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ABSTRACT. We prove that the Cauchy problem of the mass-critical generalized
KdV equation is globally well-posed in Sobolev spaces H*(R) for s > 6/13;
we require that the mass is strictly less than that of the ground state in the
focusing case. The main approach is the “I-method” together with some multi-
linear correction analysis. The result improves the previous works of Fonseca,
Linares, Ponce (2003) and Farah (2009).
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1. Introduction
In this paper, we consider the global well-posedness of the Cauchy problem for
the mass-critical generalized Korteweg-de Vries equation (gKdV):
(1.1) Opu + O2u = pd,(u®), u:Rx[0,T] — R,
(1.2) u(z,0) = uo(z) € H*(R),
where p = +1, H*(R) denotes the usual inhomogeneous Sobolev space of order s.

When p = 1, the equation (1.1) is called “ defocusing”, while when p = —1 it is
called “focusing”. The equation (1.1) is mass-critical since the scaling

w(a, t) — AN 2u(z /N t/A%), A > 0,
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leaves both the equation and the mass [, [u(z,t)]*dz invariant.

The Cauchy problem (1.1)-(1.2) was shown by Kenig, Ponce, Vega [26] to be
locally well-posed in H*(R) for s > 0, see also [22] for s > 3/2. In other words, for
any ug € H*(R), there exists a positive time T = T'(||ug||g=) (when s = 0, T" also
depends on the profile of the initial data wg), such that the solution to (1.1)-(1.2)
exists and is unique in a certain Banach space of functional X C C([0,T]; H*(R));
moreover, the solution map is continuous from H*(R) to C([0,T]; H*(R)). It ap-
pears that the index s = 0 is sharp since there are examples to show that the critical
gKdV equation is ill-posed for s < 0, see [2]. If the lifetime of the solution T' can
be taken arbitrarily large, we say that (1.1)-(1.2) is globally well-posed.

As is well-known, the local solution to equation (1.1)-(1.2) enjoys the mass
conservation law,

(1.3) M(u(t)) = / lu(z,t)|* de = M (ug),
R
and the H'—solution enjoys the energy conservation law,
1
(1.4) B(u(t)) = / 3 0su(w, O + B, )[° dr = B(uo).
R

Hence, an immediate conclusion on global wellposedness for H '-initial data follows
from the local theory in [26] and the equation (1.4) above in the defocusing case. In
the focusing case, the same conclusion holds under the condition |lugl/z2 < ||@Q||L2
by the sharp Gagliardo-Nirenberg inequality (see [31]),

(1.5) lullze < 3(Iullz2/1Qllz2)"|0xullZ,
where Q = [3sech?(2x)]7 is the ground state solution to the elliptic equation
0z Q + Q5 =Q.

Moreover, the local theory in [26] implies the global well-posedness in L? when
the initial data has sufficiently small L? norm. However, unlike in the case of
H(R), where the equation (1.1) is “subcritical” with respect to the regularity of
initial data, the usual iteration argument involving the Strichartz estimates and the
mass conservation law will not yield the global wellposedness directly for large L?
data. So the question of L2-global wellposedness and scattering is regarded as an
open conjecture in the field; it is far from resolution, despite much recent progress
[27, 28].

Therefore, a natural question arises: what is the least s9 > 0 such that for
s > sp, if ug € H*(R), the solution to (1.1)-(1.2) is globally well-posed? The
question is partly plausible in light of the recent exciting progresses in nonlin-
ear dispersive equations such as nonlinear Schrédinger equations (NLS), nonlinear
wave equations (NLW), etc. They are made possibly by the well-known strategies:
Bourgain’s “Fourier truncation method” in [3] and the “I-method” by I-team (Col-
liander, Keel, Staffilani, Takaoka, Tao), see e.g., [6], [L0]. The “Fourier truncation
method” works well provided that there is some smoothing effect arising from the
non-linearity, while “I-method” can still work in the case that there are derivatives
in the non-linearity and such smoothing is not available, and often the latter gives
a sharper result (see [23, 24| for a discussion). Interested readers may consult
[6] for a discussion on Bourgain’s high/low trick in “Fourier truncation method”
and examples of applications of the first-generation “I-method” and second gen-
eration “I-method” to KdV and mKdV equations. For the recent developments
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of “I-method”, we refer to [5, 8, 11, 13, 14, 16, 17, 30] on the applications in
the context of nonlinear Schrédinger equation (NLS), refer to [7, 9] on the ap-
plications in the context of Schrédinger equation with derivative (DNLS), refer to
[6, 10, 15, 21, 32] on the applications in the context of gKdV equations.

The global well-posedness of (1.1)-(1.2) below the energy space H! was consid-
ered by Farah [18], Fonseca, Linares and Ponce [19]. The authors in [19] proved
the global existence in H*(R) for s > 3/4 by appllying Bourgain’s “Fourier trun-
cation method”. This was improved very recently in [18], which lower the index
to s > 3/5 by I-method introduced in [8]. The condition |lug|| < ||@|| L2 is imposed
for both results in the focusing case.

Our main result in this paper is the following improvement.

THEOREM 1.1. The Cauchy problem (1.1)-(1.2) is globally well-posed in H*(R)
for s > 6/13 when p = 1. The same conclusion holds under the assumption ||ug|| <
1@l when = —1.

To prove this theorem, we will follow the general scheme of “I-method” by
adding a “correction-term” to the first modified energy E(Iu) as in [9, 10] and
using the multilinear correction analysis. If we add it in a naive way, the multiplier
introduced in order to obtain the second modified energy is singular in the sense
that its L* norm is infinity for a set of nonzero measure. This difficulty is also noted
in [18, Proposition 3.1]. To overcome it, our approach here follows along similar
lines of refining the modified energy by performing a resonant decomposition to the
singular multiplier as in [13] by Colliander, Keel, Staffilani, Takaoka and Tao, see
also [1, 4]. More precisely we will split the multiplier Mg arising from the derivative
of the first modified energy into two parts:

Mg = M6+M6

under the principle that Mg contains some low-frequency terms, which is referred
to as “resonant term”, and Mg contains the rest, which is referred to as the “non-
resonant term”. For Mg, we will use a point-wise estimate (in t) and reduce it to
an error term in the final bootstrap argument, see Lemma 4.3 and the argument
in Section 5. For Mg, we perform a careful multilinear analysis by using X ;-type
estimates.

Our key point for such an improvement s > 6/13 is due to a better energy
increment bound, N ’%Jr, see the statements in Theorem 3.1. This improves the
previous estimate, N ~2% in [18], which gives s > 3/5.

We will focus on the focusing equation (1.1) under the assumption that ||ug|2 <
[|Q|l2- This assumption guarantees that the kinetic energy in (1.4) is comparable
to the energy thanks to the sharp Gagliardo-Nirenberg inequality (1.5). The same
analysis will go through the defocusing case.

The paper is organized as follows. In Section 2, we introduce some notations
and state some preliminary estimates that will be used throughout this paper. In
Section 3, we establish a variant of local well-posedness theory, set up the I-method.
In Section 4, we establish some fixed time bound for the error term and obtain an
upper bound on the increment of the new modified energy. In Section 5, we prove
the global well-posedness in Theorem 1.1.
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2. Notations and some preliminary estimates

2.1. Notations. We use A < B or B 2 A to denote the statement that
A < CB for some positive constant 0 < C' < oo which does not depend on the
functions but may vary from line to line. We use the notation A ~ B whenever
A < B and B < A. If the constants appearing in < or 2 depend upon some
additional parameters, we will indicate them with subscripts; for example, A <. B
denotes the assertion that A < C.B for some positive constant C, depending on ¢;
similarly for A ~. B, etc.

We use A < B, or sometimes A = o(B) to state the statement A < C~'B for
a sufficiently large constant C' > 0. The notation a+ denotes a + ¢, and a— for
a — € for arbitrarily small exponents ¢ > 0, and allow the implied constants in <
notation to depend on e.

We also set

()= @+ )2 Dy = (-02)*/2, Jg = (1-02)*/2.

We use || f||zza to denote the mixed norm (/ IS (z, )||’L’;, d:c) "

Now we record some definitions. For s, b € R, we define the Bourgain space
X, b to be the closure of the Schwartz class under the norm

2

(2.6) lullx.. = ( [f €2 - &iateny asar)

where @ denotes the space-time Fourier transform of v defined by
u(&,7) = // e 7Ty (2, ) dxdt;

similarly we denote by f the Fourier transform of f(z,t) in the spatial variable.
For any interval €, we define ng to be the restriction of X, ; on R x Q with the
norm

(2.7) ullxe, = nf{|Ullx,, : Uliea = uliea}

When Q = [0, d], we will write ng as Xfyb.
Let 0 < s < 1and N > 1 be fixed. The Fourier multiplier operator I s is
defined by

—

(2.8) I su(§) = my s (§)u(s),

where the multiplier my s(£) is a smooth, monotone and radial function satisfying
0<mp,s(€) <1and

1, ] < N,

(&), I¢l>2N.

(29) mxa(©) = {

Sometimes we denote I s and my s by I and m respectively if there is no confusion.

REMARK 2.1. The operator I s maps H*(R) into H'(R) with equivalent norms
for any s < 1. More precisely, there exists some positive constant C such that

(2.10) C Ml < Mnsullm < CN*Jlu] .
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Moreover, In s can be extended to a map (still denoted by Ins) from Xsp to X1
which satisfies that for any s < 1,b € R,

C M ullx., < In.sullx,, < CN'*[lullx, ,-

2.2. Preliminary estimates. We state some preliminary estimates which
will be used throughout the paper. We start with some well-known Strichartz
estimates, see e.g., [25, 26].

LEMMA 2.1. Foru € X07%+, we have

1
(2.11) | Dol 2 + || D2 ¥

Tl

LiLs L5 L0 S H“|‘XO,%+'

By Sobolev’s embedding, we have the following estimate.
LEMMA 2.2. Foru € X1, 1., we have
2112

(2.12) lullzge, S lullxy, 4, -

[N

We recall the following bilinear estimate from [20, Corollary 3.2] and [18,
Lemma 2.1].

LEMMA 2.3. For any f1, f2 € X 1, supported on the frequencies {1&| ~ N;},
i=1,2. If |&2] ~ & — & ~ |61 + &l for all & € Supp f;, i = 1,2, then

(2.13) 1Dt falliz, S Wfillx, y 1fellx, .

For the sake of completeness, we provide a proof by using Plancherel’s theorem.
PROOF. To prove (2.13), it suffices to prove
493 453
(2.14) IDee™ e |1z S |61z b2 e,

where |§1] ~ [€1 — & ~ |&1 + & for all &; € Supp b;. We write
Dme_t62¢1e_tag¢2 = // eiw(£1+£2)+it(£f+£g)|§1|a@d§1d§2'

We change variables as follows, a := & + & and b := & + £3; then the Jocabian

d(a,b
7= ’8(275))' ~ € - g =& + &) 6 - &) ~ &l

by the assumption on the Fourier supports of ¢;, ¢ = 1,2. Then we apply Plancherel’s
theorem to the left hand side of (2.14) followed by a changing of variables back, we
see that it is bounded by

1/2

e\ 2
611610
(2.15) < // @dsld@ < llnl e el e

This proves (2.14), and hence Lemma 2.3. (]
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3. I-method and the Multilinear Estimates

3.1. A Variant Local Well-posedness. In this subsection, we will establish
a variant local well-posedness result.

PROPOSITION 3.1. Let s > 0, then Cauchy problem (1.1)-(1.2) is locally well-
posed for the initial data ug with Iy sug € H*(R). Moreover, the solution u exists
on the interval [0, 8] with the lifetime

(3.16) & ~ [T, suoll
for some p >0, and

(3.17) v, sullxs S Nl
°2

It can be established by a standard iteration argument; we present it here for
sake of completeness; see also [18, Theorem 5.1] for s > %

PROOF. The proof proceeds by the usual fixed point argument on the space

Xll l+(J). By Duhamel’s principle, Lemma 2.11 and Proposition 2.12 in [29], we
’2
have

[/ HS(t) (Tuo) + /O "S- 9 (D) (s)dsHX

< ol o + 17000

L34 1’%+(J)
IR

S Fuoll g+ 01 De)ll, )

for sufficiently small € > 0, where a + + = a + 2¢. Hence it suffices to show that
5
ol | Sl

Using Lemma 12.1 in [12] or the argument of Lemma 5.2 in [7], we only need to
prove that

< ||u||i< for 0<s<1.

1
3+

(3.18) [[ut O]

—3++
Indeed, from Lemma 2.1, we have

1000 < Wl -

which, interpolating with HfHLooLw < ||f||X1 L implies that
@ Ut I+.1+

7126 00 < W, , -

In addition, by duality of HfHLngo < HfHX0 " we also have
°2

M, , 5173,
which, interpolating with HfHXO = HmeLz’ implies that
’ 7t

1£]] SIAL 5+ 10
X0,7%++ ~ L;‘+Lt9 +



GLOBAL ROUGH SOLUTION FOR CRITICAL GKDV 271

Hence, by the fractional Leibniz rule ([29]) and Lemma 2.1, we have

||u4<%uHX R L Hu V)ouull 34 g4
V)%l g 1ol V) Ostt] e
3 HuHX || ‘ullx,, el ,, el 190l
Sl ,,
for s > 0. This completes the proof of Proposition 3.1. O

3.2. I-method and modified energy. From now on, we take y = —1 and
u be the real-valued solution of (1.1)-(1.2) throughout the paper.

First we record the classical set-up for the “I-method”, see Section 2 in [10] or
Section 3 in [13]. Given a smooth tempered symbol My (&1, -+ , &) defined on the
hyperplane with the the push-forward Lebesgue measure d&; - - - d€x_1,

(3.19) Feo={(&, &) : &+ +& =0},
we define the quantity
k
A (My) = Mi(&, - &) H (&, t)dé - - - dép—r.
T'x i

Then by using the equation (1.1) and a direct computation, we have the following
differentiation formula.

LEMMA 3.1 (Differentiation formula). Let Ay and My, be defined as above. Then
(3.20)

d .
EAk(Mk) = Ap(Myo) —ikAppa(Me (& &1, &pt o+ E&kpa) (Gt +E&kta),
where ay, is the symbol defined by

=i+ ).

We define the “first-generation” modified energy by

(3.21) EHu(t)) = 310 Tu(0)|3: — 5 I1Tu(t)]3
Then it follows from the Fourier inversion formula that
(3:22) E7(u(t)) = Az(o2) + Ag(o6)
where o9 and og are symbols defined by

02 = —%m(&l)m(fz)flfz; 06 = —%m(&) -+ -m(p)-
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Furthermore by the differentiation formula (3.20), we have

(3.23)

iE} (u(t)) = Ag(oaa2) — 2ilg(02(&1,62 + - + &) (&2 + - - + &) + As(o6as)

dt
- 6iA10(06(§17 8,8+ E10)(Ee +§10))
:Ag(—2i02(§1,€2 + -+ 56)(52 + -+ 56) + Uﬁaﬁ)

+A10(—6i06(§1,"' 5,86+ +&10) (&6 +---+§10))
=: A¢(Ms) + Ao(Mo),

Note that the first term vanishes because as vanishes on I's. Here by a similar
symmetrization consideration as in [10, Section 2 and 3] or [13, Section 3], we have

(3.24) Ae(Me,u) = A6 ([Me]sym), Ao(Mio,u) = Ao([Mio]sym);

Since ag and og are already symmetric with respect to the group Sk, the group of
all permutations on k£ objects, we have

[MG]sym = _2i[02(§17€2 +---+ 66)(62 +---+ 56)]sym + o0
(3.25) =: Mg + Mg;
[M1o]sym = —6i[o6(&1,- -+ , &5, + -+ &10) (&6 + - - - + €10) ] sym.-

For readers’ convenience, we record the definition of the symmetrization of a mul-
tiplier from [10, Definition 1].

DEFINITION 3.1. A k-multiplier is a function m : RF — C. A k-multiplier is
symmetric if m(&) = m(g(€)) for all g € Si. The symmetrization of a k-multiplier
m is the multiplier

mlan(©) = 15 3 m(9(6).

gESk

REMARK 3.1. An example of a symmetric 2-multiplier is oo = —%m({l)m(&){l{g
defined above, and by an explicit computation

Mg = =2i[o2(&1, 6+ + &) (&2 + - + &6)]sym

= S (@) + -+ m?(&)6R).
[MlO]sym = _62.[0—6(517 e 755756 + -+ 510)(66 + -+ 610)]sym
=C > m(&)m(&)m(E)m(Ea)m(Ee)m(Ey + -+ + &)
{a,--,3}={1,--,10}
< (&4t E)

for some explicit nonzero constant C.

REMARK 3.2 (Two convenient reductions). There are two well-known reduc-
tions which we will use throughout the rest of the paper.

(1) By symmetrization, the first reduction is that we could order the mag-
nitudes of &;: for example, assume that || > -+ > |&g| in estimating

Ag.
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(2) Inwvarious 6-linear or 10 linear estimates below, we may make a Littlewood-
Paley decomposition and restrict attention to the contribution arising in
|&i| ~ N; where N; is dyadic; from the discussion above, we may assume
that Nl 2 Z N10~ ]le < N,

Mg =0, and Mg = 0= E}(u(t)) is conserved for all time.

Then global wellposedness for this solution u would follow. Hence without
loss of generality, we will take N1 2 N, then the support information of
T¢ or T'yg will give |Na| 2 N, and hence Ny ~ Ny 2 N, which is our

second reduction.

If following a direct analogous reasoning as in [10], from the expression for
4 F}(u(t)) in (3.23), a “natural” choice of the second modified energy would be
Ef(u(t)) = As(56) + B (u(t))
with the choice
G¢ = —Mg/ g,

which however yields no better results than the choice below. As forecasted in the
introduction, the strategy is to split Mg into two parts:

Mg = Mg + M,

where Mg and Mg are defined to be “resonant” and “non-resonant” parts, respec-
tively. We set

l€al > €8] = [éc| = [€p| = [€E] > [€F],

and let
Qo= {(&1, &) €Tt [€a] ~ I€B| 2 N > [écl, |€4 + €l > |€8 + - + &R}
Qg = {(&1,-+,&) €T6 : |&c| 2 N, |éc| > €l };
Qs := {(&1,--- &) €T : |épl Z N > €], [€a + €] > €8 + £l

Im*(€a)E4 + - - +m*(Ep)ED| > I€R + &7,
€4 + EBlIEa + Ecllén + Ec| > [€alI€al?}
Then we rewrite (3.23) by

9 B (1) = Ao(s) + Ag(0Te) + Ao (M),
where, for 2 := Q; U Qs U Qg,

(3.26) ]\:46 = (Xrs — st)Mel;

My == xaM¢ + xrs M2.

Now we are ready to define a new modified energy E?(u(t)) by

(3.27) B} (u(t)) := Ao(G6) + Ef (u(t)),

where

(3.28) 5o 1= —Ms/ag.

Then by applying the differentiation formula (3.20) again, we see that
d _ _

(3.29) — B (u(t)) = Ao(Ms) + Aro(Mio),

dt
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where
Mg :=—6i[(06(E1, -+ ,&5,86 + -+ - + &10)+

+06(81, 185,86 + -+ £10)) (&6 + "'+§10)]Sym'

To prove Theorem 1.1, it suffices to prove the following theorem.

(3.30)

THEOREM 3.1 (Existence of an almost conserved quantity). Let the notations be
defined as above. Then for a solution u to (1.1) which is smooth-in-time, Schwarz-
in-space on a time interval [0, 6], we have

o (Fized-time bound) For 1/3 < s <1,

(3.31) [A6(G6) ()] S N7 [ Tu(t) |3 -
e (Almost conservation law) For t € [0, 4],
1
332 |B) - B0l <OV Tl i)
3 3

We will show that Theorem 3.1 implies Theorem 1.1 in Section 5. Now we focus
on establishing the claims in Theorem 3.1, which will occupy the next section.

4. Fixed-time bound and almost conservation law

In this section, we prove Theorem 3.1. We start with a few basic facts which
will be only used in this section and are taken from [10]. The first is the following
well-known arithmetic fact [10, (4.2)].

(433) & +&E+G+4=0=>8+8+8+88 =3(G+&)(E+8)(6 + &)

Then we record the following forms of the mean value theorem. For m(§) =
NI=sigls=tfor [£] 2 N and 0 < s < 1, let f(€) := m?(£)&3. Then

LEMMA 4.1. For |a|] > |b| = N, then

(4.34) |f(a) + F(O)] < laf*|a+b].
For |n], |\ < €],
(4.35) fE+n+A) = f(E+n) = FE+ X+ F(OI S nlAlE]

(4.35) is often called “double mean value theorem.”

PrROOF. We begin with proving (4.34). If ab > 0, then it follows from the
triangle inequality and the fact m < 1. If ab < 0, it follows the mean value theorem
in Calculus: there exists & satisfying N < |b] < |&] < |al,

LHS of (4.34) < [ le=¢o f(§)(a + )| < laf*|a+b|

for |O¢le=¢, f(€)| ~ m*(©)IE* < laf.
For (4.35),

IfE+n+A) = fE+n) — fE+A)+ f(E)
— /nf’(g—f—)\—l—x)dx—/nf'(f—i—x)dx
0 0

(4.36) _ /n(f’(§+)\+x)—f/(§+$))dx

0

= /On/okf”(§+y+:c)dydx
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Then (4.35) follows because for any |z|, |y| < [&], [f"(E+y+z)| ~ |f"(&)] <€, O

4.1. Fixed-time bound. The first part of Theorem 3.1 is a consequence of
the following two lemmas.

LEMMA 4.2. Let the notations be as in (3.26) and (3.28). Then
(4.37) INIo| S lal, e, 16l S 1.
PROOF. By a symmetry consideration, we may assume that
G| > |&| = |&| = €| = |&| = |-
By the definitions of My and Mg, we only need to show
(4.38) [xaMg| < |asl,

since |og| < 1 always holds. We will prove this bound case by case by analyzing it
on domains €; for i = 1,2, 3. Recall that

|Mg| ~ m?(£2)&7 + - +m?(&6)&5 ).
lag| ~ €7 + -+ &3.
On Tg, €1+"'+§6:0.

Case 1. On Qy, there holds that |5 + -+ &3 < |€8 + & and m(&3) = -+ =
m(&) = 1. It follows that

(4.39) lag| 2 1€ + &3] 2 161 + &6 + &),

as [€162] < (€F + €3)/2 always holds and then & + & — &1&2 > (6 +&3)/2.
On the other hand, by Lemma 4.1,

[Mg| ~ |m?(&)&7 +m®(62)€5 + &5 + -~ + &5
S M (&) +m®(&)E| + 165 + - + &
(4.40) S G +&)aP) + |6+ + &)
Sla+&lE+a)+18+---+£
S é+ &G+ 8).

Thus (4.38) follows from (4.39) and (4.40).

Case 2. On o, since [&3| > |&4], there always holds that |& + & ~ [&3);
moreover we have & - &, < 0; otherwise, if & and & would have the same sign, then
from the support information of I'¢ and |&,4] < |&3],

21&] < &+ &2 = 1863+ &+ & + &) < 3[&31/2 < 3]&2l/2,

which is obviously a contradiction since |€2| > 0. Then
(4.41)

e 2 (6 + &) (5 + & — &16) + (& + &) (&5 + &5 — &&)| + o(1&1(6 + 6))
= (G +&)E+E -a&)+ (—(G+&)— (& +)) (G + & — &8
+o(|&](€7 + €3))
2 |G +&)(E+ 86 — a& —3865/2)| + o(I€] (€5 + €3))
= [(&+&)((E+E -6/2)+ (—&a& — )| + (€] (67 + £3))
> 1&|(65 + &3).
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The first inequality follows since €3 + &3] < [&3|(&7 + &), the third follows since
€3 + &7 — &38| < 3|&3]?/2 and |(& + &) (€5 + & — &384)| < I&3/(€F + €3), and the
last follows since (€2 + €3 — €3/2) > (€2 +£3)/2 and —&1& — €3 > 0.
On the other hand, by Lemma 4.1,,
Mg | < [m?(€)€] —m®(&)(=&)°| + m?(&)&5| + 16§ + & + &
(4.42) S & + &l + &)
< lesl(€F + &3).

Thus (4.38) follows from (4.41) and (4.42) again.

Case 3. We consider Q3. In fact we will consider Q3 \ Q2 by Case 2. We split
Q3 \ 5 into two parts:
(4.43)

Subcase 3a: |&1| > |€3] ~ |€4l; Subcase 3b : [£1] ~ |&| ~ |&3] ~ |€4]-

Subcase 3a. On (23, there holds that [§; + &| > €5 + &|. Thus by the same
consideration as in (4.41),
(4.44)
|| Z |67+ €5 + &5 + & | + o(& + &21€7)
=[G +L)E+E - a&L) + (-G + &) — (& +8)) (& + & — &)
+o(l&r + &l€D)
2|6+ &G+ & — & — & — &+ &&)| + 0|61 + &14)
Z 161+ &l

The last inequality follows since &§ + &3 — &1& > (61 4+ &5)/2 and 4] < &) <
[§1] ~ [&2].

On the other hand, by Lemma 4.1,
[Mg| S [m?(€)& +m*(&2)&5 | + [m® (€3)€3 + m® (€a)&L| + €5 + &3
(4.45) S 16+ &l + 1€ + &al€5 + 15 + 66163

< &+ &€

Case 3b. We may assume that & > 0 by symmetry. Then one of the following
three subcases always occurs:
3b-I: & >0,8 <0,83<0,&4 <O0;
3b-1I: 51 > 0,52 < 0,63 < 0,54 > 0;
3b-III: & > 0,8 > 0,83 < 0,&4 < 0.
In fact, as |[&2| < |&1], &1 > 0 will imply that & 4+ & > 0. On Qgs, there holds that

|61+ &+ &+ & =6+ &| < |61+ & ~ |3+ &al,

which implies that (&1 + &2) and (€3 + &4) has different signs, i.e., & + & < 0, thus
&3 < 0 as |&4] < |€3|. Then we have the classifications as above; note that we would
have the case where & > 0,& > 0,83 < 0,& > 0, but it is ruled out because,
otherwise |&5 + &| ~ |&1 + &2 + &3 + &4] 2 |&1| ~ &1 + &2, a contradiction.

We claim that, the classifications above and |&1] ~ |&a] ~ |€3] ~ |€4] will imply
that

(4.46) |m* ()& + -+ + mP*(&)&3| S 161 + &l + &6 + &5l
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Assuming (4.46), we prove (4.38). On Q3, there holds &2 + &3] < |&1 + &|& +
&sl|&1 + &3], we have

(4.47) [Mg| S 16+ &) + &3)(E2 + E3)]-
Then (4.38) will follow from
(4.48) las| 2 (1 + &2) (€1 + &€3) (€2 + &3)]-

Indeed, we set &4 := &4 + & + &; then
_3 _
ag 2 |67 +& + 6 +&7| - 16 — &l - 163 + €.

On the one hand, by the arithmetical fact (4.33), |3 + &+ &3 +&°| ~ [(G1+&) (& +
&3)(& + &3)|. On the other hand, we have,

€3 — €31, 165 + &1 < (&1 + &2)(&1 + &3) (&2 + &)-

so (4.48) follows. Hence (4.38) follows.
Now we focus on proving (4.46). Let &4 be defined as above, and write

(4.49)
m2(€0)E + - +m2(€2)E} = mA(€)E +m3 ()& +m?(&)E + m? E)E
- (m@E" - mAe)ed) -
By Lemma 4.1,
(4.50) [m2 @& —m*(€0)E]| S lgs+6sllEal® S 1612165 < I+ €al|E1+Eol €2 +Esl,
then establishing (4.46) reduces to

(451) [m2(€0)ed +m?(€)€] + m?()€} + m2 @&’ | Sl + &alléy + Eolla +&sl.

We will establish (4.51) for the Case 3b-I as the other cases can be treated similarly.
Recall in this case, & > 0,£3 < 0,&3 <0 and & < 0. Let £ := &3, A = —& — &3 and
n ==& +&. If |\, |n] < [¢], then the double mean value theorem (4.35) in Lemma
4.1 implies that, as 382 > 0,

(4.52) LHS of (4.51) S [¢[|Al[n] < (&2 + &) (& + &3) (& + &2).
If |n| ~ |€3], then by Lemma 4.1,
LHS of (4.51) < [m?(&1)&7 +m*(&3)&5] + [m*(62)€3 + m*(&4)€3|
S l&1?[€1 + €] + (€262 + &l
S 1€s]18s1161 + &3] ~ [€2 + &slinll€r + &)
S &2 + &sllér + &2l l&1 + &l
If |A| ~ |&3], the reasoning is similar: Indeed, by Lemma 4.1,
LHS of (4.51) < [m*(&)&} +m*(&2)&3] + [m*(&)€5 + m®(&4)&3)|
S I&Plér + &l + (€7 + &l
S 1€s[€s]161 + o] ~ |€2 + &sl|Al1€r + &2
S 1&2 + &sllér + &all&r + &af-
To conclude, (4.51) follows. This completes the proof for Lemma (4.2).

(4.53)

(4.54)
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Now we can establish the first part of Theorem 3.1.
LEMMA 4.3. For any 1/3 < s < 1, we have
(4.55) [A6(36) ()] < N [ Tu(®)]| %

ProoOF. By Lemma 4.2, it suffices to show

(4.56)

‘ﬁ(ﬁl,t)"'f\ﬁ(fﬁ,t)‘ 0—
A< L TXOI R TXOIIS

Eym(&) -+ (6)m(&s)

By using Remark 3.2, we may assume that [;] > -+ > |&| and [&1]| ~ |&2| 2 N.
On the other hand, for 3 <7 <6, m(&;)(&) > (&)® for 0 < s < 1, then

51/f1 f6§6)

N | <§§;£§;3:::{§§§§3/2

SNONAO 2l f2(0) |2z || 7

S 0] B A 0]

where we have used 1/3 < s < 1. Hence (4.55) follows from Sobolev’s inequality. O

3
oo
La:

4.2. An upper bound on the increment of E?(u(t)). In this subsection,
we will establish the second half of Theorem 3.1. As is well known, the almost
conservation law of E%(u(t)) is the key ingredient in the proof of the global well-
posedness below H'!, which relies on the following 6-linear and 10-linear estimates.

PROPOSITION 4.1. For any s > 3/8, we have

5
(4.58) /O Ag(Mg) dt

SNTE |1l
L3

Proor. By using Remark 3.2, we may assume that

|&1] > |&2| > ’53‘ > |&a| > |&] > [é),
|§1|N Z,Z—l ,6, anlewNQZN.
To recover the sum at the end we need to borrow a Ny, but this will not be

mentioned as it at most pays a price equivalent Nt in the end. By Plancherel’s
theorem, we only need to show

P M(&s &) M) o) | o oz
N2 5 5

I B e o B U
Because of the definition [lul|xs (o5xr) = f{[|Ullx, ,@xr) : Uljp,s = u}, it
reduces to show that 1
(4.59)

/ﬁ/‘Mﬁh'@ﬁﬁﬂmﬁ%ﬂ<N7ﬂu| 1ol
s ) <§6> (56) ~ ! XU’%+ 6 XO*%*

In view of this inequality, we may assume that the spatial Fourier transforms of
the f; are nonnegative, which will be used in the arguments throughout the paper
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without being mentioned. Now we split it into five regions:

A ={ € (l6 \ Q) : [&2| Z N > (6]}
Ap ={€ (T \ Q) 1 |&]| 2 N > [&al};
Az ={ € (T6 \ Q) : [&a] Z N > |61}
Ag:={£€ (T \ Q) : [&| 2 N > (&}
As :={ € (I'6 \ Q) : |&| 2 N}

Estimate in A;. In Ay, there holds that

(4.60)

G+ SI1E+- + 8

279

also & +&| = [&34 -+ &6| and €3] < |&2| imply that &€ < 0. The two estimates
above imply that

(4.61)

&
£+

&+l -
68 +8 — &l ™

|61 + &o| = €3] < &3]

Then by Lemma 4.1,

| M| < |m?(€)&) +m?(&)& | + |5 + - + &3
Slé+ &l + |6+ + &8
Sla+&||8+8-a&|+18+-+&
SlE+8l+18+-+ &
S|+ + 8] S 1gsllallés)-

Therefore, by Plancherel’s theorem in the spatial variable, Holder’s inequality fol-
lowed by Lemma 2.2 and Lemma 2.3, the left-hand side of (4.59) is bounded by

(4.62)

B Fi(&) - fols)
< 25—2
SN / o TS

s [an [ el el et (6lRk) (6lR )
(&) 4 Fs) (€)' o)
sy o [ (alfiR) (elfh) (4 5) (@) 5)

<SNIH / dt / (Du i) fs] [(Dafo) ] [T 2 5] [T fo)da

_7
SNE DA fall gz, IDefofalls |

T2 gs|

Ji " fo)

oo oo
Lz,t Lm,t

7
I+
SN Al Iellx g

where we have used the fact that |3] < |61] and [€4] < [€2].
Estimate in A;. Note that A = ), thus Mg = 0.
Estimate in A3. We may split A3 into three regions again,
Az ={€ Az [& +&| S1& + &l

Agpi={€ € Az Im*(E1)& + -+ mP (€S| S 1€ + €21}

Asz = {€ € A3\ (Az1 UAs) : (&1 4 &)(& + &) (& + &) S 18]G
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We claim that in all three cases,

(4.63) | M| < |&511€3 + &3

Indeed,
e In Aj;, we also have |3 + &4] < €5 + &6/, which implies that

|Mg| < |m?(£1)& + m?(&2)&5| + Im?(&)€3 + m?(€4)&5| + 165 + &
SIEG+&EIE+E)+ 16 +&l(E+&) + 18 + &l +8)
< 1&651(&F + €3).

o In Ago, M| 5 €5 + €3] S 165163 + €3)-
e In Ajss, since |&3] ~ [&4] in T\ Qo, we split it into two cases as in (4.43).

= If |&1] > &3] ~ [€4], then [§1 + &3], [€1 + &af ~ [€1]. Then by Lemma
A1,

|Ms| < 161+ &ll&]? ~ (& + &) (& + &)(& + &) S 181G

The last inequality follows from the support of Ass.

— If |&] ~ |&|, we classify {& }1<i<a into the cases as in Case 3b in
Lemma 4.2. Note that (4.46) still holds as establishing it only uses
the information that |§1| ~ |€2| ~ |€3| ~ |€4| and |§5 —|—€6| < |§1 —|—€2|
Hence we have

|Ms| S [(61 + &) (& + &) (&2 + &) S 6116
from the definition of As3. Thus (4.63) follows.
Therefore, by (4.63) and Lemmas 2.1, 2.2 and 2.3, for s > 3/8,

LHS of (4.59) <

4s—4 f1 &1)- J?G(fs)
N /‘“/,% T T El 6 [l o)
(€] FLfs) (€0 F2) (1634 Fa) ([€4] =4 Fa) o) 2~ Fo
SN / at /A e3P TEsT 1/ 17

‘D;%fzx‘

D;* fy

SN7E|D, Nifslicz, 1D foll oo 2

1_
S
LZ,

LyLge LyLge

x

SNE i,y Iollx, .

where we use the fact |5| < [£1] in this case.
Estimate in Ay. Since |£ + & < |€3], we always have

(4.64) | M| < llléll€s]-

If 16| = [&] + o(|]), for all @ = 2,---,5, then [§| = |& + -+ + & 2 &, a
contradiction to A4. So there exists some 2 < ¢ < 5 such that |&1] — |&| 2 &
If i =2 or 3ord, |&] —|&| 2 |&1]; then since |&| > |€5], we have |&] — [&5] >
|€1] — |&] 2 |&1]|- So in any case, we have |£1] — |€5] 2 |€1]. Then this implies
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|€1] ~ |&1 — &5]. Therefore, due to [€5] ~ |€4], for any s > 3/8, by Lemma 2.3,
LHS of (4.59) <

55—5 fi (&1)-- J?G(&s)
N /‘“A RS
5e s (&1 f1f5) (€2l f2) (16312 F3) (1€l =2 Fa) {E6) ™ i
SN / dt/A4 61l 65 €l VTG |

< NBsD (1€01F1 fs) (12l f2) (1631 /2 Fs) (€]~ /4 Fa) (o)~ o
v fan ], &P TEal 1 EsP

5s—5 (&) 1 F) (€21 F2) (16312 Fa) (€4l =4 Fa) o) ™" fo
s / dt/,44 €=

< NOs— 5/dt/A4 (1&]/155) |§2|f2)(|§T£5|15/s4f33/)2(|€4| VA Fs) (€s) " fo
o

|

<SNE|Dafifill e, 1Dsfoll oo

Dﬁfg\

1
571(‘
LiLge LiLge 6HL°°
xz 't xz 't x,t

_z
SNl Il .
Estimate in As. Again by (4.64), Lemma 2.1 and the fact that |{3] ~ |&4], for
s> 3/8, we have

LHS of (4.59)

f1 (&) - J?G(&s)
NGS 6 d
/ ’f/As NP RERE
< N5 (€l F) (€ f2) (18]~ Fs) - - (16l -/ Fo)
N / / |Gl s €l /A [~ /A g o1/

65—6 (& f) (&I f) (&4 F) - - (164 fs)
<N /dt~/As |E3 |35 =5/4| &4 |51/ 4 (€5 |51/ 4 g5~ 1/4

< N6 (& f) (€l f2) (€|~ Fs) - - (€]~ o)
N /dt/ |€4|4S 3/2|§5|S 1/4|€6|S 1/4

< N4 1 1
SN fillge 10 Pl [ D7 555, o |02,
SN flx - fellx, 4, -

This completes the proof for Proposition 4.1. O

Now let us turn to establishing the 10-linear estimate. We first establish a
pointwise bound on M.

LEMMA 44. If [€a] ~ €8] 2 N > [éc] 2 [ép] = -+ = |¢], we have
(4.65) |Mio| < |écl.
PrOOF. By Remark 3.2, we may assume that

|€1] > -+ > [&ol, and [&1] ~ &2 2 N.
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Set 2= {3,4,---,10}. We rewrite

Mo =C > {[o6(61, 600 6ar s Eorbat & + &5 + & + )

{a,-+ ,h}CE

+56(61,62,€ar b, € Ea+ €+ &5 + &g+ &) (Ea+ &+ &5 + &+ 6n)
+ I:O-ﬁ(gaa" : 756761 +§2 +§f +§q +€h)

+66(6a e Gl o+ G+ G+ )]G+ e+ + 6 +6)
+ [o6(€1,&ar -+ L Ea o+ €+ -+ )G+ e+ +En)

+o6(€2,&0, - 7§d7§1+§e+...+§h)(§1+§8+...+§hﬂ
+ [06(€1,ar- L Ea o+ €+ -+ )G+ e+ + )

+56(E2 oy €0 F et T E)E F e+ )] ]
=: MYy + Mj, + M, + M.

Since |og], |06] S 1 and [€q + -+ + &n] S €], it follows that

|M7| < €l

Similarly [M{o| < [€3], as |o|, |06 S 1 and |& + & + & + -+ + &n| < [&]-
In order to prove |M3| < |&), by the definition of o6, we only need to show

Im(E)m(& + e+ + &) G+ &+ + &)
+m(&)m(& +&+- -+ &) G+ &+ + &) S

Indeed, the left hand side of the above

S [m(&) +m(&2)lm(e + & + -+ &n)(Co + & + -+ &)+

+m(&)| —m(a 4 et ) (E+E+ -+ &)

+m(§r+ &+ + &) (& + &+ + 6

S|+ 16+ &2 S 1],

where we have used m < 1 and the usual mean value theorem applied to the second
term: if f(&§) = m(&)€ for |£] = N, then }8§f(§)} <1.
_ M}
For M3, since ¢ = —xo—2% — XT06, it is concluded by the following lemma
@

_ 6
and the estimate on MZ3,. 0
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LEMMA 4.5. Assume that |1] ~ |&2| 2 N > |&|, - ,|&n|. then the following
estimates hold:

(4.66)

XQ1(€17§G7"' afda€2+§8+"'+§h):XQ1(§255¢17"' 7§d7§1 +€€++§h)a

Mé(§1,§a7-.. 7§d7§2+€e+"'+§h)
a6(&1,8a,  eay&a+ &+ + &)

XQ1(§17§G7"' 7§d7§2+§e+"'+§h)'

(4.67)
M61(§255a7"' 7§d7§1 +€e++§h)
046(5275117"' 75(1751 +§e++§h)

X (o4& +-+&)+

S 1€l
Proor. By Remark 3.2, we may also assume that
&1 > > &0, and [&1] ~ [&] Z N.

We first note that Q = Qy if [£1] ~ [£2] 2 N > |€3]. Then we set up some notations
for short: for {a,b,c,d,e, f,g,h} € = with Z being defined in Lemma 4.4,

Gi=& &+ +&

S =& +&+ -+

M := Mg (&1, 60, €a 62+ &+ +&n)

M = Mi(&,6a, 61+ &+ + &)
= ag(81,8a, 5 8a, 62 + &+ +En);
o = o(&2,8ar 0y E€a &1+ &+ + &)

To prove (4.66), noting that |&1] ~ |&a| ~ [&1] ~ & = N > |&l, - - |&a|, we
have

(G e+ 4+ &)

)

)

—3 — —3
&+ &~ G+ EIE+E) ~ G+ &
Thus (4.66) follows from the definition.
To prove (4.67), we need to show that,
M M _
—&+—&
!

O/

(4.68)

S |§3|7 v(ﬁl?&?u&lv" . 7§h) € Ql(glugaa" . 7§d7€_2)'

A computation gives that

M— M_—- o—-aM—- M-M_ M - _—_
(4.69) —&+ —& = — o+ ———&+ (&G + &)=L+ L+ I3
o) « o« 1% «

For I5, by the proof of Lemma 4.2, we have |M| < |a| and |M’| < |o/|. Therefore,
(4.70) I3 S 161 + &l < [ésl.
For Iy, since & — & — (& — &) = 0, the identity (4.33) gives that
a—ao =i(&+ &+ (-8 + (—&)?) = 3i(& + &) (&G — &) (& — &),
which, together with that fact that & - & < 0, in turn gives that
o — o' ~ 61 + &&= &ilél-

Therefore, we see that

(4.71) L] S1& - &l S [él,
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since |M| < |a| and the definition of ; gives that
N> 13 429> Z(¢2 4 e2
(4.72) '] Z 165 + &1 2 161 + &l (&7 + &)
For I, by the double mean value theorem in Lemma 4.1, we have
|M — M'| = Im ()€ +m*(&)& — m*E)E —m* ()&
S |§1 + &l& - &l&|
as |& + &| < & and [& — & | < |&]. Therefore as for I, by (4.72) again,
| S |& — &l < 1.

This completes the proof for this lemma. O

Finally the following Proposition will establish the second half of Theorem 3.1.

PROPOSITION 4.2. For any s > 1/4, we have

(4.73)

)
/ Aso(Myo)dt| S N= 5+ |[Tull'% .
0 L+

)

PRrROOF. By Remark 3.2 or as in the proof of the previous Proposition 4.1, we
may assume that

|&1] > |&| > &3] -+ > |&o]s || ~ Nijyi=1,---,10, and Ny ~ Ny 2 N.

By the argument at the beginning of the proof of Proposition 4.1 and Plancherel’s
theorem, it suffices to show
(4.74)

dt Mo 517 &) fi6) - Frol€o)
/ /rw m(&1) - -+ (&10)m(&10)

We may also assume that the spatial Fourier transforms of all f; are non-negative.
Now we divide it into two regions:

By ={(&1,-+,&10) € T1o : [&a] ~ [&2] 2 N > |€3].};
By ={(&1,- -+ ,&10) € T1o : [&1] ~ |€2] > |3] 2 N}

Estimate in B;. By Lemma 4.4, there holds that |Mjg| < |€3]. Then, by
Lemmas 2.2 and 2.3, the left-hand side of (4.74) is bounded by

flo(flo)
N2s 2 d
/ t/B1 STk |§2 - (&10)
SN 1Dz f1f5l 2, ”Dwf?fﬁl”Lim Hch_lszL;?t e HJz_lflOHL;?t

SN Hfl”Xo’%+ e HfloHXo,%+

_ 15
SN ||JF1HX0%+ o ||JF10HXU%+

Estimate in By. By Lemma 4.2, we have |M1q| < |&]. Then, by the fact

(€©)m(€) = (), for [¢] < N3 (€m(€) ~ N'7*|¢]*, for [¢] Z N,



GLOBAL ROUGH SOLUTION FOR CRITICAL GKDV 285

we have for s > 1/4, the left-hand side of (4.74) is bounded by

N3s—3 / dt /
B2

_1 _1

Gll€all&s] - 1& | 7T (G) 7 (&) i A
|€1[25+1 (€557 F m(Ea)(€a) T - - m(E6) (E6) T m(&r)(Er)

~

(1) Fro(€10)

*---m(§10)<§10>%7
N7 Do fill pge 2 1Dz foll poe 2 D;%f‘o" Lirg ‘ D;iﬁi‘ LiL
X ‘ J;%7f7HL;?t o ‘ J;%imeLgﬁt
<N~ % f1||X0Y%+"'||f10HX01%+-

where we have used the fact that |&1] ~ |2| > |€3] 2 N and the fact that s > 1/4,
and also m(&)(&)%/* > 1 fori = 4,5,6 and m(&;)(&)/?~ > 1for j =7,8,9,10. O

5. Theorem 3.1 implies Theorem 1.1

In this section, we show how Theorem 1.1 is implied by Theorem 3.1 with the
help of the modified local theory in Proposition 3.1. We will follow the steps in
[10].

PrROOF OF THEOREM 1.1. Fix ug, ' > 0 and 3/8 < s < 1 and write 4 :=
L+ |luol| s (r). Our goal is to show that the corresponding solution u to (1.1) and
(1.2) exists on [0,T].

Rescaling. We choose the rescaling parameter A > 1 which will be determined
shortly. We rescale u by

(5.75) ux(z,t) = XV 2u(z /N /N3, uga(z) = AV 2ug(z/N).

Then wux(z,t) is still the solution of (1.1) with the initial data u(z,0) = ug x(x);
and u(x,t) exists on [0, T] if and only if uy(x,t) exists on [0, A3T].
Moreover a computation gives that, for A > 1,

(5.76) 10z Tux ()l 2 S N7 /X° - [lu(t) |-
Hence, if we choose A ~ N and specify ¢t = 0, we have
(5.77) [Tuo [ Sa 1.

An application of Proposition 3.1 gives two things: if § denotes the lifetime of local
solution u,

(5.78) §roal,
(5.79) [Tux(t)] x5

5 e S w0 -

Iteration. We make two observations. Since m(§) < 1, we first see that
(5.80) [Tux(®)l[L2 < lua(®)l[Lz = luoallzz = lluollzz < 1QL2-
Then by the sharp Gagliardo-Nirenberg inequality (1.5) and (5.76),
102 Tux ()72 ~ B (ua(t)),

(5.81)
[Tux(@)l7r2 ~ 10 Lua(®)I72 + lluoll 72 ~ Ef(ua(t)) + [luoll3-
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By (3.27) and (3.29), the rescaled solution satisfies
(5.82)

E}(U)\(t)) = E}(UO))\) + Aﬁ(&ﬁ)(o) + ‘/Ot (AG(MG) + AlO(MIO)) ds — Aﬁ(&g)(t).

By Theorem 3.1 and (5.79), we have for any ¢ € [0, ],
(5.83)
Ep(ua(t)) <Ef(uo) + CiN" [ Tuo 5

N (Il Il )+ GN I
1,5+ 1,5+

2 2

SE} (UQ)\) + C]NO_HIU07)\H?{1
+ CyN T ([ Tuoalls + [[Tuo Al 1) + CLNO [ Tun ()51

By (5.81), [Tux(t)||3: ~ Ej(ua(t)) 4 [luol3, so if choosing a suitably large N, a
bootstrap argument yields
(5.84)
_ _z
Ef(ux(t)) < 2E7(uo,x) +2C1 N [Tug Al %1 +2CsN = ([ Tuo, x| % + [ Tuo, I Hr) -

Thus if assuming that 2E}(ug ) < C4 and choosing a large N, we see that
Vit € |0,d], E}(U)\(t)) < 2C4.

Then we may extend the lifetime of the local solution u(t) to ¢ ~4 2; in other
words, the lifetime of the local solution remain uniformly of size 1. Repeating this
process M times, we obtain

Er(ux(t)) <2E}(ugy) + 201N || Tug |5

(5.85)
+2C5 MN =2 (|| Tug llS + [ Tuo Al 3:) -

Therefore, E}(ux(t)) < 2C4 provided M < N7/2~ which implies that the solution
uy, exists on [0, N7/27]. Hence, u exists on [0, \3T] with the relation

(5.86) N3 = > N7~ N

Thus T = N°F as long as s > 6/13, which implies Theorem 1.1 by choosing a large
N. O

REMARK 5.1 (A polynomial bound). From the argument above, there exists a
polynomial bound for the solutions on the H*(R) norm. Indeed, for \* ~ N17%, we
have for large t > 0,

2s(1—s)

(5.87)  llu®las S ITu)llm S A NTuax(W)|[m SA°~ N7 Stm=s T
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