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Abstract. Kinetic phase-space theories (see [3]) have long been associated
with successfully predicting the rheological properties of a variety of macro-
molecular fluids. Their cornerstone is the configurational probability density,
essential to calculating the stress tensor. This function is a solution to the prob-
ability diffusion equation. In Section 2 we prove the existence and uniqueness
of solutions to the corresponding evolutionary diffusion equation, in Section
3 to the stationary (time independent) equation; these problems, within the
context of polymer dynamics theory, did not receive attention until now.
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1. Introduction

The macroscopic flow behavior of elastic liquids is strongly related to the fluid
microscopic architecture and molecular interactions. This has been recognized since
the early days of modern rheology. Consequently, scientists took on to obtaining
constitutive relationships relating the stress tensor to molecular complexity. A very
successful theory dealing with this difficult task is the kinetic (phase-space) one
developed by Bird, Curtiss, Armstrong and Hassager and their collaborators in [3]
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(for some early kinetic model fundamentals see Kirkwood’s [9]; for other accounts
on this topic and related molecular theories see e.g. [1], [8], [10], [11], [12], [13],
[14] and [15]). It has been applied to model and predict rheological properties of
both polymer solutions and undiluted (including mixtures of) polymers.

The polymer chains are modeled either as spring-bead or rod-bead mechani-
cal systems subjected to hydrodynamic, Brownian, intra-molecular interactions in
the phase space. Statistical mechanics techniques (averages and projections) re-
duce the problem of the multi-chain liquid to the configuration space of a single
macromolecule.

One of the salient ingredients in the polymer mean-field theories is the config-
uration (probability) distribution function, with the help of which the stress tensor
is calculated. This function is actually the solution to diffusion equations (see
equation 19.3-26 on page 322 and equation 19.5-1 on page 328 in [3]) pertaining
to the (large) family of Fokker-Planck-Smoluchowski partial differential equations
(PDEs). In [3] series expansion solutions are obtained.

We undertake to proving the existence and uniqueness of solutions to the fore-
mentioned PDEs obeying physically meaningful initial boundary conditions, an
issue that has not been addressed as yet. This work consists of two parts. Section 2
is devoted to the evolutionary (i.e. time dependent) boundary value problem and a
procedure based on the Galerkin approximation is used. In Section 3 we prove the
existence, uniqueness and positivity of a stationary solution. The proof uses the
Krein-Rutman theory (see also [5] and [4] for related works on a diluted polymer
FENE model and a neuroscience model respectively).

2. Evolutionary boundary value problems

2.1. The boundary value problems. The problems we study describe the
configurational dynamics of polymer melts made up of Kramers chains. Specifically,
each macromolecule is assimilated to a finite succession of freely jointed rods; the
orientation of each rod is given by the unitary vector x ∈ R3. The macromolecule
mass is concentrated on “beads” located at the joints. For full details see Chap. 19
in [3].

Let the unit sphere be denoted S2 := {x ∈ R3 s.t. ‖x‖2 = 1}. In the
following we denote by “∇” the gradient on the sphere S2.

The first boundary value problem (referred to subsequently as P-1) reads:
Problem 1

Find ψ̃ : S2 × [0,+∞[→ R, with ψ̃(x, t) solution to

∂ψ̃

∂t
− α∇ · (∇ψ̃) + ∇ · (ã(x)ψ̃) = 0, x ∈ S2, t > 0(2.1)

ψ̃ ≥ 0(2.2)
∫

S2

ψ̃(x, t)dx = 1, ∀t ≥ 0(2.3)

ψ̃(x, 0) = ψ̃0(x)(2.4)

where α > 0 is a given, fluid related, parameter, and ã : R3 → R3, ψ̃0 : S2 → R,
ψ̃0 ≥ 0, are known functions (the later being an initial - or equilibrium - probabil-

ity distribution). Moreover,

∫

S2

ψ̃0(x)dx = 1. With our notations, this problem is
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basically equation 19.5-1 on page 328 in [3].

The second boundary value problem (referred to subsequently as P-2) reads:
Problem 2

Find ψ̃ : S2×]0, 1[×[0,+∞[→ R, with ψ̃(x, σ, t) solution to

∂ψ̃

∂t
− α1

∂2ψ̃

∂σ2
− α2∇ · (∇ψ̃) + ∇ · (ã(x)ψ̃) = 0, x ∈ S2, σ ∈]0, 1[, t > 0(2.5)

ψ̃ ≥ 0(2.6)
∫

S2

ψ̃(x, σ, t)dx = 1, ∀σ ∈]0, 1[, ∀t > 0(2.7)

ψ̃|σ∈{0,1} =
1

4π
(2.8)

ψ̃(x, σ, 0) = ψ̃σ0 (x, σ), ∀x ∈ S2, ∀σ ∈]0, 1[(2.9)

where α1, α2 > 0 are given, fluid related, parameters and ã : R3 → R3 is a
known function. Next, ψ̃σ0 : S2×]0, 1[→ R, ψ̃σ0 ≥ 0, is the known initial configura-

tional probability; it is such that

∫

Ω2

ψ̃σ0 (x)dx = 1, ∀σ ∈]0, 1[. With our notations,

this problem is basically equation 19.3-26 on page 322 in [3].

In the following, for both P-1 and P-2, we assume that the following general
hypothesis holds true:

(H): ã ∈ C
∞(V ) and ã · x = 0 for all x ∈ S2, where V ⊂ R

3 is a neighborhood
of S2.

We shall make use of the short hand notation xx = x ⊗ x. As customary in
engineering/applied mathematics literature, a dot “ · ” stands for summation over
one repeated (dummy) index, “ : ” for summation over two repeated indices. For
rigid dumbbell molecules, ã = A ·x−A : xxx, where A is a 3×3 matrix, henceforth
compliance with hypothesis (H) is ensured.

From [2] we observe, in the case of spherical coordinates, that:

∇ := eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂φ

∇ · ∇ = △ :=
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

Moreover, for any vector b̃ such that b̃·x = 0, denoting b1 = b̃·eθ and b2 = b̃ ·eφ,
one has

∇ · (b̃f) =
1

sin θ

∂

∂θ
(b1f sin θ) +

1

sin θ

∂

∂φ
(b2f)

Let us now denote

D =]0, π[×]0, 2π[

and

Dσ = D×]0, 1[.

Making use of the above results, one may now re-state problems P-1 and P-2
in the following way:

Problem 1
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Search for solutions ψ : D× [0,+∞[→ R to the following initial-boundary value
problem:

∂ψ

∂t
− α

[

1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin2 θ

∂2ψ

∂φ2

]

+
1

sin θ

∂

∂θ
(a1 sin θψ)

+
1

sin θ

∂

∂φ
(a2ψ) = 0, (θ, φ) ∈ D, t > 0(2.10)

ψ is aφ− periodic function, of period 2π(2.11)

ψ ≥ 0(2.12)
∫

D

ψ sin θdθdφ = 1, ∀t > 0(2.13)

ψ(θ, φ, 0) = ψ0(θ, φ)(2.14)

where ψ0 satisfies

(2.15) ψ0 ≥ 0,

∫

D

ψ0 sin θdθdφ = 1

Problem 2

Search for solutions ψ : Dσ × [0,+∞[→ R to the following initial-boundary
value problem:

∂ψ

∂t
− α1

∂2ψ

∂σ2
− α2

[

1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin2 θ

∂2ψ

∂φ2

]

+
1

sin θ

∂

∂θ
(a1 sin θψ)

+
1

sin θ

∂

∂φ
(a2ψ) = 0, (θ, φ) ∈ D, t > 0(2.16)

ψ is aφ− periodic function, of period 2π(2.17)

ψ ≥ 0(2.18)
∫

D

ψ sin θdθdφ = 1, ∀t > 0, ∀σ ∈]0, 1[(2.19)

ψ|σ∈{0,1} =
1

4π
(2.20)

ψ(θ, φ, t = 0) = ψσ0 (θ, φ, σ)(2.21)

where ψσ0 satisfies

(2.22) ψ0 ≥ 0,

∫

D

ψ0 sin θdθdφ = 1

In the above we made use of the following notations: a1 = a · eθ, a2 = a · eφ.

2.2. Functional spaces framework.
2.2.1. Functional spaces for problem P-1. Let the following Hilbert spaces:

L2
s(D) :=

{

v ∈ L1
loc(D) s.t.

∫

D

v2 sin θdθdφ <∞

}

,
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H1
s (D) :=

{

v ∈ L1
loc(D) s.t. v periodic w.r.t.φ,

∫

D

(

sin θ

∣

∣

∣

∣

∂v

∂θ

∣

∣

∣

∣

2

+
1

sin θ

∣

∣

∣

∣

∂v

∂φ

∣

∣

∣

∣

2

+ v2 sin θ

)

dθdφ <∞

}

Notice the continuous, dense inclusions:

H1
s (D) ⊂

cont.
L2
s(D) =

(

L2
s(D)

)′
⊂

cont.

(

H1
s (D)

)′
.

Let now the linear operators be defined as following: A1 : H1
s (D) →

(

H1
s (D)

)′
,

such that 〈A1u, v〉 = α

∫

D

(

sin θ
∂u

∂θ

∂v

∂θ
+

1

sin θ

∂u

∂φ

∂v

∂φ

)

dθdφ, ∀u, v ∈ H1
s , and B1 :

L2
s(D) →

(

H1
s (D)

)′
, such that 〈B1u, v〉 = −

∫

D

(

sin θu
∂v

∂θ
+ a2u

∂v

∂φ

)

dθdφ. Then,

multiplying formally (2.10) by v sin θ, with v arbitrary in H1
s (D), and integrating

on D we deduce that P-1 can be written in variational form as

(2.23)
dψ

dt
+A1ψ +B1ψ = 0

(2.24) ψ(t = 0) = ψ0

In the above, ψ must be positive, ψ ≥ 0, and such that

∫

D

ψ sin θdθdφ = 1.

2.2.2. Functional spaces for problem P-2. Let the following Hilbert spaces L2
s(Dσ)

and H2
s0(Dσ) be defined as (with dDσ = dθdφdσ)

L2
s(Dσ) :=

{

v ∈ L1
loc(Dσ) s.t.

∫

Dσ

v2 sin θdDσ <∞

}

H1
s0(Dσ) :=

{

v ∈ L1
loc(Dσ) s.t. v periodic w.r.t.φ, v(σ = 0) = v(σ = 1) = 0,

∫

Dσ

[

sin θ

(

∂v

∂σ

)2

+ sin θ

(

∂v

∂θ

)2

+
1

sin θ

(

∂v

∂φ

)2

+ v2 sin θ

]

dDσ <∞

}

Notice the continuous, dense inclusions:

H1
s0(Dσ) ⊂

cont.
L2
s(Dσ) =

(

L2
s(Dσ)

)′
⊂

cont.

(

H1
s0(Dσ)

)′
.

Let now the linear operators be defined as following:

A2 : H1
s0(Dσ) →

(

H1
s0(Dσ)

)′
,

such that

〈A2u, v〉 = α1

∫

Dσ

(

sin θ
∂u

∂θ

∂v

∂θ
+

1

sin θ

∂u

∂φ

∂v

∂φ

)

dDσ + α2

∫

Dσ

sin θ
∂u

∂σ

∂v

∂σ
dDσ,

and

B2 : L2
s(Dσ) →

(

H1
s0(Dσ)

)′
,

such that

〈B2u, v〉 = −

∫

Dσ

(

sin θu
∂v

∂θ
+ a2u

∂v

∂φ

)

dθdφ.

Next, let
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(2.25) ψ =
1

4π
+ ψ

Then, P-2 can be stated as: find ψ : [0,+∞[→ H1
s0(Dσ) solution to the varia-

tional problem expressed as

(2.26)
dψ

dt
+A2ψ +B2ψ = f

(2.27) ψ(t = 0) = ψσ0 −
1

4π

(2.28)
1

4π
+ ψ ≥ 0

(2.29)

∫

D

ψ sin θdθdφ = 0, ∀σ ∈ [0, 1], ∀t

where 〈f, v〉 =
1

4π

∫

D

(

a1 sin θ
∂v

∂θ
+ a2

∂v

∂φ

)

dDσ, ∀v ∈ H1
s0(Dσ). Moreover,

with r, θ, φ being the spherical coordinates of a position vector x, denote

Ω :=
{

x ∈ R
3, 1 < r < 2

}

,

and Ωσ the 4-dimensional domain

Ωσ :=
{

(x, σ) ∈ R
3×]0, 1[, 1 < r < 2

}

,

and
Vσ :=

{

u ∈ H1(Ωσ), u(σ = 0) = u(σ = 1) = 0
}

.

Remark 2.1. Any function u(θ,Φ) defined in D can be viewed as a function
defined in Ω independent on r.

Let us now prove the first result of this Section.

Proposition 2.1. (i) u ∈ L2
s(D) ⇔ u ∈ L2(Ω) and u independent of r; more-

over
‖u‖L2

s
(D) ≤ ‖u‖L2(Ω) ≤ 2‖u‖L2

s
(D).

(ii) u ∈ H1
s (D) ⇔ u ∈ H1(Ω) and u independent of r; moreover

1

2
‖u‖H1

s
(D) ≤ ‖u‖H1(Ω) ≤ 2‖u‖H1(Ω).

(iii) u ∈ L2
s(Dσ) ⇔ u ∈ L2(Ωσ) and u independent of r; moreover

‖u‖L2(Dσ) ≤ ‖u‖L2(Ωσ) ≤ 2‖u‖L2(Dσ).

(iv) u ∈ H1
s0(Dσ) ⇔ u ∈ Vσ and u independent of r; moreover

1

2
‖u‖H1

s0
(Dσ) ≤ ‖u‖H1(Ωσ) ≤ 2‖u‖H1

s0
(Dσ).

Proof. The proof of the above statements is a direct consequence of the fol-
lowing formulae

‖u‖2
L2(Ω) =

∫

D

∫ 1

0

|u|2r2 sin θdrdθdφ

‖u‖2
H1(Ω) =

∫

D

∫ 1

0

[

1

r2

(

∂u

∂θ

)2

+
1

r2 sin2 θ

(

∂u

∂φ

)2

+ u2

]

r2 sin θdrdθdφ
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‖u‖2
L2(Ωσ) =

∫

D

∫ 1

0

∫ 1

0

|u|2r2 sin θdrdθdφdσ

‖u‖2
H1(Ωσ) =

∫

D

∫ 1

0

∫ 1

0

[

(

∂u

∂σ

)2

+
1

r2

(

∂u

∂θ

)2

+
1

r2 sin2 θ

(

∂u

∂φ

)2

+ u2

]

r2 sin θdrdθdφdσ

�

Before ending this Section, we prove the following:

Proposition 2.2. The inclusions H1
s (D) ⊂ L2

s(D) and H1
s0(Dσ) ⊂ L2

s(Dσ)
are compact.

Proof. We focus on proving the first inclusion as the proof for the second one
is similar in nature.

Let un be a bounded sequence of elements of H1
s (D), then un is bounded in

H1(Ω). Invoking the compact inclusion H1(Ω) ⊂ L2(Ω), we get the existence of an
element u ∈ H1(Ω) and of a sub-sequence of un - for convenience also denoted un -

such that un ⇀
n→∞

u in H1(Ω), and un −→
n→∞

u in L2(Ω). Moreover
∂un
∂r

⇀
n→∞

∂u

∂r
in

L2(Ω). As
∂un
∂r

= 0, this gives
∂u

∂r
= 0, henceforth u = u(θ, φ). Then u ∈ L2

s(D)

and un −→
n→∞

u in L2(Ω).

�

2.3. Evolutionary boundary value problems: existence and unique-
ness results. Observe first that for any β > 0 the operator A1 + βId is invertible
and its inverse maps (H1

s (D))′ onto H1
s (D).

As the inclusion H1
s (D) ⊂ L2

s(D) is compact, one deduces the existence of
a sequence of eigenvectors of A1, i.e. 0 ≤ λ1

1 ≤ λ1
2 ≤ · · · ≤ λ1

k ≤ · · · → +∞,
and that of a orthonormal basis for the space L2

s(D) consisting of eigenvectors
ϕ1

1, ϕ
1
2 . . . ϕ1

k . . . . Invoking arguments similar in nature one deduces the existence
of a sequence of eigenvectors of A2, i.e. 0 ≤ λ2

1 ≤ λ2
2 ≤ · · · ≤ λ2

k ≤ · · · → +∞,
and that of a orthonormal basis for the space L2

s(Dσ) consisting of eigenvectors
ϕ2

1, ϕ
2
2 . . . ϕ2

k . . . .
One has the following result:

Theorem 2.1. Let ψ0 ∈ L2
s(D), T > 0. There exists a unique solution ψ

to equations (2.23)-(2.24), s.t. ψ ∈ L2(0, T ;H1
s (D)) ∩ C 0(0, T ;L2

s(D)) and dψ
dt ∈

L2(0, T ; (H1
s (D))′). In addition, whenever ψ0 obeys (2.15), ψ also solves (2.12)-

(2.13).

Proof. Multiply (2.10) by ψ sin(θ) and integrate on D. It entails:

1

2

d

dt
‖ψ‖2

L2
s

+ α

∫

D

[

(

∂ψ

∂θ

)2

sin θ +
1

sin θ

(

∂ψ

∂φ

)2
]

dθdφ

−

∫

D

(

a1ψ
∂ψ

∂θ
sin θ + a2ψ

∂ψ

∂φ

)

dθdφ = 0

Since:
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(2.30)

∫

D

a1ψ
∂ψ

∂θ
sin θdθdφ ≤

α

2

∫

D

(

∂ψ

∂θ

)2

sin θdθdφ +
1

2α

∫

D

a2
1ψ

2 sin θdθdφ

(2.31)

∫

D

a2ψ
∂ψ

∂φ
dθdφ ≤

α

2

∫

D

1

sin θ

(

∂ψ

∂φ

)2

dθdφ +
1

2α

∫

D

a2
2ψ

2 sin θdθdφ

as a1, a2 ∈ L∞(D), the above estimates lead to:

(2.32)
d

dt
‖ψ‖2

L2
s

+ α‖ψ‖2
H1

s

≤ c‖ψ‖2
L2

s

where c > 0. Further on, making use of Gronwall’s inequality, one gets:

(2.33) ‖ψ(t)‖L2
s
≤ ‖ψ0‖L2

s
ecT/2, ∀t ∈ [0, T ]

(2.34) ‖ψ(t)‖L2(0,T ;H1
s
) ≤

1

α

(

‖ψ0‖
2
L2

s

+ cT ‖ψ0‖
2
L2

s

ecT
)

The rest of the proof is classical in the sense we use the Galerkin’s method

to obtain an approximate solution ψn =

n
∑

k=1

γk(t)ϕ
1
k. Next, estimates similar in

nature to those in equations (2.33)-(2.34) can be easily obtained. Letting n→ +∞
leads to the result.

Taking now as test function ϕ = 1 in (2.23), invoking 〈A1ψ, 1〉 = 0, 〈B1ψ, 1〉 =
0, leads to

(2.35)
d

dt

∫

D

ψ sin θdθdφ = 0

from which one infers

∫

D

ψ sin θdθdφ =

∫

D

ψ0 sin θdθdφ = 1.

Next, denote ψ+ = max{ψ, 0}, ψ− = −min{ψ, 0}, ψ = ψ+ −ψ−. Apply (2.23)

to ψ−. It gives −
1

2

d

dt
|ψ−|2 − 〈A1ψ

−, ψ−〉 + 〈B1ψ
−, ψ−〉 = 0. We easily obtain

(2.33) with ψ− in the place of ψ. As ψ−
0 = 0, it follows ψ− = 0, and hence ψ ≥ 0.

�

For P-2 we have the following existence and uniqueness result:

Theorem 2.2. Let ψ0 ∈ L2
s(Dσ), T > 0. Then there exists a unique solution

ψ to equations (2.25)-(2.26) s.t. ψ ∈ L2(0, T ;H1
s0(Dσ)) ∩ C ([0, T ];L2

s(Dσ)) and
dψ
dt ∈ L2(0, T ; (H1

s0(Dσ))
′). In addition, whenever ψσ0 solves (2.22), ψ solves (2.28)-

(2.29).

Proof. The proof of the existence and uniqueness result is similar to that of
Theorem 2.1.

Let us now prove that ψ ≡ 1
4π + ψ ≥ 0. Applying (2.26) to

ψ− ∈ L2
(

0, T ;H1
s0(Dσ)

)
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we obtain
〈

dψ

dt
, ψ−

〉

+ α1

∫

Dσ

(

∂ψ

∂θ

∂ψ−

∂θ
sin θ +

1

sin θ

∂ψ

∂φ

∂ψ−

∂φ

)

dDσ+

α2

∫

Dσ

∂ψ

∂σ

∂ψ−

∂σ
sin θ dDσ −

∫

Dσ

(

a1ψ
∂ψ−

∂θ
sin θ + a2ψ

∂ψ−

∂φ

)

dDσ = 0.

The above leads, as in Theorem 2.1, to ψ− = 0, that is ψ ≥ 0.
In order to prove (2.29), consider in (2.26) an arbitrary test function ϕ ∈

H1
0 (]0, 1[), with ϕ depending uniquely on σ. Denote ψ̃ :=

∫

D

ψ sin θdθdφ. Then
〈

dψ

dt
, ϕ

〉

+α2

∫ 1

0

∂ψ

∂σ

∂ϕ

∂σ
dσ = 0, where ψ̃ ∈ L2(0, T ;H1

0(]0, 1[)), ψ̃(t = 0) = 0. This

eventually gives ψ̃ = 0 and (2.29) is proved.
�

2.4. Connection between the two probability configuration equations.
Denote ψ the solution to problem P-1, and ψσ the solution to problem P-2. Let

also ψσ =
1

4π
+ ψσ. From now on we take α = α2.

We shall prove in the following that ψσ can be Fourier expanded as following:

(2.36) ψσ(t, θ, φ, σ) =
∞
∑

n=1

sin(nπσ)gn(t, θ, φ)

where gn is to be found.

Observe that 1 =

∞
∑

n=1

dn sin(nπσ), with dn = 2

∫ 1

0

sin(nπσ)dσ. Moreover,

dn = 0 for n even, and dn =
4

nπ
for n odd.

Let ψnσ given by

(2.37) ψnσ =

n
∑

k=1

sin(kπσ)gk(t, θ, φ)

denote an approximation for ψσ for n large enough, where ψnσ solves

(2.38)
d

dt
ψnσ +A2ψnσ +B2ψnσ = f

n
∑

k=1

dk sin(kπσ)

(2.39) ψnσ(t = 0) =

n
∑

k=1

g0k sin(kπσ)

where g0k is given in equation (2.44) below.
Remark that

(2.40) A2ψnσ = α1

n
∑

k=1

k2π2 sin(kπσ)gk(t, θ, φ) +

n
∑

k=1

sin(kπσ)A1(gk)
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(2.41) B2ψnσ =

n
∑

k=1

sin(kπσ)B1(gk)

From equations (2.38)-(2.41) above one concludes the gk functions are solutions
to the following problem: find gk ∈ L2(0, T ;H1

s (D)) ∩ C 0([0, T ];L2
s(D)) s.t.

(2.42)
∂gk
∂t

+ α1k
2π2gk +A1(gk) +B1(gk) = dkf

(2.43) gk(0) = g0k

(2.44) g0k = 2

∫ 1

0

(

ψσ0 −
1

4π

)

sin(kπσ)dσ

We now prove the following result:

Theorem 2.3. Let T > 0. Assume the initial data ψσ0 is such that ‖g0k‖L2
s
≤

c

k2
, with c independent of k. Then ψnσ −→

n→∞
ψσ in

L2(0, T ;H1
s0(Dσ)) ∩ L

∞(0, T ;L2
s(Dσ)).

Proof. Existence and uniqueness of solutions to the problem given in equa-
tions (2.42)-(2.43) is easily proved as in Theorem 2.1. Applying (2.42) to gk one
gets:

(2.45)
1

2

d

dt
‖gk‖

2
L2

s

+ α1k
2π2‖gk‖

2
L2

s

+ 〈A1gk, gk〉 + 〈B1gk, gk〉 = dk 〈f, gk〉

However, there exists γ > 0 s.t.

(2.46) 〈A1gk, gk〉 + 〈B1gk, gk〉 + γ‖gk‖
2
L2

s

≥ α2‖gk‖
2
H1

s

from which one infers

(2.47)
1

2

d

dt
‖gk‖

2
L2

s

+
(

α1k
2π2 − γ

)

‖gk‖
2
L2

s

+ α2‖gk‖
2
H1

s

≤ dk 〈f, gk〉

Further on, using the result for dn previosuly obtained, we give for k large
enough:

(2.48)

dk 〈f, gk〉 ≤
4

kπ
‖f‖2

L2
s

‖gk‖
2
L2

s

≤
1

2

(

α1k
2π2 − γ

)

‖gk‖
2
L2

s

+
8‖f‖2

L2
s

2k2π2 (α1k2π2 − γ)

From (2.47) one deduces there exists c > 0 s.t.

(2.49)
d

dt
‖gk‖

2
L2

s

+
(

α1k
2π2 − γ

)

‖gk‖
2
L2

s

+ 2α2‖gk‖
2
H1

s

≤
c

k4

from which, upon integration from 0 to T , it gives
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(2.50) ‖gk‖
2
L∞(0,T ;L2

s
) + ‖gk‖

2
L2(0,T ;H1

s
) ≤

c

k4

(2.51) ‖gk‖
2
L∞(0,T ;L2

s
) ≤

c

k6

Next, from equation (2.37) one gets:

(2.52)

‖ψnσ‖
2
L2

s
(Dσ) =

1

2

∫

Dσ

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

sin(kπσ)gk(t, θ, φ)

∣

∣

∣

∣

∣

2

sin θdσdθdφ =
1

2

n
∑

k=1

‖gk‖
2
L2

s
(D)

In a similar way one obtains that

(2.53)

∥

∥

∥

∥

∂

∂σ
ψnσ

∥

∥

∥

∥

2

L2
s
(Dσ)

=
π2

2

n
∑

k=1

k2‖gk‖
2
L2

s
(D)

Therefore

(2.54) ‖ψnσ‖
2
H1

s0
(Dσ) ≤ c

n
∑

k=1

k2‖gk‖
2
L2

s
(D)

As
+∞
∑

k=1

1

k2
is convergent, invoking equations (2.50)-(2.51) one observes that

‖ψnσ‖L∞(0,T ;L2
s
(Dσ)) and ‖ψnσ‖L2(0,T ;H1

s0
(Dσ)) are bounded and independent of n.

Therefore, there exists ξ ∈ L∞(0, T ;L2
s(Dσ)) ∩ L

2(0, T ;H1
s0(Dσ)) s.t. ψnσ −→

n→ +∞
ξ

weakly.
Taking the limit n → +∞ in equation (2.38) and using the uniqueness of the

solution to the problem P-2 leads to ψσ = ξ.
�

One can now state that

(2.55) ψσ =

∞
∑

k=1

gn sin(nπσ)

Before ending this Section we shall establish several connections between this
work results and those in Section 19.5 in [3].

Let us first notice that f = −
B1(1)

4π
. Let ηk = gk +

dk
4π

. From equations

(2.42)-(2.43) it follows that ηk solves
∂ηk
∂t

+ α1k
2π2

(

ηk −
dk
4π

)

+A1ηk +B1ηk = 0

ηk(0) = gk0 +
dk
4π

Therefore one has:

(2.56)
∂ηk
∂t

+ α1k
2π2ηk +A1ηk + B1ηk =

α1k
2πdk
4
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(2.57) ηk(0) = η0k = 2

∫ 1

0

ψσ0 sin(kπσ)dσ

Since

∞
∑

k=1

dk
4π

sin(kπσ) =
1

4π
, by equation (2.55) one obtains

(2.58) ψσ =

∞
∑

n=1

ηn sin(nπσ)

We must now calculate ηk. To do so we first carry out the function change

zk(t, θ, φ) = eα1k
2π2tηk(t, θ, φ)

which, after some calculations, gives

(2.59)
∂zk
∂t

+A1zk +B1zk =
α1k

2πdk
4

eα1k
2π2t

(2.60) zk(t = 0) = η0k

The solution to the above given problem may be obtained using Duhamel’s
formula and written in the following form:

(2.61) zk = e−(A1+B1)tη0k +

∫ t

0

e−(A1+B1)(t−t′)eα1k
2π2t′ α1k

2πdk
4

dt′

Now ηk can be calculated: assuming ψσ0 =
1

4π
(in which case η0k =

dk
4π

), it

looks

(2.62) ηk = dke
−α1k

2π2tF (u, t, 0) + α1k
2π2dk

∫ t

0

e−α1k
2π2(t−t′)F (u, t, t′)dt′

where, in the above, u stands for (θ, φ), and F (u, t, t′) =
1

4π
e−(A1+B1)(t−t′).

F (u, t, t′) is a notation first employed on page 328 in [3].
Next, making use of equations (2.58) and (2.62) and using the fact that dn = 0

for n even, leads to

(2.63) ψσ = F (u, t, 0)
∞
∑

n=1
n odd

e−α1n
2π2tdn sin(nπσ) +

∫ t

0

P̃ (σ, t− t′)F (u, t, t′)dt′

where

(2.64) P̃ (σ, s) =

∞
∑

n=1
n odd

4α1nπe
−α1n

2π2s sin(nπσ)
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Notice the above P̃ is basically function P obtained on page 328 in [3]. Also,

taking F (u, 0, 0) =
1

4π
, from our equation (2.63) one gets

ψσ(t = 0) = F (u, 0, 0)

∞
∑

n=1
n odd

dn sin(nπσ) =
1

4π
,

as expected. Moreover, in this case g0k = 0 (see equation (2.42)), and the consti-
tutive assumption in Theorem 2.3 is obeyed.

3. Stationary boundary value problems

The corresponding stationary boundary value problems (referred to as SP-1
and SP-2) are:

Stationary Problem 1 (SP-1): Find ψs ∈ H1
s (D) that solves

(3.1) A1ψs +B1ψs = 0

(3.2) ψs ≥ 0,

∫

D

ψs sin θdθdφ = 1

Stationary Problem 2 (SP-2): Find ψs ∈ H1
s0(D) that solves

(3.3) A2ψs +B2ψs = −
1

4π
B2(1)

(3.4)
1

4π
+ ψs ≥ 0,

∫

D

ψs sin θdθdφ = 0, ∀σ ∈]0, 1[.

For convenience we recall operators A1,2, B1,2 have been defined in Sections
2.2.1 and 2.2.2. Moreover, r, θ, φ are the spherical coordinates of a position vec-
tor x; denote Ω :=

{

x ∈ R3, 1 < r < 2
}

, Ωσ the 4-dimensional domain Ωσ :=
{

(x, σ) ∈ R3×]0, 1[, 1 < r < 2
}

, and Vσ :=
{

u ∈ H1(Ωσ), u(σ = 0) = u(σ = 1) = 0
}

.
We solve the above presented problems using, in each case, a specific method.
It is clear that any function u(θ,Φ) defined in D can be viewed as a function

defined in Ω independent on r.

3.1. Existence and uniqueness of solutions for the problem SP-1.
Solving problem SP-1 boils down to proving λ = 0 is an eigenvalue for the operator
A1 +B1. Use fo the Krein-Rutman’s Theorem is made in the same way as in [5].

To begin with, by virtue of Lax-Milgram’s Theorem one sees that there exists
a large enough β > 0 such that A1 + B1 + βId is invertible, with the inverse
operator mapping H1

s (D) onto (H1
s (D))′. Denote Lβ = (A1 + B1 + βId)−1, Lβ ∈

L
(

(H1
s (D))′, H1

s (D))
)

. Then, for any g ∈ (H1
s (D))′, one has Lβu = g iff u solves

(3.5) aβ(u, v) = 〈g, v〉 , ∀v ∈ H1
s (D)

where
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aβ(u, v) = α

∫

D

(

∂u

∂θ

∂v

∂θ
sin θ +

1

sin θ

∂u

∂φ

∂v

∂φ

)

dθdφ

−

∫

D

(

a1u
∂v

∂θ
sin θ + a2u

∂v

∂φ

)

dθdφ + β

∫

D

uv sin θdθdφ(3.6)

We now prove the following result:

Lemma 3.1. Let g ∈ L2
s(D) and u = Lβ(g). Then u ∈ H1(Ω) is the unique

solution to the problem

(3.7) α

∫

Ω

∇xu · ∇xv̂dΩ −

∫

Ω

âu · ∇xv̂dΩ +

∫

Ω

β̂uv̂dΩ =

∫

Ω

ĝv̂dΩ, ∀v̂ ∈ H1(Ω)

where: â : Ω → R3, β̂ : Ω → R and ĝ : Ω → R are such that

â · er = 0, â · eθ =
a1

r
, â · eφ =

a2

r
, β̂ =

β

r2
, ĝ =

g

r2
.

Proof. Equality (3.7), written in spherical coordinates, looks:

∫

D

∫ 2

1

(

1

r2
∂u

∂θ

∂v̂

∂θ
+

1

r2 sin2 θ

∂u

∂φ

∂v̂

∂φ

)

r2 sin θdrdθdφ

−

∫

D

∫ 2

1

u

(

1

r
â · eθ

∂v

∂θ
+

1

r sin θ
â · eφ

∂v

∂φ

)

r2 sin θdrdθdφ

+

∫

D

∫ 2

1

β̂uv̂r2 sin θdθdφ =

∫

D

∫ 2

1

ĝv̂r2 sin θdrdθdφ(3.8)

Therefore, one must show that, for any v̂ ∈ H1(Ω), the following holds true:

∫

D

∫ 2

1

(

∂u

∂θ

∂v̂

∂θ
+

1

sin2 θ

∂u

∂φ

∂v̂

∂φ

)

sin θdθdφ

−

∫

D

∫ 2

1

u

(

a1
∂v

∂θ
+

1

sin θ
a2
∂v

∂φ

)

sin θdθdφ

+ β

∫

D

∫ 2

1

uv̂ sin θdθdφ =

∫

D

∫ 2

1

gv̂ sin θdθdφ(3.9)

Let v =

∫ 2

1

v̂dr in (3.5), with v̂ ∈ H1(Ω) arbitrary. It follows that u solves

(3.9).
�

Remark 3.1. Observe that equality (3.7) is the weak (variational) formulation
of the following problem:

−α △xu+ ∇x(âu) + βu = ĝ, on Ω

−α
∂u

∂ν
+ â · νu = 0, on ∂Ω(3.10)
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Lemma 3.2 (Maximum Principle). Let f ∈ L2
s(D), u = Lβ(g). Then:

(i) whenever g ≥ 0, we have u ≥ 0 (weak maximum principle)
(ii) whenever g ≥ 0, g 6= 0, we have u > 0 (strong maximum principle)

Proof. (i) it follows immediately by taking v = u− in (3.5)
(ii) Denote D0 := {(θ, φ) ∈ D, u(θ, φ) = 0}. The proof is by contradiction:

assume D0 6= ∅. Then D − D0 6= ∅ as well. Let now (θ0, φ0) ∈ ∂D0. Let

x0 :=
3

2
(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), x

0 ∈ Ω. One can find an y0 ∈ Ω and

a r > 0 such that x0 ∈ ∂B(y0, r), whith B(y0, r) ⊂ {x ∈ Ω, u(x) > 0}. Since u
satisfies the problem (3.10) in Ω, one deduces by the strong maximum principle

(see e.g. [6]) that
∂u

∂νB
(x0) < 0, where νB denotes the outward normal to B(y0, r).

On the other hand, since x0 is a minimum point for u on Ω we have ∇u(x0) = 0, a
contradiction.

�

Denote by Cper(D) the set of continuous functions on D and periodic w.r.t.
variable φ, endowed with the usual sup norm. Observe the following continuous
inclusion: Cper(D) →֒ L2

s. One has the following result:

Lemma 3.3 (Compactness). One has Lβ ∈ L
(

Cper(D), Cper(D)
)

, and Lβ is
compact.

Proof. Let g ∈ Cper(D) and u = Lβ(g). Then u solves equation (3.7). Clearly
g ∈ Lp(Ω), for any p > 1, and by the interior smoothness property, it follows that
u ∈ W 2,p(Ω′) for any open set Ω′ s.t. Ω′ ⊂ Ω.

Next, there exists c = c(Ω′, p) s.t. ‖u‖W 2,p(Ω′) ≤ c‖g‖Lp(Ω) ≤ c‖g‖Cper(D), for

any g ∈ Cper(D). However, the following Sobolev continuous inclusion W 2,p(Ω′) →֒
C 0(Ω′) is compact for large enough p > 1. Then choose an open set Ω′ so that it
contains the set {x ∈ Ω, r = 3/2}; the proof is over.

�

We are now in a position allowing us to state Section 3.1 main result:

Theorem 3.1. The boundary value problem SP-1 given in equations (3.1)-(3.2)
has a unique solution ψs ∈ Cper(D), ψs > 0. Moreover, any eigenvalue λ ∈ C of
A1 +B1 is s.t. Re(λ) ≥ 0.

Proof. Let the cone of non-negative functions be defined as P := {u ∈

Cper(D), u ≥ 0}. Clearly its interior is given by
o

P := {u ∈ Cper(D), u > 0}.
By Lemma 3.3 and part (ii) in Lemma 3.2 one sees the strong version of Krein-
Rutman’s theorem can be applied to operator Lβ. Then there exists a simple

eigenvalue µ > 0 of Lβ, and denote ψs ∈
o

P the corresponding eigenvector. Also

observe that ψs ∈ H1
s (D). Next, λ =

1

µ
− β is a simple eigenvalue of A1 +B1, and

(A1 +B1)ψs = λψs. Therefore, ψs solves, for any v ∈ H1
s (D),:

α

∫

D

(

∂ψs
∂θ

∂v

∂θ
sin θ +

1

sin θ

∂ψs
∂φ

∂v

∂φ

)

dθdφ−

∫

D

(

a1ψs
∂v

∂θ
sin θ + a2ψs

∂v

∂φ

)

dθdφ = λ

∫

D

ψsv sin θdθdφ(3.11)
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Let v = 1 in (3.11); as ψs > 0, it results that λ = 0. Therefore λ = 0 is a
simple eigenvalue for A1 +B1, which ends the proof.

�

Remark 3.2. One can also prove, using the strong version of the Krein-
Rutman’s Theorem as done above, that ψs granted by Theorem 3.1 is, up to a
multiplicative constant, the unique solution to the problem:

−α △xψs + ∇x(âψs) = 0, on Ω

−α
∂ψs
∂ν

+ â · νψs = 0, on ∂Ω(3.12)

3.2. Existence and uniqueness of solutions for the problem SP-2. We
first take on proving the following Poincaré inequality:

Proposition 3.1. There exists c > 0 such that, for any v ∈ H1
s0(Dσ),

(3.13) ‖v‖2
L2

s
(Dσ) ≤ c

∫

Dσ

[

(

∂v

∂σ

)2

sin θ +

(

∂v

∂θ

)2

sin θ +
1

sin θ

(

∂v

∂φ

)2
]

dθdφ

Proof. The above stated result is a straightforward consequence of part (iii)
and part (iv) in Proposition 2.1 and of the classical Poincaré inequality:

(3.14) ‖v‖2
L2(Ωσ) ≤ c

∫

Ωσ

[

(

∂v

∂σ

)2

+ (∇xv)
2

]

dxdσ, ∀v ∈ Vσ.

�

Remark 3.3. From Proposition 3.1 one infers that the seminorm defined on
H1
s0(Dσ) by

(3.15) v →

∫

Dσ

[

(

∂v

∂σ

)2

sin θ +

(

∂v

∂θ

)2

sin θ +
1

sin θ

(

∂v

∂φ

)2
]

dθdφ

is equivalent to the usual norm on H1
s0(Dσ).

Theorem 3.2. There exists a unique solution ψs to the problem (3.1)-(3.2).

Proof. By Proposition 3.1, operator A2 is invertible; consequently, the prob-
lem (3.3) is equivalent to the following one:

(3.16) ψs +A−1
2 B2ψs = −

1

4π
A−1

2 (B2(1))

Observe A−1
2 B2 is continuous and compact and maps L2

s(Dσ) onto itself. By
Fredholm theory, proving the existence and uniqueness of solutions to (3.16) is
tantamount to proving the kernel of A2 +B2 reduces to {0}.

Let u ∈ H1
s0(Dσ) be chosen such that A2u + B2u = 0. Then u ∈ Vσ and we

have for any v̂ ∈ Vσ:

(3.17)

∫

Ωσ

(

α1

r2
∂u

∂σ

∂v̂

∂σ
+ α2∇xu · ∇xv̂

)

dxdσ −

∫

Ωσ

âu · ∇xv̂dxdσ = 0
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where â is the same as in Lemma 3.1.

Next, we proceed as in [7]. For any ǫ > 0, let v =
u+

u+ + ǫ
. Then:

∇x,σv = ǫ
∇x,σu

+

(u+ + ǫ)
2

One obtains:

∫

Ωσ

[

α1

r2
1

(u+ + ǫ)
2

(

∂u+

∂σ

)2

+ α2
(∇xu

+)
2

(u+ + ǫ)
2

]

dxdσ =

∫

Ωσ

âu+ ∇xu
+

(u+ + ǫ)
2 dxdσ ≤

∫

Ωσ

|â|

∣

∣

∣

∣

∇xu
+

u+ + ǫ

∣

∣

∣

∣

dxdσ

≤
α2

2

∫

Ωσ

∣

∣

∣

∣

∇xu
+

u+ + ǫ

∣

∣

∣

∣

2

dxdσ + c(3.18)

Therefore:

(3.19)

∥

∥

∥

∥

∇xu
+

u+ + ǫ

∥

∥

∥

∥

L2(Ωσ)

≤ c

where c is a constant which is independent of ǫ. Observe that

∇x,σ log

(

1 +
u+

ǫ

)

=
∇x,σu

+

u+ + ǫ

and that log

(

1 +
u+

ǫ

)

= 0 whenever σ = 0 and σ = 1. Invoking Poincaré’s

inequality one gets

∥

∥

∥

∥

log

(

1 +
u+

ǫ

)
∥

∥

∥

∥

L2(Ωσ)

≤ c. The latest, in turn, gives u+ = 0,

therefore u ≤ 0. Reasoning on u− instead on u+ and proceeding likewise leads to
u ≥ 0, which ultimately gives u = 0. We have thus obtained the existence and
uniqueness of ψs ∈ L2

s(Dσ), solution to equation (3.16).

Next, let ψs =
1

4π
+ψs. Then ψs solves equation (3.17) (with ψs instead of u).

As ψs =
1

4π
for σ = 0 or σ = 1, one has ψ−

s ∈ Vσ . Let now a test function be given

by v =
ψ−
s

ψ−
s + ǫ

. Proceeding as above, one obtains ψ−
s = 0, therefore

1

4π
+ ψs ≥ 0.

Now, take any ϕ = ϕ(σ) ∈ H1
0 (]0, 1[) in the weak formulation given in equation

(3.3); it gives α2

∫

Dσ

∂ψs
∂σ

ϕ′(σ) sin θdθdφdσ = 0

Denote ψ̃s :=

∫

Dσ

ψs sin θdθdφ. Then ψ̃s
′′
(σ) = 0. The latest result, together

with ψ̃s(0) = ψ̃s(1) = 0, gives ψ̃s = 0, ending the proof.
�

Remark 3.4. Notice that ψs = ψs +
1

4π
is the unique solution to the following

problem: find ψs ∈ Vσ +
1

4π
such that, for all v ∈ Vσ,

∫

Ωσ

(

α1

r2
∂ψs
∂σ

∂v

∂σ
+ α2∇xψs · ∇xv

)

dxdσ −

∫

Ωσ

âψs
r

· ∇xvdxdσ = 0
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The above is actually the weak formulation of the problem:

−
α1

r2
∂2ψs
∂σ2

− α2Aψs + ∇x

(

1

r
âψs

)

= 0, on Ωσ

−α2
∂ψs
∂ν

+
â · ν

r
= 0, on ∂Ωσ

ψs|σ=0 = ψs|σ=1 =
1

4π

4. Final comments

There is growing interest in using phase-space kinetical theories for modeling
the thermo-rheological behavior of complex fluids, all the more that, for polymer
mixtures and chemically reacting liquids, reptation based approaches seem to be
less suitable. In [3] Bird et al exposed at length the physical assumptions and many
underpinnings of their polymer dynamics theory.

Crucial to basically any mean field theory is the configurational (probability)
density function: it incorporates all inter- and intra-molecular interactions of rele-
vance to a given molecular system. It is thus quite natural to have one’s attention
focused on ways to solve it. To the best of our knowledge, the question of existence
and uniqueness of solutions to this PDE, within the framework of the general phase
space theory, has not been answered. In Section 2 we proved that, under physically
meaningful initial boundary conditions, the evolutionary PDE has unique solutions.

For large enough times, one is interested in stationary probability density equa-
tion solutions. In Section 3 we made use of the Krein-Rutman’s Theorem to prove
the existence and uniqueness of solutions to the steady-state probability density
equation of Bird et al [3] kinetic theory for polymeric systems.

The matter of time depending solutions convergence, for t→ +∞, towards the
stationary ones will be addressed in a subsequent paper.
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