger equation takes the form

(1.1) iut + ∆u = −|u|
4
du.

Here u(t, x) is a complex-valued function on R × Rd. The name ”mass critical”
refers to the fact that the scaling symmetry

u(t, x) 7→ λ
d
2 u(λ2t, λx), ∀λ > 0(1.2)

leaves both the equation and the mass invariant. Here the mass is defined as

Mass: M(u(t)) =

∫

Rd

|u(t, x)|2dx = M(u0).

For the initial value problem of (1.1), the local theory was established by
Cazenave and Weissler in [3]. To summarize, for any initial data u0 ∈ L2

x(Rd), they

constructed the unique local solution u(t, x) ∈ Ct([−T, T ];L2
x) ∩ L

2(d+2)
d

t,x ([−T, T ] ×

Rd). Moreover, when the mass of the initial data is small enough, the solution is
global and satisfies the global spacetime estimate

‖u‖
L

2(d+2)
d

t,x (R×Rd)
≤ C(‖u0‖L2

x
).

This estimate implies that the solution scatters in both time directions asymptoti-
cally: more precisely, there exist u± ∈ L2

x(Rd) such that

lim
t→+∞

‖u(t) − eit∆u+‖L2
x

= 0 and lim
t→−∞

‖u(t) − eit∆u−‖L2
x

= 0.

When the solution has large mass, blowup may occur at finite time. The
existence of finite blowup solutions was proved by Glassey [8], based on a virial
argument. On the other hand, the equation (1.1) also admits solitary wave solutions
of the form eitR(x), where R = R(x) solves the elliptic equation

∆R −R+ |R|
4
dR = 0.(1.3)

There are infinitely many solutions to this equation, but only one positive solution
which is spherically symmetric (up to translation) and has minimal mass among all
these R′s. This solution is usually called the

Definition 1.1 (Ground state). The ground state Q refers to the unique,
radial, Schwartz solution to the equation (1.3).

It is believed that the mass of Q serves as the minimal mass among all the non-
scattering solutions. The precise statement of this general belief is the following
scattering conjecture:

Conjecture 1.2 (Scattering conjecture). Let u0 ∈ L2
x(Rd) be such that M(u0) <

M(Q). Then the corresponding solution exists globally and scatters.

So far, this conjecture has been proved in dimensions d ≥ 2 when the initial
data u0 is spherically symmetric, see [15, 16]. In the proof of all these results, the
spherical symmetry is used in an essential way. First of all, the spherical symmetry
forces to freeze the center of mass at the origin in both physical and frequency
spaces. Secondly, a few crucial technical tools like weighted Strichartz estimates
are no longer available in the nonradial setting.
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At the level of minimal mass, there are two explicit examples of non-scattering
solutions: 1 the solitary wave SW and the pseudo-conformal ground state Pc(Q).

SW = eitQ(x),

P c(Q) = |t|−
d
2 e

i|x|2−4
4t Q(

x

t
).

It is conjectured that these are the only two threshold solutions for scattering at
the level of minimal mass. Associated with this is the following rigidity conjecture
which identifies all solutions with ground state mass as either SW or Pc(Q) if they
do not scatter. Since both mass and the equation are invariant under a couple of
symmetries, the coincidence of the solutions with the examples only hold modulo
these symmetries. Specifically, the symmetries are: translation, phase rotation,
scaling and the Galilean boost.

Conjecture 1.3 (Rigidity conjecture at the ground state mass). Let u0 ∈
L2

x(Rd) satisfy M(u0) = M(Q). Then only the following cases can occur
1. The solution u blows up at finite time, then in this case u must coincide

with Pc(Q) up to symmetries of the equation.
2. The solution u is a global solution. Then in this case, u either scatters in

both time directions or u must coincide with SW up to symmetries of the equation.

In [20], Merle considered the first part of the conjecture, where he identified
all finite time blowup solutions as Pc(Q) under an additional H1

x assumption on
the initial data. See also [32] for the preliminary result due to Weinstein and [9]
for a simplified proof of Merle’s argument due to Hmidi-Keraani. By Merle’s re-
sult and pseudoconformal transformation, the second part of the conjecture, which
characterizes all global solutions with ground state mass, still holds if we make the
strong assumption that the initial data u0 ∈ Σ = {f ∈ H1

x, xf ∈ L2
x}. Finally it is

worthwhile to notice that Merle’s argument works for all dimensions without any
symmetry assumption on the initial data.

Without the Σ assumption on the initial data, it is not clear at all how to deal
with the case when u0 is merely in L2

x and the corresponding solution is global.
Recently in [14] and [18], we proved the second part of the conjecture when the
initial data u0 ∈ H1

x(Rd), d ≥ 2 and is spherically symmetric. In dimension d ≥ 4,
the results hold even under a weaker symmetry assumption, namely, the initial data
is only required to be splitting-spherical symmetric (see [18] for more details).

As stated, all the results concerning the rigidity conjecture require the H1
x

regularity on the initial data since it is the minimal regularity to define the energy
and to carry out the spectral analysis. Here the energy refers to

Energy: E(u(t)) =
1

2
‖∇u(t)‖2

L2
x
−

d

2(d+ 2)
‖u(t)‖

2(d+2)
d

L
2(d+2)

d
x

= E(u0).

The purpose of this paper is two-folded. First of all, we lower down the sym-
metry assumption on the initial data in the scattering conjecture. Secondly, we
prove certain rigidity results for all finite mass solutions under this weak symmetry

1Here by ”non-scattering”, we mean that the L
2(d+2)

d
t,x norm is infinite. Obviously, the ”non-

scattering” solution may blow up at finite time, or can exist globally.
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assumption. The weak symmetry we refer to here is the ”splitting spherical sym-
metry”. For the notational simplicities, we choose to work in 6-dimensions and we
require the initial data u0 satisfy

u0(x1, · · · , x6) = u0(
√
x2

1 + x2
2 + x2

3,

√
x2

4 + x2
5 + x2

6).(1.4)

The extension to arbitrary higher dimensions is also expected after some technical
changes. Our main results are the following

Theorem 1.4 (scattering in 6-dimensions with symmetry (1.4)). Let u0 ∈
L2

x(R6) satisfying M(u0) < M(Q) and symmetry (1.4). Then the solution to (1.1)
with this initial data exists globally and satisfies

‖u‖
L

8
3
t,x(R×R6)

≤ C(‖u0‖L2
x
).

In particular, this implies scattering: there exist u± ∈ L2
x such that

lim
t→±∞

‖u(t) − eit∆u±‖L2
x

= 0.

The following theorem proves the rigidity conjecture for merely L2
x solutions under

certain assumptions.

Theorem 1.5 (the only two-way non-scattering solution is solitary wave). Let
u0 ∈ L2

x(R6) satisfy M(u0) = M(Q) and symmetry 1.4. Suppose the maximal-
lifespan solution u(t, x) on time interval (−T∗, T ∗) does not scatter in the sense
that

‖u‖
L

8
3
t,x([0,T∗))

= ‖u‖
L

8
3
t,x((−T∗,0])

= ∞.

Then T∗ = T ∗ = ∞ and u = eitQ up to scaling and phase rotation.

1.2. Outline of the proof. The proof of the above two theorems follows
roughly the same general strategy as in previous works [14, 18, 15, 16]. The
main part of the proof, as we shall see soon, is devoted to upgrading the regularity
of the solutions. However to lower the regularity assumption on initial data we
have to adopt a new local iteration scheme which is developed in our very recent
work [19]. The main advantage of this new scheme is that we only need to use the
local in time information of the solution. Therefore it works for all solutions with
certain compactness. This sets free the procedure of picking up three candidates (or
referred to as “three enemies” in [15, 16])2 in the proof of scattering conjecture).
At the same time it enables us to deal with the rigidity conjecture in the critical
L2

x space.
In what follows we outline the proof of Theorem 1.4 in three steps. The proof

of Theorem 1.5 is only slightly different at the first step and therefore we shall give
the necessary modifications (see Remark 1.8 below).

Step 1. Reduction to almost periodic modulo scaling solutions.
This is by now a standard step. We argue by contradiction and suppose the

scattering result Theorem 1.4. does not hold. Then the failure of the theorem
implies the existence of solutions with certain compactness. More precisely, the
argument in [25, 13, 1] establishes the following

2In other words, we will eliminate all enemies without performing the reduction procedure
to three enemies
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Proposition 1.6. [25, 13, 1] Suppose Theorem 1.4 fails, then there exists
minimal mass Mc < M(Q) and maximal-lifespan solution u(t, x) : I×R6 → C such
that u satisfies (1.4) and
• u has the minimal mass: M(u) = Mc;
• u is almost periodic modulo scaling in the following sense: for any t ∈ I, there
exists N(t) > 0 such that {N(t)−3u(t, x

N(t) )} is precompact in L2
x.

Here N(t) is the frequency scale. In the physical space, it also measures the
concentration size of the solution. Basically we do not have any a priori control
on N(t)3 which is the heart of the problem. The explicit control on N(t) provides
the control of Strichartz norm of the solution on certain time intervals which is
crucial to upgrading the regularity of the solution. However, as we shall show in
the second step, to gain additional regularity of the solution we will use a local
iteration scheme in which we do not need any a priori control on N(t). This is
different from the works [15, 16].

Remark 1.7. In more detail, the argument in the proof of scattering conjecture
for radial solutions in d ≥ 2 (see [15, 16]) relies on performing yet another limiting
procedure to pick up the candidates for which we have good control on N(t). This
is a crucial step in the proof in [15, 16], namely to prove the existence of three
enemies and then kill the three enemies by proving additional regularities. The
three enemies are: soliton like solution with N(t) = 1; high-to-low cascade with

N(t) ≤ 1 and lim inft→±∞N(t) = 0; self similar solution N(t) = t−
1
2 . However in

the present proof, we shall not reduce to three enemies and we will directly kill all
enemies.

Remark 1.8. The proof of Theorem 1.5 is based on Theorem 1.4. Namely,
knowing that Theorem 1.4 holds true, then M(Q) is the minimal mass for solution
to not scatter. As a consequence of this minimality and the compactness argument
in [25] for example, all the solutions with symmetry (1.4) and ground state mass
must be almost periodic modulo scaling. Since by the assumption, the solution
does not scatter on both time directions, the almost periodicity holds on both time
directions as well. Therefore, similar to Theorem 1.4, all the work is reduced to
proving additional regularity of the almost periodic modulo scaling solution and
localization of kinetic energy. Finally, to exclude all possibilities when the solution
does not coincide with SW and Pc(Q), we will use the truncated virial argument.
See Step 2 and Step 3 below.

To conclude, after establishing the compactness property of the solution, the
proofs of both Theorem 1.4 and Theorem 1.5 are both hinged on showing that the
almost periodic modulo scaling solution on both time directions must have Sobolev
regularity H1+ε. This is the main content in the

Step 2. Additional regularity for almost periodic modulo scaling solutions.

More precisely we prove the following

Theorem 1.9 (Additional regularity for almost periodic modulo scaling solu-
tions). Let u be a maximal-lifespan solution of (1.1) on I in six dimensions obeying

3One can keep in mind the two examples of almost periodic modulo scaling solutions: SW

and Pc(Q). For SW , N(t) = 1; for Pc(Q), N(t) = 1
t
.
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symmetry (1.4). Let u be almost periodic modulo scaling on I. Then there exists
ε > 0 such that ∀t ∈ I,

u(t) ∈ H1+ε
x .

Moreover, the kinetic energy of u is uniformly localized: for any η > 0, there exists
C(η) > 0 such that

sup
t∈I

‖φ>C(η)∇u(t)‖L2
x
≤ η.(1.5)

We will give the proof in Section 4, Section 5 and Section 6. Here we describe
the main idea of the proof. We will work with each single dyadic frequency of u:

‖PNu(t)‖L2
x
.

First by using in/out decomposition and weighted Strichartz inequalities, we prove

‖φ>1PNu(t)‖L2
x

. N−1−ε(1.6)

with a uniform in time bound, where φ>1 is a smooth cut-off function supported in
the region |x| > 1. This then reduces matters to considering the part of the solution
near the spatial origin, i.e. ‖φ≤1PNu(t)‖L2

x
. This piece is trivially bounded by

AN = ‖PNu‖S([t,t+ 1√
N

]),

i.e. the Strichartz norm of PNu on a local time interval [t, t+ 1√
N

]. It turns out, after

some technical manipulations, that this latter quantity is better suited for iteration
and bootstrapping. Indeed we shall establish recurrent relation for AN and we will
iterate our estimates only finitely many (but sufficiently many) steps. The crucial
point is that during the iteration process, we only need to use the information of
the solution on a unit time interval [t, t+ 1]. Therefore we do not need to use the
full control on N(t). We remark that although as a sacrifice the H1+ε

x norm of u(t)
depends on t, the analysis here combined with (1.6) and a further spatial decay
estimate (see Section 6) give rise to the uniform localization of kinetic energy (1.5).
This property is enough for us to use the truncated virial argument in Step 3.

Step 3. Truncated virial argument.
The contradiction for the scattering result Theorem 1.4 and final coincidence

with the examples in the rigidity result Theorem 1.5 follows quickly from the kinetic
localization by using a virial type argument. This part of the proof is standard and
will be given in Section 6.

We have explained all three steps of the proofs of Theorem 1.4 and Theorem 1.5.
A few remarks are in order. First of all, as we will see later in the detailed proof, the
additional regularity comes from the compactness in both time directions. In other
words, only knowing the solution is almost periodic modulo scaling in one time
direction is not enough to prove the additional regularity. This fact is not fatal in
the proof of scattering result 1.4 since we have the freedom to choose the two-way
non-scattering solution to work with (see Proposition 1.6). However, concerning
the rigidity result Theorem 1.5, two-way non-scattering has to come in as our
assumption. As a matter of fact, it is an interesting problem to deal with the case
when the solution does not scatter in one time direction but scatters on the other.
Secondly, we want to point out that, due to the anisotropicity of the function, the
proof here is more involved than in [19] especially in getting the uniform regularity



RIGIDITY FOR ROUGH SOLUTIONS 351

away from the origin. Finally, the extension to higher dimensions is also expected
where we need to use the tools developed in [18].
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up funding from Mathematics Department of University of Iowa and the NSF grant
No. 090832. The work of X. Zhang was supported by the start-up funding from
Mathematics Department of University of Iowa and an Alfred P. Sloan Research
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2. Preliminaries

2.1. Some notations. We write X . Y or Y & X to indicate X ≤ CY for
some constant C > 0. We use O(Y ) to denote any quantity X such that |X | . Y .
We use the notation X ∼ Y whenever X . Y . X .

We use the ‘Japanese bracket’ convention 〈x〉 := (1 + |x|2)1/2.
We write Lq

tL
r
x to denote the Banach space with norm

‖u‖Lq
tLr

x(R×Rd) :=
(∫

R

(∫

Rd

|u(t, x)|r dx
)q/r

dt
)1/q

,

with the usual modifications when q or r are equal to infinity, or when the domain
R×Rd is replaced by a smaller region of spacetime such as I ×Rd. When q = r we
abbreviate Lq

tL
q
x as Lq

t,x. For notational consistence, in this section, d is understood
to ≥ 3.

Throughout this paper, we will use φ ∈ C∞(Rd) be a radial bump function
supported in the ball {x ∈ Rd : |x| ≤ 25

24} and equal to one on the ball {x ∈ Rd :
|x| ≤ 1}. We also denote ψ(x) = φ(x) − φ(2x). For any constant C > 0, we denote
φ≤C(x) := φ

(
x
C

)
, φ>C := 1 − φ≤C and ψC(x) = ψ( x

C ).

In this paper, we use x1 to denote the vector (x1, x2, x3) and x2 to denote
(x4, x5, x6). Same explanation applies to y1, y2. We use ∆j , ∇j to denote the
Laplacian and gradient operators restricted in xj direction. For any two functions
f, g : R6 → R, we use ∗ to denote the usual convolution, i.e.

f ∗ g(x) =

∫

R6

f(x− y)g(y)dy.

We use ∗x1 to denote the convolution in (x1, x2, x3) variable, for example

f(·, x2) ∗x1 g(·, y2) =

∫

R3

f(x1 − y1, x2)g(y1, y2)dy1.

Similar convention also applies to ∗x2 .

2.2. Basic harmonic analysis. For each number N > 0, we define the
Fourier multipliers

P̂≤Nf(ξ) := φ≤N (ξ)f̂(ξ)

P̂>Nf(ξ) := φ>N (ξ)f̂(ξ)

P̂Nf(ξ) := ψN (ξ)f̂ (ξ)

and similarly P<N and P≥N . We also define

PM<·≤N := P≤N − P≤M =
∑

M<N ′≤N

PN ′
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whenever M < N . We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2n for some integer n); in particular, all summations
over N or M are understood to be over dyadic numbers. Nevertheless, it will
occasionally be convenient to allow M and N to not be a power of 2. As PN is not
truly a projection, P 2

N 6= PN , we will occasionally need to use fattened Littlewood-
Paley operators:

(2.1) P̃N := PN/2 + PN + P2N .

These obey PN P̃N = P̃NPN = PN .
Like all Fourier multipliers, the Littlewood-Paley operators commute with the

propagator eit∆, as well as with differential operators such as i∂t + ∆. We will use
basic properties of these operators many times, including

Lemma 2.1 (Bernstein estimates). For 1 ≤ p ≤ q ≤ ∞,

∥∥|∇|±sPNf
∥∥

Lp
x
∼ N±s‖PNf‖Lp

x
,

‖P≤Nf‖Lq
x

. N
d
p
− d

q ‖P≤Nf‖Lp
x
,

‖PNf‖Lq
x

. N
d
p
− d

q ‖PNf‖Lp
x
.

While it is true that spatial cutoffs do not commute with Littlewood-Paley
operators, we still have the following:

Lemma 2.2 (Mismatch estimates in real space). Let R,N > 0. Then

∥∥φ>R∇P≤Nφ≤R
2
f
∥∥

Lp
x

.m N1−mR−m‖f‖Lp
x∥∥φ>RP≤Nφ≤R

2
f
∥∥

Lp
x

.m N−mR−m‖f‖Lp
x

for any 1 ≤ p ≤ ∞ and m ≥ 0.

Proof. We will only prove the first inequality; the second follows similarly.
It is not hard to obtain kernel estimates for the operator φ>R∇P≤Nφ≤R

2
. In-

deed, an exercise in non-stationary phase shows

∣∣φ>R∇P≤Nφ≤R
2
(x, y)

∣∣ . Nd+1−2k|x− y|−2kφ|x−y|> R
2

for any k ≥ 0. An application of Young’s inequality yields the claim. �

Similar estimates hold when the roles of the frequency and physical spaces are
interchanged. More generally we have the following

Lemma 2.3 (Mismatch estimates in frequency space). Let 1 ≤ p ≤ 2, then for
any m ≥ 1,

∥∥PNφ≤RP>8Nf
∥∥

L2
x

.m N
d
p
− d

2 (RN)−m‖f‖Lp
x
.

∥∥PNφ≤RP≤N
8
f‖L2

x
. N

d
p
− d

2 (RN)−m‖f‖Lp
x
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Proof. We first prove the second inequality, the treatment for the first one is
similar. By Plancherel, we write

∥∥∥∥PNφ≤RP<N/8f

∥∥∥∥
L2

x

=

∥∥∥∥ψ(
ξ

N
)Rd

∫
φ̂(R(ξ − η))φ(

8η

N
)f̂(η)dη

∥∥∥∥
L2

ξ

. Rd

∥∥∥∥ψ(
ξ

N
)

(∫ ∣∣∣∣φ̂(R(ξ − η))φ(
8η

N
)

∣∣∣∣
p

dη

) 1
p
∥∥∥∥

L2
ξ

‖f̂‖
Lp′

η

≤ RdN
d
p

∥∥∥∥ψ(
ξ

N
)

(∫ ∣∣∣∣φ̂(R(ξ −
N

8
η))φ(η)

∣∣∣∣
p

dη

) 1
p
∥∥∥∥

L2
ξ

‖f‖Lp
x

≤ RdN
d
p
+ d

2 (RN)−m‖f‖Lp
x

≤ (RN)d−mN
d
p
− d

2 ‖f‖Lp
x
.

�

Before finishing this subsection, we remark that in this paper, we will use P 1
N

to denote the frequency projection in subspace R3
x1 . Same convention applies to

P 2
N and P i

≤N for i = 1, 2.

2.3. Some analysis tools. We will need the following fractional chain rule
lemma.

Lemma 2.4 (Fractional chain rule for a C1 function, [5][22][27]). Let F ∈
C1(C), σ ∈ (0, 1), and 1 < r, r1, r2 <∞ such that 1

r = 1
r1

+ 1
r2

. Then we have

‖|∇|σF (u)‖Lr
x

. ‖F ′(u)‖L
r1
x
‖|∇|σu‖L

r2
x
.

Proof. See [5], [22] and [27]. �

We also need the following lemma from [16].

Lemma 2.5. Let 0 < s < 1 + 4
d , then

‖|∇|sF (u)‖
L

2(d+2)
d+4

x

. ‖|∇|su‖
L

2(d+2)
d

x

‖u‖
4
d

L
2(d+2)

d
x

.

We will need the following sharp Gagliardo-Nirenberg inequality

Lemma 2.6. Let Q be the ground state in the Definition 1.1. Then for any
f ∈ H1

x(Rd), we have

‖f‖
2(d+2)

d

L
2(d+2)

d
x

≤
d+ 2

d

(
M(f)

M(Q)

) 2
d

‖∇f‖2
L2

x
.(2.2)

The equality holds only and if only

f = ceiθλ
d
2Q(λ(x− x0)).(2.3)

for (c, θ, λ) ∈ (R+,R,R+).

We will need the following radial Sobolev embedding
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Lemma 2.7 (Radial Sobolev embedding, [24]). Let dimension d ≥ 3. Let s > 0,
α > 0, 1 < p, q < ∞ obeys the scaling restriction: α + s = d(1

q − 1
p ). Then the

following holds:

‖|x|αf‖Lp
x(Rd) . ‖|∇|sf‖Lq

x(Rd),

where the implicit constant depends on s, α, p, q.

2.4. Strichartz estimates. The free Schrödinger flow has the explicit expres-
sion:

eit∆f(x) =
1

(4πt)d/2

∫

Rd

ei|x−y|2/4tf(y)dy,

from which we can derive the kernel estimate of the frequency localized propagator.
We record the following

Lemma 2.8 (Kernel estimate[15, 16]). For any m ≥ 0, we have

|(PNe
it∆(x, y)| .m

{
|t|−d/2, : |x− y| ∼ Nt;

Nd

|N2t|m〈N |x−y|〉m : otherwise

for |t| ≥ N−2 and

|(PNe
it∆)(x, y)| .m Nd〈N |x− y|〉−m

for |t| ≤ N−2.

We will frequently use the standard Strichartz estimate. Let I be a time inter-
val. We define the Strichartz space on I:

S(I) = L∞
t L

2
x(I × R

d) ∩ L2
tL

2d
d−2
x (I × R

d).

We also define N(I) to be the dual space of S(I). Then the standard Strichartz
estimate reads

Lemma 2.9 (Strichartz estimate). Let d ≥ 3. Let I be an interval, t0 ∈ I, and
let u0 ∈ L2

x(Rd) and F ∈ N(I). Then, the function u defined by

u(t) := ei(t−t0)∆u0 − i

∫ t

t0

ei(t−t′)∆F (t′) dt′

obeys the estimate

‖u‖S(I) . ‖u0‖L2
x

+ ‖F‖N(I),

where all spacetime norms are over I × Rd.

Proof. See, for example, [7, 23]. For the endpoint see [10]. �

We will also need a weighted Strichartz estimate for splitting spherically sym-
metric functions in 6 dimensions.

Lemma 2.10. (Weighted Strichartz estimate in splitting-spherical symmetric
case).

Let I be a time interval, t0 ∈ I. Let u0 ∈ L2
x(R6), F ∈ L

8
5
t,x(I×R6) be splitting-

spherically symmetric. Then the function u(t, x) defined by

u(t) := ei(t−t0)∆u0 − i

∫ t

t0

ei(t−s)∆F (s)ds
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is also splitting-spherically symmetric and obeys the estimate

‖|x1|
1
2−u‖L2+

t L4−
x (I×R6) . ‖u0‖L2

x(R6) + ‖F‖
L

8
5
t,x(I×R6)

.

The same conclusion holds true if we replace x1 by x2.

Proof. See [18] for the proof. �

2.5. The in-out decomposition. We will need an incoming/outgoing de-
composition which was developed in [15, 16]. As there, we define operators P±

by

[P±f ](r) := 1
2f(r) ±

i

π

∫ ∞

0

r2−d f(ρ) ρd−1 dρ

r2 − ρ2
,

where the radial function f : Rd → C is written as a function of radius only. We
will refer to P+ is the projection onto outgoing spherical waves; however, it is not
a true projection as it is neither idempotent nor self-adjoint. Similarly, P− plays
the role of a projection onto incoming spherical waves; its kernel is the complex
conjugate of the kernel of P+ as required by time-reversal symmetry.

For N > 0 let P±
N denote the product P±PN where PN is the Littlewood-Paley

projection. We record the following properties of P± from [15, 16]:

Proposition 2.11 (Properties of P±, [15, 16]).
(i) P+ + P− represents the projection from L2 onto L2

rad
.

(ii) Fix N > 0. Then
∥∥χ& 1

N
P±
≥Nf

∥∥
L2(Rd)

.
∥∥f

∥∥
L2(Rd)

with an N -independent constant.
(iii) For |x| & N−1 and t & N−2, the integral kernel obeys

∣∣[P±
N e

∓it∆](x, y)
∣∣ .





(|x||y|)−
d−1
2 |t|−

1
2 : |y| − |x| ∼ Nt

Nd

(N |x|)
d−1
2 〈N |y|〉

d−1
2

〈
N2t+N |x| −N |y|

〉−m
: otherwise

for all m ≥ 0.
(iv) For |x| & N−1 and |t| . N−2, the integral kernel obeys

∣∣[P±
N e

∓it∆](x, y)
∣∣ .

Nd

(N |x|)
d−1
2 〈N |y|〉

d−1
2

〈
N |x| −N |y|

〉−m

for any m ≥ 0.

3. Proofs of Theorem 1.4 and 1.5

As was already explained in the introduction, proofs of Theorem 1.4 and Theo-
rem 1.5 are reduced to obtaining the additional regularity for the solutions which is
almost periodic modulo scaling in both time directions. In this section, we explain
in more details the proof of both theorems.

The only property of the almost periodic modulo scaling solution we rely on is
the following improved Duhamel formula. We record the following result from [25]:
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Proposition 3.1 (Improved Duhamel formula). Let u(t, x), t ∈ I be the
maximal-lifespan solution of (1.1) and is almost periodic modulo scaling on I, then
we have the following

u(t) = w − lim
T→inf I

−i

∫ t

inf I

ei(t−τ)∆F (u(τ))dτ

= w − lim
T→sup I

i

∫ sup I

t

ei(t−τ)∆F (u(τ))dτ

weakly in L2
x.

Comparing with the usual Duhamel formula, the linear flow, which is not
smoothed out with time, vanishes in this improved Duhamel formula. This is
where the additional smoothness comes from.

The key step in proving both theorems is to establish the following

Theorem 3.2 (Additional regularity for solutions obeying Proposition 3.1).
Let u be a maximal-lifespan solution of (1.1) in six dimensions on time interval I.
Let u obey the Duhamel formula Proposition 3.1 and symmetry (1.4). Then there
exists ε > 0 such that ∀ t ∈ I,

u(t) ∈ H1+ε
x .

Moreover, the kinetic energy of u is uniformly localized: for any η > 0, there exists
C(η) > 0 such that

sup
t∈I

‖φ>C(η)∇u(t)‖L2
x
≤ η.(3.1)

The proof of this theorem is the main part of the paper and will be presented in
the remaining sections. Here we assume this theorem hold momentarily and finish
the proof of Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.4:

Proof. Suppose by contradiction that Theorem 1.4 does not hold, then the
same argument as in [15], [16] yields that: there exists minimal mass Mc < M(Q)
and maximal-lifespan solution u(t, x) on I = (−T∗, T ∗) such that u obeys the
symmetry (1.4) and

1. M(u) = Mc;
2. u(t) is almost periodic modulo scaling on I;
Applying Proposition 3.1 and Theorem 3.2, we know that u ∈ H1+ε

x . This
combined with sharp Gagliardo-Nirenberg inequality and the fact that M(u) <
M(Q) yields that

‖u(t)‖H1
x

.M(u) 1.

From this and the standard H1
x local theory, we know that u exists globally, i.e.:

T∗ = T ∗ = ∞. In this situation, the contradiction will come from the truncated
virial and the kinetic energy localization as we now explain. Let φ≤R be the smooth
cutoff function, we define truncated virial as

VR(t) =

∫
φ≤R(x)|x|2|u(t, x)|2dx.

Obviously

VR(t) . R2, ∀ t ∈ R.(3.2)
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On the other hand, we compute the second derivative of virial with respect to t,
this gives

∂ttVR(t) = 8E(u)+(3.3)

O

(∫

|x|>R

(
|∇u(t, x)|2 + |u(t, x)|

8
3

)
dx+

1

R2

∫

|x|>R

|u(t, x)|2dx

)
.(3.4)

Since M(u) < M(Q) and u ∈ H1
x, from sharp Gagliardo-Nirenberg inequality (2.2)

we have

E(u) > 0.

Now we can use the kinetic energy localization (3.1) and Gagliardo-Nirenberg in-
equality to control the error term (3.4) and finally arrives at

∂ttVR(t) ≥ 4E(u) > 0.

This obvious contradicts (3.2). The proof of Theorem 1.4 is finished. �

Proof of Theorem 1.5:

Proof. Let u be the solution of (1.1) in six dimensions obeying the symmetry
(1.4) and

1. M(u) = M(Q),
2. u does not scatter in both time directions.
Since by Theorem 1.4, M(Q) is the minimal mass, the compactness argument in

[25, 13, 1] shows that u is almost periodic modulo scaling in both time directions.
Now we can apply Theorem 3.2 to deduce that u ∈ H1

x. Since from Merle’s result,
the only finite time blowup solution must be Pc(Q) up to symmetries and Pc(Q)
scatters in one time direction, we know from condition 2 that u must be a global
solution.

From (2.2), this global solution u satisfies E(u) ≥ 0. Moreover, the same virial
argument as in the proof of Theorem 1.4 allows us to preclude the case E(u) > 0,
therefore we obtainE(u) = 0. From this the coincidence of the solution with solitary
wave follows immediately, again by the sharp Gagliardo-Nirenberg inequality. The
proof is completed.

�

The remaining part of the paper is devoted to proving Theorem 3.2. This is
done in several steps: In section 4, we prove additional smoothness away from the
origin with uniform in time bound through finite steps of iteration; In Section 5,
we prove u(t) ∈ H1+ε

x by using a new local iteration scheme. In Section 6, we prove
the uniform localization property for kinetic energy.

4. Smoothness away from the origin with uniform in time bound

In this section, we show that for any L2
x solution which obeys the improved

Duhamel formula Proposition 3.1, the H1+ norm away from the origin is well
defined and has the uniform in time control. This property will be used crucially
in the local iteration scheme in the next Section. In the radial case, this result was
proved in [14] by a two-step iteration. However, in this 3 + 3 case, the proof is
much more complicated due to the anisotropicity of the function.
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Proposition 4.1. Let u0 ∈ L2
x(R6) and obey symmetry (1.4). Let u(t, x) be

the maximal-lifespan solution on I = (−T∗, T ∗) satisfying the improved Duhamel
formula Proposition 3.1. Then for any N ≥ 1,

‖φ>1PNu(t)‖L2
x

. N−1− 1
10 , ∀ t ∈ (−T∗, T

∗)(4.1)

In particular,

sup
t∈(−T∗,T∗)

‖φ>1∇u(t)‖L2
x

. 1.(4.2)

In both of the two estimates, the implicit constant depends only on M(u).

Proof. We only give the proof of (4.1), since (4.2) follows from (4.1) and sim-
ple manipulation involving dyadic decomposition and mismatch estimate Lemma
2.3.

We prove (4.1) in two steps. In the first step, we get a little decay in N , say

N− 1
50 . Then in the next step, we improve this decay via finitely many iterations.

For the notational convenience and without loss of generality, we assume T∗ = T ∗ =
∞.

Step 1. In this step, we prove

sup
t∈R

‖φ>1PNu(t)‖L2
x

. N− 1
50 , ∀N ≥ 1.(4.3)

By time translation invariance, it is enough to prove

‖φ>1PNu0‖L2
x

. N− 1
50 , ∀N ≥ 1.(4.4)

where the implicit bound depends only on M(u).

Since PN ∼ P̃ 1
NP

2
.N + P̃ 2

NP
1
.N , we use triangle inequality to bound

‖φ>1PNu0‖L2
x

. ‖φ>1P̃
1
NP

2
.Nu0‖L2

x
+ ‖φ>1P̃

2
NP

1
.Nu0‖L2

x
.

By symmetry and without loss of generality, we only need to estimate

‖φ>1P
1
NP

2
≤Nu0‖L2

x
,(4.5)

here and afterwards, we write P 1
N instead of P̃ 1

N for notational convenience. This
can be trivially bounded by

‖φ>1φ|x1|≤ 1
N
P 1

NP
2
≤Nu0‖L2

x
+ ‖φ>1φ|x1|> 1

N
P 1

NP
2
≤Nu0‖L2

x
.(4.6)

We first estimate the term with cutoff φ|x1|> 1
N

, for which we use in/out decom-

position to get

‖φ>1φ|x1|> 1
N
P 1

NP
2
≤Nu0‖L2

x
≤ ‖φ>1φ|x1|> 1

N
P 1+

N P 2
≤Nu0‖L2

x

+ ‖φ>1φ|x1|> 1
N
P 1−

N P 2
≤Nu0‖L2

x
.

For the outgoing piece, we use Duhamel formula forward in time; for the incoming
piece, we use Duhamel formula backward in time. Since the two give the same
contributions, we only estimate the outgoing piece. Let 0 < σ < 1 whose value will
be chosen later. We use Duhamel formula, cut the time integral into short, long
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time pieces, and then introduce spatial cutoff to get

‖φ>1φ|x1|> 1
N
P 1+

N P 2
≤Nu0‖L2

x

≤

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ ∞

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

.

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ ∞

1

N1+σ

e−iτ∆φ>Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

(4.7)

+

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ ∞

1

N1+σ

e−iτ∆φ≤Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

(4.8)

+

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ 1

N1+σ

0

e−iτ∆φ>1/4F (u(τ))dτ

∥∥∥∥
L2

x

(4.9)

+

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ 1
N1+σ

0

e−iτ∆φ≤1/4F (u(τ))dτ

∥∥∥∥
L2

x

(4.10)

We first estimate the tail terms (4.8) and (4.10). For (4.8), we use the kernel
estimate

∣∣∣∣(φ|x1|> 1
N
P 1+

N e−iτ∆1φ|y1|≤Nτ/4)(x
1, y1)

∣∣∣∣. N3(N2τ)−11〈N |x1 − y1|〉−11.

Using this estimate in the x1 direction and Bernstein in the other, (4.8) can be
estimated as follows:

(4.8) .

∫ ∞

1

N1+σ

‖e−iτ∆2(φ|x1|> 1
N
P 1+

N e−iτ∆1φ|y1|≤Nτ/4P
2
≤Nφ≤Nτ/4F (u(τ))‖L2

x
dτ

.

∫ ∞

1

N1+σ

‖φ|x1|> 1
N
P 1+

N e−iτ∆1φ|y1|≤Nτ/4P
2
≤Nφ≤Nτ/4F (u(τ))‖L2

x
dτ

.

∫ ∞

1

N1+σ

N3(N2τ)−11‖‖〈N | · |〉 ∗x1 P 2
≤Nφ≤Nτ/4F (u(τ))‖L2

x1
‖L2

x2
dτ

. N3−22

∫ ∞

1

N1+σ

τ−11dτ sup
τ

‖〈N | · |〉‖
L

3
2
x1

‖‖P 2
≤Nφ≤Nτ/4F (u(τ))‖

L
6
5
x1

‖L2
x2

. N−19N10(1+σ)N−2N sup
τ

‖F (u(τ))‖
L

6
5
x

. N−10+10σ.

For (4.10), we further split the cutoff in x1 to estimate

(4.10) .

∥∥∥∥φ>1φ 1
N

<|x1|≤ 1
2
P 1+

N P 2
≤N

∫ 1

N1+σ

0

e−iτ∆φ≤ 1
4
F (u(τ))dτ

∥∥∥∥
L2

x

(4.11)

+

∥∥∥∥φ|x1|> 1
2
P 1+

N

∫ 1

N1+σ

0

e−iτ∆P 2
≤Nφ≤ 1

4
F (u(τ))dτ

∥∥∥∥
L2

x

(4.12)

We first estimate (4.11). Since φ>1φ|x1|≤ 1
2

= φ>1φ|x1|≤ 1
2
φ|x2|> 1

2
and

P 1
NP

2
≤N = P 1

NP
2
≤N P̃N ,
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we first throw away the bounded operator φ 1
N

<|x1|≤ 1
2
P 1+

N P 2
≤N then use kernel es-

timate Lemma 2.8 to get

(4.11) .

∥∥∥∥φ> 1
2
P̃N

∫ 1

N1+σ

0

e−iτ∆φ≤ 1
4
F (u(τ))dτ

∥∥∥∥
L2

x

. N−1−σ sup
τ∈[0, 1

N1+σ ]

‖φ> 1
2
P̃Ne

−iτ∆φ≤ 1
4
F (u(τ))‖L2

x

. N−1−σN−4‖〈N | · |〉−10 ∗ F (u)‖L∞
τ L2

x

. N−5−σ‖〈N | · |〉−10‖
L

3
2
x

‖F (u)‖
L∞

τ L
6
5
x

. N−5.

For (4.12), we use Proposition 2.11 in the x1 variable and Bernstein in the other to
obtain

(4.12) . N−1−σ‖e−iτ∆2φ|x1|> 1
2
P 1+

N e−iτ∆1φ|y1|≤ 1
4
P 2
≤Nφ≤ 1

4
F (u)‖L∞

τ L2
x

. N−1−σ sup
τ∈R

‖(φ|x1|> 1
2
P 1+

N e−iτ∆1φ|y1|≤ 1
4
)P 2

≤Nφ≤ 1
4
F (u(τ))‖L2

x

. N−1−σ sup
τ∈R

N3N−10‖〈N | · |〉−10‖
L

3
2
x1

‖‖P 2
≤Nφ≤ 1

4
F (u)‖

L
6
5
x1

‖L2
x2

. N−1−σN−8 sup
τ∈R

‖F (u(τ))‖
L

6
5
x

. N−5.

So the contribution from the tail terms is negligible if we take 0 < σ ≤ 4
5 :

(4.8) + (4.10) . N−2.

Now we look at the main term (4.7), for which we use Strichartz to bound as

(4.7) .

∥∥∥∥P̃N

∫ ∞

1

N1+σ

e−iτ∆φ>Nτ/4F (φ>Nτ/8u)(τ)dτ

∥∥∥∥
L2

x

.

∥∥∥∥P̃N

∫ ∞

1

N1+σ

e−iτ∆φ>Nτ/4(PN/8<·≤8N + P>8N + P≤N/8)F (φ>Nτ/8u)(τ)dτ

∥∥∥∥
L2

x

. ‖P̃Nφ>Nτ/4(P>8N + P≤N/8)F (φ>Nτ/8u)‖L1
τL2

x([ 1

N1+σ ,∞))

(4.13)

+

∥∥∥∥
∫ ∞

1

N1+σ

e−iτ∆φ> Nτ
4

· P̃NF (φ> Nτ
8
u)(τ)dτ

∥∥∥∥
L2

x

.

(4.14)

We use mismatch estimate Lemma 2.3 to deal with (4.13):

(4.13) . N2‖(N2τ)−11F (φ>Nτ/8u)‖
L1

τL
6
5
x ([ 1

N1+σ ,∞)×R6)

. N−20‖τ−11‖L1
τ([ 1

N1+σ ,∞))

. N10(σ−1).

For (4.14), without loss of generality, we assume

φ> Nτ
4

= φ> Nτ
4
φ|x1|> Nτ

8
.
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Then using weighted Strichartz Lemma 2.10, radial Sobolev embedding in the x1

variable and Bernstein, we have

(4.14) . ‖|x1|−
1
2+φ|x1|>Nτ/8P̃NF (φ>Nτ/8u)‖

L2−
τ L

4
3
+

x ([ 1

N1+σ ,∞))

. N− 1
2+‖τ−

1
2+φ|x1|>Nτ/8P̃NF (φ>Nτ/8u)‖

L2−
τ L

4
3
+

x ([ 1

N1+σ ,∞))

. N− 1
2+‖τ−

1
2+(Nτ)−

1
8 ‖|x1|

1
8 P̃NF (φ>Nτ/8u)‖

L
4
3
+

x

‖L2−
τ ([ 1

N1+σ ,∞))

. N− 1
2+‖τ−

1
2+(Nτ)−

1
8 ‖‖|∇1|

1
8−P̃NF (φ>Nτ/8u)‖

L
6
5
x1

‖
L

4
3
+

x2

‖L2−
τ ([ 1

N1+σ ,∞))

. N− 1
2+‖τ−

1
2+(Nτ)−

1
8N

1
8−N

1
4+‖P̃NF (φ>Nτ/8u)‖

L
6
5
x

‖L2−
τ ([ 1

N1+σ ,∞))

. N− 1
4+‖τ−

5
8+‖L2−

τ ([ 1

N1+σ ,∞))

. N
1
8 (σ−1)+.

Finally, we estimate the other main term (4.9). We have

(4.9) .

∥∥∥∥P̃N

∫ 1

N1+σ

0

e−iτ∆φ> 1
4
F (φ> 1

8
u)(τ)dτ

∥∥∥∥
L2

x

.

∥∥∥∥P̃N

∫ 1

N1+σ

0

e−iτ∆φ> 1
4
(PN

8 <·≤8N + P≤N/8 + P>8N )F (φ> 1
8
u)(τ)dτ

∥∥∥∥
L2

x

. ‖PN
8 <·≤8NF (φ> 1

8
u)‖

L2−
τ L

4
3
+

x ([0, 1

N1+σ ])

+ ‖P̃Nφ> 1
4
(P≤N

8
+ P>8N )F (φ> 1

8
u)‖L1

τL2
x([0, 1

N1+σ ])

. N− 1+σ
2 −‖P̃NF (φ> 1

8
u)‖

L∞
τ L

4
3
+

x

+N−5

. N− 1+σ
2 + 1

2+‖F (φ> 1
8
u)‖

L∞
τ L

6
5
x

+N−5

. N−σ
2 +.

Collecting all the pieces together and taking σ = 4
5 , we get the desired N− 1

50 bound
for the second term in (4.6). We still have to estimate the first term involving the
spatial cutoff φ|x1|≤ 1

N
. The estimate will be similar, so here we only sketch the

proof. We first use improved Duhamel formula to bound it by
∥∥∥∥φ>1φ|x1|≤ 1

N
P 1

NP
2
≤N

∫ ∞

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

Then we split the integral into long time piece from 1
N1+σ to ∞ and short time

piece from 0 to 1
N1+σ .

For the long time piece, we insert the spatial cutoff φ>Nτ/4 and φ<Nτ/4 in front
of F (u). The term with cutoff φ>Nτ/4 can be treated in exact the same way as
(4.7). The term with the cutoff φ≤Nτ/4 is still a tail term, since the desired decay
in N comes from the decay of kernel

φ|x1|≤ 1
N
P 1

Ne
−iτ∆1φ|y1|<Nτ/4(x

1, y1)

in the x1 variable and Bernstein in the other.
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For the short time piece, we insert the cutoff φ> 1
4

+ φ≤ 1
4
. Again the term with

cutoff φ> 1
4

can be treated in the way as (4.9). The term with cutoff φ≤ 1
4

is a tail

term and will give us the bound, say N−5.
Therefore finally we establish

‖φ>1PNu‖L∞
t L2

x
. N− 1

50 .(4.15)

Moreover, it is not hard to find that after minor notational change, the above
proof also gives that for any 0 < c ≤ 1

‖φ>cPNu(t)‖L2
x

.c N
− 1

50 .(4.16)

Step 2. This step we prove the following: Let 0 < s ≤ 1 and 0 < c ≤ 1. If

sup
t∈R

‖φ>c/8PNu(t)‖L2
x

.c N
−s.(4.17)

Then

sup
t∈R

‖φ>cPNu(t)‖L2
x

.c N
−s−min( s

3 , 1
10 ).(4.18)

Without loss of generality, we assume c = 1. By time translation invariance, it
suffices to prove

‖φ>1PNu0‖L2
x

. N−s−min( s
3 , 1

10 )(4.19)

under the assumption (4.17). Similar to the estimate (4.4), it is reduced to esti-
mating the following two terms:

‖φ>1φ|x1|> 1
N
P 1

NP
2
≤Nu0‖L2

x
,(4.20)

‖φ>1φ|x1|≤ 1
N
P 1

NP
2
≤Nu0‖L2

x
.(4.21)

To estimate (4.20) we use the in-out decomposition and improved Duhamel formula
thus reduce to obtaining the following

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ ∞

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

. N−s−min( s
3 , 1

10 ).(4.22)

Now we adopt a slightly different strategy to treat the LHS of (4.22). This time
we split the time integral into [0, 1

N ] and [ 1
N ,∞), thus reduce matters to proving

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ ∞

1
N

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

. N−s−min( s
3 , 1

10 ),(4.23)

∥∥∥∥φ>1φ|x1|> 1
N
P 1+

N P 2
≤N

∫ 1
N

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

. N−s−min( s
3 , 1

10 ).(4.24)

To obtain (4.23), we still insert the spatial cutoff φ≤Nτ/4 +φ>Nτ/4 in front of F (u).
The term with cutoff φ≤Nτ/4 is a tail term, the same calculation as in estimating

(4.8) gives us the bound N−5.
Now we turn to the term with cutoff φ>Nτ/4. This is the main regime where

we need to use weighted Strichartz. After certain mismatch estimates and throwing
away the bounded operator, it suffices to consider the piece

∥∥∥∥
∫ ∞

1
N

e−iτ∆φ>Nτ/4P̃NF (φ>Nτ/8u)(τ)dτ

∥∥∥∥
L2

x

.(4.25)
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Without loss of generality, we may assume

φ>Nτ/4 = φ>Nτ/4φ|x1|>Nτ/8.

The other case φ>Nτ/4φ|x2|>Nτ/8 is similar. By weighted Strichartz, radial Sobolev
embedding, Bernstein inequality and the inductive assumption (4.17), we compute

(4.25) . N− 1
2+‖τ−

1
2 +φ|x1|>Nτ/8P̃NF (φ>Nτ/8u)‖

L2−
τ L

4
3
+

x ([ 1
N

,∞))

. N− 1
2+‖τ−

1
2 +(Nτ)−

1
8 ‖L2−

τ ([ 1
N

,∞)) · sup
τ> 1

N

‖|x1|
1
8 P̃NF (φ>Nτ/8u)(τ)‖

L
4
3
+

x

. N− 1
2+‖τ−

1
2 +(Nτ)−

1
8 ‖L2−

τ ([ 1
N

,∞)) · sup
τ> 1

N

∥∥∥∥‖|∇1|
1
8−P̃NF (φ>Nτ/8u)(τ)‖

L
6
5
x1

∥∥∥∥
L

4
3
+

x2

. N− 1
4+‖τ−

1
2− 1

8+‖L2−
τ ([ 1

N
,∞)) sup

τ> 1
N

‖P̃NF (φ>Nτ/8u)(τ)‖
L

6
5
x

. N− 1
8+ sup

τ> 1
N

N−s+‖|∇|s−F (φ>Nτ/8u)‖
L

6
5
x

. N−s− 1
10 .

Adding the two pieces together, we establish (4.23).
Now we establish (4.24). Again we split the term on the RHS into two terms

by inserting spatial cutoffs φ>1/4 and φ≤1/4 in front of F (u). The term with cutoff

φ≤1/4 gives us the contribution N−5 which is negligible. Applying the mismatch
estimate and throwing away the bounded operator, the estimate of the term with
cutoff φ>1/4 is essentially reduced to estimating the following

∥∥∥∥
∫ 1

N

0

e−iτ∆φ>1/4P̃NF (φ>1/8u)(τ)dτ

∥∥∥∥
L2

x

.(4.26)

We estimate (4.26) by using the weighted Strichartz Lemma 2.10, radial Sobolev
embedding, Bernstein and the inductive assumption(4.17). Without loss of gener-
ality, assume φ>1/4 = φ>1/4φ|x1|>1/8. Let s0 = min(1

2 ,
4
5s), we have

(4.26) . ‖|x1|−
1
2+φ|x1|>1/8P̃NF (φ>1/8u)‖

L2−
τ L

4
3
+

x ([0, 1
N

])

. N− 1
2− sup

τ∈R

‖P̃NF (φ>1/8u(τ))‖
L

4
3
+

x

. N− 1
2−N6(

15−2s0
18 − 3

4 )+N−s+ sup
τ∈R

‖|∇|s−F (φ>1/8u)(τ)‖
L

18
15−2s0
x

. N− 1
2−N

1
2− 2

3 s0+N−s+ sup
τ∈R

‖φ>1/8u‖
2
3

L
6

3−s0
x

‖|∇|s−(φ>1/8u)‖L2
x

. N− 2
3 s0−s+ sup

τ∈R

‖|∇|s−(φ>1/8u)‖L2
x
‖|∇|s0(φ>1/8u)‖

2
3

L2
x

. N− 2
3 s0−s+.

Collecting the estimates, we obtain

(4.20) . N−s−min( s
3 , 1

10 ).

The contribution due to (4.21) can be estimated similarly, so we have

(4.21) . N−s−min( s
3 , 1

10 ).
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Therefore we obtain (4.19) and finish the discussion of step 2. The proof of Propo-
sition 4.1 is then completed.

�

5. Local iteration to prove u(t) ∈ H
1+ 1

200
x

Lemma 5.1. For any N ≥ 1 we have

‖P≥Nu0‖L2
x

. N−1− 1
10 + ‖P≥NF (u)‖

L
8
5
t,x([0, 1√

N
])
.(5.1)

Proof. Since by Proposition 4.1, ‖φ>1P≥Nu0‖L2
x

. N−1− 1
10 , we only need to

estimate the near-origin piece ‖φ≤1P≥Nu0‖L2
x
. By the improved Duhamel formula

Proposition 3.1, we get

‖φ≤1P≥Nu0‖L2
x

=

∥∥∥∥φ≤1P≥N

∫ ∞

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

≤

∥∥∥∥φ≤1P≥N

∫ 1√
N

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

(5.2)

+

∥∥∥∥φ≤1P≥N

∫ ∞

1√
N

e−iτ∆φ≤Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

(5.3)

+

∥∥∥∥φ≤1P≥N

∫ ∞

1√
N

e−iτ∆φ>Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

.(5.4)

For (5.2), we use Strichartz to bound it by

‖P≥NF (u)‖
L

8
5
t,x([0, 1√

N
])
.

For (5.3), using kernel estimate Lemma 2.8 with m = 20, we have

(5.3) ≤
∑

M≥N

∥∥∥∥φ≤1PM

∫ ∞

1√
N

e−iτ∆φ≤Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

.
∑

M≥N

M6−40

∫ ∞

1√
N

τ−20‖〈M | · |〉−20 ∗ F (u(τ))‖L2
x
dτ

.
∑

M≥N

M−34M
19
2 ‖F (u)‖

L∞
τ L

6
5
x

‖〈M | · |〉−20‖
L

3
2
x

.
∑

M≥N

M−10

. N−5.

The estimate of (5.4) follows the same way as the estimate of (4.7) or (4.25). We
have

(5.4) . N− 3
16 + sup

τ∈[ 1√
N

,∞)

‖P̃NF (φ>Nτ/8u)‖
L

6
5
x

+N−5

. N−1− 3
16 + sup

τ∈[ 1√
N

,∞)

‖∇F (φ>Nτ/8u)‖
L

6
5
x

+N−5

. N−1− 1
10 .

Here in the last line, we have used the uniform boundedness estimate (4.2).
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This finishes the proof of Lemma 5.1.
�

Lemma 5.2 (Dual Strichartz norm control). Let β > 0, N0 ≥ 1, N > 1
βN0.

Then for any 0 < s < 1 + 2
3 , we have

‖P≥NF (u)‖
L

8
5
t,x([0, 1√

N
])

. ‖u‖
2
3

S([0, 1√
N

])

∑

M≤βN

(
M

N

)s

‖PMu‖S([0, 1√
N

])

+ ‖u>βN‖S([0, 1√
N

])

(
N

1
2
0 N

− 1
8 + ‖u>N0‖

1
6

L∞
τ L2

x
‖u>N0‖

1
2

S([0, 1√
N

])

)
.(5.5)

Proof. By splitting u into low, medium and high frequencies:

u = u≤N0 + uN0<·≤βN + u>βN ,

we write

F (u) = F (u≤βN ) +O(u>βN |u≤N0 |
2
3 ) +O(u>βN |u>N0 |

2
3 ).(5.6)

The contribution due to the first term can be estimated as follows. By using Lemma
2.5 and Bernstein, we have

‖P≥NF (u≤βN )‖
L

8
5
t,x([0, 1√

N
])

. N−s‖|∇|sP≥NF (u<βN)‖
L

8
5
t,x([0, 1√

N
])

. N−s‖|∇|su≤βN‖
L

8
3
t,x([0, 1√

N
])
‖u≤βN‖

2
3

L
8
3
t,x([0, 1√

N
])

. ‖u‖
2
3

S([0, 1√
N

])

∑

M≤βN

(
M

N

)s

‖PMu‖S([0, 1√
N

]).

For the contribution due to the second part of (5.6), we use Bernstein to get

‖u>βN |u≤N0 |
2
3 ‖

L
8
5
t,x([0, 1√

N
])

. ‖u>βN‖
L

8
3
t,x([0, 1√

N
])
‖u≤N0‖

2
3

L
8
3
t,x([0, 1√

N
])

. ‖u>βN‖S([0, 1√
N

])N
1
2
0 N

− 1
8 ‖u≤N0‖

2
3

L∞
τ L2

x

. ‖u>βN‖S([0, 1√
N

])N
1
2
0 N

− 1
8 .

To estimate the third term in (5.6), we have

‖u>βN |u>N0 |
2
3 ‖

L
8
5
t,x([0, 1√

N
])

. ‖u>βN‖
L

8
3
t,x([0, 1√

N
])
‖u>N0‖

2
3

L
8
3
t,x([0, 1√

N
])

. ‖u>βN‖S([0, 1√
N

])‖u>N0‖
1
6

L∞
t L2

x([0, 1√
N

])
‖u>N0‖

1
2

S([0, 1√
N

])
.

Collecting the three pieces together, we get (5.5). �
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Now we use the above two lemmas to establish the recurrent relation for the
local Strichartz norm. The precise quantity we consider is

AN = ‖P≥Nu‖S([0, 1√
N

]).

Our purpose is to prove that

AN ≤ C(‖u‖S([0,1]))N
−1− 1

100 , ∀N ≥ 1.(5.7)

Here the constant depends on the Strichartz norm of u on unit time interval [0, 1]
which is certainly bounded. This automatically gives

‖PNu0‖L2
x

. N−1− 1
100 .(5.8)

In particular,

‖u0‖
H

1+ 1
200

x

. C(‖u‖S([0,1])).(5.9)

Now we establish the recurrent relation for AN through which the bound (5.7)
can be deduced. Let

A := ‖u‖S([0,1]) + 1 <∞.

We use Strichartz inequality, Lemma 5.1, Lemma 5.2 to estimate AN . Fixing s = 4
3 ,

we obtain

AN . ‖P≥Nu0‖L2
x

+ ‖P≥NF (u)‖
L

8
5
t,x([0, 1√

N
])

. N−1− 1
10 + ‖P≥NF (u)‖

L
8
5
t,x([0, 1√

N
])

. N−1− 1
10 +

A
2
3

∑

M≤βN

(
M

N

) 4
3

‖PMu‖S([0, 1√
N

])+(5.10)

‖P≥βNu‖S([0, 1√
N

])(N
1
2
0 N

− 1
8 +A

1
2 ‖u≥N0‖

1
6

L∞
t L2

x([0, 1√
N

])
).(5.11)

For (5.10), we make a little modification. Noting PM = PMP≥M/2, we have

(5.10) ≤ A
2
3

∑

M≤βN

(
M

N

) 4
3

‖P≥M/2u‖S([0, 1√
N

])

≤ A
2
3

∑

M≤2βN

(
M

N

) 4
3

‖P≥Mu‖S([0, 1√
N

]).

Now we absorb (5.11) into (5.10) through taking suitable parameters. First we
take N0 = N0(β,A) such that

A
1
2 ‖u>N0‖

1
6

L∞
t L2

x([0,1]) ≤
1

100
β

4
3 .

This is certainly possible since u is almost periodic modula scaling and [0, 1] is a
compact interval. Then we assume N ≥M0 where M0 satisfies

M
− 1

8
0 N

1
2
0 ≤

1

100
β

4
3 .(5.12)
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Under these conditions we have

(5.11) ≤
1

2
β

4
3 ‖P≥βNu‖S([0, 1√

N
]).(5.13)

Therefore we get for all N ≥M0 that

AN . N−1− 1
10 +A

2
3

∑

M≤2βN

(
M

N

) 4
3

‖P≥Mu‖S([0, 1√
N

]).

By taking β sufficiently small then taking M0 large enough, we can kill the implicit
constant above and get

AN ≤ N−1− 1
20 +

∑

M≤2βN

(
M

N

) 7
6

‖P≥Mu‖S([0, 1√
N

]), ∀N ≥M0.(5.14)

Now, we split the summation into M ≤ M0 and M > M0. For large M , we
trivially bound the summand by

(
M

N

) 7
6

AM .

Then we sum all the pieces for small M , this gives that

∑

M≤M0

(
M

N

) 7
6

‖P≥Mu‖S([0, 1√
N

]) ≤ CAM
7
6
0 N

− 7
6 .

Here the constant C is produced in dyadic summation. Finally we establish the
following recurrent relation for AN : There exists an absolute constant C > 0 such
that for all N ≥M0,

AN ≤ N−1− 1
20 + CAM

7
6
0 N

− 7
6 +

∑

M0<N≤2βN

(
M

N

) 7
6

AM(5.15)

We need the following lemma to get the final bound for AN . We have

Lemma 5.3 (recursive control). Let s > 1, γ > 0 and s− γ > 1. Let C1 > 0 be
such that for all N ≥M0,

AN ≤ C1M
s
0N

−s +
∑

M0≤N≤β′N

(
M

N

)s

AM ,(5.16)

AN ≤ A.(5.17)

Then there exists a constant c(s, γ, A) > 0 such that for all 0 < β′ < c(s, γ, A), we
have

AN ≤ 2C1M
s
0N

−s+γ , ∀N ≥M0.(5.18)

Proof. We will inductively prove

AN ≤ 2C1M
s
0N

−s+γ + (β′)j .(5.19)

First, plugging the bound (5.17) into (5.16), we get

AN ≤ C1M0N
−s + C(s)A(β′)s ≤ 2C1M0N

−s+γ + β′.

by requiring (β′)s−1 < 1
100C(s)A . This establishes (5.19) for j = 1.
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Now assume (5.19) hold for j-th step, we plug this bound into (5.16) to compute

AN ≤ C1M
s
0N

−s + 2C(s)(β′)γ · C1M
s
0N

−s+γ + C(s)(β′)s−1 · (β′)j+1

≤ 2C1M
s
0N

−s+γ + (β′)j+1.

by requiring (β′)γ < 1
100C(s) . This establishes (5.19) for j + 1.

Finally, (5.18) follows by taking j → ∞ in (5.19). �

Now we apply this lemma with s = 21
20 , γ = 1

50 . By taking β sufficiently small
depending on A which is certainly possible, we obtain

AN ≤ 4CAM
21
20
0 N−1− 1

100 ,(5.20)

for all sufficiently large frequencies. This together with the estimate on finite fre-

quencies establishes (5.7)-(5.9). The H
1+ 1

200
x regularity for u0 is then established.

This implies that u(t) ∈ H
1+ 1

200
x for any t in the maximal lifespan, although the

bound for this Sobolev norm bound may not be uniform in time.

6. Uniform localization of kinetic energy

In this section, we prove the uniform localization for kinetic energy (3.1) in
Theorem 3.2. To this end, we will use Proposition 4.1, the fact u ∈ H1+

x which was
proved in Section 5 and the following spatial decay estimate

Proposition 6.1. Let u be the maximal-lifespan solution of (1.1) on I and
obey Duhamel formula Proposition 3.1 and symmetry (1.4). Let N0 ≤ N1 be two
arbitrary dyadic numbers. Then there exists R0 = R0(N0, N1) such that for all
N ∈ [N0, N1] and R ≥ R0, we have

sup
t∈I

‖φ>RPNu(t)‖L2
x
≤ R− 1

10 .(6.1)

Proof. The proof follows the same argument as Proposition 4.2 in our previous
paper [18]. Here we give a self-contained proof for the sake of completeness.

Without loss of generality we assume t = 0 and u is a global solution. The
general case can be treated after minor notational changes. Now by symmetry and
without loss of generality, it suffices to estimate

‖φ>RP
1
NP

2
≤Nu0‖L2

x
.(6.2)

This can be controlled by

‖φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤Nu0‖L2

x
(6.3)

+ ‖φ>Rφ|x1|> 1
N
P 1+

N P 2
≤Nu0‖L2

x
(6.4)

+ ‖φ>Rφ|x1|> 1
N
P 1−

N P 2
≤Nu0‖L2

x
(6.5)
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To estimate (6.3), we first use Duhamel forward in time (or backward in time),
then put spatial cutoffs in front of F (u) to get the bound

(6.3) ≤

∥∥∥∥φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤N

∫ ∞

0

e−iτ∆F (u(τ))dτ

∥∥∥∥
L2

x

(6.6)

≤

∥∥∥∥φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤N

∫ R
100N

0

e−iτ∆φ≤R/4F (u(τ))dτ

∥∥∥∥
L2

x

(6.7)

+

∥∥∥∥φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤N

∫ R
100N

0

e−iτ∆φ>R/4F (u(τ))dτ

∥∥∥∥
L2

x

(6.8)

+

∥∥∥∥φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤N

∫ ∞

R
100N

e−iτ∆φ≤Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

(6.9)

+

∥∥∥∥φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤N

∫ ∞

R
100N

e−iτ∆φ>Nτ/4F (u(τ))dτ

∥∥∥∥
L2

x

.(6.10)

Since we will take R large enough depending on N0, N1 and N varies on the interval
[N0, N1], we will not keep track of the precise power of N . We first deal with the
tail terms (6.7) and (6.9). By using the kernel estimate, we have

(6.7) .

∫ R
100N

0

‖φ>RP
1
NP

2
≤Ne

−iτ∆φ≤R/4F (u(τ))‖L2
x
dτ

. NC

∫ R
100N

0

(NR)−10‖〈| · |〉−10 ∗ F (u(τ))‖L2
x
dτ

. NCR−9 sup
τ

‖F (u(τ))‖
L

6
5
x

. R−5.

Here NC denotes a power of N whose precise value is not important. Similarly

(6.9) .

∫ ∞

R
100N

‖φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤Ne

−iτ∆φ≤Nτ/4P≤8NF (u(τ))‖L2
x
dτ

+

∫ ∞

R
100N

‖φ>Rφ|x1|≤ 1
N
P 1

NP
2
≤Ne

−iτ∆φ≤Nτ/4P>8NF (u(τ))‖L2
x
dτ.

The second term has arbitrary decay in R by using the mismatch estimate of the
operator

P 1
NP

2
≤Nφ≤Nτ/4P>8N .

Therefore

(6.9) .

∫ ∞

R
100N

‖φ|x1|≤ 1
N
P 1

Ne
−iτ∆1φ≤Nτ/4P≤8NF (u(τ))‖L2

x
dτ +R−5.

Now the desired decay comes from the decay estimate of the kernel

φ|x1|≤ 1
N
P 1

Ne
−iτ∆1φ≤Nτ/4

in x1 variable and Bernstein in the other. So finally we obtain for R0 = R0(N0, N1)
sufficiently large and R ≥ R0,

(6.9) . R−5.
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We now estimate (6.8) by weighted Strichartz estimate Lemma 2.10. Without loss
of generality assume φ>R/4 = φ>R/4φ|x1|>R/8, we have

(6.8) . ‖

∫ R
100N

0

e−iτ∆φ>R/4F (φ>R/8u)(τ)dτ‖L2
x

. ‖|x1|−
1
2+φ|x1|>R/8F (φ>R/8u)‖

L2−
τ L

4
3
+

x ([0, R
100N

])

. R− 1
2+(

R

100N
)

1
2+‖F (φ>R/8u)‖

L∞
τ L

4
3
+

x

. R0+N− 1
2−R− 1

8 ‖|x1|
1
8F (φ>R/8u)‖

L∞
τ L

4
3
+

x

. R− 1
9 ‖|∇1|

1
8−F (φ>R/8u)‖

L∞
τ L

4
3
+

x2 L
6
5
x1

. R− 1
9 ‖|∇1|

1
8−|∇2|

1
4+F (φ>R/8u)‖

L∞
τ L

6
5
x

. R− 1
9 ‖φ>R/8u‖L∞

τ H1
x
‖φ>R/8u‖

2
3

L∞
τ L2

x

. R− 1
9 .

The estimate of (6.10) follows the same way as this. So finally we obtain

(6.3) . R− 1
10(6.11)

for all R > R0(N0, N1).
To obtain (6.1), we still have to deal with (6.4), (6.5). Since these two terms can

be estimated similarly as before, we omit the details. The proof of the Proposition
is then completed.

�

We have collected enough material to deduce the following uniform localization
for the kinetic energy. We write as

Proposition 6.2. Let u be an H1
x maximal-lifespan solution on I. Assume

there exist ε > 0, δ > 0 such that

‖φ>1PNu(t)‖L2
x

. N−1−ε, ∀ t ∈ I, N ≥ 1.(6.12)

‖φ>RPNu(t)‖L2
x

. R−δ, ∀ t ∈ I,N ∈ [N ′
0, N

′
1], R > R(N ′

0, N
′
1).(6.13)

Then the kinetic energy of u is uniformly localized in the following sense: for any
η > 0, there exists C(η) > 0 such that

sup
t∈I

‖φ>C(η)∇u(t)‖L2
x
≤ η.(6.14)

Proof. The proof of this proposition is essentially contained in [18]. Here we
sketch the proof for the sake of completeness.

Let N1(η), N2(η) be dyadic numbers and C(η) a large constant to be specified
later. We estimate the LHS of (6.14) by splitting it into low, medium and high
frequencies:

‖φ>C(η)∇u(t)‖L2
x

. ‖φ>C(η)∇P≤N1(η)u(t)‖L2
x

+ ‖φ>C(η)∇PN1(η)<·≤N2(η)u(t)‖L2
x

+ ‖φ>C(η)∇P>N2(η)u(t)‖L2
x
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For the low frequencies, we simply discard the cutoff and use Bernstein,

‖φ>C(η)∇P≤N1(η)u(t)‖L2
x

. N1(η)‖u(t)‖L2
x

. N1(η).(6.15)

To estimate the medium frequencies, we use Bernstein, mismatch estimate Lemma
2.2 and (6.13) to obtain

‖φ>C(η)∇PN1(η)<·≤N2(η)u(t)‖L2
x

≤
∑

N1(η)<N≤N2(η)

‖φ>C(η)∇PNu(t)‖L2
x

≤ C(N1(η), N2(η)) max
N1(η)<N≤N2(η)

‖φ>C(η)∇PNu(t)‖L2
x

≤ C(N1(η), N2(η)) max
N1(η)<N≤N2(η)

(
‖φ>C(η)∇PNφ≤C(η)

2
P̃Nu(t)‖L2

x

+ ‖φ>C(η)∇PNφ> C(η)
2
P̃Nu(t)‖L2

x

)

≤ C(N1(η), N2(η))

(
max

N1(η)<N≤N2(η)
N−1C(η)−2 +NC(η)−δ

)

≤ C(N1(η), N2(η))

(
C(η)−2 + C(η)−δ

)

≤ C(N1(η), N2(η))C(η)−δ .

For the high frequencies, we use mismatch estimate Lemma 2.2, Lemma 2.3 and
(6.12) to get

‖φ>C(η)∇P>N2(η)u(t)‖L2
x

≤
∑

M>N2(η)

‖φ>C(η)∇PMu(t)‖L2
x

≤
∑

M≥N2(η)

‖φ>C(η)∇PMφ<C(η)/2u(t)‖L2
x

+
∑

M≥N2(η)

M‖PMφ>C(η)/2u(t)‖L2
x

≤
∑

M≥N2(η)

M−9 · C(η)−10 +
∑

M≥N2(η)

M‖PMφ>C(η)/2P̃Mu(t)‖L2
x

+
∑

M≥N2(η)

M ·M−10 · C(η)−10

≤N2(η)
−2ε + C(η)−10N2(η)

−9.

Therefore, the high frequencies give

‖φ>C(η)∇P>N2(η)u(t)‖L2
x

. N2(η)
−ε + C(η)−1.

Adding the estimates of three pieces together we obtain

‖φ>C(η)∇u(t)‖L2
x

. N1(η) + C(N1(η), N2(η))C(η)−δ

+N2(η)
−ε + C(η)−1.

Now first taking N1(η) sufficiently small, N2(η) sufficiently large depending on η,
then choosing C(η) sufficiently large depending on (η, N1(η), N2(η)), we obtain

‖φ>C(η)∇u(t)‖L2
x
≤ η,

as desired.
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