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Abstract. This paper is concerned with the blow-up solutions of the focus-
ing fourth-order mass-critical nonlinear Schrödinger equation. Establishing
the profile decomposition of the bounded sequences in H

2, we obtain the vari-
ational characteristics of the corresponding ground state and a compactness
lemma. Moreover, we obtain the L

2-concentration of the blow-up solutions
and the limiting profile of the minimal mass blow-up solutions in the general
case.

Contents

1. Introduction 187
2. Preliminary 191
3. Variational Structure 195
4. L2-Concentration 200
5. Limiting Profile of Minimal Mass Blow-up Solutions 201

1. Introduction

In this paper, we study the Cauchy problem of the focusing fourth-order mass-
critical nonlinear Schrödinger equation

(1.1) iut −△2u + |u| 8
N u = 0, t ∈ [0, T ), x ∈ RN ,

(1.2) u(0, x) = u0,
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where i =
√
−1; △2 = △△ is the biharmonic operator defined in RN and △ =

N∑
j=1

∂2

∂x2
j

is the Laplace operator in RN ; u = u(t, x): [0, T ) × RN → C is the

complex valued function and 0 < T ≤ +∞; N is the space dimension. Fourth-
order Schrödinger equations are introduced by Karpman [11] and Karpman, Sha-
galov [12] to take into account the role of small fourth-order dispersion terms in
the propagation of intense laser beams in a bulk medium with Kerr nonlinearity,
and such fourth-order Schrödinger equation are written as

(1.3) iφt + ε△2φ + µ△φ + |φ|p−1φ = 0, φ = φ(t, x) : R × RN → C.

Note that Equation (1.1) is a special case of Equation (1.3) by taking ε = 1,
µ = 0 and p = 1 + 8

N . For the Cauchy problem (1.1)-(1.2), Kenig, Ponce and
Vega [13], Ben-Artzi, Koch and Saut [2] established the local well-posedness in
H2 = H2(RN ). Equation (1.1) is called the mass-critical due to the mass M(u) =∫

RN |u(t, x)|2dx and the equation itself are invariant under the rescaling symmetry

u 7→ λ
N
2 u(λ4t, λx).

We recall some known results for the classical focusing mass-critical nonlinear
Schrödinger equation

(1.4) ivt + △v + |v| 4
N v = 0, v(0, x) = ϕ ∈ H1.

Ginibre and Velo [8] showed the local well-posedness in H1 = H1(RN ). In fact,
in this space energy arguments apply, and a blow-up theory has been developed
in the last two decades (see [4], [29] and the references therein). This theory is
connected to the notion of ground state: the unique positive radial solution of the
elliptic problem

(1.5) △R − R + |R| 4
N R = 0, R ∈ H1.

Weinstein [33] exhibited the following refined Gagliardo-Nirenberg inequality:

(1.6) ‖f‖2+ 4
N

L2+ 4
N

≤ (1 +
2

N
)

( ‖f‖L2

‖R‖L2

) 4
N

‖∇f‖2
L2, f ∈ H1.

Combined with the conservation of energy, this implies that: if the initial data
‖ϕ‖L2 < ‖R‖L2, then the solution v(t, x) exists globally; if the initial data ‖ϕ‖L2 ≥
‖R‖L2, then the solution v(t, x) may blow up. The value ‖R‖L2 is the sharp value of
blow-up and global existence of the solutions in terms of Merle’s [17] results. Using
the variational characteristic of the ground state elliptic equation (1.5), Weinstein
[34] showed the structure and formation of singularity of the minimal-mass blow-up
solution (i.e. ‖ϕ‖L2 = ‖R‖L2). It reads that the corresponding blow-up solution
v(t, x) remains close to R(x) in H1 up to scaling and phase parameters, and also
translation in the nonradial case. In other words, the blow-up solution has the
same shape as the ground state R(x). Thus, basing on this structure and formation
of singularity, Merle and Raphaël [18,19] obtained a large body of breakthrough
work on the qualitative properties of blow-up solutions with the help of the Spectral
Properties [18], such as blow-up rates, profiles of blow-up solutions, etc. On the
other hand, for ϕ ∈ H1, Merle and Tsutsumi [20,30](for radial data), Nawa [23] and
Weinstein [35](for general data) proved the following L2-concentration property of
the blow-up solutions by using the variational characterization of the ground state:
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there exists x(t) ∈ RN such that ∀ r > 0

lim
t→τ

inf

∫

|x−x(t)|≤r

|v(t, x)|2dx ≥
∫

R2dx,

where τ is the blow-up time. These results are extended to ϕ ∈ Hs(RN ) for some
s0 < s < 1(see [3,5,10,14,15,31,32]) by using the variational characteristic of the
ground state elliptic Equation (1.5) and harmonic analysis techniques.

In Equation (1.1), if we replace the nonlinearity |u| 8
N u with |u|p−1u, it is a class

of semilinear fourth-order Schrödinger equations similar to Equation (1.1), which
has been widely investigated. For 1 < p < 2N

(N−4)+ (where 2N
(N−4)+ = +∞, when

N ≤ 4; 2N
(N−4)+ = 2N

N−4 , when N > 4), Ben-Artzi, Koch and Saut [2] established

the local well-posedness in H2. Fibich, Ilan and Papanicolaou [6] obtain the gen-
eral results of global well-posedness in H2. Pausader [25] and Segata [28] studied
the global well-posedness and scattering of the fourth-order nonlinear Schrödinger
equation with cubic nonlinearity. For p = 2N

N−4 , Miao, Xu and Zhao [21], Pau-

sader [26] studied the global existence and scattering of the focusing fourth-order
nonlinear Schrödinger equation; Miao, Xu and Zhao [22], Pausader [24] studied the
global existence and scattering of the defocusing fourth-order nonlinear Schrödinger
equation. The above studies focused on global solutions. From the view-point of
physics, physicists are very interested in the elaborate description of the blow-up
solutions in H2, such as blow-up rate, L2-concentration, limiting profile of the
blow-up solutions, etc.

In this paper, we study the limiting profile of the blow-up solutions to the
Cauchy problem (1.1)-(1.2) in H2. Motivated by the study of the classical mass-
critical nonlinear Schrödinger equation (1.4), we consider the ground state solution
of the Equation (1.1)

(1.7) △2Q + Q − |Q| 8
N Q = 0, Q ∈ H2,

which is a special periodic solution of Equation (1.1) in the form u(t, x) = Q(x)eit.
Fibich, Ilan and Papanicolaou [6] showed some numerical observations of the

solution to the Cauchy problem (1.1)-(1.2), which implies that if the initial data
‖u0‖L2 < ‖Q‖L2, then the solution u(t, x) exists globally; if the initial data ‖u0‖L2 ≥
‖Q‖L2, then the solution u(t, x) may blow up in finite time. Since the effect of
fourth-order dispersion △2u, whether the variance identity arguments can be ex-
tended to show the existence of blow-up solutions for the biharmonic nonlinear
Schrödinger equation is still unknown (see [1,6]). On the other hand, the numer-
ical observations in [6] showed the existence of blow-up solutions. Baruch, Fibich
and Mandelbaum [1] obtained some dynamical properties of the radially symmetric
blow-up solutions, such as blow-up rate, L2-concentration. However, to our knowl-
edge, the existence of ground state of the elliptic Equation (1.7), the variational
structure of the ground state solution Q and the limiting profile of the nonradially
symmetric blow-up solutions are not addressed.

In the present paper, establishing the profile decomposition of the bounded
sequences in H2, we prove the existence of the ground state of elliptic Equation
(1.7), and we obtain the variational characteristics of the ground state solution
Q(x). Moreover, we obtain a compactness lemma adapted to the analysis of the
blow-up phenomenon of the fourth-order nonlinear Schrödinger equations in H2,
as follows.
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Theorem 1.1. Let {vn}∞n=1 be a bounded family of H2 functions such that

(1.8) lim
n→∞

sup ‖△vn‖L2 ≤ M and lim
n→∞

sup ‖vn‖
L2+ 8

N
≥ m.

Then, there exists a sequence {xn}∞n=1 of RN such that up to a subsequence

(1.9) vn(x + xn) ⇀ V (x) weakly in H2.

with ‖V ‖
8
N

L2 ≥ ‖Q‖
8
N

L2m2+ 8
N

(1+ 4
N

)M2 , and Q is the solution of ground state Equation (1.7).

Finally, we apply them to obtain some dynamical properties of the blow-up
solutions in the general case: the L2-concentration of the blow-up solutions, limiting
profile of the minimal-mass blow-up solutions, as follows.

Theorem 1.2. Let u(t, x) ∈ C([0, T ); H2) be the corresponding blow-up solu-
tion of the Cauchy problem (1.1)-(1.2). Suppose that a(t) > 0 is any function such
that

(1.10) lim
t→T

a(t) = 0 and lim
t→T

(T − t)
1
4

a(t)
= 0.

Then, there exists y(t) ∈ RN such that

(1.11) lim
t→T

inf

∫

|x−y(t)|≤a(t)

|u(t, x)|2dx ≥
∫

|Q|2dx,

where Q is the ground state solution of Equation (1.7).

Theorem 1.3. Let u0 ∈ H2 and ‖u0‖L2 = ‖Q‖L2. Suppose that u(t, x) ∈
C([0, T ); H2) is the blow-up solution of the Cauchy problem (1.1)-(1.2) in finite
time 0 < T < +∞. Then ∀ε > 0, ∃δ > 0 s.t. when |t − T | < δ, there are functions
y(t) ∈ RN , γ(t) ∈ R such that

(1.12)
∥∥∥λ

N
2 (t)u(t, λ(t)(x + y(t)))eiγ(t) − Q(x)

∥∥∥
H2

< ε,

where λ(t) =
(

‖△Q‖
L2

‖△u‖
L2

) 1
2

and Q(x) is the unique solution of ground state Equation

(1.7).

In this paper, the main tools of the proof of the compactness lemma in this pa-
per are an argument of profile decomposition, introduced by Gérard [7] and Hmidi
and Keraani [9] to study the defect of compactness for Sobolev embedding. We
obtain the existence of ground state of the elliptic Equation (1.7) and variational
characteristic of the ground state Q(x) of Equation (1.7) by establishing the pro-
file decomposition of the bounded sequence in H2, which which are important in
studying the blow-up dynamic of the blow-up solutions for fourth-order nonlinear
Schrödinger equations. Moreover, we extend the results in [1] to the nonradially
blow-up solutions of the Cauchy problem (1.1)-(1.2).

In this paper, We use the denotes Lq := Lq(RN), ‖ · ‖q := ‖ · ‖Lq(RN ), Hs :=

Hs(RN ), Ḣs := Ḣs(RN ) and
∫
·dx :=

∫
RN ·dx. The various positive constants will

be simply denoted by C.
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2. Preliminary

For the Cauchy problem (1.1)-(1.2), the energy space H2 is defined by

H2 := {u ∈ S(RN ) |
∫

RN

(1 + |ξ|2)2|û(ξ)|2dξ < +∞},

with the norm
‖u‖H2 = (‖u‖2

2 + ‖∇u‖2
2 + ‖△u‖2

2)
1
2 .

H2 is a Hilbert space. It is easy to check that, there exist two positive constants
C1 > 0 and C2 > 0 such that

C1(‖u‖2
2 + ‖△u‖2

2) ≤ ‖u‖2
H2 ≤ C2(‖u‖2

2 + ‖△u‖2
2),

which implies that (‖u‖2
2 + ‖△u‖2

2)
1
2 is an equivalent norm of H2. In this paper,

we shall use this equivalent norm of H2: (‖u‖2
2 + ‖△u‖2

2)
1
2 to study the profile

decomposition of the bounded sequences in H2. Moreover, we define the energy
functional E(u) on H2 by

E(u) :=
1

2

∫
|△u|2dx − 1

2 + 8
N

∫
|u|2+ 8

N dx.

The functional E(u) is well-defined according to the Sobolev embedding theo-
rem(see [4]). Ben-Artzi, Koch and Saut [2] established the local well-posedness
of the Cauchy problem (1.1)-(1.2) in H2, as follows.

Proposition 2.1. Let u0 ∈ H2. There exists an unique solution u(t, x) of the
Cauchy problem (1.1)-(1.2) on the maximal time interval [0, T ) such that u(t, x) ∈
C([0, T ); H2) and either T = +∞(global existence), or else 0 < T < +∞ and
lim
t→T

‖u(t, x)‖H2 = +∞ (blow-up). Furthermore, for all t ∈ [0, T ), u(t, x) satisfies

the following conservation laws:

(i) Conservation of mass

(2.1)

∫
|u(t, x)|2dx =

∫
|u0|2dx.

(ii) Conservation of energy

(2.2) E(u(t, x)) = E(u0).

Baruch, Fibich and Mandelbaum [1] obtained the lower-bound for the blow-up
rate of the blow-up solutions to the Cauchy problem (1.1)-(1.2).

Lemma 2.2. Let u(t, x) be the blow-up solution of the Cauchy problem (1.1)-
(1.2) at finite time 0 < T < +∞. Then, there exists a constant K = K(‖u0‖2) > 0
such that

(2.3) ‖△u(t)‖2 ≥ K

(T − t)
1
2

, 0 < t < T.

In order to study the variational characteristic of the ground state correspond-
ing to Equation (1.1), we need the following profile decomposition of the bounded
sequences in H2, which is also our main tool. Similar results for bounded sequences
in L2 and H1 have appeared in Gérard [7] and Hmidi and Keraani [9].

Proposition 2.3. Let {vn}∞n=1 be a bounded sequence in H2. Then there exist
a subsequence of {vn}∞n=1(still denoted {vn}∞n=1), a family {xj

n}∞j=1 of sequences in

RN and a sequence {V j}∞j=1 of H2 functions such that
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(i) for every k 6= j,

(2.4) |xk
n − xj

n| → ∞ as n → ∞,

(ii) for every l ≥ 1 and every x ∈ RN

(2.5) vn(x) =

l∑

j=1

V j(x − xj
n) + vl

n(x),

with

(2.6) lim
n→∞

sup ‖vl
n‖p → 0, as l → ∞,

for every p ∈ (2, 2N
(N−4)+ ).

Moreover, as n → ∞, we have

(2.7) ‖vn‖2
2 =

l∑

j=1

‖V j‖2
2 + ‖vl

n‖2
2 + o(1)

and

(2.8) ‖△vn‖2
2 =

l∑

j=1

‖△V j‖2
2 + ‖△vl

n‖2
2 + o(1).

Proof. Since H2 is a Hilbert space, we denote µ(vn) is the set of functions
obtained as weak limits of subsequences of the translated vn(x +xn) with {xn}∞n=1

in H2. We denote

(2.9) η(vn) = sup{‖V ‖2 + ‖△V ‖2, V ∈ µ(vn)}.
It is obvious that

(2.10) η(vn) ≤ lim
n→∞

sup{‖V ‖2 + ‖△V ‖2}.

Next, we shall prove that there exist a subsequence {V j}∞j=1 of µ(vn) and a family

{xj
n}∞j=1 of sequences of RN such that

(2.11) ∀k 6= j |xk
n − xj

n| → ∞ as n → ∞
and up to extracting a subsequence, the sequence {vn}∞n=1 can be written as

(2.12) vn(x) =

l∑

j=1

V j(x − xj
n) + vl

n, η(vl
n) → 0(l → ∞)

and (2.7) and (2.8) are true.
Indeed, if η(vn) = 0, we can take V j = 0 for all j, otherwise, we choose

V 1 ∈ µ(vn) such that

‖△V 1‖2 + ‖V 1‖2 ≥ 1

2
η(vn) > 0.

By the definition of µ(vn), there exists a subsequence x1
n of RN such that up to

extracting a subsequence, we have

(2.13) vn(x + x1
n) ⇀ V 1(x) weakly in H2.

Setting v1
n(x) = vn(x) − V 1(x − x1

n), by (2.13), we have v1
n(x + x1

n) ⇀ 0 weakly in
H2 and

(2.14) ‖vn‖2
2 = ‖V 1‖2

2 + ‖v1
n‖2

2 + o(1),
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(2.15) ‖△vn‖2
2 = ‖△V 1‖2

2 + ‖△v1
n‖2

2 + o(1).

Now, replacing vn by v1
n and repeating the same process. There exists V 2 ∈ µ(vn)

such that ‖△V 2‖2 + ‖V 2‖2 ≥ 1
2η(v1

n) > 0 and

(2.16) v1
n(x + x2

n) ⇀ V 2(x) weakly in H2.

Setting v2
n(x) = v1

n(x) − V 2(x − x2
n), by (2.13), we have v2

n(x + x2
n) ⇀ 0 weakly in

H2 and

(2.17) ‖v1
n‖2

2 = ‖V 2‖2
2 + ‖v2

n‖2
2 + o(1),

(2.18) ‖△v1
n‖2

2 = ‖△V 2‖2
2 + ‖△v2

n‖2
2 + o(1),

and

(2.19) |x1
n − x2

n| → ∞ as n → ∞.

Indeed, if (2.19) is not true, then

(2.20) v2
n(x + x2

n) = v1
n(x + x2

n − x1
n + x1

n) + V 2(x),

which implies that V 2 = 0 by v1
n(· + x1

n) ⇀ 0 and v2
n(· + x2

n) ⇀ 0 in H2, a
contradiction.

An argument of iteration and orthogonal extraction allows us to construct the
families {xj

n}∞j=1 and {V j}∞j=1 satisfying the claim above. Furthermore, since the

convergence of the series
l∑

j=1

(‖V j‖2
2 + ‖△V j‖2

2), we have

(2.21) ‖V j‖2
2 + ‖△V j‖2

2 → 0 as j → ∞,

which implies that

(2.22) η(vj
n) ≤ 2(‖V j−1‖2 + ‖△V j−1‖2) → 0 as j → ∞.

Therefore, (2.7), (2.8) and (2.12) are true.
In the end, we shall prove that for p ∈ (2, 2N

(N−4)+ )

(2.23) ‖vl
n‖p → 0 as l → ∞.

Let χR ∈ S(RN) such that supp χ̂R(ξ) = { 1
2R ≤ |ξ| ≤ 2R}, χ̂R = 1 on { 1

R ≤ |ξ| ≤
R}, and 0 ≤ χ̂R ≤ 1 on supp χ̂R(ξ), whereˆdenotes the Fourier transform. It is
obvious that

(2.24) vl
n = χR ∗ vl

n + (δ − χR) ∗ vl
n,

where ∗ is the convolution and δ is the Dirac function. Using the the definition of
χR, we have

(2.25) ‖(δ − χR) ∗ vl
n‖2 ≤ C

(∫
|ξ|≤ 1

R

|v̂l
n(ξ)|2dξ +

∫
|ξ|≥R |v̂l

n(ξ)|2dξ
) 1

2

.

Since vl
n is bounded in L2, for any n ≥ 1, we have

(2.26)

∫

|ξ|≤ 1
R

|v̂l
n(ξ)|2dξ +

∫

|ξ|≥R

|v̂l
n(ξ)|2dξ → 0, as R → ∞.
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Using the Sobolev embedding Ḣ2 →֒ L
2N

(N−4)+ , we have

(2.27)

‖(δ − χR) ∗ vl
n‖

L
2N

(N−4)+
≤ C‖(δ − χR) ∗ vl

n‖Ḣ2

≤ C
(∫

|ξ|4|(1 − χ̂R(ξ))v̂l
n(ξ)|2dξ

) 1
2

≤ C
(∫

|ξ|≤ 1
R

|ξ|4|v̂l
n(ξ)|2dξ +

∫
|ξ|≥R |ξ|4|v̂l

n(ξ)|2dξ
) 1

2

.

Since vl
n is bounded in H2, for any n ≥ 1, we have

(2.28)

∫

|ξ|≤ 1
R

|ξ|4|v̂l
n(ξ)|2dξ +

∫

|ξ|≥R

|ξ|4|v̂l
n(ξ)|2dξ → 0, as R → ∞.

Taking p ∈ (2, 2N
(N−4)+ ) and using the Hölder interpolation inequality and (2.26)-

(2.28), we have

(2.29)

‖(δ − χR) ∗ vl
n‖p ≤ ‖(δ − χR) ∗ vl

n‖θ
2‖(δ − χR) ∗ vl

n‖1−θ
2N

(N−4)+

→ 0, as R → ∞,

where 1
p = θ

2 + 1−θ
2N

(N−4)+

and 0 < θ < 1.

On the other hand, by the definition of χR one can estimate

(2.30) ‖χR ∗ vl
n‖p ≤ C‖χR ∗ vl

n‖
p−2

p
∞ ‖χR ∗ vl

n‖
2
p

2 .

In view of the definition of µ(vn), we have

(2.31) lim
n→∞

sup ‖χR ∗ vl
n‖∞ ≤ sup{|

∫
χR(−x)V (x)dx|, V ∈ µ(vn)}.

Using the Parseval identity and Hölder inequality, we have

(2.32)

∣∣∫ χR(−x)V (x)dx
∣∣ =

∣∣∫ F−1[χR(−x)]F [V (x)]dξ
∣∣

=
∣∣∣
∫

χ̂R(ξ)V̂ (ξ)dξ
∣∣∣

≤ C
∫

1
2R

≤|ξ|≤2R
1

|ξ|2 |ξ|2 |V̂ (ξ)|dξ

≤ CRN+2‖△V ‖2 ≤ CRN+2η(vl
n).

Taking R =
(

1
η(vl

n)

) 1
N+2−ε

with ∀ ε > 0 sufficient small, we have

(2.33)

∣∣∣∣
∫

χR(−x)V (x)dx

∣∣∣∣ → 0 as l → ∞.

It follows from (2.30), (2.31) and (2.33) that for p ∈ (2, 2N
(N−4)+ ),

(2.34) ‖χR ∗ vl
n‖p → 0 as l → ∞.

Applying (2.24), (2.29) and (2.34), we have

(2.35) lim
n→∞

sup ‖vl
n‖p → 0, as l → ∞.

This completes the proof.
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3. Variational Structure

In order to study the variational structure of the ground state, we consider the
following elliptic equation

(3.1) △2Q + Q − |Q| 8
N Q = 0, Q ∈ H2.

Define the variational problem

(3.2) J := min{J(u) : u ∈ H2}, where J(u) :=
(
∫
|u|2dx)

4
N (
∫
|△u|2dx)

∫
|u|2+ 8

N dx
.

By some basic calculations, it is easy to check that if W is the minimizer of J(u),
we have the following lemma, one can also see [6,16]. But we provide the detail
here for the reader’s convenience.

Lemma 3.1. If W is the minimizer of J(u), then W satisfies

(3.3) ‖W‖
8
N

2 △2W +
4

N
‖△W‖2

2‖W‖
8
N

−2
2 W − J(1 +

4

N
)|W | 8

N W = 0.

Proof. It follows from the fact that W is a minimizing function of J(u) in H2,
and we have ∀ v ∈ C∞

0 (RN )

(3.4)
d

dε
J(W + εv) |ε=0 = 0.

By some computations, we have

(3.5)
d

dε
{‖(W + εv)‖

8
N

2 } |ε=0 =
4

N
‖W‖

8
N

−2
2

∫
2ℜWvdx,

(3.6)
d

dε
{‖△(W + εv)‖2

2} |ε=0 =

∫
2ℜ△2Wvdx

and

(3.7)
d

dε
{‖W + εv‖2+ 8

N

2+ 8
N

} |ε=0 = (1 +
4

N
)2ℜ

∫
|W | 8

N Wvdx.

By (3.4)-(3.7), we have
(3.8)

4
N ‖W‖2+ 8

N

2+ 8
N

‖△W‖2
2‖W‖

8
N

−2
2

∫
2ℜWvdx + ‖W‖2+ 8

N

2+ 8
N

‖W‖
8
N

2

∫
2ℜ△2Wvdx

= (1 + 4
N )‖△W‖2

2‖W‖
8
N

2 2ℜ
∫
|W | 8

N Wvdx,

which implies that (3.3) is true.
Now, we use the profile decomposition of the bounded sequence in H2 to obtain

the following proposition.

Proposition 3.2. J is attained at a function U(x) ∈ H2 with the following
properties:

(3.9) U(x) = aQ(λx + x0) for some a ∈ C∗, λ > 0 and x0 ∈ RN

where Q is the solution of ground state elliptic Equation (3.1). Moreover,

(3.10) J =
1

1 + 4
N

‖Q‖
8
N

2 .
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Proof. If we set uλ,µ = µu(λx), where µ =
‖u‖

N
4

−1

2

‖△u‖
N
4

2

and λ =
‖u‖

1
2
2

‖△u‖
1
2
2

, we have

(3.11) ‖uλ,µ‖2 = 1, ‖△uλ,µ‖2 = 1 and J(uλ,µ) = J(u).

Now, choosing a minimizing sequence {un}∞n=1 ⊂ H2 such that J(un) → J as
n → ∞, after scaling, we may assume

(3.12) ‖un‖2 = 1 and ‖△un‖2 = 1,

and we have

(3.13) J(un) =
1∫

|un|2+
8
N dx

→ J, as n → ∞.

Note that {un}∞n=1 is bounded in H2. It follows form the profile decomposition
(Proposition 2.3)that

un(x) =

l∑

j=1

U j(x − xj
n) + rl

n(x)

and

(3.14)
l∑

j=1

‖U j
n‖2

2 ≤ 1,

l∑

j=1

‖△U j
n‖2

2 ≤ 1,

where U j
n = U j(x − xj

n). Moreover, since 2 < 2 + 8
N < 2N

(N−4)+ , for rl
n, we have

(3.15)

∫
|rl

n|2+
8
N dx → 0, as l → +∞.

Using the orthogonal conditions and the following elementary inequality (p > 1)

(3.16)

∣∣∣∣∣∣
|

l∑

j=1

aj |1+p −
l∑

j=1

|aj |1+p

∣∣∣∣∣∣
≤ C

∑

j 6=k

|aj||ak|p,

we have

(3.17)

∫
|

l∑

j=1

U j(x − xj
n)|2+ 8

N dx →
l∑

j=1

∫
|U j|2+ 8

N dx, as n → ∞.

Therefore, by (3.13), (3.15) and (3.17), we have

(3.18)

l∑

j=1

∫
|U j |2+ 8

N dx → 1

J
, as n → ∞.

For another thing, by the definition of J , we have

(3.19) J

∫
|U j |2+ 8

N dx ≤ ‖U j‖
8
N

2 ‖△U j‖2
2.

Since the series
∑

j ‖U j‖2
2 is convergent, there exists a j0 ≥ 1 such that

(3.20) ‖U j0‖2 = sup{‖U j‖2 | j ≥ 1}.



LIMITING PROFILE OF THE BLOW-UP SOLUTIONS 197

It follows from (3.18)-(3.20) that

(3.21)

1 ≤ J

(
l∑

j=1

∫
|U j |2+ 8

N dx

)
≤ sup{‖U j‖

8
N

2 | j ≥ 1}
(

l∑
j=1

‖∇U j‖2
2

)

≤ ‖U j0‖
8
N

2

(
l∑

j=1

‖∇U j‖2
2

)
≤ ‖U j0‖

8
N

2 .

It follows from (3.14) that ‖U j0‖2 = 1, which implies that there exists only one
term U j0 6= 0 such that

(3.22) ‖U j0‖2 = 1, ‖△U j0‖2 = 1, and

∫
|U j0 |2+ 8

N dx =
1

J
.

Therefore, we show that U j0 is the minimizer of J(u). It follows from Lemma 3.1
that

(3.23) △2U j0 +
4

N
U j0 − (1 +

4

N
)J |U j0 | 8

N U j0 = 0.

We take U j0 = aQ(λx + x0) for the reason of symmetric invariance of Equation
(3.1), where a ∈ C∗, λ > 0, x0 ∈ RN and Q is the solution of (3.1).

On the other hand, if Q is the solution of Equation (3.1), we claim

(3.24)

∫
|△Q|2dx +

∫
|Q|2dx −

∫
Q2+ 8

N dx = 0

and

(3.25) (2 − N

2
)

∫
|△Q|2dx − N

2

∫
|Q|2dx +

N

2 + 8
N

∫
Q2+ 8

N dx = 0.

Indeed, Multiplying (3.1) by Q and integrating by parts, we have that (3.24) is
true.

Multiplying (3.1) by x · ∇Q and integrating by parts, we have
∫

△2Qx · ∇Qdx +

∫
Qx · ∇Qdx −

∫
|Q| 8

N Qx · ∇Qdx = 0.

For another thing, we have
∫

△2Qx · ∇Qdx = 2

∫
|△Q|2dx +

∫
x · ∇(

|△Q|2
2

)dx = (2 − N

2
)

∫
|△Q|2dx,

∫
Qx · ∇Qdx = −N

2

∫
Q2dx

and ∫
|Q| 8

N Qx · ∇Qdx = − N

2 + 8
N

∫
Q2+ 8

N dx.

Collecting the above identities, we have that (3.25) is true.
Now, we return to the proof of Proposition 3.2. By some computations, we have

that ‖U j0‖2
2 = |a|2

λN ‖Q‖2
2 = 1, ‖△U j0‖2

2 = |a|2

λN−4 ‖△Q‖2
2 = 1 and

∫
|U j0 |2+ 8

N dx =

|a|2+
8
N

λN

∫
|Q|2+ 8

N dx = 1
J . Applying Claim (3.24) and (3.25), we have

1

1 + 4
N

∫
|Q|2+ 8

N dx =

∫
|△Q|2dx,



198 SHIHUI ZHU, JIAN ZHANG, AND HAN YANG

which implies that

(3.26) J =
λN

|a|2+ 8
N

1∫
|Q|2+ 8

N dx
=

1

1 + 4
N

‖Q‖
8
N

2 .

This completes the proof Proposition 3.2.

Remark 3.3. In [6], Fibich etal also showed the following sharp Gargliardo-
Nirenberg inequality

1

1 + 4
N

∫
|u|2+ 8

N dx ≤ 1

(
∫
|Q|2dx)

4
N

(

∫
|u|2dx)

4
N (

∫
|△u|2dx),

where Q is the solution of ground state Equation (3.1), but the existence of the
ground state Equation (3.1) is not addressed in their paper. In this paper, we prove
the existence of the ground state Equation (3.1). Our results are more strong than
Fibich etal’s results and the methods are different.

At the end of this section, we prove Theorem 1.1 by applying the profile de-
composition of the bounded sequence in H2 and the sharp Gagliardo-Nirenberg
inequality (Proposition 3.2).
Proof of Theorem 1.1. By extracting a subsequence, we may replace lim sup in
the assumption in Theorem 1.1 by lim. According to the profile decomposition in
Proposition 2.3, the sequence {vn}∞n=1 can be written up to a subsequence, as

(3.27) vn(x) =
l∑

j=1

V j(x − xj
n) + vl

n(x)

with

lim
l→∞

lim
n→∞

sup ‖vl
n‖p = 0,

for p ∈ (2, 2N
(N−4)+ ), and we have the following estimations

(3.28) ‖vn‖2
2 =

l∑

j=1

‖V j‖2
2 + ‖vl

n‖2
2 + o(1),

(3.29) ‖△vn‖2
2 =

l∑

j=1

‖△V j‖2
2 + ‖△vl

n‖2
2 + o(1).

This implies that

(3.30)

m2+ 8
N ≤ lim

n→∞
sup ‖vn‖2+ 8

N

2+ 8
N

≤ lim
n→∞

sup ‖
l∑

j=1

V j(x − xj
n) + vl

n(x)‖2+ 8
N

2+ 8
N

≤ lim
n→∞

sup

(
‖

l∑
j=1

V j(x − xj
n)‖2+ 8

N
+ ‖vl

n(x)‖2+ 8
N

)2+ 8
N

≤ ‖
l∑

j=1

V j(x − xj
n)‖2+ 8

N

2+ 8
N

as l → ∞.
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Using the elementary inequality

(3.31)

∣∣∣∣∣∣
|

l∑

j=1

aj |2+
8
N −

l∑

j=1

|aj |2+
8
N

∣∣∣∣∣∣
≤ C

∑

j 6=k

|aj ||ak|1+
8
N ,

and the pairwise orthogonality of the family {xj
n}∞j=1, we have that the mixed terms

in (3.30) vanish. Hence, we have

(3.32) m2+ 8
N ≤

∞∑

j=1

‖V j‖2+ 8
N

2+ 8
N

.

On the other hand, using the Gagliardo-Nirenberg inequality, we have

(3.33)

∞∑

j=1

‖V j‖2+ 8
N

2+ 8
N

≤ 1 + 4
N

‖Q‖
8
N

2

sup{‖V j‖
8
N

2 , j ≥ 1}




∞∑

j=1

‖△V j‖2
2



 .

By(1.8) and (3.29), we have

(3.34)

∞∑

j=1

‖△V j‖2
2 ≤ lim

n→∞
sup ‖△vn‖2

2 ≤ M2.

Therefore, we have

(3.35) sup
j≥1

‖V j‖
8
N

2 ≥ ‖Q‖
8
N

2 m2+ 8
N

(1 + 4
N )M2

.

Since the series
∞∑

j=1

‖V j‖2
2 is convergent, we have that the supremum of {‖V j‖

8
N

2 ; j ≥

1} is attained. In particular, there exists a j0 ≥ 1 such that

(3.36) ‖V j0‖
8
N

2 ≥ ‖Q‖
8
N

2 m2+ 8
N

(1 + 4
N )M2

.

By a change of variables, we have

(3.37) vn(x + xj0
n ) = V j0(x) +

∑

j 6=j0

V j(x − xj
n + xj0

n ) + ṽl
n(x),

where ṽl
n(x) = vl

n(x + xj0
n ). Applying the pairwise orthogonality of the family xj

n

to (3.37), we have

(3.38) V j(x − xj
n + xj0

n ) ⇀ 0 weakly in H2

for j 6= j0. Hence, we have

(3.39) vn(x + xj0
n ) ⇀ V j0 + ṽl.

where ṽl denote the weak limit of ṽl
n. Using the Proposition 2.3, we have

(3.40) ‖ṽl‖2+ 8
N

≤ lim
n→∞

sup ‖ṽl
n‖2+ 8

N
= lim

n→∞
sup ‖vl

n‖2+ 8
N

→ 0, as l → ∞,

which implies that

(3.41) ṽl = 0 for l ≥ j0,

by the uniqueness of the weak limit.
Therefore, we have

(3.42) vn(x + xj0
n ) ⇀ V j0 weakly in H2,
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which implies the sequence xj0
n and the function V j0 now fulfill the condition of

Theorem 1.1. This completes the proof.

4. L2-Concentration

In this section, we shall use the compactness results in Theorem 3.4 to study
the L2-concentration properties of blow-up solutions to the Cauchy problem (1.1)-
(1.2) in the general case. This result extends the results in [1] to the non-radially
symmetric blow-up solutions. More precisely, we have the following theorem.

Theorem 4.1. Let u(t, x) ∈ C([0, T ); H2) be the corresponding blow-up solu-
tion of the Cauchy problem (1.1)-(1.2) such that

(4.1) lim
t→T

‖△u(t, x)‖2 = +∞.

Suppose that a(t) > 0 is any function such that a(t)‖△u(t)‖
1
2
2 → +∞ as t → T .

Then, there exists y(t) ∈ RN such that

(4.2) lim
t→T

inf

∫

|x−y(t)|≤a(t)

|u(t, x)|2dx ≥
∫

|Q|2dx,

where Q is the solution of ground state Equation (3.1).

Proof. Since u(t, x) ∈ C([0, T ); H2) is the corresponding blow-up solution of
the Cauchy problem (1.1)-(1.2) such that lim

t→T
‖△u(t, x)‖2 = +∞. For any tk → T

as k → +∞, we take

(4.3)
1

λ2
k

= ‖△u(x, tk)‖2 → +∞, as k → +∞.

Considering Uk = λ
N
2

k u(λkx), by direct computations, we have

(4.4)

{
‖Uk‖2 = ‖u(tk)‖2 = ‖u0‖2,

‖△Uk‖2 = λ2
k‖△u(tk)‖2 = 1.

Therefore, Uk is a uniformly bounded sequence in H2 by (4.4). Note that

(4.5)

E(Uk) = 1
2

∫
|△Uk|2dx − 1

2+ 8
N

∫
|Uk|2+

8
N dx

= λ4
kE(u0)

→ 0, as k → +∞,

by the conservation of energy. Combining (4.4) with (4.5), we have

(4.6) lim
k→∞

∫
|Uk|2+

8
N dx ≥ 1 +

4

N
.

Applying Theorem 1.1 to the sequence Uk (with M = 1, m2+ 8
N = 1 + 4

N ), we have

that there exists {yk} ⊂ RN

(4.7) Uk(x + yk) ⇀ U(x) weakly in H2, with ‖U‖2 ≥ ‖Q‖2,

where Q is the ground state solution of Equation (3.1). That is,

(4.8) λ
N
2

k u(tk, λk(x + yk)) ⇀ U(x) weakly in H2,
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which implies that for every A > 0

(4.9) lim
k→∞

inf

∫

|x|≤A

λN
k |u(tk, λk(x + yk))|2dx ≥

∫

|x|≤A

|U |2dx.

Since the assumption a(tk)
λ(tk) → +∞ as k → +∞, we have

lim
k→∞

inf sup
y∈RN

∫

|x−y|≤a(tk)

|u(tk, x)|2dx ≥
∫

|x|≤A

|U |2dx.

For every A > 0, we have

(4.10) lim
k→∞

inf sup
y∈RN

∫

|x−y|≤a(tk)

|u(tk, x)|2dx ≥
∫

|U |2dx.

Therefore, since the sequence {tk} is arbitrary and (4.7), we have

(4.11) lim
t→T

inf sup
y∈RN

∫

|x−y|≤a(t)

|u(t, x)|2dx ≥
∫

|Q|2dx.

On the other hand, for every t ∈ [0, T ), the function y 7→
∫
|x−y|≤a(t) |u(t, x)|2dx

is continuous and goes to 0 at infinity, and we have

(4.12) sup
y∈RN

∫

|x−y|≤a(t)

|u(t, x)|2dx =

∫

|x−y(t)|≤a(t)

|u(t, x)|2dx,

for some y(t) ∈ RN . This completes the proof.
Applying the lower blow-up rate of the solutions to the Cauchy problem (1.1)-

(1.2) obtained by Baruch, Fibich and Mandelbaum [1](see Lemma 2.2), we have the
following rate of L2-concentration of the blow-up solutions to the Cauchy problem
(1.1)-(1.2) (see Theorem 1.2). At the end of this section, we give the proof of
Theorem 1.2

Proof of Theorem 1.2. The result follows immediately from Lemma 2.2 and
Theorem 4.1.

5. Limiting Profile of Minimal Mass Blow-up Solutions

In this section, we assume that the ground state solution of Equation (3.1)
is unique up to translations in space, phase and dilations, which is also denoted
by Q(x), where it is assumed as the same as in [33] for the classical Schrödinger
equation (1.4). Using the compactness lemma obtained in Section 3 and the char-
acterization of the corresponding ground state, we obtain the limiting profile of
the blow-up solutions in H2 for the Cauchy problem (1.1)-(1.2). More precisely,
we obtain that if the initial data u0 ∈ H2 satisfies ‖u0‖2 = ‖Q(x)‖2, then the
corresponding blow-up solution of the Cauchy problem (1.1)-(1.2) u(t, x) remains
close to Q(x) in H2 up to scaling and phase parameters, and also translation in the
nonradial case. At first, we consider the variational characterization of the ground
state of Equation(3.1), as follows.

Lemma 5.1. If u ∈ H2 is such that ‖u‖2 = ‖Q‖2 and E(u) = 0, then u(x) is
of the following form

(5.1) u(x) = eiγλ
N
2 Q(λx + x0), for some γ ∈ R, λ > 0, x0 ∈ RN ,

where Q is the unique solution of ground state Equation (3.1).
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Proof. Since E(u) = 0, we have

(5.2)

∫
|△u|2dx =

1

1 + 4
N

∫
|u|2+ 8

N dx.

Hence, we have

(5.3) J(u) =
(
∫
|u|2dx)

4
N (
∫
|△u|2dx)∫

|u|2+ 8
N dx

=
1

1 + 4
N

‖u‖
8
N

2 =
1

1 + 4
N

‖Q‖
8
N

2 = J,

which implies that u is a minimizer of J(u). By Proposition 3.2 and the uniqueness
of Q, we have that u is of the form u(x) = aQ(λx + x0). On the other hand, by

‖u‖2 = ‖Q‖2, we have |a| = λ
N
2 . Therefore, since the value of u(x) is in C, there

exists γ ∈ R such that

u(x) = eiγλ
N
2 Q(λx + x0),

where λ > 0, x0 ∈ RN and Q is the unique ground state solution of Equation (3.1).
This completes the proof.

Now, we are in proposition to prove Theorem 1.3 by applying the variational
characteristic of the ground state of Equation (3.1).
Proof of Theorem 1.3. We show that for any sequence tk → T , there is a
subsequence tkj

, ykj
and γ(tkj

) such that

(5.4) λ
N
2 (tkj

)u(tkj
, λ(tkj

)(x + y(tkj
)))eiγ(tkj

) → Q(x) strongly in H2 as j → ∞,

where Q(x) is the unique ground state solution of Equation (3.1). If not, then (5.4)
does not holds along some sequence tkr

. But then we can find a subsequence of
tkr

along with (5.4) holds, this is a contradiction. Since tk is an arbitrary sequence
approaching T , and (1.12) follows.

Since u(t, x) ∈ C([0, T ); H2) is the blow-up solution of the Cauchy problem
(1.1)-(1.2), there is a 0 < T < +∞ such that lim

t→T
‖△u‖2 = +∞. For any tk → T

as k → +∞, we take

(5.5)
1

λ2
k

= ‖△u(x, tk)‖2 → +∞, as k → +∞.

Consider Uk = λ
N
2

k u(λkx), by direct computations, we have

(5.6)

{ ‖Uk‖2 = ‖u(tk)‖2 = ‖u0‖2 = ‖Q(x)‖2,

‖△Uk‖2 = λ2
k‖△u(tk)‖2 = 1.

Therefore, Uk is a uniformly bounded sequence in H2 and Uk has a weakly conver-
gent subsequence Uk (still denoted by Uk). Note that

(5.7)

E(Uk) = 1
2‖△Uk‖2

2 − 1
2+ 8

N

‖Uk‖2+ 8
N

2+ 8
N

= λ4
kE(u0) → 0, as k → +∞.

Combining (5.6) with (5.7), one has

lim
k→∞

‖Uk‖2+ 8
N

2+ 8
N

= 1 +
4

N
.
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Applying Theorem 1.1 to the sequence Uk (M = 1, m2+8/N = 1+ 4
N ), one has that

there exist {yk} ⊂ RN and U ∈ H2 such that

Uk(x + yk) ⇀ U(x) weakly in H2

with ‖U‖2 ≥ ‖Q‖2. Since ‖U‖2 ≤ ‖Uk(x + yk)‖2 = ‖Q‖2 and the Brézis-Lieb
Lemma, one has

(5.8) Uk(x + yk) → U(x) strongly in L2.

By the Gagliardo-Nirenberg’s inequality (see Proposition 3.2), there exists γk ∈ R

such that

‖Uk(x + yk)eiγk − U‖2+ 8
N

2+ 8
N

≤ C‖Uk(x + yk)eiγk − U‖
8
N

2 ‖△(Uk(x + yk)eiγk − U)‖2
2.

It follows from (5.6) and ‖△Uk(x + yk)‖2 ≤ C that

(5.9) Uk(x + yk)eiγk → U strongly in L2+ 8
N .

Next, we shall show that Uk(x + yk)eiγk converges to U strongly in H2. We
need only now show that ‖△U‖2 = 1 by the Brézis-Lieb Lemma. Note that

(5.10)

0 = lim
k→∞

E(Ukeiγk)

= 1
2 − 1

2+ 8
N

lim
k→∞

‖Uk‖2+ 8
N

2+ 8
N

= 1
2 − 1

2+ 8
N

‖U‖2+ 8
N

2+ 8
N

.

Therefore, we have ‖△U‖2 = 1 and the fact U 6≡ 0, which implies that Uk(x+yk)eiγk

converges strongly to U in H2.
Therefore, applying the variational characteristic of the ground state of Equa-

tion(3.1), we have, ∃y ∈ RN , γ ∈ R such that U(x) = Q(x + y)eiγ , which implies
that

(5.11) λ
N
2

k u(tk, λk(x + yk))eiγk → Q(x + y)eiγ strongly in H2 as k → ∞.

By redefining the sequences yk and γk, we have (5.4) is true. This completes the
proof.
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