
Dynamics of PDE, Vol.7, No.4, 327-344, 2010

Stability of spheres under volume-preserving mean curvature

flow

D. Antonopoulou, G. Karali, and I.M. Sigal

Communicated by Mikhail Vishik, received September 14, 2010.

Abstract. We give a new, elementary proof of the theorem, due to J. Escher
and G. Simonett, that for the initial conditions close to Eucleadian spheres the
solutions of the volume-preserving mean curvature flow converge to Eucleadian
spheres (which, in general, differ from the initial spheres). Our result is in
the metric given by Sobolev norms. While the proof by J. Escher and G.
Simonett uses extensively rather involved results from the infinite-dimensional
invariant manifold theory and quasilinear parabolic differential equations, our
main point is to use an orthogonal decomposition of the solutions near the
manifold of Euclidean spheres and differential inequalities for the Lyapunov
functionals. Apart from local well-posedness, which is proven along standard
lines, our proof is completely self-contained.
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1. Introduction

In this paper we study the long time behavior of volume preserving mean cur-
vature flow (VPMCF). This flow is a natural modification of the mean curvature
flow (MCF) such that the volume enclosed by the evolving surface is preserved.
Besides of an interest on its own, such a flow appears in material sciences as an
interface dynamics in the case of the mass conservation (see e.g. [17, 5, 7] and was
used recently in Differential Geometry and General Relativity ([13, 11]). Given
an initial simple, closed hypersurface S0 in R

n+1 the latter flow determines a fam-
ily {St; t ≥ 0} of smooth closed hypersurfaces in R

n+1 satisfying the following
evolution equation:

(1) V = h − H,

where V = V (t) denotes the normal velocity of St at time t and H = H(t) stands
for the mean curvature of St. Finally, h = h(t) is the average of the mean curvature
on St, i.e.,

(2) h :=

∫

St
Hdσ

∫

St
dσ

, t ≥ 0.

If x = σ(u, t) is a parametrization of St (or an immersion), then V = ∂tx · ν, where
ν is the unit normal vector field on St.

Like the MCF, the VPMCF shrinks the area of the surfaces, is invariant under
rigid motions (translations and rotations) and appropriate scaling, but, unlike the
MCF, the VPMCF has stationary solutions - Euclidean spheres (for closed surfaces)
and cylinders for surfaces with flat boundaries.

The global well-posedness of VPMCF for smooth and uniformly convex initial
conditions and for Hölder continuous initial conditions close to spheres was proven
in [12] and [9], respectively. Results of this paper imply the global well-posedness
for Sobolev initial conditions close to spheres.

G. Huisken ([12]), in the general case, and M. Gage ([10]), for curves, proved
that the solution to (1) exists globally and converges exponentially fast to a sphere,
provided that the initial surface S0 is uniformly convex and smooth. Moreover, it is
shown in [12, 10] that St stays uniformly convex for all t ≥ 0. Athanassenas [3, 4]
has shown neckpinching of certain class of rotationally symmetric surfaces under the
volume preserving modification of the mean curvature flow. See also N. Alikakos
and A. Freire [1]. Later J. Escher and G. Simonett ([9]) proved, by means of a
center manifold analysis, the asymptotic stability of spheres under Hölder norm
(see also [15]).

In this paper we give a new, elementary proof of this theorem, in the metric
given by Sobolev norms. (Though the proof in [9] is short and elegant it uses
extensively rather involved results from the infinite-dimensional invariant manifold
theory and quasilinear parabolic differential equations). Our main point is to use an
orthogonal decomposition of the solutions near the manifold of Euclidean spheres
and differential inequalities for the Lyapunov functionals. Apart from local well-
posedness, which is proven along standard lines, see [12], our proof is completely
self-contained. We believe our techniques can be extended to other flows, such
as anisotropic volume preserving mean curvature flow ([2]), Mullins-Sekerka and
Hele-Shaw models in the theory of phase transitions (see e.g. [8]).
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Let Γ be the n−dimensional unit sphere in R
n+1, centered at the origin, and

let Hk be the Sobolev space over Γ. Our main result is as follows.

Theorem 1. For initial conditions in Hk, for some k > n/2 + 1, and close

to Euclidean spheres, solutions of (1) exist globally and, as t → ∞, converge expo-

nentially in Hk, k > n/2 + 1 to Euclidian spheres.

More precise formulation of Theorem 1 will be given in Section 2. Note that
the initial conditions here do not have to be convex (the principal curvatures could
be of either sign and arbitrary large in absolute value) and that the theorem implies
that the VPMCF has no stationary solutions close to Euclidean spheres.

In Section 2 we give a precise formulation of Theorem 1 in terms of graphs over
spheres. In Section 3 we find the equation for the graph function equivalent to (1).
The proof of Theorem 1 is given in Sections 4-8, with some technical computations
carried out in Appendices A-D. The latter appendices were worked out jointly with
Wenbin Kong and are used also in [14].
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Reintegration Grant within the 7th European Community Framework Programme
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2. Volume preserving flow for graphs

Let Γ be the n−dimensional unit sphere in R
n+1, centered at the origin, and

let a hypersurface S be a graph (in normal direction) over Γ, i.e. there exists a
function ρ : Γ → R such that

(3) θρ : ω 7→ ρ(ω)ω

is a diffeomorphism from Γ to S. We write S = graphΓρ.
Let SR,z denote the sphere of radius R, centered at z ∈ R

n+1, α = (R, z) and
ρα be the map from Γ to R such that θρα(ω) = ρα(ω)ω is a diffeomorphism from Γ
to Sα. Let α′ = (1, 0), then ρα′ ≡ 1. We give a more precise version to Theorem 1.

Theorem 2. If the initial datum S0 of equation (1) satisfies S0 = graphΓρ0,
with ρ0 ∈ Hk(Γ) and ‖ρ0 − 1‖Hk ≪ 1 for some k > n

2 + 1, then (1) has a unique

global solution, St, which is a graph over Γ of ρ(t) ∈ Hk(Γ) and which satisfies

‖ρ(t) − ρα(t)‖Hk . e−
θ
2 t

for some α(t) such that α(t) → α∞ for some α∞. Here θ > 0 is the 3rd smallest

eigenvalue of the negative Laplace-Beltrami operator −∆ on L2(Γ).

3. Differential equation for ρ

In what follows gij is the metric induced on Γ by the inner product in R
n+1 and

∆ is the Laplace-Beltrami operator in this metric. In the local coordinates u (with

a local parametrization x = x(u)) we have gij := ∂xk

∂ui
∂xk

∂uj . Let ∇ and Hess = ∇2

be the standard connection on Γ and the Hessian on Γ, respectively (see e.g. [16]).
In components, Hessρ(V, W ) = V iHessijρW j , where Hessij = ∇i∇j and where
the summation over the repeated indices is assumed. In local coordinates on Γ,
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(Hessρ)ij = ∂2ρ
∂ui∂uj − Γk

ij
∂ρ

∂uk , where Γk
ij := 1

2gkn(
∂gjn

∂ui + ∂gin

∂uj − ∂gij

∂un ). We also

identify ∇ρ with the gradient of ρ, with the components ∇kρ = gkm ∂ρ
∂um .

Proposition 3. Let St be a graph in normal direction over Γ, determined by

the function ρ(·, t) : Γ → R. Then St satisfies the (1) if and only if ρ satisfies the

equation

(4) ∂tρ = G(ρ) + g(ρ),

with

(5) G(ρ) =
1

ρ2
∆ρ − n

ρ
− 1

ρ2µ2(ρ)
(Hessρ(∇ρ,∇ρ) − ρ|∇ρ|2),

and

(6) g(ρ) := −µ(ρ)

ρ

∫

Γ

G(ρ)ρn/

∫

Γ

µ(ρ)ρn−1,

where

(7) µ(ρ) =
√

ρ2 + |∇ρ|2.

Proof. Assume St is a normal graph over Γ determined by the function ρ(·, t) :
Γ → R. We extend ρ to R

n+1 \ {0} by ρ̃(x, t) = ρ(x̂, t) = ρ(α(x), t), where x̂ = x
|x|

and α : R
n+1 → Γ, α(x) := x̂ . Then we can write St = {x ∈ R

n+1 : ϕ(x, t) = 0},
where ϕ(x, t) = |x| − ρ̃(x, t). (1) is equivalent to

(8) ∂tϕ = (H̃ − h)|∇xϕ| on St,

where ∇x is the usual gradient in x and H̃ := div( ∇xϕ
|∇xϕ| ) and his given in (2). We

compute that ∂tϕ = −∂tρ̃, ∇xϕ = x
|x| −∇xρ̃ and

(9) |∇xϕ| =
√

1 + |∇xρ̃|2

and therefore

(10) ∂tρ̃ = J̃(ρ̃) on St,

where J̃(ρ̃) =
√

1 + |∇xρ̃|2(h − H̃) with H̃ = div(
x
|x|

−∇xρ̃√
1+|∇xρ̃|2

). Since ρ̃(λx) = ρ̃(x),

we have that x · ∇xρ̃ = 0. Differentiating this equation with respect to xi we find
that x ·∇x∂xi ρ̃ = −∂xi ρ̃, and therefore x ·∇x|∇xρ̃|2 = 2|∇xρ̃|2. Using this relation,
we compute

(11) H̃ =

n
|x| − ∆xρ̃

√

1 + |∇xρ̃|2
+

− 1
|x| |∇xρ̃|2 + ∇xρ̃ · Hessx(ρ̃)∇xρ̃

(1 + |∇xρ̃|2)3/2
,

where Hessx := (∂xi∂xj ), the standard Hessian in x. Let r = |x|. We note first
that due to the well-known representation (see [6])

(12) ∆x = r−n∂rr
n∂r +

1

r2
∆ on R

n+1,

we have that ∆xρ̃ |St=
1
ρ̃2 ∆ρ. Next, we need the following lemmas which is proved

in Appendices A and B, respectively:
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Lemma 4.

(13) |∇xρ̃|2 =
1

|x|2 |∇ρ|2,

(14) ∇xρ̃ · Hessxρ̃∇xρ̃ =
1

|x|4 Hessρ(∇ρ,∇ρ).

Lemma 5. Write s ∈ S as s = ρ(γ)γ, γ ∈ Γ. Then

(15)

∫

St

f =

∫

Γ

f(ρ(·)·)µ(ρ)ρn−1.

The first lemma and the equations H = H̃ |St and (11) give

(16) H(ρ) :=
−ρ

√

ρ2 + |∇ρ|2
G(ρ).

and therefore J̃(ρ̃)|St = µ(ρ)
ρ h + G(ρ). To compute h we use in addition, the

second lemma to obtain (6). This, together with (10), gives (4) - (6). Hence if
St = graphΓρ satisfies (1), then ρ = ρ(t) satisfies (4) - (6). Reversing the steps we
see that if ρ satisfies (4) - (6), then St = graphΓρt satisfies (1). �

In the following we will consider equation (4) instead of equation (1).

4. Linearized map

In this section we study, on L2(Γ), the linear operator Lα = −∂J(ρα), which
is the Gâteaux derivative of the map

(17) J(ρ) := G(ρ) + g(ρ),

see (4), at the sphere ρα. We begin with the easiest case of the linearization on a
sphere of radius R centered at the origin: LR0 := −∂J(R) (ρR0 = R). Using the
definition (7) and the elementary relations µ |ρ=R= R, ∂ρµ |ρ=R= 1, G |ρ=R= − n

R
and ∂ρG |ρ=R= n

R2 , we obtain (see [8])

(18) LR0ξ = − 1

R2
(∆ + n)ξ +

n

|Γ|R2

∫

Γ

ξ.

Proposition 6. LR0 is self-adjoint on L2(Γ) with discrete spectrum, σ(LR0),
accumulating at +∞. Moreover, σ(LR0) ⊂ [0, +∞) and 0 is an eigenvalue of

multiplicity n + 2 with the eigenfunctions {1, x1

|x| , · · · , xn+1

|x| }.

Proof. Since
〈

η,
∫

ξ
〉

=
∫

η
∫

ξ =
∫

(
∫

η)ξ =
〈∫

η, ξ
〉

and since ∆ is self-
adjoint, we have that LR0 is self-adjoint as well. By the general fact that Γ is
compact, the spectrum of LR0 is discrete and accumulating at +∞. Observe that
LR01 = 0. Consider LR0 acting on 1⊥ = {ξ ∈ L2(Γ) :

∫

Γ
ξ = 0} and let L⊥

R0 =

LR0|(1⊥). Then L⊥
R0 = − 1

R2 (∆ + n). The spectrum of −∆ is well-known (see
[18]): {l(l + n − 1), l = 0, 1, · · · }, with the corresponding eigenspaces Hl of the

dimension dim Hl =

(

n + l
n

)

−
(

n + l − 2
n

)

. Moreover, H0 = span{1} and

H1 = span{ x1

|x| , · · · , xn+1

|x| }. Hence the spectrum of LR0 is {0, 1
R2 (l(l + n − 1)− n) :

l = 2, 3, · · · }, with the zero eigenvalue of multiplicity n+2 having the eigenfunctions

{1, x1

|x| , · · · , xn+1

|x| }. Hence the proposition follows. �
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This proposition implies the estimate

(19) 〈ξ, LR0ξ〉 ≥
n + 2

R2
‖ξ‖2 if ξ ⊥ 1,

x1

|x| , · · · ,
xn+1

|x| .

A key fact in understanding the spectrum of the operator Lα is that ∂αρα are
zero modes of this operator:

(20) Lα∂αρα = 0.

Indeed, this equation is obtained by differentiating J(ρα) = 0 we find ∂J(ρα)∂αρα =
0. These zero modes are related to the zero modes of the operator LR0 described
in Proposition 6. The fact that Sα = graphρα can be written as |ρα(x̂)x̂ − z| = R
implies that ρα(x̂)2 + |z|2 − 2ρα(x̂)z · x̂ = R2 and therefore

ρα(x̂) = z · x̂ +
√

R2 − (z · x̂⊥)2, where (z · x̂⊥)2 := |z|2 − (z · x̂)2

and, recall, x̂ = x
|x| . Differentiating the former relation with respect to R and zj,

we obtain

(21) ∂Rρα(x̂) =
R

ρα(x̂) − z · x̂ and ∂zj ρα(x̂) =
ρα(x̂)x̂j − zj

ρα(x̂) − z · x̂ .

Hence we have that

(22) ∂Rρα(x̂) = 1 + O(|z|), ∂zj ρα(x̂) = x̂j + O(|z|),

which relates (20) to Proposition 6.
(20) shows that Span{∂αρα} ⊂ Null Lα. We conjecture that

(23) Span{∂αρα} = Null Lα.

For |z(α)| sufficiently small, this conjecture follows from Proposition 6 by pertur-
bation theory, using the following decomposition, which can be easily seen from the
definition of Lα,

(24) Lα = LR0 + M,

where α = (R, z) and where the 2nd order operator M satisfies the estimate ‖Mξ‖ ≤
c|z|‖LR0ξ‖.

5. Orthogonal decomposition of solutions

In what follows the inner product and orthogonality relation is understood in
the sense of L2(Γ). We define the manifold of spheres as M = {ρα : α ∈ R

+×R
n+1}.

We have TραM = span{∂Rρα, ∂zj ρα}. Thus x̂j , j = 0, . . . , n+1, where we denoted
x̂0 ≡ 1, span an approximate tangent space TραM. Recall that α′ = (1, 0) and
ρα′ ≡ 1.

Proposition 7. There is δ > 0, s.t. if ‖ρ−ρα′‖ ≤ ε, then there exists α = α(ρ)
so that

ρ − ρα ⊥ x̂j , j = 0, . . . , n + 1, in L2(Γ, dγ).

Moreover, |α(ρ) − α′| . ‖ρ − ρα′‖ and ‖ρ − ρα(ρ)‖Hk . ‖ρ − ρα′‖Hk ∀k.
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Proof. The orthogonality conditions on the fluctuation can be written as
F (ρ, α) = 0, where F : L2(Γ) × R

+ × R
n+1 → R

n+1 is defined as F (ρ, α) =
〈

ρ − ρα, x̂j
〉

. Here and in what follows, all inner products are the L2 inner products.
Note first that the mapping F is C∞ and F (ρα, α) = 0, ∀α. We claim that

the linear map ∂αF (ρ, α)|ρ=ρα is invertible, provided |z|, where (R, z) = α, is
sufficiently small. Indeed, let α0 = R, αj = zj, j = 1, . . . , n + 1. We compute
using (22) that

∂αiF (ρ, α)|ρ=ρα = −
〈

∂αiρα, x̂j
〉

= −
〈

x̂i, x̂j
〉

+ O(|z|).
Since

〈

x̂i, x̂j
〉

is a diagonal matrix diag(−
∫

Γ
1,−

∫

Γ
(x̂1)2, · · · ,−

∫

Γ
(x̂n+1)2) we have

that ∂αF (ρ, α)|ρ=ρα is invertible, if |z| is sufficiently small. Recall that α′ = (R, 0).
Hence, |z| ≤ |α − α′| and is small, if |α − α′| is small. Thus, the first part of the
proposition follows by the implicit function theorem.

Next we expand the function F (ρ, α) in α around α′:

F (ρ, α) = F (ρ, α′) + ∂αF (ρ, α′)(α − α′) + R(ρ, α),

where R(ρ, α) = O(|α − α′|2) uniformly in α and ρ for ρ in a small neighbourhood
of ρα. Hence we have |α−α′| . F (ρ, α′)+ |α−α′|2. Since |F (ρ, α′)| . ‖ρ−ρα′‖ ≪
1, it follows that |α − α′| . |F (ρ, α′)| . ‖ρ − ρα′‖. The latter estimate, the
triangle inequality, ‖ρ−ρα(ρ)‖Hk . ‖ρ−ρα′‖Hk +‖ρα′ −ρα(ρ)‖Hk and the estimate
‖ρα′ − ρα‖Hk . |α′ − α| imply the last inequality of the proposition. �

6. Reparametrization of solutions

Applying Proposition 7 to the solution ρ(t) we find α(t) s.t.

(25) ρ(γ, t) = ρα(t)(γ) + ξ(γ, t),

where ξ ⊥ x̂j , j = 0, . . . , n + 1, , as long as ‖ρ(t) − ρα′‖ ≤ δ. Plug (25) into (4) to
obtain

(26) ∂tξ = −Lαξ + N (ξ) + F ,

where

(27)
Lα = −∂J(ρα),
N (ξ) = J(ρα + ξ) − J(ρα) − ∂J(ρα)ξ,
F = −∂αρα · α̇.

Now, we project (26) onto span{x̂j, j = 0, . . . , n+1}. By ξ⊥x̂j and LR0∂αj x̂j =
0, j = 0, . . . , n + 1, we have

•
〈

∂tξ, x̂
j
〉

= −
〈

ξ, ∂tx̂
j
〉

= 0,

•
〈

Lαξ, x̂j
〉

=
〈

ξ, Lαx̂j
〉

=
〈

ξ, Mx̂j
〉

,

•
〈

F , x̂j
〉

= −∑

i α̇i
〈

∂αiρα, x̂j
〉

.

Then we obtain Ωα̇ = 〈N (ξ), ∂αρα〉 −
〈

ξ, Mx̂j
〉

, where Ω is the matrix with the

entries Ωij =
〈

∂αiρα, x̂j
〉

, i, j = 0, 1, · · · , n + 1. By (22), we know that Ωij =
〈

x̂i, x̂j
〉

+ O(|z|). Assume |z| ≪ 1. Then by the proof of Proposition 7, we know
that Ω is invertible. This gives us

α̇ = Ω−1(〈N (ξ), ∂αρα〉 − 〈ξ, Mx̂〉),
which implies

(28) |α̇| . ‖N (ξ)‖1 + |z|‖ξ‖1.
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Next, we estimate N (ξ), defined in (27), with (17), (5) and (6). An explicit
expression for N (ξ) is rather long and is given in Appendix C. Here we write out
only the worst term:

(29) − Hess(ξ)(∇ξ,∇ξ)

ρ2(ρ2 + |∇ξ|2) ,

where, recall, ρ = ρα + ξ. Hence, assuming that |ξ| ≤ 1
2ρα, we have that

(30) ‖N (ξ)‖1 . (‖∇ξ‖2
L4 + ‖ξ‖L2)‖ξ‖H2 + ‖ξ‖2

H1 .

This together with (28) gives

(31) |α̇| . (‖∇ξ‖2
L∞ + ‖ξ‖H1)‖ξ‖H2 + |z|‖ξ‖1.

7. Lyapunov functional

In this section we assume that Proposition 7 holds and therefore the solution

ρ can be written as ρ = ρα + ξ, with ξ ⊥ 1, x1

|x| , · · · , xn+1

|x| in L2(Γ). Let α = (R, z).

For k ≥ 1, we define the functional Λk(ξ) = 1
2

〈

ξ, Lk
R0ξ

〉

, where LR0 is given by (18)

(i.e. LR0ξ = − 1
R2 (∆ + n)ξ + n

|Γ|R2

∫

Γ ξ) and, recall, the inner product is taken in

L2(Γ). Since ξ ⊥ 1, x1

|x| , · · · , xn+1

|x| , we have, by (19), that 〈LR0ξ, ξ〉 ≥ n+2
R2 ‖ξ‖2.

Proposition 8. There exist constants c > 0 and C > 0 such that

cR−2k‖ξ‖2
Hk ≤ Λk(ξ) ≤ CR−2k‖ξ‖2

Hk .

Proof. By a standard computation, we see that there exists a C > 0 such that
〈

ξ, Lk
R0ξ

〉

≤ CR−2k‖ξ‖2
Hk . We prove the lower bound below. Recall 〈ξ, LR0ξ〉 ≥

n+2
R2 ‖ξ‖2. From the definition of LR0 we also have 〈ξ, LR0ξ〉 = C1R

−2‖∇ξ‖2 −
C2R

−2‖ξ‖2 for some C1 > 0 and C2 > 0. These two inequalities imply that

〈ξ, LR0ξ〉 = λ 〈ξ, LR0ξ〉 + (1 − λ) 〈ξ, LR0ξ〉
≥ λC1R

−2‖∇ξ‖2 − λC2R
−2‖ξ‖2 + (1 − λ)(n + 2)R−2‖ξ‖2

= λC1R
−2(‖∇ξ‖2 + ‖ξ‖2),

provided that λ = C
C+C1+C2

, where C = n + 2.

For the general case, observe that LR0 is a self-adjoint operator and Lk
R0 has the

same eigenfunctions as LR0 with eigenvalues { 1
R2k (l(l + n− 1)−n)k : l = 0, 1, · · · }.

Hence, by (19),
〈

ξ, Lk
R0ξ

〉

≥ (n+2
R2 )k‖ξ‖2. On the other hand, we have as before

〈

ξ, Lk
R0ξ

〉

≥ ( n
R2 )k[‖ξ‖2

Hk −C‖ξ‖2]. Then proceeding as before we find
〈

ξ, Lk
R0ξ

〉

&

R−2k‖ξ‖2
Hk , which is the lower bound in the proposition. �

Proposition 9. Let k > n
2 + 1, |z| ≪ 1 and |ξ| ≤ 1

2ρα. Then there exists a

constant C > 0 such that

(32) ∂tΛk(ξ) ≤ −n + 2

R2
Λk(ξ) − [

1

3
− C(Λk(ξ)1/2 + Λk(ξ)k)]‖L

k+1
2

R0 ξ‖2.

Proof. We have 1
2∂t

〈

ξ, Lk
R0ξ

〉

=
〈

∂tξ, L
k
R0ξ

〉

+ 1
2

〈

ξ, (∂tL
k
R0)ξ

〉

. Now, using
(26), we obtain

(33)
1

2
∂t

〈

ξ, Lk
R0ξ

〉

= −
〈

Lαξ, Lk
R0ξ

〉

+
〈

N (ξ), Lk
R0ξ

〉

+
〈

F , Lk
R0ξ

〉

+
1

2

〈

ξ, (∂tL
k
R0)ξ

〉

.
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We consider each term on the right hand side. First, we observe that one can show
readily that the operator M in the decomposition (24), Lα = LR0 + M , satisfies
the estimate

(34) ‖L
k−1
2

R0 Mξ‖ ≤ c|z|‖L
k+1
2

R0 ξ‖.
Using this estimate and the lower bound (19), we obtain

(35)

〈

Lαξ, Lk
R0ξ

〉

= 1
2‖L

k+1
2

R0 ξ‖2 + 1
2

〈

L
k
2

R0ξ, LR0L
k
2

R0ξ
〉

+
〈

L
k−1
2

R0 Mξ, L
k+1
2

R0 ξ
〉

≥ 1
2‖L

k+1
2

R0 ξ‖2 + n+2
2R2

〈

L
k
2

R0ξ, L
k
2

R0ξ
〉

− c|z|‖L
k+1
2

R0 ξ‖2

≥ 1
3‖L

k+1
2

R0 ξ‖2 + n+2
R2 Λk(ξ).

To estimate the next term we need the following inequality proven in Appendix B:

(36) ‖L
k−1
2

R0 N (ξ)‖ . (Λ
1/2
k (ξ) + Λk

k(ξ))‖L
k+1
2

R0 ξ‖.
This estimate implies that

(37)

|
〈

N (ξ), Lk
R0ξ

〉

| = |
〈

L
k−1
2

R0 N (ξ), L
k+1
2

R0 ξ
〉

|
≤ ‖L

k−1
2

R0 N (ξ)‖‖L
k+1
2

R0 ξ‖
≤ C(Λ

1/2
k (ξ) + Λk

k(ξ))‖L
k+1
2

R0 ξ‖2.

We have by (27),

|
〈

F , Lk
R0ξ

〉

| = |α̇||
〈

∂αρα, Lk
R0ξ

〉

| = |α̇||
〈

Lk
R0∂αρα, ξ

〉

|.
Next, we use (31), the relation LR0∂αρα = M∂αρα and (34) to obtain

(38) |
〈

F , Lk
R0ξ

〉

| ≤ C(‖∇ξ‖2
L∞ + ‖ξ‖H1 + |z|)‖ξ‖H2‖ξ‖1.

Finally, using (18) and (31), we obtain
(39)

|
〈

ξ, (∂tL
k
R0)ξ

〉

| = |2kṘ

R

〈

ξ, Lk
R0ξ

〉

| ≤ C(‖∇ξ‖2
L∞ + ‖ξ‖H1 + |z|)‖ξ‖H2‖L

k
2

R0ξ‖2.

Now, by the condition k > n
2 + 1 and Proposition 8 we have that ‖∇ξ‖L∞,

‖ξ‖H2 , ‖ξ‖Hk ≤ CΛ
1/2
k (ξ). This, together with (33), (35), (37), (38) and (39) and

the condition |z| ≪ 1, gives (32). �

8. Proof of Theorem 2

First, we note that we can either assume that the initial conditions are smooth
and use the proof of [12] of local well-posedness of (1) or we can adapt the latter
proof to the Sobolev spaces used here.

We begin with an estimate of |z| and |α − α′| (recall, that α = (R, z) and
α′ = (1, 0)) in terms of the Lyapunov functionals Λk(ξ). Using the estimates

|∂t|z|| ≤ |ż| ≤ |α̇| and ‖∇ξ‖L∞, ‖ξ‖H2 , ‖ξ‖Hk ≤ C1Λ
1/2
k (ξ) and Eqn (31), we

obtain

(40) |∂t|z|| ≤ C2[Λk(ξ) + Λ
1/2
k (ξ) + |z|]Λ1/2

k (ξ).

By Gronwall’s inequality the equation (40) implies

(41) |z(t)| ≤ C3e
C4

R

t
0

Λ
1/2
k (ξ(s))ds(|z0| +

∫ t

0

max(Λ
3/2
k (ξ(r)), Λk(ξ(r))dr).
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Finally, by (31) we have that |α̇| ≤ C5[Λk(ξ) + Λ
1/2
k (ξ) + |z|]Λ1/2

k (ξ) and therefore

(42) |α − α′| ≤ |α0 − α′| + C5[Λk(ξ) + Λ
1/2
k (ξ) + |z|]Λ1/2

k (ξ).

Let δ be the same as in Proposition 7 and let ε be s.t. Proposition 9 holds for
|z| ≤ ε. The initial condition, ξ0, for ξ is given in Proposition 7 with ρ = ρ0. By the

latter proposition we can take initial condition ρ0 such that Λk(ξ0)
1
2 + Λk(ξ0)

k ≤
1

10C , where the constant C is the same as in Proposition 9, Λk(ξ0) + |z0| ≤ 1
4C′ ε,

where C′ = C3e
C4 , and |α0 − α′| + (1 + C5

2R2

n+2 )Λ
1/2
k (ξ0) ≤ 1

4δ, with the constants

C3, C4 and C5, the same as in (41) and (42). Let

T = sup{t > 0 : Λk(ξ(t))
1
2 +Λk(ξ(t))k ≤ 1

5C
, |z(t)| ≤ 1

2
ε, Λk(ξ(t))

1
2 +|α(t)−α′| ≤ 1

2
δ}.

Clearly, T > 0 while we assume T < ∞. Then for any t ≤ T we get ∂tΛk(ξ) ≤
−n+2

R2 Λk(ξ). Integrate this:

(43) Λk(ξ) ≤ Λk(ξ0)e
−n+2

R2 t,

which implies

(44) Λk(ξ(T ))
1
2 + Λk(ξ(T ))k ≤ Λk(ξ0)

1
2 + Λk(ξ0)

k ≤ 1

10C
.

and, together with (41),

(45) |z(t)| ≤ C′(|z0| + Λk(ξ0)) ≤
1

4
ε,

uniformly in t. Finally, Eqns (42), (43) and (45) imply that

(46) Λk(ξ(t))
1
2 + |α − α′| ≤ 1

4
δ.

This, together with (44) and (45), contradicts the assumption T < ∞, so T = ∞
and (44), (45) and (46) are valid for all t < ∞.

By (31) and (43) we have that |α̇| . [Λk(ξ)+Λ
1/2
k (ξ)+|z|]Λ1/2

k (ξ) . e−
n+2

2R2 tΛ
1/2
k (ξ0).

Hence there exists α∞ > 0 such that |α(t) − α∞| . e−
n+2

2R2 tΛ
1/2
k (ξ0). To sum up

we have ρ(γ, t) = ρα(t)(γ) + ξ(γ, t) and, by Proposition 8 and (43), ‖ξ(t)‖Hk .

e−
n+2

2R2 t‖ξ(0)‖Hk and |α(t) − α∞| . e−
n+2

2R2 t‖ξ(0)‖Hk for some α∞ > 0. Due to the
definition (25), this proves Theorem 2. �

Appendix A. Appendix A: Proof of Lemma 4

Let β : U → R
n+1 be a local parametrization of Γ, and we denote ρ in the local

coordinates, ρ◦β, again as ρ : U → R. We write ρ̃ := ρ◦α = ρ◦β◦β−1◦α, which we
rewrite as ρ̃ = ρ◦σ, where σ := β−1◦α : R

n+1 → U . Now, writing u = u(x) ≡ σ(x),

we define ∂uk

∂xi
∂ul

∂xi =: g̃kl, where we use the convention of summing over repeated
indices. We claim

(47) g̃ij(x)gjk(u) =
1

|x|2 δik.

Indeed, since β(σ(x)) = α(x), we have

(48) (
∂xi

∂um
◦ σ)

∂um

∂xj
=

∂αi

∂xj
=

1

|x| (δij −
xixj

|x|2 ).
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Note that σ is homogeneous of degree 0, so x · ∇xσ = 0. This together with (48)
implies that

(49)
g̃ij(x)gjk(u) = ∂ui

∂xm
∂uj

∂xm (∂xn

∂uj ◦ σ)(∂xn

∂uk ◦ σ)

= 1
|x|

∂ui

∂xm (δmn − xmxn

|x|2 )∂xn

∂uk = 1
|x|

∂ui

∂xm
∂xn

∂uk .

Since |x| ∂ui

∂xm is homogeneous of degree 0, we have that |x| ∂ui

∂xm = ∂ui

∂xm |Γ, and there-

fore ∂ui

∂xm = 1
|x|(

∂ui

∂xm |Γ). Using σ ◦ β = 1U we compute that ( ∂σi

∂xj ◦ β) ∂βj

∂uk = δik,

which is equivalent to ∂ui

∂xj |Γ( ∂xj

∂uk ◦ σ) = δik. This gives us

(50)
∂ui

∂xm

∂xm

∂uk
=

1

|x| (
∂ui

∂xm
|Γ)

∂xm

∂uk
=

1

|x|δik.

From (49) and (50) we have the equation (47).

In what follows we use the relations ∂ρ
∂ui = gij∇jρ (this follows from the defi-

nition of ∇ρ) and ∂xi ρ̃ = ∂uj

∂xi
∂ρ
∂uj . Using these relations and (47) we can compute

(51)

|∇xρ̃|2 = ∂xi ρ̃∂xi ρ̃

= ∂uk

∂xi
∂ul

∂xi ∂uk ρ̃∂ul ρ̃ = g̃kl(x)∂uk ρ∂ulρ
= g̃kl(x)gkm(u)∇mρgln(u)∇nρ = 1

|x|2∇lρgln∇nρ

= 1
|x|2 |∇ρ|2.

This gives (13).
Now we prove (14). We have

(52)

∇xρ̃ · Hessx(ρ̃)∇xρ̃ = ∂xi ρ̃∂2
xixj ρ̃∂xj ρ̃

= ∂um

∂xi
∂ρ

∂um
∂ul

∂xi
∂

∂ul (
∂uk

∂xj
∂ρ

∂uk )∂un

∂xj
∂ρ

∂un

= g̃ml ∂ρ
∂um

∂
∂ul (

∂uk

∂xj
∂ρ

∂uk )∂un

∂xj
∂ρ

∂un

= g̃mlg̃kn ∂ρ
∂um

∂2ρ
∂uluk

∂ρ
∂un + g̃ml ∂ρ

∂um
∂

∂ul (
∂uk

∂xj ) ∂ρ
∂uk

∂un

∂xj
∂ρ

∂un

:= A + B.

Then

(53) A = g̃mlg̃kngmp∇pρ
∂2ρ

∂ul∂uk
gnq∇qρ =

1

|x|4∇
lρ

∂2ρ

∂ul∂uk
∇kρ

and

B = 1
2 g̃ml ∂ρ

∂um
∂ρ

∂uk
∂ρ

∂un
∂

∂ul (
∂uk

∂xj )∂un

∂xj + 1
2 g̃ml ∂ρ

∂um
∂ρ

∂un
∂ρ

∂uk
∂

∂ul (
∂un

∂xj )∂uk

∂xj

= 1
2 g̃ml ∂ρ

∂um
∂ρ

∂uk
∂ρ

∂un
∂

∂ul (
∂uk

∂xj
∂un

∂xj )

= 1
2 g̃ml ∂ρ

∂um
∂ρ

∂uk
∂ρ

∂un
∂g̃kn

∂ul .

Now B = B1 = B2 = B3, where

B1 = 1
2 g̃mlgmrgks

∂g̃kn

∂ul
∂ρ

∂un ∇rρ∇sρ = 1
2|x|2 gks

∂g̃kn

∂ur
∂ρ

∂un ∇rρ∇sρ,

B2 = 1
2 g̃mlgmsgnr

∂g̃kn

∂ul
∂ρ

∂uk ∇rρ∇sρ = 1
2|x|2 gnr

∂g̃kn

∂us
∂ρ

∂uk ∇rρ∇sρ,

B3 = 1
2 g̃mlgkrgns

∂g̃kn

∂ul
∂ρ

∂um ∇rρ∇sρ.

Hence

(54) B = − 1

|x|4 Γp
rs

∂ρ

∂up
∇rρ∇sρ,
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where Γp
rs = − |x|2

2 (gks
∂g̃kp

∂ur +gnr
∂g̃pn

∂us −|x|2g̃plgkrgns
∂g̃kn

∂ul ). Using that ∂
∂ur (gksg̃

kp) =
∂

∂ur ( 1
|x|2 δsp) = 0 (points x ∈ R

n+1 are parameterized by β(u) and |x|), we compute

gks
∂g̃kp

∂ur = ∂
∂ur (gksg̃

kp) − g̃kp ∂gks

∂ur = −g̃kp ∂gks

∂ur . This gives

Γp
rs = |x|2

2 (g̃kp ∂gks

∂ur + g̃kp ∂gkr

∂us − |x|2g̃plgkr g̃
kn ∂gns

∂ul )

= |x|2

2 (g̃kp ∂gks

∂ur + g̃kp ∂gkr

∂us − g̃pk ∂grs

∂uk ).

Since |x| = 1, and therefore g̃pk = gkp, we have that on Γ

Γp
rs =

1

2
gkp(

∂gks

∂ur
+

∂gkr

∂us
− ∂grs

∂uk
),

which coincides with our definition for Γp
rs at the beginning of Section 3.

Equations (52), (53) and (54) and the relations Hessρ(V, W ) = V i(Hessρ)ijW
j

and (Hessρ)ij = ∂2ρ
∂ui∂uj −Γk

ij
∂ρ

∂uk give (14). This finishes the proof of the lemma. �

Appendix B. Appendix B: Proof of Lemma 5

In this appendix we prove Lemma 5. In what follows we drop the subindex
t in St, as well as the t−dependence of ρ. First, we note that if β(u) is a local
parametrization of Γ, then

(55) β̃(u) = ρ(β(u))β(u)

is a local parametrization of S. We denote metrics on Γ and S by gij := gΓ
ij and

g̃ij := gS
ij , respectively. Let g := det(gij) (not to be confused with the map g(ρ)

defined in (6)) and g̃ := det(g̃ij).
The following lemma proves a simple formula estabilishing the relation between

g and g̃.

Lemma 10.

(56) g̃ = ρ2n−2g
(

ρ2 + |∇ρ|2
)

.

Proof. The definitions g̃ij = ∂σ̃k

∂ui
∂σ̃k

∂uj and gij = ∂σk

∂ui
∂σk

∂uj , imply

(57) g̃ij =
(∂σk

∂ui
ρ + σk ∂ρ

∂ui

)(∂σk

∂uj
ρ + σk ∂ρ

∂uj

)

.

Since σ · σ = 1 on Γ and therefore σ · ∂σ
∂um = 0, (57) gives

g̃ij = gijρ
2 +

∂ρ

∂ui

∂ρ

∂uj
,

and hence

(58) g̃ = det
(

gijρ
2 +

∂ρ

∂ui

∂ρ

∂uj

)

.

Writing
(

gijρ
2 + ∂ρ

∂ui
∂ρ
∂uj

)

= ρ2G1/2
(

1 + ρ−2G−1/2( ∂ρ
∂ui )(

∂ρ
∂uj )G−1/2

)

G1/2, where

G := (gij), we compute

(59) g̃ = ρ2ng det
(

1 + λP
)

,

where λ := ρ−2|∇ρ|2 and P is the projection onto the vector G−1/2( ∂ρ
∂uj ). Due

to the relation det
(

1 + λP
)

= 1 + λ, for any rank-one projection P , we arrive at

(59). �
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By the local definition of the integral over a surface, we have

(60)

∫

S

f =

∫

U

f(ρ(β(u))β(u))
√

g̃dnu =

∫

Γ

f(ρ(·) ·)
√

g̃

g
.

The last equation together with (59) and the definition (7) proves (15).

Appendix C. Appendix C: Expression for N (ξ)

In this appendix we derive the explicit expression for the term N (ξ), defined
in (27), with (17), (5) and (6). Let ∂F (ρ) and ∂2F (ρ)) denote the first and second
Gâteaux derivatives of F (ρ) evaluated at ρ, ∂F (ρ) : ξ → ∂F (ρ)ξ and ∂2F (ρ) :
(ξ, η) → ∂2F (ρ)(ξ, η) and at ξ and η. Recall the notation

µ(ρ) =
√

ρ2 + |∇ρ|2

and the definition (17) of the map J . In what follows we use the shorthand

f
′′

(ξ, η) ≡ Hessf(ξ, η). We have

Lemma 11. The nonlinearity N (ξ) := J(ρα + ξ) − J(ρα) − ∂J(ρα)ξ can be

written as

(61) N (ξ) =

∫ 1

0

ds

∫ s

0

dr∂2J(ρα + rξ)(ξ, ξ),

where ∂2J(ρ) = ∂2G(ρ) + ∂2g(ρ), with ∂2G(ρ) and ∂2g(ρ) given by

∂2G(ρ)(ξ, ξ) = −4ξ∆ξ

ρ3
+ 6

ξ2∆ρ

ρ4
− 2nξ2

ρ3

+
2|∇ξ|2
ρµ2

− 2∇ρ∇ξ(2ρξ + 5∇ρ∇ξ)

ρµ4
+

2|∇ρ|2ξ(ρξ + 2∇ρ∇ξ)

ρ2µ4

− 2∇ρξ∇ξ

ρ2µ2
+

2|∇ρ|2ξ2

ρ3µ2
+

8|∇ρ|2∇ρ∇ξ(ρξ + ∇ρ∇ξ)

ρµ6

− 2

ρ2µ2

(

2ξ
′′

(∇ρ,∇ξ) + ρ
′′

(∇ξ,∇ξ)
)

− 2
( 3ξ2

ρ4µ2
+ 4

ξ(ρξ + ∇ρ∇ξ)

ρ3µ4
+

4(ρξ + ∇ρ∇ξ)ξ

ρ2µ6
− ξ2 + |∇ξ|2

ρ2µ4

)

ρ
′′

(∇ρ,∇ρ)

+ 2
( ξ

ρ3µ2
+

ρξ + ∇ρ∇ξ

ρ2µ4

)(

2ρ
′′

(∇ρ,∇ξ) + ξ
′′

(∇ρ,∇ρ)
)

(62)

and

∂2g(ρ)(ξ, ξ) =
[−2µ

ρ3
ξ2 + 2

ρξ2 + ∇ρξ∇ξ

ρ2µ
− ξ2 + ξ|∇ξ|

ρµ
+

(ρξ + ∇ρ∇ξ)2

ρµ3

]

B

(63) + 2

(

µξ

ρ2
− ρξ + ∇ρ∇ξ

ρµ

)

∂Bξ − µ(ρ)

ρ
∂2B(ξ, ξ),

where

B(ρ) :=

∫

Γ
G(ρ)ρn

∫

Γ µ(ρ)ρn−1
, ∂Bξ =

1
∫

Γ µ(ρ)ρn−1

∫

Γ

(

∂G(ρ)ξρn + G(ρ)nρn−1ξ
)

(64) − 1

(
∫

Γ
µ(ρ)ρn−1)2

(
∫

Γ

G(ρ)ρn

∫

Γ

(∂µ(ρ)ξρn−1 + µ(ρ)(n − 1)ρn−2ξ)

)

,
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∂2B(ξ, ξ) =
1

∫

Γ
µ(ρ)ρn−1

(
∫

Γ

∂2G(ρ)(ξ, ξ)ρn

+ 2

∫

Γ

∂G(ρ)ξnρn−1ξ +

∫

Γ

n(n − 1)G(ρ)ρn−2ξ2

)

−
∫

Γ
G(ρ)ρn

(
∫

Γ
µ(ρ)ρn−1)2

(
∫

Γ

∂2µ(ρ)(ξ, ξ)ρn−1

+ 2

∫

Γ

∂µ(ρ)ξ(n − 1)ρn−2ξ +

∫

Γ

(n − 1)(n − 2)µ(ρ)ρn−3ξ2

)

− 1

(
∫

Γ
µ(ρ)ρn−1)2

(
∫

Γ

(∂G(ρ)ξρn

+ G(ρ)nρn−1ξ)

∫

Γ

(∂µ(ρ)ξρn−1 + µ(ρ)(n − 1)ρn−2ξ)

)

+ 2
1

(
∫

Γ µ(ρ)ρn−1)3

(
∫

Γ

(∂µ(ρ)ξρn−1

+ µ(ρ)(n − 1)ρn−2ξ)

)2 ∫

Γ

G(ρ)ρn,

(65)

with ∂µ(ρ)ξ = ρξ+∇ρ∇ξ
µ , ∂2µ(ρ)(ξ, ξ) = ξ2+∇ξ∇ξ

µ − (ρξ+∇ρ∇ξ)2

µ3 , (62) and

∂G(ρ)ξ =
∆ξ

ρ2
− 2∆ρ

ρ3
ξ +

nξ

ρ2

+
2∇ρ∇ξ

ρµ2
− |∇ρ|2ξ

ρ2µ2
− 2

|∇ρ|2
(

ρξ + ∇ρ∇ξ
)

ρµ4

− 1

ρ2µ2

(

2ρ
′′

(∇ρ,∇ξ) + ξ
′′

(∇ρ,∇ρ)
)

+ 2
( ξ

ρ3µ2
+

ρξ + ∇ρ∇ξ

ρ2µ4

)

ρ
′′

(∇ρ,∇ρ).

(66)

Proof. We write the nonlinearity N (ξ) := J(ρα + ξ)−J(ρα)−∂J(ρα)ξ in the
standard form

(67) N (ξ) =

∫ 1

0

ds

∫ s

0

dr∂2
r J(ρα + rξ).

The definitions of the first and second Gâteaux derivatives imply

(68) ∂J(ρ)ξ = ∂rJ(ρ + rξ)|r=0,

and

(69) ∂2J(ρ)(ξ, ξ) = ∂2
rJ(ρ + rξ)|r=0.

Using the expressions above, we obtain the formula

(70) N (ξ) =

∫ 1

0

ds

∫ s

0

dr∂2J(ρα + rξ)(ξ, ξ).

We use ∂2J(ρ) = ∂2G(ρ)+∂2g(ρ), and compute ∂2G(ρ) and ∂2g(ρ) separately.
Using the definition

(71) G(ρ) :=
∆ρ

ρ2
− n

ρ
+

|∇ρ|2
ρµ2

− ρ
′′

(∇ρ,∇ρ)

ρ2µ2
,
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we find (66) and (62).
Next, we use the definition of g(ρ), which can be rephrased as g(ρ) = −A(ρ)B(ρ),

where A(ρ) := µ(ρ)
ρ and B(ρ) :=

R

Γ
G(ρ)ρn

R

Γ
µ(ρ)ρn−1 , as in the lemma. Using this represen-

tation and using ∂2g = −∂2AB − 2∂A∂B − A∂2B and

∂µ(ρ)ξ =
ρξ + ∇ρ∇ξ

√

ρ2 + |∇ρ|2
,

∂2µ(ρ)(ξ, ξ) =
ξ2 + |∇ξ|2

√

ρ2 + |∇ρ|2
− (ρξ + ∇ρ∇ξ)2

(ρ2 + |∇ρ|2)3/2
,

we obtain (63).
Finally, using the definition of B in (64), we find (64), and (65). �

Appendix D. Appendix D: Proof of (36)

Lemma 12. Let k > n
2 + 1 and assume that |ξ| ≤ 1

2ρα. Then

(72) ‖L
k−1
2

R0 N (ξ)‖ . (Λ
1/2
k (ξ) + Λk

k(ξ))‖L
k+1
2

R0 ξ‖.

Proof. Assume first that k is an integer. Then ‖L
k−1
2

R0 η‖ ≃ ‖η‖2
Hk−1 ≃ ‖η‖2

L2+

‖∇k−1η‖2
L2 . Now, by Lemma 11, |∇k−1N (ξ)| is bounded above by terms of the

form |ξt(∇ξ)r(∇α1ξ) · · · (∇αsξ)|, where
(73)
0 ≤ t, r ≤ k+1, 1 ≤ s ≤ k, t+r+s ≥ 2, 2 ≤ α1 ≤ · · · ≤ αs ≤ k−s+2, α1+· · ·+αs ≤ k+s.

Note that the last two conditions in (73) imply that s ≤ k. Then by Hölder’s
inequality we have

‖∇k−1N (ξ)‖ ≤ ‖∇ξ‖r
L∞‖∇α1ξ‖Lp1 · · · ‖∇αsξ‖Lps ,

where 1
p1

+ · · · + 1
ps

= 1
2 .

Since k > n
2 + 1, we have, by the Sobolev embedding theorem, that ‖ξ‖L∞ +

‖∇ξ‖L∞ . ‖ξ‖Hk . Moreover, we choose pi so that k − αi > n
2 − n

pi
for all i =

1, · · · , s−1 and k+1−αs > n
2 − n

ps
(this choice implies

∑s
j=1 αj < n

2 +1+(k− n
2 )s,

which is compatible with (73) ). Then, using the Sobolev embedding theorem
again, we have ‖∇αiξ‖Lpi ≤ ‖ξ‖Hk , for i = 1, · · · , s−1, and ‖∇αsξ‖Lps ≤ ‖ξ‖Hk+1 .
Combining these estimates gives us

‖L
k−1
2

R0 N (ξ)‖ . ‖ξ‖r+s−1
Hk ‖ξ‖Hk .

Now from 1 ≤ r + s − 1 ≤ 2k and Proposition 8 we obtain (72). Furthermore, one
can easily check that k can be taken arbitrary close to n

2 + 1 (this means that one
is able to satisfy 1 ≥ αi − n

pi
, for i = 1, · · · , s − 1, 2 ≥ αs − n

ps
and αi ≥ 2, ∀i).

If k is not integer, we proceed as follows. Let β = k − [k] ∈ (0, 1). We use the

space H̃β with the norm

‖f‖H̃β = ‖f‖L2 +

∫

dh

|h|n+β
‖∆hf‖L2,

where ∆hf(x) = f(x + h) − f(x). We have the embeddings

(74) ‖f‖Hβ . ‖f‖H̃β . ‖f‖Hβ′ , β < β′.
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Let us prove the first embedding:

(−∆ + 1)β/2f(x) = Cβf(x) +

∫

(f(x − y) − f(x))Gβ(y)dy,

where Cβ is an analytic continuation of Cβ :=
∫

Gβ(x)dx with Re(β) < n and

Gβ(y) :=
∫

eiy·k(|k|2 + 1)β/2dk. Note that Gβ(y) ∼ |y|−n−β as |y| → 0 and is
exponentially decaying at ∞. So

‖f‖Hβ = ‖(−∆ + 1)β/2f‖L2 ≤ Cβ‖f‖L2 +

∫

dy

|y|n+β
‖∆yf‖L2 . ‖f‖H̃β ,

which proves the first embedding in (74).

For the second embedding, let ϕ = (−∆ + 1)β′/2f . Then

f = (−∆ + 1)−β′/2ϕ =

∫

G̃β′(x − y)ϕ(y)dy,

where G̃β′(y) :=
∫

eiy·k(|k|2 + 1)−β′/2dk. Note that G̃β′(y) ∼ |y|−n+β′

as |y| → 0
and is exponentially decaying at ∞. Let β < β′′ < β′. Then

(75)

∫

|h|≤1
dh

|h|n+β ‖∆hf‖L2

=
∫

|h|≤1
dh

|h|n+β ‖
∫

|x−y|≤2(G̃β′(x + h − y) − G̃β′(x − y))ϕ(y)dy

+
∫

|x−y|≥2
(G̃β′(x + h − y) − G̃β′(x − y))ϕ(y)dy‖L2

.
∫

|h|≤1
dh

|h|n+β (|h|β′′‖
∫

|x−y|≤2 |x − y|−n+β′−β′′ |ϕ(y)|dy‖L2

+|h|‖
∫

|x−y|≥2 |x − y|−n+β′−1|ϕ(y)|dy‖L2)

. ‖ϕ‖L2 = ‖f‖Hβ′

and
∫

|h|≥1

dh

|h|n+β
‖∆hf‖L2 ≤ 2‖f‖L2

∫

|h|≥1

dh

|h|n+β
. ‖f‖Hβ′ .

This proves the second embedding in (74).
Using (74), we obtain

‖∏s
j=1 ξj‖Hβ .

∫

dh
|h|n+β ‖∆h

∏s
j=1 ξj‖2

≤ ∑s
i=1

∫

dh
|h|n+β ‖

∏i−1
j=1 ξj∆hξi

∏s
j=i+1 Thξj‖2

≤ ∑s
i=1(

∏

j 6=i ‖ξj‖p
(i)
j

)
∫

dh
|h|n+β ‖∆hξi‖p

(i)
i

,

where Thf(x) = f(x + h),
∑s

j=1
1

p
(i)
j

= 1
2 . Using appropriate embeddings, we

conclude finally that

(76) ‖
s

∏

j=1

ξj‖Hβ .

s
∑

i=1

s
∏

j=1

‖ξj‖
H

c
(i)
j

,

where c
(i)
j > n

2 − n

p
(i)
j

∀j 6= i and c
(i)
i − β > n

2 − n

p
(i)
i

. Similarly as before we know

that
∑s

j=1 c
(i)
j − β > n

2 (s − 1), which guarantees the existence of p
(i)
j .

For k not an integer, we write

(77) ‖N (ξ)‖Hk−1 ∼ ‖(−∆ + 1)β/2∇mN (ξ)‖L2 ,

where m = [k] − 1 and β = k − [k] ∈ (0, 1). ∇mN (ξ) is treated as before to obtain

(78) ∇mN (ξ) ∼ ξt(∇ξ)r∇α1ξ · · · ∇αsξ,
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where t ≤ m + 2, r ≤ m + 2, 2 ≤ αj ≤ m− s + 3,
∑s

j=1 αj ≤ m + 1 + s, s ≤ m + 1
and t + r + s ≥ 2.

If αj < m + 2 ∀j, then, using (76) with ξj = ∇αj ξ ∀j, c
(i)
j + αj = k ∀j 6= i and

c
(i)
i + αi = k + 1, we find

(79) ‖ξt(∇ξ)r
s

∏

j=1

∇αj ξ‖Hβ . ‖ξ‖r+s−1
Hk ‖ξ‖Hk+1 .

We use this estimate, together with (77) and (78), to obtain

(80) ‖N (ξ)‖Hk−1 .

2[k]
∑

i=1

‖ξ‖i
Hk‖ξ‖Hk+1 .

If αs = m + 2 and therefore s = 1, then we let f = ξt(∇ξ)r and proceed as

(81) (−∆ + 1)β/2f∇m+2ξ = f(−∆ + 1)β/2∇m+2ξ + [(−∆ + 1)β/2, f ]∇m+2ξ.

The first term on the r.h.s. is easy to estimate:

(82)
‖f(−∆ + 1)β/2∇m+2ξ‖ ≤ ‖f‖∞‖ξ‖Hk+1

≤ ‖ξ‖t+r
Hk ‖ξ‖Hk+1 ≤ ∑2

p=1 ‖ξ‖
p
Hk‖ξ‖Hk+1 .

To estimate the second term in the r.h.s. we note that

[(−∆ + 1)β/2, f ]η =
∫

(f(x) − f(y))Gβ(x − y)η(y)dy
=

∫

η(x − z)(f(x − z) − f(x))Gβ(z)dz.

Using this representation we obtain for β′ > β,

‖[(−∆ + 1)β/2, f ]η‖2

≤ supz ‖η(· − z)f(·−z)−f(·)

|z|β′ ‖L2(dx)

∫

|z|β′|Gβ(z)|dz

. supz ‖η(· − z)f(·−z)−f(·)

|z|β′ ‖L2(dx)

≤ ‖η‖q supz ‖∆zf

|z|β′ ‖p,

where 1
p + 1

q = 1
2 . Similar to (75), we have

sup
z

‖ 1

|z|γ ∆zf‖Hb . ‖f‖Hb+γ′ , γ′ > γ.

Using this estimate and Sobolev embedding theorem, we find

‖[(−∆ + 1)β/2, f ]η‖2 . ‖η‖Ha sup
z

‖∆zf

|z|β′ ‖Hb . ‖η‖Ha‖f‖Hb+β′′ ,

where β′′ > β′, a > n
2 − n

q , b > n
2 − n

p . Taking f = ξt(∇ξ)r and η = ∇m+2ξ, a = β,

we find
‖[(−∆ + 1)β/2, f ]∇m+2ξ‖ ≤ ‖ξt(∇ξ)r‖Hr+β′′ ‖ξ‖Hk+1 .

Note that β′′ + r > n − n
2 = n

2 . Let β′′ + r = j. As before, we estimate

‖ξt(∇ξ)r‖Hj .
∑

j1+···+jt+r=j

‖∇j1ξ · · ·∇jtξ∇jt+1+1ξ · · · ∇jt+r+1ξ‖2 . ‖ξ‖t+r
Hj+1 ∀j >

n

2
.

Since k > n
2 + 1, we can take j = k − 1 and so

‖[(−∆ + 1)β/2, f ]∇m+2ξ‖ ≤ ‖ξ‖t+r
Hk ‖ξ‖Hk+1 ,

where, recall, f = ξt(∇ξ)r. This inequality together with (77), (81) and (82) implies
(80) also in this case. As was mentioned above (80) implies (72). �



344 D. ANTONOPOULOU, G. KARALI, AND I.M. SIGAL

References

[1] N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in
a Riemannian manifold. J. Differential Geom., 64(2), pp. 247–303, 2003.

[2] B. Andrews, Volume-preserving anisotropic mean curvature flow, Indiana Univ. Math. J.,
50 (2): 783-827, 2001.

[3] M. Athanassenas, Volume-preserving mean curvature flow of rotationally symmetric sur-
faces. Comment. Math. Helv., 72(1), pp. 52–66, 1997.

[4] M. Athanassenas, Behaviour of singularities of the rotationally symmetric, volume-
preserving mean curvature flow. Calc. Var. Partial Differential Equations, 17(1), pp. 1–16,
2003.

[5] Lia Bronsard and Barbara Stoth, Volume-Preserving Mean Curvature Flow as a Limit
of a Nonlocal Ginzburg-Landau Equation. SIAM J. Math. Anal., Volume 28, Issue 4, pp.
769-807, 1997.

[6] I. Chavel, Eigenvalues in Riemannian Geometry, volume 115 of Pure and Applied Mathe-

matics. Academic Press Inc., Orlando, FL, 1984.
[7] Xinfu Chen, D. Hilhorst, E. Logak, Mass conserved Allen-Cahn equation and volume

preserving mean curvature flow, arXiv:0902.3625v1, 2009.
[8] J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model, J.

Differential Eq., 143, pp. 267–292, 1998.
[9] J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc.

Amer. Math. Soc., 126(9), pp. 2789–2796, 1998.
[10] M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in

Geometry, D. M. DeTurck, editor, Contemp. Math. 51, AMS, Providence, pp. 51–62, 1986.
[11] Zh. Huang and B. Wang, Geometric evolution equations and foliation on quasi-Fuchsian

three-manifolds, arXiv:0907.2899v2, 2009.
[12] G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382,

pp. 35–48, 1987.

[13] G. Huisken and S.T. Yau, Definition of center of mass for isolated physical systems and

unique folliation by stable spheres with constant mean curvature flow, Invent. Math., 124
(1996), pp. 281–311.

[14] W.Kong and I.M. Sigal, On collapse of surfaces under mean curvature flow, in preparation.
[15] E. Kuwert and R. Schätzle, The Willmore of with small initial energy, J. Differential

Geom. 57 (2001)), 409–441.
[16] W. Kühnel, Differential Geometry, AMS, 2005.
[17] J. Rubinstein and P.Sternberg, Nonlocal reaction diffusion equations and nucleation, IMA

J. Appl. Math., 48 (1992), pp. 249–264.
[18] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton

University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.

Department of Applied Mathematics, University of Crete, and IACM/FORTH, Her-
aklion, Crete, Greece

Department of Applied Mathematics, University of Crete, and IACM/FORTH, Her-
aklion, Crete, Greece

Department of Mathematics, University of Toronto, Toronto, Canada
E-mail address: im.sigal@utoronto.ca


	1. Introduction
	Acknowledgement
	2. Volume preserving flow for graphs
	3. Differential equation for 
	4. Linearized map
	5. Orthogonal decomposition of solutions
	6. Reparametrization of solutions
	7. Lyapunov functional
	8. Proof of Theorem 2
	Appendix A. Appendix A: Proof of Lemma 4
	Appendix B. Appendix B: Proof of Lemma 5
	Appendix C. Appendix C: Expression for N()
	Appendix D. Appendix D: Proof of (36)
	References

