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ABSTRACT. We consider Upadhay’s three species aquatic model with the inclusion of
spatial spread. We show the existence of a H2(Ω)×H2(Ω)×H2(Ω) bounded absorbing set
in the phase space L2(Ω)×L2(Ω)×L2(Ω). We then derive uniform estimates to tackle the
question of asymptotic compactness of the semi-group for the system in the Sobolev space
H2(Ω)×H2(Ω)×H2(Ω). Via these we demonstrate the existence of a global attractor for
the system which is compact in H2(Ω) and attracts all bounded sets in L2(Ω) in the H2(Ω)
topology.
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1. Introduction

One of the most important areas in ecology, and perhaps the biological sciences in
general, is the analysis and modelling of food chains. These essentially comprise of the
predator-prey relations between species in a given ecosystem [2]. The understanding of
food chain models, or lack thereof has intrigued biologists for quite a while [11], [32].
These models have also attracted considerable interest from mathematicians. A possible
reason being that these systems have all the ingredients needed of chaos. This includes high
dimensional dynamics, non-linearities and coupling. Chaos being of immense interest to
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the dynamical systems community makes the study of food chain models a natural hunt-
ing ground for mathematicians. An interesting subclass of such models are three species
coupled models. As the name suggests they are models for the food chain dynamics be-
tween three given species. They include cases where there is both a specialist predator and
a generalist predator. Or the case where there are two competing preys, or perhaps two
competing predators. See [4]. These have immense application in modeling tri-trophic
food environments [6]. They have also been used successfully employed in understanding
pattern formation in various biological contexts [44], [45], [46]. On another note, these
models have also been in the limelight due to the following unanswered question. Why
is the chaotic behavior of such systems although established theoretically, by dynamicists,
not often observed in the wild, by ecologists [1], [47], [48]? Also see [5],[3], [47], [28]
to this end. Thus there is a plethora of reasons why one might consider the study of food
chain models to be both an intriguing and challenging intellectual pursuit.

The current manuscript is our second in a series of works concerned with one such
three species model. Namely the well known Upadhyay model [7]. In [7], Upadhyay
proposed a generalized model for an aquatic ecological food chain system consisting of
TPP, Zooplankton and Molluscs. He introduced mutual interference in all the three pop-
ulations, by adding an extra mortality term in the Zooplankton population. He also took
into account the realistic toxin liberation process of the TPP population. His work thus
generalized several other well known models in the literature see [3] and [29]. However,
Upadhyay’s model as it stands, is an ODE model. In [10], we incorporated spatial spread
into the model, thus proposing a diffusive three species aquatic model. Our reasoning be-
ing that spatial spread of the species is quite natural and needs to be accounted for. We
were thus faced with analysing an infinite dimensional dynamical system. Via PDE tech-
niques we were able to establish the well posedness of this diffusive model. We showed
the existence of a unique weak solution to the system, which is actually a strong solution
via further regularity.

Before we outline our current goals, lets recall certain relevant findings from [7].
These will essentially set the tone for our current investigations. Upadhyay observed that
an increase in the strength of toxic substance released by toxin producing phytoplankton
population, represented by the parameter θ reduces the propensity of chaotic dynamics
and changes the state of chaos to limit cycle and finally settles down to stable focus. This
is seen clearly in the bifurcation diagram in figure 1, where the successive maxima of x3
labelled z is mapped against θ .

The simulations from [7] show chaos for various ranges of the parameter space, in-
cluding the mutual interference parameters and the rate of toxin release. He also finds
states of extinction for certain species in certain parameter ranges, just as stable focus and
limit cycles are also found. In [7] the non diffusive system is integrated numerically using
sixth order Runge-Kutta method along with a predictor corrector method. It is observed
that the system has a chaotic solution at the following set of parameter values a1 = 1.93,
b1 = 0.06, w0 = 1, D0 = 10, a2 = 1,w1 = 2 , D1 = 10, w2 = 0.405, D2 = 10, c = 0.03,
w3 = 1, D3 = 20 , m1 = 1, m2 = 1, m3 = 2, θ = 0. See figure 1 for a attractor of the system
for these values. The chaos is continually observed for small values of θ and for 1 < mi ≤ 3
.

It is well known that usually, under the action of diffusion, dynamical systems tend
to smooth out. This mechanism is commonly referred to as ”dissipation” [12], [47]. Thus
we are lead to believe that even in the diffusive case there should be a global attractor,
that supports these dynamics. This would include states of extinction and stable focus for
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FIGURE 1. Bifurcation diagram for Holling type II response

FIGURE 2. Attractor of the non-diffusive model

large values of θ , limit cycle for intermediate values, and chaos for small values and for
1 < mi ≤ 3 , as reported in [7].

Our goal in the current manuscript is to show this precisely. We take our cue from
the non-diffusive case and investigate the long time dynamics of the diffusive model. The
global attractor which is the object that encompasses the long-time dynamics, is by defini-
tion a compact invariant set in the phase space, to which all trajectories eventually evolve.
To study this object in the PDE case often times involves making detailed estimates of
various functional norms. Heuristically, the goal behind these is to show the existence of
a bounded absorbing set in the phase space, and then to establish asymptotic compactness
of the semi-group for the system of equations.

There is quite a bit of literature on the global and asymptotic dynamics of PDE’s
arising in ecological modelling, as applied to predator prey systems. Results for general
cross diffusion systems were reported in [39]. More recent work presenting general theory
has been done by Shim [40], [41]. Also of much interest have been systems with time
delays [36], [33], [21],[22], [23]. More specific cross diffusion systems have been ex-
plored in [37], and systems with stage structure in [35],[34]. [43] has explored diffusion in
tri-trophic food models. Recently results for coupled models, modelling invasive aquatic
species, including the investigation of long time dynamics have been reported in [8], [9].
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Zhang et al also investigated a cross diffusion PDE model with Holling type III functional
response. They investigated the long time dynamics via construction of appropriate Lya-
punov functions. Ko and Ryu have also investigated predator prey models with Holling
type II responses, including the long time dynamics. Here there is scope of extensive prey
refuge [38]. Questions of persistence and existence in two species models have been ex-
plored in [20] . Much has also been done on questions regarding stability and boundedness
of solutions in long time of some of these model systems. See [25]. Pao has investigated
in some detail the global dynamics of diffusive competition systems [17], [19],

Our approach in the current manuscript is as follows. We derive the the existence of a
bounded absorbing sets in H2(Ω)×H2(Ω)×H2(Ω). We also derive the uniform estimates
by means of which we tackle the question of asymptotic compactness of the semi-group
for the model in H2(Ω)×H2(Ω)×H2(Ω). See [18] where similar techniques have been
used, albeit in the context of fluids in porous media. Armed with these we will demonstrate
the existence of a global attractor for the model. To this end we provide our main results,
Theorems 5.3 and 5.7. We next show that this global attractor is finite dimensional and
derive upper bounds on both it’s Hausdorff and fractal dimensions. Thus entailing our
result, Theorem 6.2. We lastly make some concluding remarks, tying our present findings
to the findings in [7]. The devil however is in the details, all of which we will present
subsequently.

2. The Mathematical Model

In [10], we considered Upadhyay’s three species aquatic, with the inclusion of spatial
spread. The diffusive model takes the following form,

(1)
∂x1

∂ t
= ∆x1 +a1x1−b1x2

1−w0

(
x1

x1 +D0

)m1

(x2)m2 ,

(2)
∂x2

∂ t
= ∆x2−a2x2 +w1

(
x1

x1 +D1

)m1

(x2)m2 −w2

(
x2

x2 +D2

)m2

(x3)m2 −θ f1(x1)x2,

(3)
∂x3

∂ t
= ∆x3 + cxm3

3 −w3 f2(x2)x
m3
3 .

The problem is posed on Ω ⊂ R3. Ω is bounded, and ∂Ω is assumed to be lipschitz.
We consider Dirchlet boundary conditions

(4) x1 = 0 on ∂Ω, x2 = 0 on ∂Ω, x3 = 0 on ∂Ω,

We also impose suitable initial conditions

(5) x1(x,0) = x10, x2(x,0) = x20, x3(x,0) = x30.

As is customary in most biological systems we assume x1, x2 and x3 are bounded by
their carrying capacities K1, K2 and K3. We will assume

(6) ||x1||∞ ≤ K,

(7) ||x2||∞ ≤ K,
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and

(8) ||x3||∞ ≤ K.

Where

(9) K = max(K1,K2,K3).

Also we assume

(10) c ≤ w3

D3 +K
≤ w3 f2(x2).

This prevents finite time blow up of (3). Essentially we model a food chain where
a prey population x1 is predated by a population x2. The population x2, in turn serves as
favourite food for a population x3. This interaction is represented by the above system.
Here mi > 0 for i = 1,2,3, also a1,a2,b1,w0,w1,w2,w3,c and D0,D1,D2,D3,D4 are the
positive constants. The parameters mi for i = 1,2,3 are mutual interference parameters that
model the inter species competition among predators when hunting for prey [26],[27],[31],
[30]. The model hopes to effectively capture the dynamics between TPP population (prey)
denoted x1, which serves as the only food source for the specialist predator Zooplankton
denoted x2, which in turn, serves as the favourite food for the generalist predator Molluscs
denoted x3. However we enable spatial spread of all three species, TPP, Zooplankton and
Molluscs. See [7], [10] for details. Before one begins the analysis aimed at investigating
the long time dynamics of a model, it is customary to settle questions of well posedness
for the model. To this end we recall certain results of interest from [10].

THEOREM 2.1. Consider the diffusive three species aquatic model as defined via (1)-
(3). For initial data in L2(Ω) there exists a unique weak solution (x1,x2,x3) to the system
such that

(11) (x1,x2,x3) ∈ L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω))∩C([0,T ];L2(Ω))

and

(12)
∂x1

∂ t
∈ L2(0,T ;H−1(Ω)),

Also there exists a time t∗, depending on the L2(Ω) norm of the initial data such that
we have the following further regularity for the solutions,

(13) (x1,x2,x3) ∈ L∞(t∗,T ;H1
0 (Ω))∩L2(t∗,T ;H2(Ω))

Furthermore (x1,x2,x3) are continuous with respect to initial data.

LEMMA 2.2. Consider two distinct nonlinear terms as they appear in (1), from the
diffusive three species aquatic model

(14) F(x1,x2) =−w0

(
x1

x1 +D0

)m1

(x2)m2 ,

(15) F(y1,y2) =−w0

(
y1

y1 +D0

)m1

(y2)m2
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Then for m1 ≤ 3 and m2 ≤ 3, the following estimate holds

(16) |F(x1,x2)−F(y1,y2)|2 ≤C1|x1− y1|2 +C2|x2− y2|2
THEOREM 2.3. Consider the diffusive three species aquatic model, (1)- (3). Then for

every (x10,x20,x30) ∈ H1
0 (Ω), there is a T > 0 such that the mild solution of the system in

H1
0 (Ω), is a unique strong solution in H1

0 (Ω) with

(17) (x1,x2,x3) ∈C[t0,T ;H1
0 (Ω))∩Ct0,1−r

loc (0,T ;H2−δ (Ω))∩C(t0,T ;D(A))

for 0 ≤ r < 1, 0 < δ << 1 and t0 > max(t∗, t∗1 ) 1

3. Absorbing Sets in the Phase Space

The first step in proving the existence of a global attractor is the construction of
bounded absorbing sets in the phase space in various norms. Let us say we have a semi-
group S(t) : H → H. Recall the following definition

DEFINITION 3.1. A bounded set B in a phase space H is called a bounded absorbing
set if for each bounded subset U of H, there is a time T = T (U), such that S(t)U ⊂B for
all t > T .

We begin by making uniform estimates that will demonstrate the existence of such sets
in various norms. In all the calculations made henceforth C,C1,C2,C3 are generic constants
that can change in their value from line to line, and sometimes within the same line if so
required.

3.1. Existence of Absorbing Sets in L2(Ω). We begin by multiplying (1) by x1 and
integrating by parts over Ω. This yields,

(18)
1
2

d
dt
|x1|22 =−|∇x1|22 +a1|x1|22−b1|x1|33−w0

∫
Ω

xm1+1
1

(x1 +D0)m1
xm2

2 dx,

We then use Holder’s inequality, followed by Young’s inequality to yield

(19)
1
2

d
dt
|x1|22 =−|∇x1|22 +b1|x1|33 +C−b1|x1|33−w0

∫
Ω

xm1+1
1

(x1 +D0)m1
xm2

2 dx,

We now use Poincaire’s inequality and the positivity of x1 and x2, thus the fact that

(20) 0 <
∫

Ω

xm1+1
1

(x1 +D0)m1
xm2

2 dx,

to yield

(21)
d
dt
|x1|22 +C1|x1|22 ≤C2,

here C2 depends explicitly on b1 and a1.
Thus application of Gronwall’s Lemma gives us the following estimate

1Here t∗, t∗1 depend only on the L2(Ω) norm of the initial data, and have been explicitly worked out in [10]
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(22) |x1|22 ≤ e−C1t |x1(0)|22 +
C2

C1
.

The above implies the existence of a time t1 given explicitly by

(23) t1 =
ln(|x1(0)|22)

C1
,

such that for all t ≥ t1 the following estimate holds uniformly

(24) |x1|22 ≤ 1+
C2

C1
.

We now make a local in time estimate for ∇x1. Integrating (19) in the time interval
[t1, t1 +1] we obtain

(25)
∫ t1+1

t1
|∇x1|22dt ≤ |x1(t1)|22 +

∫ t1+1

t1
C2dt ≤C.

Thus via a mean value theorem for integrals there exists a time t2 ∈ [t1, t1 + 1] such
that the following estimate holds

(26) |∇x1(t2)|22 ≤C.

We now move on to showing existence of absorbing set for x2 in L2(Ω). We proceed
by multiplying equation (2) by x2 and integrating by parts over Ω to obtain

1
2

d
dt
|x2|22

= −|∇x2|22−a2|x2|22 +w1

∫
Ω

xm1
1

(x1 +D1)m1
xm2+1

2 dx

− w2

∫
Ω

xm2+1
2

(x2 +D2)m2
xm2

3 dx−
∫

Ω

θ f1(x1)(x2)2dx.(27)

Recall via the positivity of x1, x2 ,x3 ,θ , w2 and D2 that

(28) w2

∫
Ω

xm2+1
2

(x2 +D2)m2
xm2

3 dx > 0,

and

(29)
∫

Ω

θ(x2)2 f1(x1)dx > 0.

We now use Poincaire’s inequality in conjunction with the above estimates to yield

(30)
d
dt
|x2|22 +C|x2|22 ≤ w1

∫
Ω

xm1
1

(x1 +D1)m1
xm2+1

2 dx ≤ w1(K)m2+1|Ω|.

Gronwall’s Lemma applied on the above yields
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(31) |x2|22 ≤ e−Ct |x2(0)|22 +
w1(K)m2+1|Ω|

C
.

The above implies the existence of a time t3 given explicitly by

(32) t3 =
ln(|x2(0)|22)

C
,

such that for all t ≥ t3 the following estimate holds uniformly

(33) |x2|22 ≤ 1+
w1(K)m2+1|Ω|

C
.

We next derive local in time estimates for ∇x2. From the earlier estimates without
resorting to Poincaire’s inequality we have

(34)
d
dt
|x2|22 +C|∇x2|22 ≤ w1(K)m2+1|Ω|.

Integrating the above in the time interval [t3, t3 +1] we obtain

(35)
∫ t3+1

t3
|∇x2|22dt ≤ |x2(t3)|22 +

∫ t1+1

t1
w1(K)m2+1|Ω|dt ≤C.

Thus using a mean value theorem for integrals there exists a time t4 ∈ [t3, t3 +1] such
that the following estimate holds

(36) |∇x2(t4)|22 ≤C.

We next show the existence of absorbing set for x3 in L2(Ω).
We multiply (3) by x3 and integrate by parts to obtain

(37)
1
2

d
dt
|x3|22 =−|∇x3|22 + c

∫
Ω

xm3+1
3 dx−w3

∫
Ω

f2(x2)x
m3+1
3 dx.

We now use the positivity of f2, w3 and x3 , the bound on x3, and Poincaire’s inequality
to obtain

(38)
d
dt
|x3|22 +C|x3|22 ≤ c

∫
Ω

xm3+1
3 dx ≤ c|Ω|(K)m3+1.

Gronwall’s inequality implies

(39) |x3|22 ≤ e−Ct |x3(0)|22 +
|Ω|(K)m3+1

C
.

The above implies the existence of a time t5 given explicitly by

(40) t5 =
ln(|x3(0)|22)

C
such that for all t ≥ t5 the following estimate holds uniformly
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(41) |x3|22 ≤ 1+
|Ω|(K)m3+1

C
.

We next make local in time estimates for ∇x3.
From the earlier estimates without resorting to Poincaire’s inequality we have

(42)
d
dt
|x3|22 +C|∇x3|22 ≤ w1(K)m3+1|Ω|.

Integrating the above in the time interval [t5, t5 +1] we obtain

(43)
∫ t5+1

t5
|∇x3|22dt ≤ |x3(t5)|22 +

∫ t5+1

t5
w1(K)m3+1|Ω|dt ≤C.

Thus using a mean value theorem for integrals there exists a time t6 ∈ [t5, t5 +1] such
that the following estimate holds

(44) |∇x3(t6)|22 ≤C.

Via the above estimates we can now state the following Lemma,

LEMMA 3.2. Let (x1,x2,x3) be solutions to the diffusive three species aquatic model
with (x10,x20,x30) ∈ L2(Ω) . There exists a time t∗ = max(t1, t3, t5) , and a constant C
independent of time and initial data, and dependent only on K,mi,ai,b1,c,wi,Di,θ , for
0 ≤ i ≤ 4 such that for any t > t∗ the following uniform estimates hold :

(45) |x1|22 ≤C,

(46) |x2|22 ≤C,

(47) |x3|22 ≤C.

3.2. Existence of Absorbing Sets in H1
0 (Ω). We multiply (1) by −∆x1 and integrate

by parts over Ω to obtain

1
2

d
dt
|∇x1|22 + |∆x1|22

= −a1

∫
Ω

x1∆x1dx+b1

∫
Ω

(x1)2
∆x1dx

+ w0

∫
Ω

xm1
1

(x1 +D0)m1
xm2

2 ∆x1dx.(48)

Integration by parts on the third term on the right hand side, followed by the applica-
tion of Cauchy Schwartz and Young’s inequalities on the last term on the right hand side
yield
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1
2

d
dt
|∇x1|22 + |∆x1|22

≤ −b1

∫
Ω

(2(∇x1)2x1dx+
3
4
|∆x1|22 +4a2

1|Ω|K2 +4b2
1|Ω|K4 +w0|Ω|K2m2

≤ 3
4
|∆x1|22 +C.(49)

This follows via the positivity of b1 and x1 and thus implies

(50) b1

∫
Ω

(2(∇x1)2x1dx > 0.

Thus we obtain

(51)
1
2

d
dt
|∇x1|22 +

C
4
|∇x1|22 ≤C.

Gronwall’s Lemma applied to the above via integrating in the time interval [t2, t] yields

(52) |∇x1|22 ≤ e−
C
2 (t−t2)|∇x1(t2)|22 +C.

This implies the existence of a time t7 defined explicitly by

(53) t7 =
2t2 +2ln(|∇x1(t2)|22)

C
,

such that for any t > t7 the following estimate holds uniformly

(54) |∇x1|22 ≤C.

We next show existence of absorbing set for x2 in H1
0 (Ω). We multiply (2) by −∆x2

and integrate by parts over Ω to yield

1
2

d
dt
|∇x2|22

≤ −a2|∇x2|22−|∆x2|22 +w1

∫
Ω

(x2)m2 |∆x2|dx

+ w2

∫
Ω

xm2
3 |∆x2|dx+θ

∫
Ω

x2|∆x2|dx.(55)

Application of Cauchy Schwartz and Young’s inequalities, and the bounds on x2 and x3
yield

(56)
1
2

d
dt
|∇x2|22 + |∆x2|22 ≤ w1Km2 |Ω|+w2Km2 |Ω|+θK2|Ω|+ 1

2
|∆x2|22.

Poincaire’s inequality now yields

(57)
1
2

d
dt
|∇x2|22 +

C
2
|∇x2|22 ≤ (w1 +w2 +θ)Km2 |Ω|.

Gronwall’s Lemma applied to the above via integrating in the time interval [t4, t] yields
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(58) |∇x2|22 ≤ e−
C
2 (t−t4)|∇x2(t4)|22 +C.

This implies the existence of a time t8 defined explicitly by

(59) t8 =
2t4 +2ln(|∇x2(t4)|22)

C
,

such that for any t > t8 the following estimate holds uniformly

(60) |∇x2|22 ≤C.

We now show existence of absorbing set for x3 in H1
0 (Ω). This is done by multiply-

ing (3) by −∆x3 and integrating by parts over Ω to obtain

(61)
1
2

d
dt
|∇x3|22 =−|∆x3|22− c

∫
Ω

(x3)m3 ∆x3dx+w3

∫
Ω

xm2
3 ∆x3dx.

Application of Cauchy Schwartz and Young’s inequalities on the last couple of terms
on the right hand, and the use of the bounds on x3 yield

(62)
1
2

d
dt
|∇x3|22 +C|∆x3|22 ≤

C
4
|∆x3|22 +C1|Ω|(K)2m3 +

C
4
|∆x3|22 +C2|Ω|(K)2m3 .

Now Poincaire’s inequality yields

(63)
d
dt
|∇x3|22 +

C
2
|∇x3|22 ≤C3|Ω|(K)2m3 .

Gronwall’s Lemma applied to the above via integrating in the time interval [t6, t] yields

(64) |∇x3|22 ≤ e−
C
2 (t−t6)|∇x3(t6)|22 +C.

This implies the existence of a time t10 defined explicitly by

(65) t10 =
2t6 +2ln(|∇x3(t6)|22)

C
,

such that for any t > t10 the following estimate holds uniformly

(66) |∇x3|22 ≤C.

Via the above estimates we can now state the following Lemma,

LEMMA 3.3. Let (x1,x2,x3) be solutions to the diffusive three species aquatic model
with (x10,x20,x30) ∈ L2(Ω) . There exists a time t∗∗ = max(t6, t8, t10) , and a constant C
independent of time and initial data, and dependent only on K,mi,ai,b1,c,wi,Di,θ for
0 ≤ i ≤ 4, such that for any t > t∗∗ the following uniform estimates hold:

(67) |∇x1|22 ≤C,

(68) |∇x2|22 ≤C,
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(69) |∇x3|22 ≤C.

3.3. Existence of Absorbing Sets in H2(Ω). We begin by multiplying (1) by ∆2x1
and integrating by parts over Ω. This yields,

d
dt
|∆x1|22

= −|∇∆x1|22−a1

∫
Ω

∇(∆x1) ·∇x1dx+b1

∫
Ω

2x1∇x1∇(∆x1)dx

+ w0

∫
Ω

∇

(
xm1

1
(x1 +D0)m1

xm2
2

)
∇(∆x1)dx(70)

We then use Holder’s inequality, followed by Young’s inequality to yield

1
2

d
dt
|∆x1|22

≤ −|∇∆x1|22 +
1
4
|∇∆x1|22 +C|∇x1|22 +

1
4
|∇∆x1|22 +CKb1|∇x1|22

− w0

∫
Ω

xm1
1

(x1 +D0)m1
m2xm2−1

2 ∇x2∇(∆x1)dx

− w0

∫
Ω

xm2
2

(
((x1 +D0)m1 m1xm1−1

1 ∇x1)− (xm1
1 ∇x1)(m1(x1 +D0)m1−1)

(x1 +D0)2m1

)
∇(∆x1)dx

≤ −1
2
|∇∆x1|22 +C1|∇x1|22 +C2|∇x2|22 +

1
8
|∇∆x1|22

+
1
8
|∇∆x1|22 +C3|∇x2|22

≤ −1
4
|∇∆x1|22 +C|∇x1|22 +C|∇x2|22

.(71)

We now use the compact Sobolev embedding

(72) H3(Ω) ↪→ H2(Ω)

to yield

(73)
d
dt
|∆x1|22 +

C
2
|∆x1|22 ≤C|∇x1|22 +C|∇x2|22.

Note integrating (49) in the time interval [t∗∗, t∗∗+1] yields the existence of a time t∗∗2
such that for t > t∗∗2 we have

(74) |∆x1(t∗∗2 )|22 ≤ |∇x1(t∗∗2 )|22 +C ≤C.

This follows via Lemma 3.3. Now Gronwall’s Lemma applied to (73) via integrating
in the time interval [t∗∗2 , t] yields

(75) |∆x1|22 ≤ e−
C
2 (t−t∗∗2 )|∆x1(t∗∗2 )|22 +C ≤Ce−

C
2 (t−t∗∗2 ) +C.
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This implies the existence of a time t11 defined explicitly by

(76) t11 =
2t∗∗+2ln(|∆x1(t∗∗2 )|22)

C
,

such that for any t > t11 the following estimate holds uniformly

(77) |∆x1|22 ≤C.

We now show existence of absorbing sets for x2 in H2(Ω).
We begin by multiplying (2) by ∆2x2 and integrating by parts over Ω. This yields,

1
2

d
dt
|∆x2|22

= −|∇∆x2|22−a2|∆x2|22−w1

∫
Ω

∇

(
xm1

1
(x1 +D1)m1

xm2
2

)
∇(∆x2)dx

+ w2

∫
Ω

∇

(
xm2

2
(x2 +D2)m2

xm2
3

)
∇(∆x2)dx

+ θ

∫
Ω

∇( f1(x1)x2)∇(∆x2)dx.(78)

We then use Holder’s inequality, followed by Young’s inequality to yield

d
dt
|∆x2|22

≤ −|∇∆x2|22−a2|∆x2|22 +
1
8
|∇∆x2|22 +C|∇x2|22

− w1

∫
Ω

xm1
1

(x1 +D1)m1
m2xm2−1

2 ∇x2∇(∆x2)dx

− w1

∫
Ω

xm2
2

(
((x1 +D1)m1 m1xm1−1

1 ∇x1)− (xm1
1 ∇x1)(m1(x1 +D1)m1−1)

(x1 +D1)2m1

)
∇(∆x2)dx

+ w2

∫
Ω

xm2
2

(x2 +D2)m2
m2xm2−1

3 ∇x3∇(∆x2)dx

+ w2

∫
Ω

xm2
3

(
((x2 +D2)m2 m2xm2−1

2 ∇x2)− (xm2
2 ∇x2)(m2(x2 +D2)m2−1)

(x2 +D2)2m2

)
∇(∆x2)dx

≤ −|∇∆x2|22 +
1
8
|∇∆x2|22 +

1
8
|∇∆x2|22 +

1
8
|∇∆x2|22 +

1
8
|∇∆x2|22

+ C1|∇x1|22 +C2|∇x2|22 +C3|∇x3|22
.(79)

We now use the compact Sobolev embedding

(80) H3(Ω) ↪→ H2(Ω),

to yield

(81)
d
dt
|∆x2|22 +

C
2
|∆x2|22 ≤C(|∇x1|22 + |∇x2|22 + |∇x3|22).
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Note integrating (56) in the time interval [t∗∗, t∗∗+1] yields the existence of a time t∗∗2
such that for t > t∗∗2 we have

(82) |∆x2(t∗∗2 )|22 ≤C.

Now Gronwall’s Lemma applied to (81) via integrating in the time interval [t∗∗2 , t]
yields

(83) |∆x2|22 ≤ e−
C
2 (t−t∗∗2 )|∆x2(t∗∗2 )|22 +C.

This implies the existence of a time t12 defined explicitly by

(84) t12 =
2t∗∗+2ln(|∆x2(t∗∗2 )|22)

C
,

such that for any t > t12 the following estimate holds uniformly

(85) |∆x2|22 ≤C.

The estimates for ∆x3 are made similarly in essence we have the existence of a time
t13 defined explicitly by

(86) t13 =
2t∗∗3 +2ln(|∆x3(t∗∗3 )|22)

C
,

such that for any t > t13 the following estimate holds uniformly

(87) |∆x3|22 ≤C.

Via the above estimates we can now state the following Lemma,

LEMMA 3.4. Let (x1,x2,x3) be solutions to the diffusive three species aquatic model
with (x10,x20,x30) ∈ L2(Ω) . There exists a time t∗∗∗ = max(t11, t12, t13) , and a constant
C independent of time and initial data, and dependent only on K,mi,ai,b1,c,wi,Di,θ , for
0 ≤ i ≤ 4 such that for any t > t∗∗∗ the following uniform estimates hold :

(88) |∆x1|22 ≤C,

(89) |∆x2|22 ≤C,

(90) |∆x3|22 ≤C.

4. Further Uniform Estimates

In this section we make estimates on certain additional norms. These will be required
to show the asymptotic compactness of the semigroup for the system, which is held of till
later. The requisite estimates are completed next. We begin by making a uniform estimate
of ∂x1

∂ t in L2(Ω). The method is to apply brute force on equation (1) to yield that for t > t∗∗∗

we have
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∣∣∣∣∂x1

∂ t

∣∣∣∣2
2

= |∆x1 +a1x1−b1x2
1−w0

(
x1

x1 +D0

)m1

(x2)m2 |22

≤ C

(
|∆x1|22 +a2

1|x1|22 +b2
1|x1|44 +w2

0

∣∣∣∣( x1

x1 +D0

)m1

(x2)m2

∣∣∣∣2
2

)

≤ C|∆x1|22 +a2
1|x1|22 +b2

1|x1|44 +w2
0

∣∣∣∣( x1

x1 +D0

)m1

(x2)m2

∣∣∣∣2
2

≤ C
(
|∆x1|22 +a2

1|x1|22 +b2
1|x1|44 +w2

0|x2|2m2
2m2

)
≤ C|∆x1|22 +C|∆x1|42 +C|∆x2|2m2

2

≤ C.(91)

This follows via the compact Sobolev embedding of

(92) H2(Ω) ↪→ L2m2(Ω) ↪→ L4(Ω) ↪→ L2(Ω) for m2 ≤ 3.

The similar method works for ∂x2
∂ t and ∂x3

∂ t . Via the above estimates we can now state
the following Lemma,

LEMMA 4.1. Let (x1,x2,x3) be solutions to the diffusive three species aquatic model
with (x10,x20,x30) ∈ L2(Ω) . There exists a time t∗∗∗ = max(t11, t12, t13) , and a constant
C independent of time and initial data, and dependent only on K,mi,a1,b1,c,wi,D1, such
that for any t > t∗∗∗ the following uniform estimates hold:

(93)
∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
≤C,

(94)
∣∣∣∣∂x2

∂ t

∣∣∣∣2
2
≤C,

(95)
∣∣∣∣∂x3

∂ t

∣∣∣∣2
2
≤C.

We will next make a uniform estimate of ∇
∂x1
∂ t in L2(Ω). This estimate is quite tricky

due to the structure of the equations. We are thus required to make an intermediate esti-
mate. We take the partial of (1) with respect to ’t’ to yield

∂ 2x1

∂ t2

=
∂∆x1

∂ t
+a1

∂x1

∂ t
−2b1x1

∂x1

∂ t
−w0

(
x1

x1 +D0

)m1

m2xm2−1
2

∂x2

∂ t

− w0xm2
2

(
x1

x1 +D0

)m1−1( m1

x1 +D0

∂x1

∂ t
− m1x1

(x1 +D0)2
∂x1

∂ t

)
.(96)
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We now multiply the above by ∂x1
∂ t and integrate by parts over Ω, and use Holder’s and

Young’s inequalities and earlier estimates to yield

(97)
∂

∂ t

∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
≤C

∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+C

∣∣∣∣∂x2

∂ t

∣∣∣∣2
2
,

We integrate the above in the time interval [t∗∗∗, t∗∗∗+1] to yield

(98)
∫ t∗∗∗+1

t∗∗∗

∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2

dt ≤
∫ t∗∗∗+1

t∗∗∗

(∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x2

∂ t

∣∣∣∣2
2

)
dt +

∣∣∣∣∂x1(t∗∗∗)
∂ t

∣∣∣∣2
2
≤C.

Thus via the mean value theorem for integrals there exists a time

(99) t∗∗∗∗ ∈ [t∗∗∗, t∗∗∗+1]

such that

(100)
∣∣∣∣∂∇x1(t∗∗∗∗)

∂ t

∣∣∣∣2
2
≤C.

We can now proceed to make an estimate for the L2(Ω) norm of ∇
∂x1
∂ t . Now the

standard energy method for
∣∣∣ ∂∇x1

∂ t

∣∣∣2
2

will involve an estimate of
∣∣∣ ∂∇x2

∂ t

∣∣∣2
2
. This we do not

have, without manipulating the equation for x2. If we attempt to manipulate the equation

for x2 to make this estimate, it in turn will involve an estimate of
∣∣∣ ∂∇x3

∂ t

∣∣∣2
2
. To get around

this circuitous structure, we define a variable W by the following equation.

(101) W =
∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
.

we will attempt to derive a differential inequality for W. Recall the equation for ∂ 2x1
∂ t2

∂ 2x1

∂ t2

=
∂∆x1

∂ t
+a1

∂x1

∂ t
−2b1x1

∂x1

∂ t
−w0

(
x1

x1 +D0

)m1

m2xm2−1
2

∂x2

∂ t

− w0xm2
2

(
x1

x1 +D0

)m1−1( m1

x1 +D0

∂x1

∂ t
− m1x1

(x1 +D0)2
∂x1

∂ t

)
,(102)

We multiply the above by − ∂∆x1
∂ t and integrate by parts over Ω, and use Holder’s and

Young’s inequalities to yield

∂

∂ t

∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂∆x1

∂ t

∣∣∣∣2
2

≤ −a1

∣∣∣∣∂∆x1

∂ t

∣∣∣∣2
2
+C

∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
+C

(∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x2

∂ t

∣∣∣∣2
2

)
.(103)

Note via the compact embedding of
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(104) H2(Ω) ↪→ H1(Ω)

We obtain

(105)
∂

∂ t

∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
≤C1

∣∣∣∣∂∇x1

∂ t

∣∣∣∣2
2
+C2

(∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x2

∂ t

∣∣∣∣2
2

)
.

Similarly we can derive

(106)
∂

∂ t

∣∣∣∣∂∇x2

∂ t

∣∣∣∣2
2
≤C1

∣∣∣∣∂∇x2

∂ t

∣∣∣∣2
2
+C2

(∣∣∣∣∂x2

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x3

∂ t

∣∣∣∣2
2

)
,

and

(107)
∂

∂ t

∣∣∣∣∂∇x3

∂ t

∣∣∣∣2
2
≤C1

∣∣∣∣∂∇x3

∂ t

∣∣∣∣2
2
+C2 |∇x3|22 .

Adding up the above yields the following inequality for W

(108)
∂W
∂ t

≤C1W +C

(∣∣∣∣∂x1

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x2

∂ t

∣∣∣∣2
2
+
∣∣∣∣∂x3

∂ t

∣∣∣∣2
2
+ |∇x3|22

)
.

Now via earlier estimates we have obtained for t ≥ t∗∗∗∗,

(109)
∫ t+1

t

∣∣∣∣∂x1

∂ t

∣∣∣∣2
2

dt ≤C ,
∫ t+1

t

∣∣∣∣∂x2

∂ t

∣∣∣∣2
2

dt ≤C,
∫ t+1

t

∣∣∣∣∂x3

∂ t

∣∣∣∣2
2

dt ≤C

Also

(110)
∫ t+1

t
|∇x3|22dt ≤C,

Furthermore

(111)
∫ t+1

t
|∇
(

∂x1

∂ t

)
|22dt ≤C.

Thus we can invoke the uniform Gronwall Lemma [13] to yield that for
t ≥ t∗∗∗∗ > t∗∗∗ the following estimate holds uniformly

(112) W (t +1)≤C.

However this trivially implies that for t ≥ t∗∗∗∗

(113)
∣∣∣∣∇(∂x1(t +1)

∂ t

)∣∣∣∣2
2
≤C.
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5. Existence of Global Attractor

In this section we will prove the existence of a global attractor for the diffusive three
species aquatic model. Recall the following definition

DEFINITION 5.1. Consider a semi group S(t) acting on a phase space M, then the
global attractor A ⊂ M for this semigroup is an object that satisfies
i) A is compact in M.
ii) A is invariant, i.e, S(t)A = A , t ≥ 0
iii) If B is bounded in M then

distM(S(t)B,A )→ 0, t → ∞.

Next various preliminaries are presented, detailing the phase spaces of interest and
recalling certain standard theory.

5.1. Preliminaries. Let us define our phase spaces of interest.

H = L2(Ω)×L2(Ω)×L2(Ω),

We also define the following spaces,

Y = H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω),

X = H2(Ω)×H2(Ω)×H2(Ω).

In order to prove the existence of a global attractor we are required to show that there
exists a bounded absorbing set in the phase space, followed by the asymptotic compactness
property of the semigroup in question. This is defined next

DEFINITION 5.2. The semi-group {S(t)}t≥0 : H → H associated with a dynamical
system is said to be asymptotically compact in H if for any {xi0,n}∞

n=1 bounded in H, and a
sequence of times {tn → ∞} , S(tn)xi0,n possesses a convergent subsequence in H.

We now state the following Theorem,

THEOREM 5.3. Consider the diffusive three species aquatic model, (1)- (3). There
exists a (H,H) global attractor A for the system. This is compact and invariant in H, and
it attracts all bounded subsets of H in the H metric.

PROOF. We have shown that the system is well posed in [10]. Thus there exists a well
defined semi-group {S(t)}t≥0 : H → H. The estimates derived in Lemma 3.2 demonstrate
the existence of bounded absorbing sets in H. Also note that Lemma 3.3 gives us the
existence of bounded absorbing set in Y . Thus given a sequence {xi0,n}∞

n=1, for 1 ≤ i ≤ 3
that is bounded in L2(Ω), via Lemma 3.3 we know that for t > t∗∗,

(114) S(t)(xi0,n)⊂ B ⊂ H1
0 .

Here B is the bounded absorbing set in H1
0 . Now for n large enough tn > t∗∗, thus for such

tn we have

(115) S(tn)(xi0,n)⊂ B ⊂ H1
0 .

This implies that we have the following uniform bound via Lemma 3.3

(116) |S(tn)(xi0,n)|H1
0
≤C,
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which implies via standard functional analysis theory, see [14], [16], the existence of
a subsequence still labelled S(tn)(xi0,n) such that

(117) S(tn)(xi0,n) ⇀ xi in H1
0 (Ω),

Which implies via the compact Sobolev embedding of

(118) Y ↪→ H,

that

(119) S(tn)(xi0,n)→ xi in L2(Ω).

This yields the asymptotic compactness of the semi-group {S(t)}t≥0 in H. This proves the
Theorem �

5.2. Asymptotic Compactness Property in X . We will show that the attractor for
the diffusive three species aquatic model attracts in a topology stronger than L2(Ω). We
first present two more definitions.

DEFINITION 5.4. Let A ⊂ X. Then A is said to be a (H,X) global attractor if the
following conditions are satisfied
i) A is compact in X.
ii) A is invariant, i.e, S(t)A = A , t ≥ 0
iii) If B is bounded in H then

distX (S(t)B,A )→ 0, t → ∞.

DEFINITION 5.5. The semi-group {S(t)}t≥0 : H → H associated with a dynamical
system is said to be asymptotically compact in X if for any {xi0,n}∞

n=1 bounded in H, and a
sequence of times {tn → ∞} , S(tn)xi0,n possesses a convergent subsequence in X.

REMARK 1. Recall that if A is an (H,H) attractor, then all that is required to prove
that it is in fact an (H,X) attractor is to show the existence of a bounded absorbing set in
X, and also demonstrate the asymptotic compactness of the semi-group in X, [13].

We will now demonstrate the asymptotic compactness property for the semigroup in
X . We will perform the analysis for x1. x2, x3 will follow similarly. Our strategy is to
rewrite (1) as

(120) ∆x1 =
∂x1

∂ t
−a1x1 +b1x2

1−F(x1,x2)

Here

(121) F(x1,x2) = w0

(
xm1

1
(x1 +D1)m1

xm2
2

)
We will demonstrate that every term on the right hand side of (120) is uniformly bounded
in L2(Ω). This will show that ∆x1 is uniformly bounded in L2(Ω). This will imply the
uniform boundedness of x1 in H2(Ω), via elliptic regularity, [14]. This can be done for
x2, x3 as well. Thus the asymptotic compactness in X will follow. We state the following
Lemma
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LEMMA 5.6. The semi-group {S(t)}t≥0 associated with the dynamical system for the
diffusive three species aquatic model (1)- (3), is asymptotically compact in X.

PROOF. Let us denote x1n(t) = S(t)x10,n and u(tn) = ∂x1n
∂ t |t=tn . We have that

(122) ∆x1n(tn) = u(tn)−a1x1n(tn)+b1x1n(tn)2−F(x1n(tn),x2n(tn)).

Via (113) we have for t ≥ t∗∗∗∗+1

(123)
∣∣∣∣∇∂x1

∂ t

∣∣∣∣
2
≤C.

Now for n large enough, we eventually have tn ≥ t∗∗∗∗+1. Thus we obtain

(124)
∣∣∣∣∇∂x1n(tn)

∂ t

∣∣∣∣
2
≤C.

Also via Lemma 3.3 we have the estimate

(125) |∇x1|2 ≤C for t > t∗∗.

Thus for n large enough again tn ≥ t∗∗∗∗+1 > t∗∗, and we obtain

(126) |∇x1n|2 ≤C.

These uniform bounds allow us to extract weakly convergent subsequences. Thus we ob-
tain

(127) x1n(tn) ⇀ x1 in H1
0 (Ω).

(128) u(tn) ⇀
∂x1

∂ t
in H1

0 (Ω).

Now via Lemma 2.2, [10] we have the estimate

(129) |Fn(x1n)−F(x1)|2 ≤C|x1n− x1|2.
However via the earlier estimate it is immediate that

(130) x1n(tn)→ x1 in L2(Ω).

Thus we obtain

(131) Fn(x1n)→ F(x1) in L2(Ω).

Thus from the convergence of the nonlinear term, classical functional analysis theory, see
[13], and the compact embedding of

(132) H1
0 (Ω) ↪→ L4(Ω) ↪→ L2(Ω),

we obtain

(133) x1n(tn)→ x1 in L2(Ω).

(134) x2
1n(tn)→ x2

1 in L2(Ω).

(135)
∂x1n

∂ t
(tn)→

∂x1

∂ t
in L2(Ω),

(136) Fn(x1n)→ F(x1) in L2(Ω).
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Using these convergent subsequences and equation (122), we obtain

(137) ∆x1n → ∆x1 in L2(Ω).

However via elliptic regularity theory [14] this implies

(138) x1n → x1 in H2(Ω).

Thus the Lemma is proved. �

We can now state the following result

THEOREM 5.7. Consider the diffusive three species aquatic model model, (1)- (3).
There exists a (H,X) global attractor A for this system. This is compact and invariant in
X. Furthermore it attracts all bounded subsets of H in the X metric.

PROOF. We have shown that the system is well posed in [10]. Thus there exists a well
defined semi-group {S(t)}t≥0 : H → H. Theorem 5.3 gives us the existence of an (H,H)
global attractor. In Lemma 3.4 we have shown the existence of a bounded absorbing sets in
X . Last but not least, Lemma 5.6 demonstrates the asymptotic compactness of the semi-
group {S(t)}t≥0 : H → H in X , for the dynamical system associated with the diffusive
three species aquatic model (1)- (3). These results when taken in conjunction prove the
Theorem. �

6. Finite Dimensionality of the Global Attractor

In this section we show that the Hausdorff and fractal dimensions of the global attrac-
tor for the diffusive three species aquatic model is finite. We will provide upper bounds on
these dimensions in terms of parameters in the model. There is a standard methodology to
derive these estimates [15], [13], [16]. We consider a volume element in the phase space,
and try and derive conditions that will cause it to decay, as time goes forward. If A is
the global attractor of the semi-group {S(t)}t≥0 in H associated with the diffusive three
species aquatic model, we can define

(139) qn(t) = sup
u0∈A

sup
ξi∈H,||ξi||=1,1≤i≤n

1
t

∫ t

0
Tr(∆U(τ)+δU(τ)+F

′
(S(τ)u0)◦Qn(τ)dτ,

where

(140) qn = limsup
t→∞

qn(t).

Here ’F’ is the nonlinear map in (1)- (3), and ’δ ’ the linear map. also Qn is the orthog-
onal projection of the phase space H onto the subspace spanned by U1(t),U2(t), ...Un(t),
with

(141) Ui(t) = L(S(t)u0)ξi, i = 1,2, ..n.

L(S(t)u0) is the Frechet derivative of the map S(t) at u0. Also for this model, L(S(t)u0)ξ =
U(t) = (X1(t),X2(t),X3(t)), for any ξ = (η ,ζ ,κ) where u = (x1,x2,x3) is a solution to
the diffusive three species aquatic model, φ j = (φ 1

j ,φ
2
j ,φ

3
j ,) are an orthonormal basis for

the subspace Qn(τ)H and (X1(t),X2(t),X3(t)) are strong solutions to the variational equa-
tions for the diffusive three species aquatic model. These have been worked out explicitly



238 RANA D.PARSHAD AND RANJIT K.UPADHYAY

∂X1
∂ t

= ∆X1+a1X1−2b1x1X1−w0

(
m2
1
)

xm1
1 xm2−1

2 X2
(x1 +D0)m1

+ w0

(
m1
1
)(

xm1
1 xm2

2 X1
(x1 +D0)m1+1 +

xm1−1
1 xm2

2 X1
(x1 +D0)m1

)
,

(142)

∂X2
∂ t

= ∆X2−a2X2

+ w1

(
m2
1
)

xm1
1 xm2−1

2 X2
(x1 +D1)m1

−w1

(
m1
1
)(

xm1
1 xm2

2 X1
(x1 +D1)m1+1 +

xm1−1
1 xm2

2 X1
(x1 +D1)m1

)
,

− w2

(
m2
1
)

xm2
2 xm2−1

3 X3
(x2 +D2)m2

+w2

(
m2
1
)(

xm2
2 xm2

3 X2
(x2 +D2)m2+1 +

xm2−1
2 xm2

3 X2
(x2 +D2)m2

)

− θ
x1X2+ x2X1

x1 +D4
− x1x2X1

(x1 +D4)2 ,(143)

∂X3
∂ t

= ∆X3+ c
(

m1
1
)

xm3−1
3 X3+w3

(
m2
1
)

X3
(x3 +D3)m2+1 ,(144)

(145) X1(0) = η , X2(0) = ζ , X3(0) = κ.

We recall the following Lemma from [13], which will be usefull to derive the requisite
estimates.

LEMMA 6.1. If there is an integer n such that qn < 0 then the Hausdorff and fractal
dimensions of A , denoted dH(A ) and dF(A ), satisfy the following estimates

(146) dH(A )≤ n,

(147) dF(A )≤ 2n.

Our aim is thus clear cut. We will derive exactly which conditions enforce that qn < 0
for the diffusive model. We next begin our estimates.
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Tr(∆U(τ)+δU(τ)+F
′
(S(τ)u0)◦Qn(τ)

=
n

∑
j=1

〈
∆φ j(τ),φ j(τ)

〉
+

n

∑
j=1

δ
〈
φ j(τ),φ j(τ)

〉
+

〈
F
′
(S(τ)u0)φ j(τ),φ j(τ)

〉
≤

n

∑
j=1

3|∇φ j(τ)|2 +
n

∑
j=1

δ |φ j(τ)|2 + J1 + J2 + J3.(148)

Here

J1

≤
n

∑
j=1

∫
Ω

w0

(
m2
1
) x1(τ)m1 x2(τ)m2−1φ 1

j φ 2
j

(x1(τ)+D0)m1

+
n

∑
j=1

∫
Ω

w0

(
m1
1
)(x1(τ)m1−1x2(τ)m2 |φ 1

j |2

(x1(τ)+D0)m1
−

x1(τ)m1 x2(τ)m2 |φ 1
j |2

(x1(τ)+D0)m1+1

)

≤ 2w0

((
m2
1
)

+
(

m1
1
))

Km1+m2+1

Dm1+1
0

n

∑
j=1

|φ j(τ)|22.(149)

This follows via Holder’s inequality and the compact Sobolev embedding of

(150) H1
0 ↪→ L4 ↪→ L2.

J2

≤
n

∑
j=1

∫
Ω

w1

(
m2
1
) x1(τ)m1 x2(τ)m2−1|φ 2

j |2

(x1(τ)+D1)m1

+
n

∑
j=1

∫
Ω

w1

(
m1
1
)(x1(τ)m1−1x2(τ)m2 φ 1

j φ 2
j

(x1(τ)+D1)m1
−

x1(τ)m1 x2(τ)m2 φ 1
j φ 2

j

(x1(τ)+D1)m1+1

)

+
n

∑
j=1

∫
Ω

w2

(
m2
1
) x2(τ)m2 x3(τ)m2−1φ 3

j φ 2
j

(x2(τ)+D2)m2

+
n

∑
j=1

∫
Ω

w2

(
m2
1
)(x2(τ)m2−1x2(τ)m2 |φ 2

j |2

(x2(τ)+D2)m2
−

x2(τ)m2 x3(τ)m2 |φ 2
j |2

(x2(τ)+D2)m2+1

)

+
n

∑
j=1

∫
Ω

θ
x1(τ)|φ 2

j |2 + x2(τ)φ 1
j φ 2

j

x1(τ)+D4
−

x1(τ)x2(τ)φ 1
j φ 2

j

(x1(τ)+D4)2

≤ 2w1

((
m2
1
)

+
(

m1
1
))

Km1+m2−1

Dm1+1
1

n

∑
j=1

|φ j(τ)|22

+ 2w1

((
m2
1
)

+
(

m1
1
))

Km2+m2−1

Dm2+1
2

n

∑
j=1

|φ j(τ)|22

+

(
2θ

K
D2

4

n

∑
j=1

|φ j(τ)|22

)
.(151)
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This follows via Holder’s inequality and the compact Sobolev embedding of

(152) H1
0 ↪→ L4 ↪→ L2,

and

J3 =
n

∑
j=1

∫
Ω

c
(

m1
1
)

x3(τ)m3−1 |φ 3
j |2 +w3

(
m2
1
) |φ 3

j |2

(x3(τ)+D3)m2+1

≤
(

c
(

m1
1
)

Km3−1 +
w3

(D3)m2+1

(
m2
1
)) n

∑
j=1

|φ j(τ)|22.(153)

Thus we obtain the estimate,

Tr(∆U(τ)+δU(τ)+F
′
(S(τ)u0)◦Qn(τ)

≤ −3
n

∑
j=1

|∇φ j(τ)|22 +(a1 +2b1K−a2)|φ j(τ)|22

+ 2w0

((
m2
1
)

+
(

m1
1
))(

Km1+m2+1

Dm1+1
0

)
n

∑
j=1

|φ j(τ)|22

+
(

4w1

((
m2
1
)

+
(

m1
1
))(

Km1+m2−1

Dm1+1
1

+
K2m2−1

Dm2+1
2

)

+ 2θ
K
D2

4
+ c
(

m1
1
)

Km3−1
) n

∑
j=1

|φ j(τ)|22

+

((
w3

(D3)m2+1

(
m2
1
)) n

∑
j=1

|φ j(τ)|22

)
.

Now via the generalized Sobolev-Lieb-Thirring inequalities [13] we obtain

(154)
n

∑
j=1

|∇φ j(τ)|22 ≥ K1
n

5
3

|Ω| 2
3

Here K1 depends only on the shape and dimension of Ω. Thus we obtain

Tr(∆U(τ)−δU(τ)+F
′
(S(τ)u0)◦Qn(τ)

≤ −3K1
n

5
3

|Ω| 2
3

+(a1 +2b1K−a2)n+ f (w0,w1,D0,D1,D3,D4,m1,m2)n,(155)

for τ > 0, u0 ∈A .

REMARK 2. We will abbreviate

f (w0,w1,D0,D1,D2,D3,D4,m1,m2,θ) = f (wi,Di,mi)

hence forth. Note the exact expression for ”f” is given explicitly by
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f (wi,Di,mi)

= 2w0

((
m2
1
)

+
(

m1
1
))

Km1+m2+1

Dm1+1
0

+4w1

((
m2
1
)

+
(

m1
1
))

Km1+m2−1

Dm1+1
1

+ 4w1

((
m2
1
)

+
(

m1
1
))

K2m2−1

Dm2+1
2

+
(

2θ
K
D2

4
+ c
(

m1
1
)

Km3−1 +
w3

(D3)m2+1

(
m2
1
))

.(156)

We use the derived estimates to obtain

qn(t)

= sup
u0∈A

sup
ξi∈H,||ξi||=1,1≤i≤n

1
t

∫ t

0
Tr(∆U(τ)−δU(τ)+F

′
(S(τ)u0)◦Qn(τ)dτ

≤ −3DK1
n

5
3

|Ω| 2
3

+( f (wi,Di,mi)+(a1 +2b1K−a2))n, ∀t > 0.(157)

This yields

(158) limsup
t→∞

qn(t)≤−3DK1
n

5
3

|Ω| 2
3

+( f (wi,Di,mi))+(a1 +2b1K−a2))n < 0,

if the integer n satisfies

(159) n−1 <

(
( f (wi,Di,mi)+(a1 +2b1K−a2))

3K1

) 3
2
|Ω|< n.

Via the above we can now state the following result

THEOREM 6.2. Consider the diffusive three species aquatic model, (1)- (3). The
global attractor A of the diffusive three species aquatic model is of finite dimension.
Furthermore explicit upper bounds for its Hausdorff and fractal dimensions are given as
follows

(160) dH(A)≤
(

f (wi,Di,mi))+(a1 +2b1K−a2)
3K1

) 3
2
|Ω|+1,

(161) dF(A)≤ 2
(

f (wi,Di,mi))+(a1 +2b1K−a2)
3K1

) 3
2
|Ω|+2

PROOF. The earlier derived estimates via (158), (159) along with Lemma 6.1 allow
us to obtain the desired result �

7. Conclusion

In conclusion we have shown rigorously the existence of a global attractor for the dif-
fusive three species aquatic model. This is compact in H2(Ω) and attracts bounded sets
in L2(Ω) in the H2(Ω) topology. This seems in accordance with the results of [7], where
evidence of various limiting behaviour was found in the ODE case. This included the ex-
istence of stable focus, limit cycles and states of extinction. Moreover all simulations were
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performed for the mutual interference parameters mi ∈ [1,3]. This is well in accordance
with our current results as we have relied on the compact Sobolev embedding

(162) H1
0 ↪→ L2mi .

Of course this is only true in R3 if mi ≤ 3. The possible albeit unrealistic cases for
mi > 3 remains a current challenge, and might not be possible to analyse altogether. At
least not within the scope of Sobolev embeddings.

Furthermore the question of finite dimensionality of the global attractor is in general
of interest, due to various practical and numerical concerns. It essentially tells us about the
degrees of freedom in the system. Having provided upper bounds on the dimension of the
global attractor, we hope to pave the way for future numerical work. However our bounds
are not sharp. Furthermore from a point of view of direct numerical simulation, they are
perhaps not quite pragmatic. Essentially we have shown that

(163) dH(A ) < dF(A ) < C Km1+m2 ,

where recall ”K” is the maximum of the carrying capacity for each species. This bound
is immensely large, even for modest mi, say in the range [1,3]. It will be of much interest
if we can sharpen this to perhaps the order of K or below. Furthermore results from [7]
show that the interaction between predators is a stabilizing factor, which does not seem to
be violated in the diffusive case as well, via the existence of the bounded absorbing sets
in the phase space that we have shown. This is probably expected due to the smoothing
property of diffusive terms, which are the essential mechanism for dissipation in dissipative
dynamical systems described by parabolic PDE, [16], [12].

All in all we believe that the diffusive three species aquatic model is quite a robust
model, with well defined dynamics. It can perhaps be used successfully in modelling tri-
trophic food environments and more general three species food chains, especially if one is
interested in the long time dynamics. It is our goal to continue to investigate the nuances
of this model. These could include, but would not be restricted to, time delays or even
additive stochastic terms, trying to incorporate various realistic ecological scenarios such
as random attacks by predators, prey refuge and cooperation. All of these directions will
be left as future endeavours.
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