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A symplectic non-squeezing theorem for BBM equation
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Abstract. We study the initial value problem for the BBM equation:


ut + ux + uux − utxx = 0 x ∈ T, t ∈ R

u(0, x) = u0(x)

We prove that the BBM equation is globaly well-posed on Hs(T) for s ≥ 0 and

a symplectic non-squeezing theorem on H1/2(T). That is to say the flow-map

u0 7→ u(t) that associates to initial data u0 ∈ H1/2(T) the solution u cannot
send a ball into a symplectic cylinder of smaller width.
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1. Introduction

In 1877 Joseph Boussinesq proposed a variety of models for describing the
propagation of waves on shallow water surfaces, including what is now refered to
as the Korteweg-de Vries (KdV) equation. A scaled KdV equation reads

ut + ux + ε(uux + uxxx) = 0.

The Benjamin-Bona-Mahony (BBM) equation was introduced in [1] as an al-
ternative of the KdV equation. The main argument to derive the BBM equation is
that, to the first order in ε, the scaled KdV equation is equivalent to

ut + ux + ε(uux − utxx) = 0.

Indeed, formally we have ut + ux = O(ε), hence uxxx = −utxx + O(ε).
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In this article we shall consider the rescaled BBM equation:

ut + ux + uux − utxx = 0.

In 2009, Jerry Bona and Nikolay Tzvetkov proved in [2] that BBM equation is
globaly well-posed in Hs(R) if s ≥ 0, and not even locally well-posed for negative
values of s (see also [8]). The result extends to the periodic case (see section 3
below). Let us denote Φt the flow map of BBM equation on the circle T. In this
article we prove a symplectic non-squeeezing theorem for Φt. That is, the flow map
cannot squeeze a ball of radius r of H1/2(T) into a symplectic cylinder of radius

r′ < r. Precisely, let H
1/2
0 (T) =

{
u ∈ H1/2/

∫
T

u = 0
}

with the Hilbert basis

ϕ+
n (x) =

√
n

π(n2 + 1)
cos(nx), ϕ−

n (x) =

√
n

π(n2 + 1)
sin(nx).

Set

Br =
{
u ∈ H

1/2
0 (T) / ‖u‖H1/2 < r

}
,

Cr,n0
=

{
u =

∑
pnϕ+

n + qnϕ−
n ∈ H

1/2
0 (T) /p2

n0
+ q2

n0
< r2

}
.

The goal of this paper is to prove

Theorem 1.1. If Φt(Br) ⊂ CR,n0
then r ≤ R.

S. Kuksin initiated the investigation of non-squeezing results for infinite di-
mentional Hamiltonian systems (see [7]). In particular he proved that nonlinear
wave equation has the non-squeezing property for some nonlinearities. This result
were extended to certain stronger nonlinearities by Bourgain [3], and he also proved
with a different method that the cubic NLS equation on the circle T has the non-
squeezing property. Using similar ideas Colliander, Keel, Staffilani, Takaoka and
Tao obtained the same result for KdV equation on T (see [4]).

In this article we will use the original theorem of Kuksin. In section 2, we
present the construction of a capacity on Hilbert spaces introduced by Kuksin in
[7]. This capacity is invariant with respect to the flow of some hamiltonian PDEs
provided it has the form “linear evolution + compact”. As a corollary of this result
we get a non-squeezing theorem for these PDEs. Then we apply this theorem to the
BBM equation in section 3. We prove the global wellposedness of BBM equation
on Hs(T) for s ≥ 0, and some estimates on the solutions.

2. Symplectic capacities in Hilbert spaces and non-squeezing theorem

2.1. The frame work and an abstract non-squeezing theorem. Let
(Z, 〈·, ·〉) be a real Hilbert space with {ϕ±

j /j ≥ 1} a Hilbert basis. For n ∈ N

we denote Zn = Span({ϕ±
j /1 ≤ j ≤ n}), and Πn : Z → Zn the corresponding

projector. We also denote Zn the space such that Z = Zn ⊕ Zn. Then, every
z ∈ Z admits the unique decomposition z = zn + zn with zn ∈ Zn and zn ∈ Zn.

We define J : Z → Z the skewsymmetric linear operator by

Jϕ±
j = ∓ϕ∓

j

and we supply Z with a symplectic structure with the 2-form ω defined by ω(ξ, η) =
〈Jξ, η〉.

We take a self-adjoint operator A, such that

(1) ∀j ∈ Z, Aϕ±
j = λjϕ

±
j .
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Define the Hamiltonian

f(z) =
1

2
〈Az, z〉 + h(z)

where h is a smooth function defined on Z × R. The corresponding Hamiltonian
equation has the form

(2)

{
ż = JAz + J∇h(z)
z(0, ·) = z0 ∈ Z

If Z− is a Hilbert space, we denote

Z < Z−

if Z is compactly embedded in Z− and {ϕ±
j } is an orthogonal basis of Z− (not an

orthonormal one!). Clearly Z is dense in Z−. We identify Z and its dual Z∗. Then
(Z−)∗ can be identified with a subspace Z+ of Z and we have

Z+ < Z < Z−.

Denote ‖ · ‖− (resp. ‖ · ‖+) the norm of Z− (resp. Z+).
We also denote BR(Z) the ball centered at the origin of radius R.
We impose the following assumptions:

(H1): The equation (2) defines a C1-smooth global flow map Φ on Z. That
is, for all z0 ∈ Z the equation (2) has a unique solution z(t) = Φt(z0) for
t ≥ 0, and the flow map Φt : z0 7→ z(t) is C1-smooth.

(H2): The flow map Φ is uniformely bounded. That is for each R > 0 and
T > 0, there exists R′ = R′

R,T such that

Φt(BR(Z)) ⊂ BR′(Z), for |t| ≤ T.

(H3): Writing the flow map Φt = etJA(I +Φ̃t), we also impose the following
compactness assumption : fix R > 0 and T > 0, there exists CR,T such
that

∀u0, u
′
0 ∈ BR(Z),

∥∥∥Φ̃T (u0) − Φ̃T (u′
0)

∥∥∥
Z+

≤ CR,T ‖u0 − u′
0‖Z .

Under these assumptions, it is well known that the flow maps Φt preserve the
symplectic form.

The aim of this section is to show the following non-squeezing theorem

Theorem 2.1. Assume ΦT is the flow map of an equation of the form (2) and
satisfies the previous assumptions. If ΦT sends a ball

Br = {z ∈ Z/‖z − z̄‖ < r}, z̄ fixed

into a cylinder

CR,j0 =
{

z =
∑

pjϕ
+
j + qjϕ

−
j

/
(pj0 − p̄j0)

2 + (qj0 − q̄j0)
2 < R2

}

j0, p̄j0 , q̄j0 fixed

then r ≤ R.

In fact, this theorem is a simple version of the conservation of a symplectic
capacity on Z by the flow map ΦT (see subsection 2.3.2 below)
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Remark 2.2. This theoreme implies the following fact. Fiw ε > 0, a time
T > 0, a Fourier mode n0 and r > 0 (no smallness conditions are imposed on r or
T ), then there exists u0 ∈ H1/2(T) such that

‖u0‖H1/2 < r

and

|û(T )(n0)| >
r − ε

(n2
0 + 1)1/4

where u solves (2).
The non-squeezing theorem remains true if we don’t suppose that the flow map

is global in (H1), but the conclusion would be :
either

|û(T )(n0)| >
r − ε

(n2
0 + 1)1/4

or

sup
0≤t≤T

‖u(t)‖H1/2 = +∞.

So we impose the global wellposedness in time for (2) in order to rule out the second
case.

2.2. An approximation lemma. In order to define a capacity, we will need
to approximate the flow by finite-dimentional maps. We shall use the following
lemma

Lemma 2.3. Let Φ the flow at time T of an equation (2) satisfying the previous
assumptions. For each ε > 0 and R > 0, there exists N ∈ N such that for u ∈ BR :

(3) Φ(u) = etJA(I + Φ̃ε)(I + Φ̃N )(u)

where (I + Φ̃ε) and (I + Φ̃N ) are symplectic diffeomorphisms satisfying

(4) ‖Φ̃ε(u)‖ ≤ ε for u ∈ (I + Φ̃N )(BR)

(5)
(
I + Φ̃N

)
(uN + uN) =

(
I + Φ̃N

)
(uN) + uN for uN ∈ ZN , uN ∈ ZN .

Proof. Recall that Φ = eTJA(I + Φ̃). First, we observe that for |t| ≤ T , any
R > 0 and u, v ∈ BR(Z) we have

(6)
∥∥∥Φ̃(u) − ΠN Φ̃(u)

∥∥∥
Z
≤ ε1(N) −→

N→+∞
0.

Indeed, as K =
⋃

|t|≤T Φ̃(Br(Z)) is precompact in Z (by (H3)), then (6) results

from the following statement

sup
u∈K

∥∥u − ΠNu
∥∥ −→

N→+∞
0.

Suppose that the convergence does not hold, then we can find a sequence (un) in K
such that ‖(I − Πn)un‖ ≥ ε > 0. As K is precompact there exists a subsequence
(unj ) such that unj → u. For nj sufficiently large we have

‖(I − Πnj )(u)‖ ≤ ε/2,
∥∥unj − u

∥∥ ≤ ε/2.

Hence
∥∥(I − Πnj )(unj )

∥∥ ≤ ε and we get a contradiction.
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Now we set hN = h ◦ ΠN . Then ∇hN = ΠN∇hΠN . We define ΦN the time T
flow of the equation

(7) v̇ = J(Av + ∇hN (v))

or, equivalently, v = vN + vN ∈ ZN + ZN and
{

v̇N = J(AvN + ΠN∇h(vN ))
v̇N = JAvN

We write ΦN = eTJA(I + Φ̃N ).

Since Φ̃N = 0 outside ZN , Φ̃N has the desired form (5). Define

Φ̃ε =
(
Φ̃ − Φ̃N

)(
I + Φ̃N

)−1

,

so we have

eTJA
(
I + Φ̃ε

)(
I + Φ̃N

)
= eTJA

(
I + Φ̃

)
= Φ.

Next we estimate the difference Φ̃ − Φ̃N . For u ∈ BR(Z) we have
∥∥∥Φ̃(u) − Φ̃N (u)

∥∥∥
Z
≤

∥∥∥Φ̃(u) − ΠN Φ̃(u)
∥∥∥

Z
+

∥∥∥ΠN Φ̃(u) − ΠN Φ̃(ΠNu)
∥∥∥

Z

+
∥∥∥ΠN Φ̃(ΠNu) − Φ̃N (u)

∥∥∥
Z

.

Hence by (6) and assumption (H3), for u ∈ BR(Z) we have
∥∥∥Φ̃(u) − Φ̃N (u)

∥∥∥
Z
≤ Cε(N) −→

N→+∞
0,

so for u ∈
(
I + Φ̃N

)
(BR(Z))

∥∥∥Φ̃ε(u)
∥∥∥

Z
≤ ε(N) −→

N→+∞
0.

�

2.3. Symplectic capacities and non-squeezing theorem.
2.3.1. Capacities in finite-dimentional space. Consider R2n supplied with the

standard symplectic structure, that is ω(x, y) = 〈Jx, y〉 where

J =

(
0 −I
I 0

)
.

For f : R2n → R a smooth function we define the hamiltonian vectorfield

Xf = J∇f.

Definition 2.4. Let O an open set of R2n, f ∈ C∞(O) and m > 0. The
function f is called m-admissible if

• 0 ≤ f(x) ≤ m for x ∈ O, and f vanishes on a nonempty open set of O,
and f |∂O = m.

• The set {z/f(z) < m} is bounded and the distance from this set to ∂O is
d(f) > 0.

Following [6] we define the capacity c2n(O) of an open set O of R2n as

c2n(O) = inf {m∗/for each m > m∗ and each m-admissible function f in O

the vectorfield Xf has a non constant periodic solution of period ≤ 1} .
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Theorem 2.5. c2n is a symplectic capacity, that is

• if O1 ⊂ O2 then c2n(O1) ≤ c2n(O2)
and if ϕ : O → R2n is a symplectic diffeomorphism then c2n(O) =
c2n(ϕ(O)).

• c2n(λO) = λ2c2n(O).
• c2n(B1) = c2n(Cr,1) = π where

Br =
{

(p, q)/
∑

(p2
j + q2

j ) < r2
}

, and Cr,1 =
{
(p, q)/(p2

1 + q2
1) < r2

}
.

See [6] for a proof. An immediate consequence of this theorem is the non-
squeezing theorem of M. Gromov [5].

Theorem 2.6. The ball Br can be symplecticaly embedded into the cylinder
CR,1 if and only if r ≤ R.

2.3.2. Construction of a capacity on Hilbert spaces. In this section we define a
symplectic capacity on Hilbert spaces which is invariant with respect to the flow of
the equation (2). We will follow the construction of S. Kuksin (see [7]).

For O an open set of Z we denote On = O ∩ Zn and observe that ∂On ⊂
∂O ∩ Zn.

Definition 2.7. Let f ∈ C∞(O) and m > 0. The function f is called m-
admissible if

• 0 ≤ f(x) ≤ m for x ∈ O, and f vanishes on a nonempty open set of O,
and f |∂O = m.

• The set {z/f(z) < m} is bounded and the distance from this set to ∂O is
d(f) > 0.

Remark 2.8. If f is m-admissible, denoting supp(f) = {z/0 < f(z) < m} we
have

dist(f−1(0), ∂O) ≥ d(f),

dist(supp(f), ∂O) ≥ d(f).

Denote fn = f |On and consider Xfn the corresponding hamiltonian vectorfield
on On.

Definition 2.9. A T -periodic trajectory of Xfn is called fast if it is not a
stationnary point and T ≤ 1.

A m-admissible function f is called fast if there exists n0 (depending on f)
such that for all n ≥ n0 the vectorfield Xfn has a fast solution.

Lemma 2.10. Each periodic trajectory of Xfn is contained in supp(f) ∩ Zn.

Proof. Pick z ∈ On\supp(f), fn takes either its minimal or maximal value
in z, hence Xfn(z) = 0. Therefore z is a stationnary point and a fast trajectory
cannot pass through it. �

We are now in position to define a capacity c.

Definition 2.11. For an open set O of Z its capacity equals to

c(O) = inf {m∗/each m-admissible function with m > m∗ is fast} .

Proposition 2.12. Assume that O1, O2 and O are open sets of Z and λ 6= 0

(1) if O1 ⊂ O2 then c(O1) ≤ c(O2) ;
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(2) c(λO) = λ2c(O).

Proof. (1) Assume m < c(O1), by definition of c there exists a m-admissible
function f of O1 which is not fast. Hence, there exists a sequence (nj) → +∞ such

that for every j ∈ N, Xfnj
has no fast periodic trajectory. Define f̃ on O2 by

f̃(x) =

{
f(x) if x ∈ O1

m otherwise

The function f̃ is clearly m-admissible on O2.

By lemma 2.10, for each j ∈ N, each fast solution x(t) of X efnj
lies in suppf̃ ∩

Znj =suppf ∩Znj . Hence x(t) is a fast trajectory of Xfnj
(X efnj

and Xfnj
are the

same vectorfields on supp(f) by definition of supp(f)).
Therefore, for each j ∈ N the vectorfield X efnj

of O2 has no fast trajectory. Hence

f̃ is m-admissible but is not fast. Thus c(O2) ≥ m, and the first assertion follows.
(2) Define fλ = λ2f(λ−1·) on λO. Clearly f is m-admissible on O if and only

if fλ is λ2m-admissible on λO. Moreover z(t) ∈ On is a T -periodic trajectory
of Xfn if and only if λz(t) ∈ λOn is a T -periodic trajectory of Xfλ

n
. Therefore

c(λO) = λ2c(O). �

Lemma 2.13. If F : Z → Z has the form

F (zn + zn) = Fn(zn) + zn z = zn + zn ∈ Z = Zn ⊕ Zn

with Fn a symplectic diffeomorphism of Zn, then c(O) = c(F (O)), for each open
set O of Z.

Proof. We observe that if f is m-admissible in F (O) and f is fast then f ◦F
is m-admissible in O and f ◦ F is fast. Indeed F ∗ : f 7→ f ◦ F clearly sends
m-admissible functions in F (O) to similar ones in O, and for p ≥ n it tranforms
X(f◦F )p into Xfp . Hence admissible and fast functions are preserved by F and its
inverse (F is the identity outside of Zn which is a finite-dimentional space), and
the result follows. �

Proposition 2.14. For each open set O of Z and ξ in Z, we have

c(O) = c(O + ξ).

Proof. Denote Oξ = O + ξ. It is sufficient to prove that c(O) ≤ c(O + ξ)
(change ξ into −ξ).
Denote ξ = ξn0 + ξn0

∈ Zn0 + Zn0
(n0 will be fixed later) and O1 = O + ξn0 .By

lemma 2.13 c(O1) = c(O). We also remark that Oξ = O1 + ξn0
.

Take any m-admissible function f on Oξ with m > c(O). We wish to check
that f is fast.
Since ∂Oξ ⊂ ∂O1 + ξn0

and ‖ξn‖ −→
n→+∞

0, we have

dist(∂O1, ∂Oξ) ≤ dist(∂O1, ∂O1 + ξn0
) ≤ ‖ξn0

‖ −→
n0→+∞

0.

Pick n0 such that

(8) dist(∂O1, ∂Oξ) ≤ ‖ξn0
‖ <

1

2
d(f).

We extend f outside Oξ with f(z) = m if z /∈ Oξ and we denote f̃ its restriction
to O1.
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f equals m on a d(f)-neighbourhood of ∂Oξ. By (8), we deduce that f̃ equals
m on a 1

2d(f)-neighbourhood of ∂O1.

By remark 2.8 we have dist(f−1(0), ∂Oξ) ≥ d(f). Hence, by (8),we have

dist(f−1(0), ∂O1) ≥
1
2d(f), and in particular f̃ vanishes on a nonempty open set of

O1 ∩ Oξ ⊂ O1. Therefore f̃ is m-admissible.
Since c(O1) = c(O) < m, it follows that X efn

has a fast trajectory in On
1 if

n ≥ n0 is sufficiently large. By lemma 2.10 this trajectory lies in suppf̃ = suppf ⊂
O1 ∩ O. Hence this trajectory is a fast solution of Xfn , and the function f is
fast. �

If r = (rj)j∈N∗ is a sequence of R∗
+ ∪ {+∞} with 0 < r = inf

j∈N∗

rj < +∞, we

define

D(r) =



z =

+∞∑

j=1

pjϕ
+
j + qjϕ

−
j

/
∀j ∈ N, p2

j + q2
j < r2

j



 ,

E(r) =



z =

+∞∑

j=1

pjϕ
+
j + qjϕ

−
j

/
+∞∑

j=1

p2
j + q2

j

r2
j

< 1



 .

Remark that if r = (r, +∞, . . . , +∞), D(r) is a symplectic cylinder Cr,1.

Theorem 2.15. We have c(E(r)) = c(D(r)) = πr2

Proof. We have to check the following inequalities

(1) c(E(r)) ≥ πr2

(2) c(D(r)) ≤ πr2

then we will conclude by proposition 2.12.
(1) It is sufficient to prove that c(B1) ≥ π (then the result follows by proposition

2.12).
Define m = π − ε. Choose f : [0, 1] → R+ satisfying :





0 ≤ f ′(t) < π for t ∈ [0, 1]
f(t) = 0 for t near 0
f(t) = m for t near 1

Then, define H(x) = f(‖x‖2) for x in B(1). H is m-admissible. We want to
prove that H is not fast. Consider

Hn(x) = f




n∑

j=1

(p2
j + q2

j )



 , where x =
∑

j

(pjϕ
+
j + qjϕ

−
j ).

Using the variables Ij = 1
2 (p2

j + q2
j ) and θj = arctan

(
pj

qj

)
we observe that non-

constant periodic solutions corresponding to this hamiltonian has a period T > 1.
Hence XHn has no fast trajectory and H is not fast.

(2) Denote O = D(r). Pick m > πr2 and f a m-admissible function in O. Since
f−1(0) is not empty, there exists n such that f−1(0) ∩ Zn 6= ∅. Denote fn = f |On .
Since ∂On ⊂ ∂O, we deduce that fn equals m on a neighbourhood of ∂On. Hence
fn is m-admissible.

Since c2n(On) = π min
1≤j≤n

r2
j , we have

c2n(On) −→
n→+∞

π inf
j≥1

r2
j = πr2 < m.
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Hence, for n sufficiently large c2n(On) < m. Therefore Xfn has a fast periodic
trajectory and the function f is fast. �

Corollary 2.16. We have c(Br) = c(Cr,1) = πr2,
and for each bounded open set O of Z we have 0 < c(O) < +∞.

The essential property of the capacity c is its invariance with respect to the
flow maps of PDEs satisfying assumptions (H1), (H2) and (H3). In fact the non-
squeezing theorem 2.1 is a consequence of the following result.

Theorem 2.17. Let ΦT the flow of an equation (2) satisfying the assumptions
(H1), (H2) and (H3). For any open set O of Z we have

c(ΦT (O)) = c(O).

Proof. Let us denote Φ = ΦT and Q = Φ(O). One easily checks that Φ−1

satisfies (H1), (H2) and (H3), therefore it is sufficient to prove that c(Q) ≤ c(O).
Take any m > c(O) and any f m-admissible in Q. We want to prove that f is

fast.
Since f is m-admissible there exists R > 0 such that suppf ⊂ BR. Define

R1 = R + d(f), Q′ = Q ∩ BR′ and O′ = Φ−1(Q′). By assumption O′ is bounded,
hence there exists R′ such that O′ ⊂ BR′ . Moreover we clearly have O′ ⊂ O, thus
by proposition 2.12

(9) c(O′) ≤ c(O).

We apply lemma 2.3 with N so large that ε < 1
2d(f), and we use the notations of

the lemma 2.3 : Φ = eTJA(I+Φ̃ε)(I +Φ̃N). We denote O1 and O2 the intermediate
domains which arrise from the decomposition

O′ I+eΦN−−−−→ O1
I+eΦε−−−→ O2

eT JA

−−−→ Q′.

We also denote

f2 =
(
f ◦ eTJA

)∣∣
O2

.

Observe that f2 is m-admissible on O2. Indeed f is m-admissible on Q and
also on Q′ (by definition of Q′). Since etJA is an isometry, f2 is m-admissible.

Then, we extend f2 as m outside O2, and we denote f̃ its restriction to O1.
By (4) the ε-neighbourhood of ∂O1 is contained in the 2ε-neighbourhood of ∂O2.

Since ε < 1
2d(f), we deduce that f̃ equals m on a neighbourhood of ∂O1. Moreover

f̃−1(0) = f−1
2 (0) ⊂ O1 ∩ O2. Indeed by remark 2.8

dist(f−1
2 (0), ∂O2) ≥ d(f)

and dist(∂O1, ∂O2) ≤
1

2
d(f).

Hence f̃ is m-admissible on O1.
Using lemma 2.13 and (9), we deduce that

c(O1) = c
(
(I + Φ̃N )(O′)

)
= c(O′) ≤ c(O) < m.

Hence f̃ is m-admissible on O1 and c(O1) < m, thus f̃ is fast. So for n sufficiently

large, the vectorfield X efn
(where f̃n = f̃ |On

1
) has a fast solution. By lemma 2.10

this solution lies in suppf̃ and by remark 2.8 suppf̃ =suppf2, so this solution is
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also a fast solution of Xfn
2

(where fn
2 = f2|On

2
). Hence f2 is fast too. Finally f is

also fast (f2 =
(
f ◦ eTJA

)∣∣
O2

). �

3. Application to the BBM equation

In this section we prove that the BBM equation

(10)

{
ut + ux + uux − uxxt = 0, x ∈ T

u(0, x) = u0(x)

is globally well-posed in Hs(T) for s ≥ 0 (we will follow the proof given in [2] for
x ∈ R) and has the non-squeezing property (theorem 1.1).

3.1. Bilinear estimates. We start by two helpful inequalities.

Let ϕ(k) = k
1+k2 and ϕ(D) the Fourier multiplier operator defined by ϕ̂(D)u(k) =

ϕ(k)û(k).

Lemma 3.1. Let u ∈ Hr(T) and v ∈ Hr′

(T) with 0 ≤ r ≤ s, 0 ≤ r′ ≤ s and
0 ≤ 2s − r − r′ < 1/4. Then

‖ϕ(D)(uv)‖Hs ≤ Cr,r′,s ‖u‖Hr ‖v‖Hr′

Proof. We want to prove

∥∥∥∥〈k〉
s k

1 + k2
ûv(k)

∥∥∥∥
ℓ2k

≤ C ‖u‖Hr ‖v‖Hr′ .

By duality it is sufficient to prove

〈
〈k〉s

k

1 + k2
ûv, ŵ

〉

ℓ2
≤ C ‖u‖Hr ‖v‖Hr′ ‖w‖L2 ,

that is

I =
∑

k∈Z

k 〈k〉s−2
ûv(k)ŵ(k) ≤ C ‖u‖Hr ‖v‖Hr′ ‖w‖L2 .

Let f(k) = 〈k〉r û(k), g(k) = 〈k〉r
′

v̂(k) and h(k) = k 〈k〉−2(1+r+r′−2s)
ŵ(k). Since

ûv(k) =
∑

l∈Z

û(l)v̂(k − l)

we have

I =
∑

k∈Z

∑

l∈Z

〈k〉−3s+2r+2r′

〈l〉r 〈k − l〉r
′

f(l)g(k − l)h(k).

We have −2s + r + r′ ≤ 0 and −s + r ≤ 0 and −s + r′ ≤ 0 so
−3s + 2r + 2r′ = −2s + r + r′ + (−s + r′) + r ≤ r and −3s + 2r + 2r′ ≤ r′.
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Hence
〈k〉−3s+2r+2r′

〈l〉r 〈k − l〉r
′

is bounded for k and l in Z. Then (by Cauchy-Schwarz in-

equality and Young’s inequality)

I .
∑

k∈Z

∑

l∈Z

f(l)g(k − l)h(k)

. ‖f‖ℓ2 ‖g ∗ h(−·)‖ℓ2

. ‖f‖ℓ2 ‖g‖ℓ2 ‖h‖ℓ1

. ‖u‖Hr ‖v‖Hr′ ‖w‖L2

∥∥∥∥
k

(1 + k2)1+r+r′−2s

∥∥∥∥
ℓ2k

.

Since 2s − r − r′ < 1/4 we have 1 + r + r′ − 2s > 3/4. Hence
∥∥∥∥

k

(1 + k2)1+r+r′−2s

∥∥∥∥
ℓ2k

< +∞.

�

In subsection 3.3 we will use this lemma in the particular case r = r′ = s ≥ 0,
that is

‖ϕ(D)(uv)‖Hs ≤ Cs ‖u‖Hs ‖v‖Hs

whereas in subsection 3.4 and 3.5 we will need the general case 0 ≤ r, r′ < s.

Lemma 3.2. Let u ∈ Hr(T) and v ∈ Hs(T) with 0 ≤ s ≤ r and r > 1
2 , then

‖ϕ(D)(uv)‖Hs+1 ≤ C ‖u‖Hr ‖v‖Hs .

Proof. Since r > 1
2 and r ≥ s ≥ 0, the elements of Hr(T) are multipliers in

Hs(T), which is to say
‖uv‖Hs . ‖u‖Hr ‖v‖Hs .

Hence

‖ϕ(D)(uv)‖Hs+1 =

∥∥∥∥∥
〈k〉s+1

k

〈k〉2
ûv

∥∥∥∥∥
ℓ2k

≤ ‖〈k〉s ûv‖ℓ2k

= ‖uv‖Hs

. ‖u‖Hr ‖v‖Hs .

�

3.2. Hamiltonian formalism for BBM equation. Recall that BBM equa-
tion reads

ut + ux + uux − utxx = 0.

Let us prove that BBM equation is a hamiltonian equation (2).
First BBM can be written

ut = −∂x(1 − ∂2
x)−1(u +

u2

2
).

Denote Z = H
1/2
0 (T) =

{
u ∈ H1/2/

∫
T

u = 0
}

with the following norm

‖u‖Z =
∑

k∈Z\{0}

1 + k2

k
(a2

k + b2
k)
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where ak and bk are the (real) Fourier coefficients of u.
Consider the Hilbert basis of Z given by

ϕ+
n (x) =

√
n

π(n2 + 1)
cos(nx), ϕ−

n (x) =

√
n

π(n2 + 1)
sin(nx).

We have Z+ = H
1/2+ε
0 < H

1/2
0 < H

1/2−ε
0 = Z−, where ε > 0 will be fixed later.

Define

H(u) =

∫

T

(
u(x)2

2
+

u(x)3

6

)
dx,

we have

∇L2H(u) = u +
u2

2
.

Assume

u(t) =
∑

n

pn(t)ϕ+
n + qn(t)ϕ−

n

and

∇L2H(u) =
∑

n

αnϕ+
n + βnϕ−

n .

Denoting H̃(p, q) = H(
∑

n pn(t)ϕ+
n + qn(t)ϕ−

n ) we deduce that

∂H̃

∂pn
=

〈
∇L2H(u), ϕ+

n

〉
L2 = αn

∥∥ϕ+
n

∥∥2

L2 =
nαn

1 + n2

and
∂H̃

∂qn
=

nβn

1 + n2
.

Hence

u̇ =
∑

n

ṗnϕ+
n + q̇nϕ−

n = (1 − ∂2
x)−1∂x(−∇L2H(u))

=
∑

n

−nαn

1 + n2
ϕ−

n +
nβn

1 + n2
ϕ+

n

so 




ṗn =
nβn

1 + n2
=

∂H̃

∂qn

q̇n =
−nαn

1 + n2
= −

∂H̃

∂pn

That is u̇ = J∇ZH(u).

3.3. Verification of (H1).
3.3.1. Local well-posedness. Recall that ϕ(k) = k

1+k2 , the equation (10) can be
written in the form :

(11)

{
iut = ϕ(D)u + 1

2ϕ(D)u2

u(0, x) = u0(x)

Let e−itϕ(D) be the unitary group defining the associated free evolution. That
is, e−itϕ(D)u0 solves the Cauchy problem

(12)

{
iut = ϕ(D)u
u(0, x) = u0(x)
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Then, (11) may be rewritten as the integral equation

u(t) = e−itϕ(D)u0 −
i

2

∫ t

0

e−i(t−τ)ϕ(D)ϕ(D)(u(τ)2)dτ = A(u)(t, ·).

Let Xs
T = C0([−T, T ], Hs(T)). The Hs norm is clearly preserved by the free

evolution, thus

(13)
∥∥∥e−itϕ(D)u0

∥∥∥
Xs

T

= ‖u‖Hs .

Theorem 3.3. Let s ≥ 0. For any u0 ∈ Hs(T), there exist a time T (depending
on u0) and a unique solution u ∈ Xs

T of (10). The maximal existence time Ts has
the property that

Ts ≥
1

4Cs ‖u0‖Hs

with Cs the constant from lemma 3.1 (in the special case r = r′ = s).
Moreover, for R > 0, let T denote a uniform existence time for (10) with

u0 ∈ BR(Hs(T)), then the map Φ : u0 7→ u is real-analytic from BR(Hs(T)) to Xs
T .

Proof. Let R = 2 ‖u0‖Hs . For any u ∈ BR(Xs
T ), by (13) and lemma 3.1 (with

r = r′ = s) we have

‖A(u)‖Xs
T
≤

∥∥∥e−itϕ(D)u0

∥∥∥
Xs

T

+
1

2

∥∥∥∥
∫ t

0

e−i(t−τ)ϕ(D)ϕ(u(τ)2)dτ

∥∥∥∥
Xs

T

≤ ‖u0‖Hs +
CsT

2
‖u‖2

Xs
T

≤ ‖u0‖Hs +
CsT

2
R2

≤ R for T =
2

CsR

and for any u, v ∈ BR(Xs
T ), by lemma 3.1 (with r = r′ = s) we have

‖A(u) −A(v)‖Xs
T
≤

CsT

2
‖u − v‖Xs

T
‖u + v‖Xs

T
≤ CsTR ‖u − v‖Xs

T
.

Hence, A is a contraction mapping of BR(Xs
T ) for T = 1

2CsR = 1
4Cs‖u0‖Hs

. Thus A

has a unique fixed point which is a solution of (10) on time interval [−T, T ].
Let us consider now the smoothness of Φ. Let Λ : Hs(T) × Xs

T −→ Xs
T be

defined as

Λ(u0, v)(t) = v(t) − e−itϕ(D)u0 −
i

2

∫ t

0

e−i(t−τ)ϕ(D)ϕ(D)(v(τ)2)dτ.

Due to lemme 3.1 (with r = r′ = s), Λ is a smooth map from Hs(T) × Xs
T to Xs

T .
Let u ∈ Xs

T be the solution of (10) with initial data u0 ∈ Hs(T), which is to say
Λ(u0, u) = 0. Thus, the Fréchet derivative of Λ with respect to the second variable
is the linear map :

Λ′(u0, u)(t)[h] = h −

∫ t

0

e−i(t−τ)ϕ(D)ϕ(D)(u(τ)h(τ))dτ.

Still by lemma 3.1 we get
∥∥∥∥
∫ t

0

e−i(t−τ)ϕ(D)ϕ(D)(u(τ)h(τ))dτ

∥∥∥∥
Xs

T

≤ CT ‖u‖Hs ‖h‖Hs .
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So, for T ′ sufficiently small (depending only on ‖u‖Hs), Λ′(u0, u)(t) is invertible
since it is of the form Id + K with

‖K‖B(Xs
T ′

,Xs
T ′

) < 1

where B(Xs
T ′ , Xs

T ′) is the Banach space of bounded linear operators on Xs
T ′ . Thus

Φ : BR(Hs(T)) → Xs
T is real-analytic by Implicit Function Theorem. �

3.3.2. Global well-posedness.

Theorem 3.4. The solution defined in theorem 3.3 is global in time.

Proof. Fix T > 0. The aim is to show that corresponding to any initial data
u0 ∈ Hs, there is a unique solution of (10) that lies in Xs

T . Because of theorem 3.3,
this result is clear for data that is small enough in Hs, and it is sufficient to prove
the existence of a solution corresponding to initial data of arbitrary size (uniqueness
is a local issue). Fix u0 ∈ Hs and let N be such that

∑

|k|≥N

〈k〉2s |û0(k)|2 ≤ T−2.

Such values of N exist since 〈k〉s |û0(k)| is in ℓ2. Define

v0(x) =
∑

|k|≥N

eixkû0(k).

By theorem 3.3, there exists a unique v ∈ Xs
T solution of (10) with initial data

v0. Split the initial data u0 into two pieces: u0 = v0+w0; and consider the following
Cauchy problem (where v is now fixed)

(14)

{
wt − wxxt + wx + wwx + (vw)x

w(0, x) = w0(x)

If there exists a solution w of (14) in Xs
T then v + w will be a solution of (10) in

Xs
T .

First, w0 is in Hr(T) for all r > 0, in particular w0 ∈ H1(T). And (14) may be
rewritten as the integral equation

w(t, x) = e−itϕ(D)w0 −
i

2

∫ t

0

e−i(t−τ)ϕ(D)ϕ(D)(vw + w2)dτ = K(w).

This problem can be solved locally in time on H1(T) by the same arguments used
to prove theorem 3.3. Indeed for any w ∈ BR(X1

S), by lemma 3.2 (with r = 1 and
s = 0) and lemma 3.1 (with r = r′ = s = 1)

‖K(w)‖X1
S
≤ ‖w0‖H1 + CS

(
‖v‖X0

S
‖w‖X1

S
+ ‖w‖2

X1
S

)

≤ CS ‖v‖X0
S

R(15)

and for any w1 and w2 in BR(X1
S)

‖K(w1) − K(w2)‖X1
S

≤ CS
(
‖v‖X0

S
‖w1 − w2‖X1

S
+ ‖w1 − w2‖X1

S
‖w1 + w2‖X1

S

)

≤ CS
(
‖v‖X0

S
+ 2R

)
‖w1 − w2‖X1

S
.(16)

Hence, by (15) and (16), K has a unique fixed point in X1
S . Therefore we have a

solution w in X1
S for a small time S.
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If we have an a priori bound on the H1-norm of w showing it was bounded on
the interval [−T, T ] it would follow that a solution on [−T, T ] could be obtained.

The formal steps of this inequality are as folllows (the justification is made
by regularizing). Multiply the equation (14) by w, integrate over T, and after
integration by parts we get

1

2

d

dt

∫

T

(
w(t, x)2 + wx(t, x)2

)
dx −

∫

T

v(t, x)w(t, x)wx(t, x)dx = 0.

By Hölder and Sobolev inequalities we deduce
∣∣∣∣
∫

T

v(t, x)w(t, x)wx(t, x)dx

∣∣∣∣ ≤ ‖v(t, ·)‖L2 ‖w(t, ·)‖L∞ ‖wx(t, ·)‖L2

≤ C ‖v(t, ·)‖L2 ‖w(t, ·)‖2
H1 .

Hence
d

dt
‖w(t, ·)‖2

H1 ≤ 2C ‖v(t, ·)‖L2 ‖w(t, ·)‖2
H1

and by Gronwall’s inequality

‖w(t, ·)‖H1 ≤ ‖w0‖H1 exp

(
C

∫ t

0

‖v(τ, ·)‖L2 dτ

)
.

We deduce from this a priori bound that the solution w of (14) exists on the
interval [−T, T ], and v + w is a solution of (10) in Xs

T . �

3.4. Verification of (H2).

Proposition 3.5. For any T > 0, R > 0, and s > 0 there exists R′ such that

∀0 ≤ t ≤ T, Φt(BR(Hs)) ⊂ BR′(Hs).

With s = 1
2 we deduce that Φ satisfies (H2).

Proof. The result is clear for s ≥ 1, so we assume that 0 < s < 1. Fix T > 0,
R > 0 and u0 in Hs such that ‖u0‖Hs ≤ R. Using the same idea as in theorem 3.4
split u0 into two pieces u0 = v0 + w0, where

v0 =
∑

|k|≥N

û0(k)eikx.

Using the same notations, let v be the solution of BBM equation with the initial
data v0 and w the solution of (14). We want to control v and w in Hs-norm.

Fix ε > 0 such that ε < 1/8 and s − ε > 0, we have

‖v0‖Hs−ε ≤ N−ε ‖v0‖Hs .

We choose N =
(

4RC
T

)1/ε
where C is the constant of lemma 3.1. Hence we have

‖v0‖Hs−ε ≤
1

4CT
= M.

By local theory (theorem 3.3) the flow map

Φ : BM (Hs−ε) −→ Xs−ε
T

is continuous. Since Hs ∩ BM (Hs−ε) is precompact in BM (Hs−ε) we have

sup
v0∈Hs∩BM (Hs−ε)

‖Φ(v0)‖Xs−ε = C1(R, T ).
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By lemma 3.1 with r = r′ = s − ε we have

‖v‖Xs ≤ ‖v0‖Hs + CT ‖v‖2
Xs−ε ≤ R + CTC1(R, T )2 = C2(R, T ).

The a priori bound on w gives

‖w(t)‖Hs ≤ ‖w(t)‖H1 ≤ ‖w0‖H1 exp

(
C

∫ t

0

‖v(τ, ·)‖L2 dτ

)

≤ N1−s ‖w0‖Hs eCTC2(R,T )

≤ C3(R, T ).

Hence, we have

‖u‖Xs
T
≤ C2(R, T ) + C3(R, T )

�

Corollary 3.6. For each T > 0 and s > 0, the flow map Φ : Hs → Xs
T is

real analytic.

Proof. Let u0 ∈ Hs, R = ‖u0‖Hs and T > 0. By proposition 3.5, there
exists R′ such that Φt(B2R(Hs)) ⊂ BR′(Hs), for all t ∈ [0, T ]. And by local theory
(theorem 3.3) there exists a small time τ such that Φ : BR′(Hs) → Xs

τ is real
analytic. Splitting the time intervalle [0, T ] into

⋃
[kτ, (k + 1)τ ], we deduce that

Φ : Hs → Xs
T is real analytic. �

3.5. Verification of (H3). Recalll that Φ̃ denote the non-linear part of the

flow, that is Φt = e−itϕ(D)(I + Φ̃t). The assumption (H3) results from

Proposition 3.7. For any u0, v0 ∈ BR(H1/2(T)) we have the following esti-
mate ∥∥∥Φ̃(u0) − Φ̃(v0)

∥∥∥
X

1/2+ε
T

≤ CR,T,ε ‖u0 − v0‖H1/2−ε

for 0 < ε < 1/12.

Proof. Let 0 < ε < 1
12 , u0 and v0 in BR(H1/2). Denoting u and v the solutions

of BBM equation with initial data u0 and v0. By lemma 3.1 with s = 1
2 + ε and

r = 1
2 and r′ = 1

2 − ε and (H2) we have
∥∥∥Φ̃t(u0) − Φ̃t(v0)

∥∥∥
X

1/2+ε
T

≤ CT ‖u + v‖
X

1/2

T

‖u − v‖
X

1/2−ε
T

≤ 2CTR′
R,T ‖u − v‖

X
1/2−ε
T

.

Since u0 and v0 are in BR(H1/2) and Φ is C1 on BR(H1/2) which is a relatively
compact subset of H1/2−ε we have

‖u − v‖
X

1/2−ε
T

= ‖Φt(u0) − Φt(v0)‖X
1/2−ε
T

≤ sup
w0∈BR(H1/2)∩H1/2−ε

(
‖dΦ(w0)‖B

“
H1/2−ε,X

1/2−ε
T

”
)
‖u0 − v0‖H1/2−ε

≤ CR,T,ε ‖u0 − v0‖H1/2−ε .

�
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Hence, we can apply the non-squeezing theorem (theorem 2.1) and that proves
the theorem 1.1.
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