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Abstract. The hydrodynamics of Newtonian fluids has been the subject of
a tremendous amount of work over the past eighty years, both in physics and
mathematics. Sadly, however, a mutual feeling of incomprehension has often
hindered scientific contacts.

This article provides a dictionary that allows mathematicians (including
the author) to define and study the spectral properties of Kolmogorov-Obukov
turbulence in a simple deterministic manner. In other words, this approach
fits turbulence into the mathematical framework of studying the qualitative
properties of solutions of PDEs, independently from any a-priori model of the
structure of the flow.

To check that this approach is correct, this article proves some of the
classical statements that can be found in physics textbooks. This is followed by
an investigation of the compatibility between turbulence and the smoothness
of solutions of Navier-Stokes in 3D, which was the initial motivation of this
study.
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1. Introduction

The simplest model of a Newtonian fluid is an incompressible flow evolving
freely with constant density and temperature. Let us therefore consider the incom-
pressible Navier-Stokes system on R+ × Ω with either Ω ⊆ R3 or Ω = T3 :

(1)


∂tu− ν∆u+ (u · ∇)u = −∇Π
div u = 0
u|t=0 = u0, u|∂Ω = 0.

Here u represents the velocity field and Π = p/ρ, where p is the pressure and ρ
is the density assumed to be constant and ν > 0 is the kinematic viscosity. This
equation has weak solutions (called Leray solutions [50]) in the Leray space

u ∈ L(Ω) = L∞(R+;L2(Ω)) ∩ L2(R+; Ḣ1(Ω)), Π ∈ L5/3
loc (R+ × Ω).

Pressure can be computed by solving −∆Π = Tr(t∇u·∇u). In general, the smooth-
ness of (u,Π) is an open problem that has been extensively studied. Among his-
torical landmarks regarding smoothness, one must cite the works [60], [32] and
[39] for the point of view of partial differential equations and [14] for an approach
based on geometric-measure theory. To get a more comprehensive survey of what is
currently known about (1), one should check e.g. [48], [54], [65] and the references
therein.

Since the seminal works of Kolmogorov [40][41][42][43] and Obukhoff [57], a
vast amount of effort has been put into understanding turbulence. In physics, one
should definitely quote [2] and [31] as major reference handbooks. Personally, I
was very impressed by experiment [53], in which immersed floats equipped with
GPS devices were allowed to drift in a Canadian river; the speed could be measured
directly and a sufficient amount of data could be gathered to check the spectral 5/3
law (see Prop. 4.2 below) with striking precision. I discovered the point of view
of engineers in [25] and was pleased to realized that they pay great attention to
mathematical rigor because disregarding the divergence of an integral can trigger
a catastrophe in real life. The following books and articles helped me acquire the
experimental background necessary to write this article [8], [6], [7], [10], [56], [63],
[35], [37]. In mathematics, the question of turbulence often raises cynical reactions.
However, the books [30], [52] and the following works were a valuable source of
inspiration : [22], [46], [23], [45], [1], [29], [24], [20] (by publication date).

On the question of whether the spectral properties of turbulence are compat-
ible with Navier-Stokes, there is a very interesting recent paper [5] dealing with
weak solutions. The authors obtain compatibility conditions that they themselves
qualify as being reasonably satisfied (the upper-bounds on the inertial range largely
exceeds the range predicted by physics and observed experimentally). The present
article is an independent work, though my motivations are similar. Starting from
a more precise definition of turbulence makes it possible to recover the real inertial
range. Later on I focus on smooth solutions and prove the exponential decay of
the spectrum, which will lead to much stronger restrictions that still allow smooth
turbulence to exist.
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2. Structure of the article, ideas and main results.

Section §3 contains useful definitions and notations. In particular §3.6 provides
a deterministic definition of K41-turbulence and a dictionary to translate physics
claims into mathematical statements. Section §4 checks that it indeed leads to the
classical properties of the inertial range and of the energy spectrum that one can
find in physics textbooks.

The next step is to investigate a-priori bounds of the energy spectrum respec-
tively for low frequencies in §5 and high frequencies in §6. The low-frequency bounds
happens to answer a physical conjecture on what triggers Batchelor’s and Saffman’s
spectra ; the answer is strongly connected with the spatial localization and tempo-
ral decay properties that have been extensively studied by mathematicians in the
past decade.

Section §7 contains the discussion of whether solutions of (1) in 3D can be
turbulent and what conditions must be satisfied. A general restriction applies to
the time range on which averages are taken. For smooth solutions, one can prove
a lower bound of the fluctuation between the dissipation rate and its average (a
physical phenomenon known as intermittency). There is also a new formula relating
the analyticity radius to the size of the finest scales in the inertial range.

As some other important statements of physics textbooks have not yet been
rigorously established, section §8 collects some open problems and hints on how
they could be tackled.

The first main idea carried by this paper is that qualitative properties of tur-
bulent flows can be studied with the deterministic tools of PDEs. A probabilistic
approach might still be necessary later on to prove that “most” flows are turbulent,
but that problem should be addressed separately.

The second idea is that turbulence is not based on the failure of smoothness
because one can prove it to be compatible with the analytic regularity of solutions.
Turbulence is a specific mathematical structure of solutions that local regularity
methods fail to capture even though they might be troublingly close (see §8.8). In all
likelihood, turbulence will prove to be the key to understanding global smoothness.

The third and more concrete contribution of this article is the introduction
of the “volume” function Vol(u; [T0, T1]) at the foundations of the theory. This
quantity describes the large scales involved in turbulence. Later on, the new time
scale T (u0;ω) is shown to be characteristic of time intervals on which free turbulence
can be observed. Their ubiquitous nature in this article suggests that they should
be given some attention.

Finally, this article sheds light on some subtleties related to the definition of the
energy spectrum in the discrete case. Luckily enough, spectral computations could
be carried out explicitly on T3 but the generalization to other domains should be
done very carefully as it might be responsible for a substantial part of the troubles
of “real life” turbulence.

3. Definitions and basic properties

Let us recall some mathematical notations and physical definitions regarding
(1).
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3.1. Kinetic energy and energy spectrum. The kinetic energy at time
t > 0 is

(2) E(t) = ρ ‖u(t)‖2L2 .

The energy spectrum represents the contribution to the total kinetic energy
of the frequency K. It is defined rigorously by the spectral resolution of the Stokes
operator A = −P∆ which is a positive self-adjoint operator with domain D(A) ={
u ∈ H2(Ω) ∩H1

0 (Ω) ; div u = 0
}

if Ω is smooth (for non-smooth domains, see e.g.
[61, p. 7, p. 128] or [33]). Here P denotes the orthogonal projection on divergence-
free vector fields in L2(Ω).

3.1.1. Case of a continuous Stokes spectrum. On Ω = R3 one has σ(A1/2) =
[0,∞). Thus the (isotropic) energy spectrum of a function u ∈ L(R3) is defined
by :

(3a) E∗(K, t) =
d

dK

(
ρ

∥∥∥∥χ(A1/2

K

)
u(t, ·)

∥∥∥∥2

L2

)
;


χ ∈ C∞(R+; R+),
χ(r) = 1 r < 1/2,
χ(r) = 0 r > 2.

We use a smooth cut-off to ensure that E∗ exists for any u(t) ∈ L2(R3). The non
smooth cut-off is defined as the limit in the distribution sense χ2(r) ⇀ 1r<1. The
spectrum satisfies the fundamental property :

(3b) E(t) =
∫ ∞

0

E∗(K, t) dK

The projector P commutes with derivations, which allows one to compute the spec-
trum explicitly in Fourier variables (see e.g. [19, pp. 38-40]).

Proposition 3.1. Let us compute the Fourier transform with

û(t, ξ) =
∫

R3
e−ix·ξu(t, x)dx.

(1) If u is a divergence-free vector field in R3 :

(4) E∗(K, t) =
ρ

K

∫
R3
ψ

(
|ξ|
K

)
|û(t, ξ)|2 dξ

(2π)3

where ψ is a positive smooth bump function, supported on [2−1, 2] and
such that

∫∞
0
ψ(r)dr

r = 1.
(2) In the limit of non smooth cut-off, one has ψ(r) ⇀ δr=1 and

(5) E∗(K, t) → E†(K, t) =
def

(2π)−3ρK2

∫
S2
|û(t,Kϑ)|2dϑ.

Conversely, if one defines the “experimental” value of E†(K, t) as the
average over a spherical shell of relative amplitude δ ∈]0, 1[, one finds

1
2δK

∫ (1+δ)K

(1−δ)K

|E†(κ, t)|2dκ = E∗(K, t)

for ψ(r) = 1
2δ1[1−δ,1+δ](r) and ψ(r) ⇀ δr=1 as δ → 0.

Proof. Applying the spectral theorem, one has A =
∫∞
0
λdPλ with Pλ = P ◦ PD

λ

where PD
λ is the spectral projector associated to the Dirichlet operator (−∆)D on
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Ω. For R3 and T3, one has PD
λ = F−1 ◦ P̂D

λ ◦ F where F is the Fourier transform
and respectively (ξ ∈ R3 and k ∈ Z3) :

P̂D
λ = 1|ξ|2≤λ or P̂D

λ = 1|k|2≤λ.

In both cases, one has P ◦ PD
λ = PD

λ ◦ P hence :

χ

(
A1/2

K

)
u = F−1 ◦

∫ ∞

0

χ

(
λ1/2

K

)
dP̂λ ◦ F(u) = F−1

[
χ

(
| · |
K

)
P̂u
]
.

If div u = 0, one has Pu = u. Then (4) follows from Parseval identity ‖v‖2L2(R3) =

(2π)−3 ‖v̂‖2L2 . The rest of the statement is obvious with ψ(r) = −2rχ(r)χ′(r).

Remarks.
(1) To unify notations with the case of a discrete Stokes spectrum, let us

state (3b) as

(6) E(t) =
∫

σ(A1/2)

E†(K, t) dµ(K)

where E† is defined by (5) and µ is the Lebesgue measure on σ(A1/2) =
[0,∞). Note that by Fubini’s Theorem, the spectrum E†(K, t) exists in
L1(R+) for any u ∈ L2(R3).

(2) In the following, one should not rely on any other norm than ‖ψ‖L1 ≤ 2
because other Lp norms of ψ are unbounded in the limit ψ(r) ⇀ δr=1.
Estimates like E∗(K, t) ≤ ‖ψ‖L∞

E(t)
K should be disregarded as empty of

any physical meaning and because they do not correspond to any property
of E†.

3.1.2. Case of a discrete Stokes spectrum. On T3 = R3/(LZ)3 the spectrum of
the Sokes operator is discrete σ(A) = {K2 ; K ∈ Σ} where

(7) Σ = σ(A1/2) = {|k| ; k ∈ (2πL−1Z)3} = {2πL−1
√
n ; n ∈ �3}

and �3 is the set of integers that are the sum of three squares. Let us denote by
Σ∗ = Σ\{0}. By the Gauss-Legendre three-squares theorem :

(8) �3 = {n ∈ N, n 6= 4p(8q + 7)}.

Writing an analogue to formula (3a) must be done carefully in order to cope with
the discrete differentiation.

Let us denote by û(t,k) =
∫

T3 e
−ik·xu(t, x)dx the kth Fourier coefficient of u(t)

and by L = Vol(T3)1/3 the characteristic length of T3.

Definition 3.1. On T3 the energy spectrum is defined by :

(9) ∀K ∈ Σ∗, E†(K, t) = (2π)−2ρ

(
K

L

) ∑
k∈(2πL−1Z)3

|k|=K

|û(t,k)|2.

One defines the following measure on Σ∗ :

(10) µ = 2πL−1
∑

K∈Σ∗

(
2π
KL

)
δK .
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For δ � K, the corresponding average value on the spherical shell Σδ(K) ={
κ ∈ Σ∗ ;

∣∣∣ |κ|K − 1
∣∣∣ ≤ δ

K

}
is :

(11) E∗δ (K, t) =

∫
Σδ(K)

E†(κ, t)dµ(κ)

µ(Σδ(K))
=

2πL−1
∑

κ∈Σδ(K)

(
2π
κL

)
E†(κ, t)

2πL−1
∑

κ∈Σδ(K)

(
2π
κL

) ·

One will call E∗δ (K, t) the “experimental” value of E†(K, t).

Proposition 3.2. The following statements hold.
(1) To compute the total energy, formula (3b) is replaced by :

E(t) =
(∫

T3
ρu0(x)dx

)2

+
∫

σ(A1/2)\{0}
E†(κ, t)dκ(12)

=
(∫

T3
ρu0(x)dx

)2

+ 2πL−1
∑

K∈Σ∗

(
2π
KL

)
E†(K, t).

(2) There exist β ∈]0, 1[ and C ≥ 1 such that
(13)

0 < δ ≤ βK =⇒ C−1E∗δ (K, t) ≤ ρ

4δ

 1
L3

∑
k∈Sδ(K)

|û(t, k)|2
 ≤ CE∗δ (K, t)

where Sδ(K) =
{
k ∈ (2πL−1Z)3 ;

∣∣∣ |k|K − 1
∣∣∣ ≤ δ

K

}
is the spherical shell of

frequencies K ± δ.

Identity (13) is crucial to match the theory to real-world experiments. In-
deed, the sum of the squares of Fourier coefficients on spherical shells is the energy
spectrum of all numerical and physical experiments. Therefore, the universal be-
havior observed for the E∗δ of turbulent flows can be addressed mathematically by
investigating the corresponding property on E†.

Remarks.
(1) One cannot emphasize enough that (13) does not hold for any other nor-

malization than (9)–(12). For example, using the analogy with (5) one
could be tempted to replace (9) by :

(2π)−3ρK2
∑

Lk∈2πZ3

|k|=K

|û(t, k)|2

This choice would lead to a catastrophe. First, the averages on spherical
shells would be equivalent to

K ×

 ρ

δL2

∑
k∈Sδ(K)

|û(t, k)|2


which is not the usual normalization of experimental spectra. If this fact
remains unnoticed and one develops the rest of the theory, then in Theo-
rem 4.1 one would not recover the usual Kolmogorov dissipation frequency
Kd (defined below) but instead K ′

d = ε̄ Vol(T3)
(αν)3 . Physics textbooks usually
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dodge the subtlety of (9)–(12) ; at best, they use (5) to define E∗(K, t)
in the case of R3 and rely on (13) for any practical purposes. This sub-
tlety is however of great practical importance as most experimental data
is obtained in a situation where the spectrum is discrete. . .

(2) The key to this computation is the asymptotic of Σ∗ i.e. of eigenvalues
counted without multiplicity. Let us reorder the Stokes spectrum in an
increasing sequence σ(A) = {K2

j ; j ∈ N} with Kj < Kj+1. One can prove
the existence of C,C ′ ≥ 1 such that :

(14)
C−1

L2
≤ K2

j+1 −K2
j ≤

C

L2
or equivalently

C ′
−1
L−2

Kj
≤ Kj+1 −Kj ≤

C ′L−2

Kj

This asymptotic is responsible for the fact that E† (or more generally any
function on σ(A1/2)) has a different normalization than its shell averages
E∗δ . Describing which domains satisfy (14) on the pertinent range of fre-
quencies is a widely open problem whose answer might actually provide
a hint as to why physicists have trouble unifying the description of all
turbulences. Conversely, it might also explain why some common pat-
terns have been found for each of the “families” of turbulence (e.g. grid
turbulence, wake turbulence, jet turbulence, boundary layer turbulence or
turbulence in bounded domains).

(3) The experimental spectrum is defined by averages on spherical shells of
frequencies K± δ with δ � K. For dyadic shells i.e. frequencies (1± ε)K
the corresponding average is

E∗εK(K, t) ' ρ

εK

 1
L3

∑
1−ε<|k|/K<1+ε

|û(t, k)|2
 .

Proof. Parseval indentity ‖v‖2L2(T3) = L−3
∑
|v̂(k)|2 dictates the compatibility

between formulas (9) and (12). Note that (1) implies
∫

T3
ρu(t, x)dx =

∫
T3
ρu0(x)dx

but the corresponding energy is not seen by the spectrum. Parseval identity also
ensures that the numerator of E∗δ (K, t) is

2πL−1
∑

κ∈Σδ(K)

(
2π
κL

)
E†(κ, t) = ρ

 1
L3

∑
k∈Sδ(K)

|û(t, k)|2
 .

To prove (13) one has only to check that the denominator(
2π
L

)2 ∑
κ∈Σδ(K)

1
κ

=
2π
L

∑
n′∈�3

|
√

n′−
√

n|≤ δL
2π

1√
n′

where K =
2π
L

√
n

is equivalent to δ, which is an easy exercise in number theory (see the proof of The-
orem 4.1 below, where a similar computation is fully detailed). The numerical value
of the constant is illustrated in Figure 1. The key ingredient is that N\�3 contains
only integers n ≡ 0, 4 or 7 mod 8, which in turn ensures that

∑
n∈[1,N ]∩�3

n−s and∑N
n=1 n

−s are equivalent up to a numerical factor. This exact same property of
congruence modulo 8 also implies that

(15) n ∈ �3 =⇒ �3 ∩ {n+ 1, n+ 2, n+ 3} 6= ∅.
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The asymptotic (14) of the Stokes spectrum follows immediately as
√
n+ j−

√
n =

j
2
√

n
+O

(
j2

n3/2

)
.

0 2000 4000 6000 8000 10 000
n

3.32

3.34

3.36

3.38

3.40

Figure 1. Plot of 10√
n

∑
1√
n′

for n′ ∈ �3 such that :

|
√
n′ −

√
n| ≤ 1

10
√
n.

On this range, one has :

3.3 ≤ 10√
n

∑ 1√
n′
≤ 16.2

The numerical value of the asymptotic equivalent is 3.335. The
corresponding sum without the restriction n′ ∈ �3 is equivalent
to 4 as n→∞.

3.2. Dissipation of kinetic energy. The dissipation rate at time t is de-
fined by :

(16) ε(t) = 2ρν ‖∇u(t)‖2L2 .

One can check immediately in Fourier variables that :
1
2
ε(t) ≤ 2ν

∫ ∞

0

K2E∗(K, t) dK ≤ 2ε(t) on R3,(17a)

ε(t) = 2ν
∫

σ(A1/2)

K2E†(K, t)dµ(K) on T3.(17b)

Note that 2 ‖∇u(t)‖2L2 = ‖ω(t)‖2L2 if u is a square integrable divergence-free vector
field on R3 or T3 with vorticity ω = (∂iuj − ∂jui)1≤i,j≤3. Because of the so called
“stretching term” in the right-hand side of

∂tω − ν∆ω + (u · ∇)ω = (ω · ∇)u
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no good a-priori estimate of ω or ε is known (check [15] for partial results). One
has only :

(18) ε(t) = ε(0)− 2ρν2

∫ t

0

‖∇ω(τ)‖2L2 dτ − 4ρν
∑
i,j,k

∫ t

0

∫
Ω

(∂iuj)(∂kui)(∂kuj).

Gronwal inequality provides exponential estimates like :

ε(t) ≤ Cε(0) exp
(∫ t

0

‖∇u(t′)‖L∞ dt′
)
.

Global balance of energy. If u is a smooth solution of (1), one has

(19a) ε = −dE
dt

which justifies the name of “energy dissipation rate” for ε. As ε depends only on
ω it means that the dissipation of kinetic energy occurs exclusively through vortex
structures. For Leray solutions, one has only for a.e. t > t′ :

(19b) E(t) ≤ E(t′)−
∫ t

t′
ε(τ)dτ.

As observed in [26] the possible lack of smoothness (i.e. a strict inequality in (19b))
would mean that an extraordinary dissipation has occured between t and t′. The
discussion of whether (1) would remain a good physical model on such a [t, t′] (or
what model should replace it) is beyond the scope of this article.

3.3. Scaling transformation to work per unit of mass. One can con-
struct two families of transformations that preserve (1) without changing the kine-
matic viscosity ν.

• If (u,Π) is a solution of (1), then so is :

(20a) ∀λ > 0, uλ(t, x) = λu(λ2t, λx), Πλ(t, x) = λ2Π(λ2t, λx).

In the case of T3, the new domain becomes T3
λ = R3/(λ−1Z)3 and to

ensure the conservation of the total mass, the new density must be :

(20b) ρλ = λ3ρ.

• (u, p, ρ) 7→ (u, µp, µρ) for µ > 0 is another family of solutions. This
transformation means that the mass of each particle is multiplied by a
factor µ without changing the number of particles in the fluid1. In the
case of T3, this transformation would obviously change the total mass by
a factor µ.

Definition 3.2. In the following, one shall work “per unit of mass” i.e. for
a given number of molecules. For a bounded domain Ω or T3, it means that one

choses µ =
(∫

Ω

ρdx

)−1

and is left with

(21a) ρ = Vol(Ω)−1.

For R3, one will extend this by convention by letting :

(21b) ρ = 1 [length]−3.

1Like replacing a hydrogen flow by a helium flow with the same velocity field and assuming
that all other physical properties, including ν, will remain identical. However these particular
gases are compressible so (1) does not describe them properly.
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Once one works per unit of mass, one cannot apply the second family of transforma-
tions anymore. The first one (20a)-(20b) remains admissible with a dimensionless
parameter λ > 0. It acts in the following way on the energy-related quantities :

(22) Eλ(t) = λ2E(λ2t), E∗λ(K, t) = λE∗
(
K

λ
, λ2t

)
, ελ(t) = λ4ε(λ2t)

and ‖uλ‖Y = ‖u‖Y for Y = L∞(R+;X) and e.g. X = L3(R3), Ḣ1/2(R3) or
BMO−1(R3) or any of the so called “scaling invariant” function spaces.
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Figure 2. Real-world illustration – kinematic viscosity of liquid
water as a function of temperature (see e.g. [44] and the references
therein) ; the order of magnitude is ν ' 10−6 m2s−1.

Physical dimensions. Let’s recall that ν = [length]2 · [time]−1 is the kinematic
viscosity. For liquid water, the value of the kinematic viscosity is illustrated by
Figure 2. One can easily check that the natural scaling of energy per unit of mass
is

E(t) = [length]2 · [time]−2.

It follows that E∗(t,K) = [length]3 · [time]−2 and ε(t) = [length]2 · [time]−3. With
the notations of Proposition 3.1, the Fourier transform is û(t, ·) = [length]4 ·[time]−1

on both R3 and T3, the modulus of frequencies is K = [length]−1 and the density
is ρ = [length]−3. From a mathematical point of view, working with physical
dimensions is equivalent to checking that each identity is scale-invariant under (20).

3.4. Time averages and intermittency. The function E∗(K, t) and ε(t) are
to some extent accessible to the experiments of fluid dynamics. And it is a common
observation that even if those functions fluctuate a lot, time averages (over proper
time intervals) display universal behaviors. This observation is the experimental
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essence of turbulence theory. Time averages of a function f(t, θ) on [T0, T1] × Θ
will be defined by :

(23) f̄(θ) =
1
∆

∫ T1

T0

f(t, θ) dt with ∆ = T1 − T0.

We will also denote f̄ by 〈f〉 if the expression of f is too large and makes the first
notation ambiguous.

Definition 3.3. Once the time interval [T0, T1] is given, one defines the mean
energy Ē, the mean energy spectrum Ē∗(K) and the mean energy dissipation rate
ε̄ according to (23).

Substantial fluctuations of ε(t) away from ε̄ are an interesting phenomenon
known as intermittency. More subtle definitions are possible ; one could call
this one “temporal intermittency” to differentiate it from “spatial intermittency”
that deals with substantial spatial fluctuations, either at large or small scales. The
following result provides a simple way to detect intermittency by comparing the
average energy Ē to the linear interpolation between the initial and final energy.
We will need this statement for Theorem 7.3, which establishes a subtle relationship
between intermittency and the smoothness of turbulent flows.

Proposition 3.3. If u is a smooth solution of (1) on [T0, T1] then :

(24) ε̄ =
E0 − E1

∆
with Ei = E(Ti), ∆ = T1 − T0 and

(25)
∣∣∣∣Ē − E0 + E1

2

∣∣∣∣ ≤ ∫ T1

T0

|ε(t)− ε̄|dt.

Proof. As u is smooth, the balance of energy reads E(t) = E(t′)−
∫ t

t′
ε(τ)dτ hence

ε̄ = E(T0)−E(T1)
∆ . Let us now integrate this relation on [T0, T0 + t] for t ∈ [0,∆] :

Ē =
1
∆

∫ ∆

0

E(T0 + t) dt = E(T0)−
1
∆

∫ T1

T0

(T0 + ∆− τ)ε(τ) dtdτ

hence :

Ē − E0 + E1

2
= Ē − E(T0) +

∆ · ε̄
2

=
1
∆

∫ T1

T0

(T1 − τ)(ε(τ)− ε̄) dtdτ.

One concludes using the L∞ ∗ L1 → L∞ convolution property.

3.5. Average “volume” of a function. In naive terms, one can describe
Vol(u; [T0, T1]) as an intrinsic measure of {x ; |u(t, x)| > ε} for “adequate” ε and
proper time average, i.e. the average volume of the region where u is most intense.

Definition 3.4. For any measurable function u(t, x) ∈ L2([T0, T1] × Ω), one
defines the average volume occupied by u on [T0, T1] by :

(26) Vol(u; [T0, T1]) =
〈‖u‖2L1(Ω)〉

〈‖u‖2L2(Ω)〉
∈ R+

where 〈·〉 refers to time averages defined by (23).
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The following sections will show the relevance of (26) for turbulence. Definition
(26) provides in a way a substitute to the probabilistic assumption of “spatial
homogeneity of the flow” (see Theorem 4.1 and §8.2) and will also prove to be well
suited to unbounded domains (see §5, Theorem 5.2).

Examples.
(1) If Ω is bounded, the Cauchy-Schwarz inequality provides for any f ∈

L2([T0, T1]× Ω :

Vol(f ; [T0, T1]) ≤ Vol(Ω).

(2) If f(t, x) = 1Ω′+η(t)(x) is the characteristic function of a subset Ω′ of
Ω translated by a vector η(t) such that Ω′ + η(t) ⊂ Ω, then one has
Vol(f ; [T0, T1]) = Vol(Ω′) and

Vol(f + ε(1− f); [T0, T1]) =
(

(1 + qε)2

1 + qε2

)
Vol(Ω′) with q =

Vol(Ω\Ω′)
Vol(Ω′)

·

(3) A simple computation on R3 gives :

(27) Vol(eνt∆δ0; [T0, T1]) = 8
√

2π3/2 ν(T1 − T0)
1√
νT0

− 1√
νT1

.

In particular the volume is 0 on [0, T ] because δ0 6∈ L2 and infinite on
[T,∞]. On [T, λT ] it is of the form Cλ(νT )3/2 which conforms to the
intuition that the heat kernel is around time T , mostly concentrated in a
sphere of radius 4

√
νT .

(4) The velocity flow associated with an inviscid vortex line ω = δx=0 ⊗
δy=0 ⊗ 1−1<z<1 behaves as π√

x2+y2
along (0, 0) × [−1, 1] hence belongs

to L1([−1, 1]3) but is not square-integrable on [−1, 1]3 ; one has therefore
Vol(u|[−1,1]3) = 0.

(5) The infinite viscous Oseen vortex line of direction e3 is the solution of (1)
given by

u(t, x) = (uh(t, x), 0) ∈ R3

with

uh(t, x) =
1√
νt
v

(
x1√
νt
,
x2√
νt

)
∈ R2 and v(ξ) =

Γ
2π

ξ⊥

|ξ|2
(
1− e−|ξ|

2/4
)
, Γ ∈ R.

The vorticity is the 2D heat kernel ω(t) = (4πνt)−1e−(x2
1+x2

2)/4νt e3. Its
characteristic scale is 4

√
νt. As u is constant along the z-axis, it does

not belong to any Lp(R3). One can however easily compute the volume
function in restriction to the cylinder Ω = {(x, y, z) ; x2 +y2 < 1, |z| < 1}.
The result is shown in Figure 3.

At the scale of Ω, the vortex still appears concentrated around the z-
axis at t = 5×10−3. The peak of the volume function around t = 7×10−2

occurs when the characteristic scale of the vorticity matches that of Ω.
Conversly, this simulation illustrates that for a given t > 0, the length

λ = Vol(u : [t/2, t])1/3 (computed on a large enough domain) determines
the characteristic scale 4

√
νt of the vorticity. Numerically, one has

Vol(u : [t/2, t])
Vol(Ω)

∝ 1.17
(

4
√
νt

Vol(Ω)1/3

)1/4
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in the decades before the volume function reaches its peak (i.e. in physical
terms, when the characteristic scale of observation Vol(Ω)1/3 exceeds the
characteristic scale of the vorticity) .

0.001 0.1 10
t

0.4

0.5

0.6

0.7

0.8

0.9

1.
VolHuL�VolHWL

Figure 3. Plot of ‖u(t)‖2L1 / ‖u(t)‖2L2 and of Vol(u : [t/2, t]) for
Γ = ν = 1. The computation is done in restriction to the cylinder
Ω = {(x, y, z) ; x2+y2 < 1, 0 < z < 1} and the result is displayed in
Log-Log scale as a percentage of Vol(Ω). Inlaid pictures represent
the vector field uh(t, x) for t ∈ {5× 10−3, 7× 10−2, 102}.

3.6. Turbulence in the spectral sense of Obukhoff-Kolmogorov. This
section provides the mathematical background of Obukoff-Kolmogorov’s spectral
theory of turbulence, known as “K41 theory” in reference to the publication date
of Kolmogorov’s [40], [41], [42] and Obukhoff’s [57] founding papers (see [31, p.98]
for a precise chronology).

3.6.1. K41-functions. Let us start with an abstract mathematical definition.

Definition 3.5. A function u ∈ L(Ω) = L∞(R+;L2(Ω)) ∩ L2(R+; Ḣ1(Ω)) is
said to be a K41-function on [T0, T1] if there exists C ∈]1, 2[ such that

(28)
∫

σ(A1/2)

K2 Ē†(K) dµ(K) ≤ C

∫
Σ(u;[T0,T1])

K2 Ē†(K) dµ(K)

where Σ(u; [T0, T1]) = {K ∈ σ(A1/2) ; K ≥ Vol(u; [T0, T1])−1/3} and Vol(u; [T0, T1])
is defined by (26).

On R3, if u is a K41-function then for any K− > 0 such that

(K−)3 ×Vol(u; [T0, T1]) ≤ 1(29a)
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one has for all K+ > K− :∫ ∞

0

K2 Ē∗(K) dK ≤ (1 + C)
∫ K+

K−

K2 Ē∗(K) dK.(29b)

Any such interval [K−,K+] is called an inertial range of u. The corresponding
spectral Reynolds number is :

(29c) < =
(
K+

K−

)4/3

One also defines a spectral precision parameter (the reason of the fraction 5/3
appears in the next section) :

(29d) γ = sup
K∈[K−,K+]

∣∣∣∣K d

dK
(log Ē∗) +

5
3

∣∣∣∣
Obviously < and γ are dimensionless and there are infinitely many admissible
quadruplets (K±,<, γ).

On T3, the smallest non-vanishing frequency possible is 2πL−1 so (29a) is
replaced by

(30a)

K− = 2πL−1 if
Vol(u; [T0, T1])

Vol(T3)
≥ (2π)−3,

2πL−1 ≤ K− ≤ Vol(u; [T0, T1])−1/3 otherwise.

Note that one always has Vol(u; [T0, T1]) ≤ Vol(T3) by the Cauchy-Schwarz inequal-
ity. The constant is (2π)−3 ' 4× 10−3. In particular, one has :

2π ≤ LK− ≤ max

{
2π;
(

Vol(T3)
Vol(u; [T0, T1])

)1/3
}
.

Admissible frequenciesK+ are defined by (29b) with an obvious change of notations.
The discrete substitute for the definition of the spectral precision is :

(30b) γ = max
K−≤Kj<Kj+1≤K+

∣∣∣∣∣∣
log Ē†(Kj+1)

Ē†(Kj)

log Kj+1
Kj

+
5
3

∣∣∣∣∣∣
where Σ = σ(A1/2) = {Kj ; j ∈ N} with Kj < Kj+1.

3.6.2. K41-turbulent flows. Let us now turn back to fluid dynamics.

Definition 3.6. Turbulence in the Kolomogorov-Obukov sense is the question
to find and describe solutions of (1) that are K41-functions on some time interval
[T0, T1] and that possess at least one inertial range K± in the asymptotic regime :

(31) < � 1 and γ log< � 1.

Such a solution is called a K41-turbulent flow.

In section §4, the asymptotic (31) will be used to recover the K−5/3 law found
in physics textbooks.
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Remarks.

(1) It is a mathematically open problem to construct exact solutions of (1)
that possess this definite behavior. However (31) has been observed in
numerous experiments as the generic state of highly fluctuating flows (see
e.g. [8], [62], [7], [53], [67] and the references therein). Physics textbooks
usually don’t mention the spectral precision γ because they rely on Log-
Log plots of the energy spectrum on which the property γ log< � 1 is
equivalent to having a substantial amount of data concentrating along
a straight line of slope −5/3 on log< decades of frequencies ; γ is the
relative error on the slope of the line.

(2) In naive terms (29b) means that, by definition, the K41-theory of turbu-
lence is a spectral property of vortex structures because at least half of
the average enstrophy 〈‖ω‖2L2〉 comes from the frequency range [K−,K+].

(3) The use of Vol(u; [T0, T1]) at the foundation of K41-turbulence is new.
There is experimental evidence that K41-turbulence is generated on some
thin-structured subset of Ω deeply connected with the vorticity and whose
characteristic size `0 = K−1

− is the largest scale involved in the inertial
range. Example 5 p. 118 has already shown a strong but subtle connec-
tion between the volume function and the characteristic scale of vortex
structures. It will be shown (see Theorem 4.1) that

`0 ' Vol(u; [T0, T1])1/3

if u is a K41-turbulent solution of (1).

Let us conclude this section with a short dictionary between mathematics and
physics. In physics textbooks, one can find statements like

(32) � Turbulent solutions u of (1) satisfy F (u) . G(u) �

where F and G are two functionals on L(Ω) possibly depending on T0 and T1. From
a mathematical point of view, it should be read as follows : there exists a function
C : R2 →]0,∞[ with

lim
<→∞
<γ→1

C(<, γ) = C0 ∈ ]0,∞[

and constants <0, γ0 > 0 such that any solution of (1) that is a K41-function on
[T0, T1] with a Reynolds number < ≥ <0 and a spectral precision γ ≤ γ0

log< satisfies

F (u) ≤ C(<, γ)G(u).

In this case, any solution that admits parameter (<, γ) in the asymptotic range
(31) will indeed satisfy

F (u) ≤ C ′0G(u) with C ′0/C0 ' 1.

One should be aware that that physics textbooks usually contain additional “meta-
assumptions” such as the isotropy or the homogeneity of the flow, which should
then be translated adequately and added to the assumptions of the mathematical
statement.
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4. General properties of K41-functions

4.1. Scale invariance and stability in Leray space. The definition of
K41-functions is invariant under (20) : If u is a K41-function on [T0, T1] with
parameters (K±,<, γ) then uλ is a K41-function on [λ−2T0, λ

−2T1] with parameters
(λK±,<, γ).

The set of K41-functions is open in the Leray space L(T3). More precisely, the
following statement holds.

Proposition 4.1. Assume that u ∈ L(T3) is a K41-function on [T0, T1] with
parameters (K±,<). For any ε > 0 there exists Cε > 0 such that any v ∈ L(T3)
with

‖u− v‖2L2([T0,T1]×T3) + ‖∇(u− v)‖2L2([T0,T1]×T3) ≤ Cε

is also a K41-function that satisfies (29a) and (29b) with the same parameters
(K±,<) but with numerical constants 1 + ε and 1 + C + ε.

Proof. Each term of (29a) and (29b) is continuous on H1([T0, T1]× T3).

Note however that the spectral precision γ is not preserved, which means that
if a flow u satisfies (31), any neighborhood of u in L(Ω) will also contain functions
that do not satisfy this asymptotic. This illustrates a wise comment by U. Fr-
ish [31, pp.199-202]: “Questions (on turbulence) are likely to benefit from a close
collaboration between mathematicians and physicists but it will require more than
better functional analysis (...) ; some geometry is needed.”

4.2. Kolmogorov’s constant α and the K−5/3 law. Property (29b) in-
volves the dissipation rate ε̄ (which is the left-hand side) and frequencies. There
is only one way to define a quantity that has the same units as the energy spec-
trum [length]3 · [time]−2 (i.e that scales the same way under (20)) and which is
a power function of a dissipation rate ε = [length]2 · [time]−3 and of a frequency
K = [length]−1 :

ε(t)2/3K−5/3 = [length]3 · [time]−2.

This fact makes the 5
3 fraction in (29d) a more obvious choice. Note that even

though E∗(K, t) and ε(t) depend on ρ, the dimensionless fraction

E∗(K, t)
ε(t)2/3K−5/3

is not “missing” a power ρ1/3 because it is invariant under the transformation (20),
which does not change the total mass.

The following property of K41-functions is often mistaken for a definition of
turbulence. Its real meaning according to the dictionary (32) is that the most
valuable theorems concerning K41-functions will hold in the asymptotic regime (31).

Proposition 4.2. If u is a K41-function on [T0, T1], the function α(K) =
Ē∗(K)

ε̄2/3K−5/3 satisfies

(33) ∀K,K ′ ∈ [K−,K+], <−3γ/4 ≤ α(K)
α(K ′)

≤ <3γ/4
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Proof. The definition of γ (namely (29d) for R3 and (30b) for T3) implies :(
K1

K0

)− 5
3−γ

≤ Ē∗(K1)
Ē∗(K0)

≤
(
K1

K0

)− 5
3+γ

for anyK0 < K1 in [K−,K+]. Applying this inequality either to (K,K ′) = (K0,K1)
or to (K1,K0) one gets :(

K+

K−

)−γ

≤
(
K

K ′

)−γ

≤ α(K)
α(K ′)

≤
(
K

K ′

)γ

≤
(
K+

K−

)γ

hence the result.

Definition 4.1. In the asymptotic regime (31), the function α is essentially
constant on the inertial range and is called the Kolmogorov constant. To fix
further computations, one will choose from now on :

(34) α = α(K+)

and (33) reads
(

Ē∗(K)
αε̄2/3K−5/3

)±1

≤ <3γ/4 on [K−,K+].

Remark. Proposition 4.2 would also hold if in the definition of α(K) one would
replace ε̄ by another quantity having the dimension of a dissipation rate, which in
turn would change the value of the Kolmogorov constant (34). There is physical
evidence that this definition leads to a universal numerical value for α (see §8.5)
but mathematicians should question it. The author is grateful to W. Craig for this
valuable remark.

4.3. Bounds of the inertial range – Expression of K±. Using dimen-
sional analysis, there is only one way to define a frequency as a function of ε̄ and
ν :

(35) Kd = α−3/4
( ε̄
ν3

)1/4

.

Since α is dimensionless, the power of α is arbitrary here, but it is the one that
provides the simplest statement in the following Theorem 4.1. It also corresponds
to the “phantom” homogeneity α ∼ ρ1/3 mentioned above. In physics, the length
η = K−1

d is often referred to as the “Kolmogorov dissipation scale”.
Likewise, a frequency defined as a function of ε̄ and Ē is :

(36a) Kc = α3/2 ε̄

Ē3/2
·

In physics, the length `0 = K−1
c is refered to as “the size of large eddies”. For T3,

the energy spectrum misses the total impulsion (see (12) and §5) so one substitutes
the following definition for (36a) :

(36b) Kc = α3/2ε̄

(
Ē −

[∫
T3
ρu0(x)dx

]2)−3/2

Physics textbooks usually state that K+ = Kd and K− = Kc by computing Ē
and ε̄ for an idealized compactly supported energy spectrum on R3 :

E∗(K) = αε̄2/3K−5/31[K−,K+](K)



124 FRANÇOIS VIGNERON

Converting this idea into a rigorous proof must be done carefully and actually
requires some additional assumptions to hold for K−. Moreover, the computation
on T3 (which always seems to be dodged in physics textbooks) happens to be
extremely instructive (see also Remarks 1 and 2 p. 112).

Theorem 4.1. The following inequalities hold.
1. Case of Ω = R3.: If u is a K41-function on Ω = R3 with parameters

(K±,<, γ), then :(
<−3γ/4

6(1−<−1)

)3/4

≤ K+

Kd
≤
(

4<3γ/4

3(1−<−1)

)3/4

,(37a) (
3
2
<−3γ/4(1−<−1/2)

)3/2

≤ K−

Kc
·(37b)

Moreover, if u is a solution of (1) with initial data u0 ∈ L1 ∩ L2(R3)
then :

(37c)
K−

Kc
≤
(

9π2

3π2 − 4
×<3γ/4(1−<−1/2)

)3/2

and

(37d)
(3π2 − 4)<−3γ/2

36(1−<−1/2)
≤ (K−)3 ×Vol(u; [T0, T1]) ≤ 1.

2. Case of Ω = T3.: If u is a K41-function on Ω = T3 with parameters
(K±,<, γ), then :

(
<−3γ/4

6

)3/4

≤ K+

Kd
≤


1
2 <

3γ/4 +K
−4/3
d × O(1)

<→∞
15
16 −

3
2<−1


3/4

,(38a)

(
<−3γ/4

(
15
16
− 3<−1/2

))3/2

≤ K−

Kc
provided K− > 3(2πL−1).(38b)

Moreover, if u is a solution of (1) with
∫

T3
ρu0(x)dx = 0 and

(39) C(n−) =
Card{z ∈ Z3 ; |z|2 = n−}

8π3√n−
< 1 where n− =

(
LK−

2π

)2

,

then :

(40a)
K−

Kc
≤
(

12<3γ/4

1− C(n−)

)3/2

and

(40b)
1− C(n−)
12<3γ/2

≤ (K−)3 ×Vol(u; [T0, T1]) ≤ max
{

1; (2π)3
Vol(u; [T0, T1])

Vol(T3)

}
.

Corollary 4.1. In the turbulent asymptotic < →∞ and <γ → 1, one has

(41) C ≤ Kc

Vol(u; [T0, T1])−1/3
≤ C ′

for two numerical constants C,C ′.
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Assumption C(n−) < 1 is still an open problem in number theory ; the nu-
merical test presented in Figure 4 ensures it is satisfied for most if not all practical
purposes.

Numerically, the theorem reads for Ω = R3 :

0.260Kd ≤ K+ ≤ 1.25Kd, 1.83Kc ≤ K− ≤ 6.46Kc;

and
0.711 ≤ (K−)3 ×Vol(u; [T0, T1]) ≤ 1.

For Ω = T3, the asymptotic (31) implies K+ →∞ because K− ≥ 2πL−1, thus
(38a) provides Kd →∞. One has C(n−) < 0.1 for n− ≤ 105 and

0.260Kd ≤ K+ ≤ 0.625Kd, 0.907Kc ≤ K− ≤ 48.7Kc

and
8.33× 10−3 ≤ (K−)3 ×Vol(u; [T0, T1]) ≤ 248.1.

Figure 4. Computation of C(n).

With regard to Figure 4, Numerical test shows that r3(n)/(8π3
√
n) < 0.1 for

n ≤ 105 where r3(n) = Card{z ∈ Z3 ; |z|2 = n}. A similar test for 1010 ≤ n ≤
1010 + 100 checks the same numerical bound C(n) < 0.1 with a maximum of
9.37 × 10−2 for n = 1010 + 1. It is obtained using SquaresR[3, n] with Mathe-
matica c©. The problem of computing the number of representations of an integer
as the sum of three squares has been addressed historically e.g. in [27] and [3]
but the asymptotic behavior of r3(n) cannot be read directly on Hardy’s explicit
formula. The series

∑
n≤N r3(n) = 4π

3 N
3/2 +O(N ε+29/44) is the number of lattice

points inside the sphere of radius
√
N (see [16]). Similarly, a recent paper [21]

shows that
∑

n≤N r3(n)2 = 8π4

21ζ(3)N
2 + O(N14/9) but again the remainder is too

large to prove the asymptotic behavior r3(n) = O(
√
n). Note that this conjec-

tured asymptotic is extremely sharp because the sequence r3(n) vanishes on the
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subsequence r3(4p(8q+ 7)) = 0 thus cannot have a power law equivalent. The best
known estimate [16] is r3(n)/

√
n = O(nε) for any ε > 0. Thus it might be that

r3(n)/
√
n is not bounded but grows extremely slowly. However, from our numerical

data, one can infer that even if it diverges as log n, then r3(n) will finally exceed
8π3

√
n only for n ∼ 1050. Such a scale is unrealistic because it would require

the building of a periodic torus of at least L = 6 light years in order to ensure
that such a large wave number would investigate scales that exceed the atomic
one (2πL−1

√
n)−1 = 10−9m. Therefore, in the range of validity of Navier-Stokes

equations, assumption (39) is numerically satisfied.
Remark. One could object that the numerical constants of the previous state-

ment are not fundamental. Indeed, for most of what will follow, one could just
write C(<, γ) with C(<, γ) → C > 0 in the asymptotic (31). However, for Theo-
rem 7.3, which investigates the subtle relation between smoothness and intermit-
tency, the numerical values of the constants will mark the difference between an
empty statement and a meaningful result, which means that one will have to show
some discipline in each intermediary result.

Proof (estimate of K+). One can compute ε̄ using (17). On the inertial range
(33) leads to :

ε̄ ≥ ν

∫ K+

K−

K2 Ē∗(K) dK ≥ 3ανε̄2/3

4<3γ/4
(K4/3

+ −K
4/3
− ) =

3ανε̄2/3

4<3γ/4
(1−<−1)K4/3

+

hence the right-hand side of (37a). Conversely, according to (29b) one can compute
ε̄ using only the inertial range where (33) again provides :

ε̄ ≤ 4ν
∫ ∞

0

K2 Ē∗(K) dK ≤ 8αν<3γ/4ε̄2/3

∫ K+

K−

K2−5/3 dK

= 6αν<3γ/4ε̄2/3(1−<−1)K4/3
+ ;

hence the left-hand side. On T3, one gets instead :
1
2
ε̄ ≤ 2ν

∑
K∈Σ∩[K−,K+]

(
2π
KL

)
K2 Ē†(K) · (2πL−1) ≤ ε̄

hence

<−3γ/4 ε̄
1/3

4αν
≤
(

2π
L

)2 ∑
K∈Σ∩[K−,K+]

K−2/3 ≤ ε̄1/3

2αν
<3γ/4.

The next step is to show that the center term is equivalent to K4/3
+ (the apparently

different game of powers reflects the spectral asymptotic (14) of the Stokes operator
; note that physical dimensions are the same). One has :(

2π
L

)2 ∑
K∈Σ∩[K−,K+]

K−2/3 =
(

2π
L

)4/3 ∑
n∈�3∩[n−,n+]

n−1/3

where �3 = N\{4p(8q + 7) ; p, q ∈ N} denotes the set of integers that are the
sum of three squares. Its complimentary is included in the subset of integers n ≡
0, 4 or 7 mod 8, therefore :

N∑
n=1

n−1/3 ≥
∑

n∈�3∩[1,N ]

n−1/3 ≥
N∑

n=1

n−1/3 −
∑

j∈{0,4,7}

∑
8k+j≤N

(8k + j)−1/3
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which after comparison to an integral boils down to

3N2/3

2
≥

∑
n∈�3∩[1,N ]

n−1/3 ≥ 3
2

(
(1 +N)2/3 − 1

)
− 3

81/3

(
3(N/8)2/3

2

)
=

15
16
N2/3 + O(1)

N→∞
.

One uses those estimates to compute the sum for K ∈ Σ ∩ [K−,K+] :

3
2
K

4/3
+ ≥

(
2π
L

)2 ∑
K∈Σ∩[K−,K+]

K−2/3 ≥ K
4/3
+

(
15
16
− 3

2
<−1

)
+ O(1)

K+→∞

Note that in the asymptotic (31), one has K+ → ∞ because K− ≥ 2πL−1. One
finally gets :

<−3γ/4 ε̄
1/3

4αν
≤ 3

2
K

4/3
+ and K

4/3
+

(
15
16
− 3

2
<−1

)
+ O(1)
<→∞

≤ ε̄1/3

2αν
<3γ/4.

Proof (estimate of K−). To estimate K−, one compares the total energy with
the energy contained in the inertial range. If u is a K41-function on R3, one has :∫ ∞

K+

E∗(K, t)dK ≤ K−2
+

∫ ∞

K+

K2E∗(K, t)dK

≤ K−2
+

∫ K+

K−

K2E∗(K, t)dK ≤
∫ K+

K−

E∗(K, t)dK

and (3b) provides

(42a)
∫ K+

K−

Ē∗(K)dK ≤ Ē ≤ 2
∫ K+

K−

Ē∗(K)dK +
∫ K−

0

Ē∗(K)dK.

On T3 the corresponding inequalities are :

(42b)

Ē −
(∫

T3
ρu0(x)dx

)2

≥
(

2π
L

) ∑
K∈Σ∩[K−,K+]

(
2π
KL

)
Ē∗(K)

Ē −
(∫

T3
ρu0(x)dx

)2

≤

(
2π
L

)
∑

K∈Σ,
K<K−

(
2π
KL

)
Ē∗(K) + 2

∑
K∈Σ∩[K−,K+]

(
2π
KL

)
Ē∗(K)

 .

Using (33) on [K−,K+], the lower bound of Ē provides (37b) :

Ē ≥ αε̄2/3

<3γ/4

∫ K+

K−

K−5/3dK =
3αε̄2/3

2<3γ/4
(1−<−1/2)K−2/3

− .

The computation is similar on T3 ; one gets :(
K−

Kc

)2/3

≥ <−3γ/4 × n
1/3
− C(n−, n+) with C(n1, n2) =

∑
n∈�3∩[n1,n2]

n−4/3.
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This time, one uses C(n−, n+) = C(n−,∞)− C(1 + n+,∞) with

3(N − 1)−1/3 ≥ C(N,∞) ≥ 15
8
N−1/3 +O(N−4/3) ≥ 15

16
N−1/3,

the last inequality being valid if N ≥ 10. The proof of the converse inequality and
the last statement about Vol(u; [T0, T1]) will be postponed until Proposition 5.1.
One will use the additional assumptions and (29a)–(30a) to estimate the spectrum
for low-frequencies in (42a)–(42b).

5. Low-frequency spectrum

In physics, two different low-frequency spectra have been described (see e.g.
[25, p.91 and p.358]) : the Saffman spectrum behaves like K2 and the Batchelor
spectrum behaves like K4 as K → 0. Numerical simulations on T3 have confirmed
that both can exist and that the choice between K2 or K4 depends on the initial
data : the initial behavior of the spectrum is preserved, though in case of K4

the spectrum does not seem totally stable in time (see [51, fig. 5a and fig. 7] and
the references therein where this subtle instability is referred to as backscatter).
For real-world experiments, the question is not properly answered because the first
Fourier coefficients reflect the large scales in the experimental protocol more than
turbulence itself.

In this section are proved the following points :
• Theorem 5.2 : Saffman’s estimate holds in general.
• Theorem 5.3 : On R3, the spatial localization of the initial data determines

spectra in K2(1+β) with possibly any β < 1 depending on the exact decay
at infinity.

• Batchelor’s K4 spectrum (β = 1) seems to occur only for unstable highly
localized solutions. Furthermore, it was not possible to obtain any non-
trivial estimate with β > 1 even for highly localized flows.

Note that on T3, one can always artificially improve the power of K ∈ Σ∗ of upper
bounds by multiplying by KL/(2π) ≥ 1, thus it is worth pointing out that (45)
below does not contain the length L on the right-hand side.

5.1. Estimate from u0 ∈ L1(Ω). From a physical point of view, it is reason-
able to assume that

(43)
∫

Ω

ρu(t, x)dx = 0

which means that the fluid is globally at rest in the given coordinate system. On
Ω = T3, Cauchy-Schwarz ensures that u(t) ∈ L1(Ω) for any t ≥ 0 ; moreover, the
total impulsion is constant in time so (43) holds for any t ≥ 0 if and only if it holds
for the initial data. On R3, the following statement justifies why (43) holds anyway.

Theorem 5.1. If u is a Leray solution of (1) with initial data u0 ∈ L1∩L2(R3),
then u(t) ∈ L1(Ω) for any t ≥ 0 and (43) holds for (at least) almost every t > 0.

Proof. On R3, the following inequality holds for Leray solutions of (1) :

(44) ∃C > 0, ∀t ≥ 0, ‖u(t)‖L1(R3) ≤ ‖u0‖L1(R3) + C

√
t

ν
‖u0‖2L2(R3)
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which ensures that u(t) ∈ L1(R3). Let us conclude first before proceeding to the
proof of (44). Leray solutions are known to be smooth for almost every t > 0 (see
[50]). At any such time, the following integration by part holds for any smooth
bounded subset Ω ⊂ R3 :∫

Ω

ui = −
∫

Ω

xi(div u)dx+
∫

∂Ω

xi u · dn.

For such times, the fact that u(t) ∈ L1 ∩ C0(R3) also implies that :

lim
R→∞

∫ ∞

R

∣∣∣∣∣
∫
|x|=r

xiu(x) · dn(x)

∣∣∣∣∣ drr = 0.

One can choose a sequence of radii rk →∞ such that lim
k→∞

∫
|x|=rk

xiu(x)·dn(x) = 0.

Combining both identities and div u = 0 gives (43) for any time t ≥ 0 such that
u(t) ∈ H1 ∩ C0.

Inequality (44) is part of the folklore of fluid mechanics and, contrary to most
estimates, it does not involve an exponential growth in time. Let us recall briefly
its derivation. Rewriting (1) as a heat-equation with a non-linear source term (see
[48, chap. 11]), one gets :

u(t, x) = eνt∆u0(x) +
∫ t

0

∫
R3

(u⊗ u)(t′, x′)K(t− t′, x− x′)dx′dt′

with a convolution kernel that satisfies |K(t, x)| ≤ C(|x| +
√
νt)−4 (see e.g. [66]).

Therefore, for any τ ∈ [0, t], one has :

‖u(τ)‖L1 ≤ ‖u0‖L1 + C ‖u⊗ u‖L∞([0,t];L1)

∫ t

0

∫ ∞

0

r2drdt

(r +
√
νt)4

.

But ‖u⊗ u‖L1 ≤ ‖u0‖2L2 and the last integral computes down to 2
√
t/ν, hence

(44).

One can now deduce bounds on the lower end of the energy spectrum.

Theorem 5.2. If u is a Leray solution of (1) with u0 ∈ L2 ∩L1(Ω) on Ω = R3

or T3, then for any T0 < T1, the energy spectrum on [T0, T1] satisfies :

(45)

Ē
∗(K) ≤ Vol(u; [T0, T1])K2Ē × 4/π2 on R3,

Ē†(K) ≤ Vol(u; [T0, T1])K2Ē × 1
8π3

√
n

Card{z ∈ Z3 ; |z|2 = n} on T3,

where the volume Vol(u; [T0, T1]) is defined by (26). For T3, one has L = Vol(T3)1/3

and K = 2πL−1
√
n with an integer n ∈ �3 that is the sum of three squares.

In the case of Ω = T3, one does not require (43) to hold. The numerical factor
is illustrated by Figure 4.

Proof. Using ‖û‖L∞ ≤ ‖u‖L1 , Proposition 3.1 reads on R3 :

E∗(K, t) ≤ ρ ‖u(t)‖2L1 K
2 × 1

2π2

∫ ∞

0

ψ(r)r2dr
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The integral is bounded by 8 because suppψ ⊂ [2−1, 2] and
∫
ψ(r)dr/r = 1. On

T3, one has instead :

E†(K, t) ≤ ρ ‖u(t)‖2L1 K
2 × 1

4π2LK
Card{k ∈ T̂3 ; |k| = K}.

Conclusion (45) then follows immediately from the definition (26) of the volume
function.

5.2. Estimates from localization norms of u on R3. One can improve the
low-frequency estimation of the spectrum using localization properties of the flow.

Theorem 5.3. Given β ∈]0, 1[, there exists a constant Cβ > 0 such that any
Leray solution of (1) on Ω = R3 with initial data in L2 ∩ L1 satisfies for almost
every t ≥ 0 :

(46) E∗(t,K) ≤ ρCβK
2(1+β)

∥∥∥(1 + |x|)3/2+βu(t)
∥∥∥2

L2(R3)
.

If the initial data u0 satisfies e.g.

(47) (1 + |x|)3+β′u0 ∈ L∞(R3) with β′ > β

then the right-hand side of (46) is finite as long as u is a smooth solution of (1) on
[0, t].

Remarks.
(1) For β = 1, the estimate (46) holds with an extra multiplicative factor

(1 − logK/K0) for K < K0 but the right-hand side is infinite unless a
non-generic (necessary but not sufficient) condition holds :

(48)
∫

R3
ui(t, x)uj(t, x)dx =

1
3
‖u(t)‖2L2 δi,j .

This condition is not invariant by the flow of (1) and [13] contains exam-
ples of flows that will check and violate (48) at prescribed times. Those
smooth flows will satisfy (46) for any β < 1 and t ≥ 0 but they will satisfy
it for β = 1 (with the logarithmic correction) if and only if t ∈ {t0, t1, . . .}.
Examples of flows that satisfy (46) for all time with β = 1 (with again
the logarithmic correction) can be found in [11].

(2) Contrary to (44), the best known short-time bound for weighted norms is
exponential in t. Other localization norms of u0 could be used instead of
(47). For example the same theorem holds if :

(1 + |x|)3(1−
1
p )+β′u0(x) ∈ Lp(R3)

with p > 3 and β′ > β (see [66]).
(3) On Ω = T3, weighted norms are meaningless ; however, provided (43) is

satisfied, one could get a similar result with the weighted norms replaced
by :

‖û(t)‖Cβ = sup
k 6=k′

|û(t, k)− û(t, k′)|
|k − k′|β

·

To the best of my knowledge, propagation of this semi-norm by the flow
on T3 for β ∈]0, 1[ has not yet been studied. Neither has the propagation
of u(t) ∈ F−1(Cβ(R3)) in the continuous case. One can however expect
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a generic failure of the propagation of supk 6=0 |k|−1|û(t, k)| corresponding
to β = 1.

Proof. One has only to prove (46). The rest of the statement follows from [66]
for β ∈]0, 1[. One has the following chain of continuous inclusions if β /∈ N :

‖û‖Cβ ≤ ‖û‖
H

3
2 +β ≤

∥∥∥(1 + |x|)3/2+βu(t)
∥∥∥

L2
.

If β ∈]0, 1[, one gets

|û(t, ξ)| ≤ C|ξ|β
∥∥∥(1 + |x|)3/2+βu(t)

∥∥∥
L2

when
û(t, 0) =

∫
R3
u(t, x)dx = 0

, which (according to Theorem 5.1) holds for almost every t ≥ 0. Therefore :

E∗(K, t) = (2π)−3ρK2

∫ ∞

0

∫
S2
ψ(r)|û(t,Krϑ)|2r2drdϑ

≤ CρK2(1+β)

(∫ ∞

0

ψ(r)r2(1+β)dr

)∥∥∥(1 + |x|)3/2+βu(t)
∥∥∥2

L2

which gives (46) with a constant independent of ψ because suppψ ⊂ [2−1, 2] and∫
ψ(r)dr/r = 1.

Let us briefly justify the notes that follow the Theorem. The precise relation
between (48) and the finiteness of the right-hand side of (46) is extensively studied
in [12]. When β = 1, the Sobolev space H5/2(R3) is not included in Lip(R3) but in
Calderon’s space C1

∗(R3) for which |f(ξ)− f(η)| ≤ C|ξ − η|(1− log(|ξ − η|)) when
|ξ − η| < 1 ; see e.g. [17, p. 31]. When β > 1, e.g. for β ∈]1, 2[, the following
estimate holds :

|û(t, ξ)| = |û(t, ξ)− û(t, 0)| ≤ |ξ|
(∫ 1

0

|∇û(t, σξ)|dσ
)
≤

|ξ|
(
|ξ|β−1 ‖û(t)‖Cβ

∫ 1

0

σβ−1dσ + ‖|x|u(t)‖L1

)
so if u is a highly localized flow like those in [11], then (46) holds with β > 1 ;
however, K2(β+1) must be replaced by K4 because |û(t, ξ)| 6= o(|ξ|), even for highly
localized flows.

5.3. Precisions on K−. Low-frequency bounds on the energy spectrum allow
us to conclude the proof of Theorem 4.1.

Proposition 5.1. Let u be a Leray solution of (1) and a K41-function on
[T0, T1]× Ω.

(1) If Ω = R3 and u0 ∈ L1 ∩ L2(R3), one has

(49)
K−

Kc
≤
(

9π2

3π2 − 4
×<3γ/4(1−<−1/2)

)3/2

and

(50)
3π2 − 4

36<3γ/2(1−<−1/2)
≤ (K−)3 ×Vol(u; [T0, T1]) ≤ 1.
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(2) If Ω = T3, let us assume that
∫

T3
ρu0(x)dx = 0 and

C(n−) =
Card{z ∈ Z3 ; |z|2 = n−}

8π3√n−
< 1 where n− =

(
LK−

2π

)2

.

Then similar inequalities to (49) and (50) hold, namely

(51)
K−

Kc
≤
(

12<3γ/4

1− C(n−)

)3/2

and

(52)
1− C(n−)
12<3γ/2

≤ (K−)3 ×Vol(u; [T0, T1]) ≤ max
{

1; (2π)3
Vol(u; [T0, T1])

Vol(T3)

}
.

Assumption C(n−) < 1 is still an open problem in number theory but the
systematic numerical test presented in Figure 4 ensures that it is satisfied for at
least n− ≤ 105, which should be sufficient for most practical purposes. For example,
in a periodic domain of size L = 1m, it means that the assumption is satisfied at
least as soon as the size of large eddies K−1

− exceeds 0.5mm. Note that there are
no restrictions on K+, which means that turbulent structures can develop details
at much finer scales.

Proof. On R3, the starting point is (42a). Using (33) on [K−,K+], one has :

Ē ≤ 3αε̄2/3(K−)−2/3<3γ/4(1−<−1/2) +
∫ K−

0

Ē∗(K)dK.

Then (45) gives Ē∗(K) ≤ 4
π2V ĒK

2 with V = Vol(u; [T0, T1]), hence :∫ K−

0

Ē∗(K)dK ≤ 4
3π2

V Ē(K−)3.

Then (29a) reads V (K−)3 ≤ 1, so Ē ≤ 3αε̄2/3(K−)−2/3<3γ/4(1 − <−1/2) + 4
3π2 Ē

and (49) follows immediately.

To get (50), one checks the compatibility between (33) and (45) at K = K−,
which provides :

<−3γ/4αε̄2/3(K−)−5/3 ≤ Ē∗(K−) ≤ 4
π2

Vol(u; [T0, T1])(K−)2Ē.

On recognizes αε̄2/3 = ĒK
2/3
c , hence using (49) :

(K−)3 ×Vol(u; [T0, T1]) ≥
π2

4<3γ/4

(
Kc

K−

)2/3

≥

π2

4<3γ/4

(
9π2

3π2 − 4
×<3γ/4(1−<−1/2)

)−1

.

The upper bound was already given by (29a).
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For T3, the starting point is (42b). As before one uses (45) on [2πL−1,K−] :(
2π
L

) ∑
K∈Σ∗,
K<K−

(
2π
KL

)
Ē†(K) ≤ C(n−) ·

(
2π
L

)3
(

n−∑
n=1

√
n

)
Vol(u; [T0, T1])Ē

≤ C(n−) ·
(

2π
L

√
n−

)3

Vol(u; [T0, T1])Ē

with the exact same constant

= C(n−) · (K−)3 Vol(u; [T0, T1])Ē.

If Vol(u;[T0,T1])
Vol(T3) ≥ (2π)−3 then (30a) gives K− = 2πL−1 and the sum on the

left-hand side is empty so there is nothing to estimate. If not, then (30a) gives
(K−)3 Vol(u; [T0, T1]) ≤ 1 and the sum is bounded by C(n−)Ē. Since it is assumed
that C(n−) < 1, one can bootstrap this term in the left-hand side.

On [K−,K+] one uses (31), which gives as before :(
2π
L

) ∑
K∈Σ∗∩[K−,K+]

(
2π
KL

)
Ē∗(K)

≤ <3γ/4

αε̄2/3

(
2π
L

)−2/3 ∑
n∈�3∩[n−,n+]

n−4/3


≤ 6<3γ/4αε̄2/3K

−2/3
− if n− ≥ 2.

For the last inequality, one has just estimated the sum on �3∩ [n−, n+] by the sum
on all integers greater than n− and then compared it to an integral. Then (51)
follows from :

(1− C(n−)) Ē ≤
(∫

T3
ρu0(x)dx

)2

+ 12<3γ/4

{
Ē −

(∫
T3
ρu0(x)dx

)2
}
K−

Kc

−2/3

.

Compatibility between (33) and (45) at K = K− then gives :

(K−)3 ×Vol(u; [T0, T1]) ≥
<−3γ/4

max{1;C(n−)}

(
Kc

K−

)2/3

≥ 1− C(n−)
12<3γ/2

using again the assumption C(n−) < 1.

6. High-frequency spectrum.

Physics textbooks often state that turbulent spectra have rapid decay at high-
frequencies, i.e. that

(53) ∀N ∈ N, sup
K≥0

KN Ē∗(K) <∞.

Property (53) implies that ū(x) is smooth. Conversely, the following result relies
on the best known smoothing effect for (1) and implies that (53) is automatically
satisfied for smooth solutions.
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Theorem 6.1. There exist (dimensionless) numerical constants C, C0 > 0 and
a family c(K) ≥ 0 with

∑
K∈Σ∗

c(K) = C if Ω = T3

∀K ∈ R,
∑
n∈Z

c(2nK) ≤ C if Ω = R3

that have the following properties. For any smooth solution u of (1) on [T0, T1]×Ω
with u(T0) ∈ H1(Ω), let us define

(54) τ =
ν3

sup[T0,T1] ‖∇u‖
4
L2(Ω)

and δ(t) =
1
2

min{
√
ν(t− T0);C0

√
ντ}.

Then for any t ∈ [T0, T1] the energy spectrum satisfies :
• on Ω = T3 :

(55a) ∀K ∈ Σ∗, E†(K, t) ≤ c(K) ·
(
K

L
Vol(T3)

)
e−δ(t)K E0,

• on Ω = R3 :

(55b) ∀K ∈ R∗+,
1
K

∫ 2K

K

E∗(t, k)dk ≤ c(K) ·K−1e−δ(t)K E0,

with E0 = E(T0) the initial kinetic energy.

Exponential decay in (55) with a uniform constant δ on [T0 + τ, T1] means that
the analyticity radius of smooth solutions remains uniformly bounded from below.
This question has raised some concerns in the asymptotic ν → 0 (see [31, p.92-93]
and the references therein for a brief survey). For the question of analyticity for a
given ν > 0, the end of this section contains detailed bibliographical notes.

Even though the main interest of the statement is the high-frequency asymp-
totic, it should be compared to the low-frequency inequality (45) on T3.

Corollary 6.1. If u is a smooth solution of (1) on [T0, T1]× T3 then for all
K ∈ Σ∗ :

(56) Ē†(K) ≤ C

(
K

L
Vol(T3)

)
E0 ≤

C

2π
Vol(T3)K2E0.

Proof of Theorem 6.1. The idea is to first prove a short-time analyticity
estimate (65) valid for any Leray solution of (1) evolving from smooth initial data.
Then one uses the decay of kinetic energy E(t) and the qualitative assumption that
u remains smooth on [0,∆] to propagate this quantitative estimate along the time
line.

Let us consider the following ODE with unknown function ϑ(t) and a dimen-
sionless constant A that will be adjusted later on :

(57) ϑ(t) =
∫ t

0

∥∥∥|ξ|eΛ(t′)|ξ|û(t′, ξ)
∥∥∥2

L2
dt′ with Λ(t) =

√
νt− Aϑ(t)

ν
·

To be perfectly rigorous, one should consider a family of smooth approximations
un of u, e.g. Friedrichs approximation by low-pass filters. Then (1) and (57) are of
Cauchy-Lipschitz type and can be solved for all t ≥ 0. The auxiliary ODE (57) will
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be used to prove an analytic estimate (65) of un that will pass to the limit un → u
on some uniform time interval. To keep the formulas reasonably sober, the index
n is dropped.

The image of (1) by the Leray-Hopf projector P is

∂tu− ν∆u+ P div(u⊗ u) = 0, u(0, x) = u0(x).

Duhamel’s formula reads
∣∣∣eΛ(t)|ξ|û(t, ξ)

∣∣∣ ≤WL(t, ξ) +
∫ t

0

WNL(t, t′, ξ)dt′ with

WL(t, ξ) = eΛ(t)|ξ|−νt|ξ|2 |û0(ξ)|
and

WNL(t, t′, ξ) = |ξ| e[Λ(t)−Λ(t′)]|ξ|−ν(t−t′)|ξ|2
(
eΛ(t′)|ξ|

∫
R3
|û(t′, ξ − η)||û(t′, η)|dη

)
.

To simplify notations of the time integral, one defines also :

WNL(t, ξ) =
∫ t

0

WNL(t, t′, ξ)dt′.

The same formula holds on T3 with the obvious modifications in the notations of
discrete spectra. Let us first estimate the linear term. One has for any t ≥ 0 :

Λ(t)|ξ| − νt|ξ|2 ≤
√
νt|ξ| − νt|ξ|2 ≤ 1

2
− 1

2
νt|ξ|2

therefore ‖WL(t, ·)‖2L2 ≤ C ‖u0‖2L2 and

ν

∫ t

0

‖|ξ|WL(t′, ξ)‖2L2 dt
′ ≤ C

∫
R3

(∫ t

0

ν|ξ|2e−νt′|ξ|2dt′
)
|û0(ξ)|2dξ

= C

∫
R3

(
1− e−νt|ξ|2

)
|û0(ξ)|2dξ

≤ C inf
s∈[0,1]

(νt)s ‖|ξ|sû0(ξ)‖2L2 .(58)

For the phase of the non-linear term, one uses the identity (a− b)(1− a+b
2 ) ≤ 2 :

[Λ(t)− Λ(t′)]|ξ| − ν(t− t′)|ξ|2 = −A|ξ|
ν

(∫ t

t′

dϑ

dt

)
− 1

2
ν(t− t′)|ξ|2

+ |ξ|(
√
νt−

√
νt′)

(
1− 1

2
(
√
νt+

√
νt′)|ξ|

)
≤ −A|ξ|

ν

(∫ t

t′

dϑ

dt

)
− 1

2
ν(t− t′)|ξ|2 + 2.

The sub-linearity of ξ 7→ |ξ| provides :

eΛ(t′)|ξ|
∫

R3
|û(t′, ξ − η)||û(t′, η)|dη ≤ F

[
V (t′, ·)2

]
(ξ)

with
V̂ (t′, ξ) = eΛ(t′)|ξ||û(t′, ξ)|.

One has ‖V (t)‖2Ḣ1 = ‖∇V (t)‖2L2 = dϑ
dt . A classical property of Sobolev-Besov spaces

is that the product (f, g) 7→ fg maps continuously Ḣ1 × Ḣ1 to Ḣ1/2 ; therefore :

0 ≤ F
[
V (t′, ·)2

]
(ξ) ≤ C

dϑ

dt
(t′) · g(t′, ξ) |ξ|−1/2 with ‖g(t′, ·)‖L2 ≤ 1.
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Putting everything together, the following bound holds for the non-linear term :

‖WNL(t, ξ)‖2L2

≤ C

∫
R3

∣∣∣∣∫ t

0

|ξ|1/2e2−
A|ξ|

ν

R t
t′

dϑ
dt (τ)dτ− 1

2 ν(t−t′)|ξ|2 dϑ

dt
(t′) g(t′, ξ) dt′

∣∣∣∣2 dξ(59)

≤ C

∫
R3

(∫ t

0

dϑ

dt
(t′)|ξ|e−2

A|ξ|
ν

R t
t′

dϑ
dt (τ)dτ dt′

)
(∫ t

0

e−ν(t−t′)|ξ|2 dϑ

dt
(t′) g(t′, ξ)2 dt′

)
dξ(60)

≤ Cν

A

∫
R3

(
1− e−2

A|ξ|
ν ϑ(t)

2

)(∫ t

0

e−ν(t−t′)|ξ|2 dϑ

dt
(t′) g(t′, ξ)2 dt′

)
dξ

≤ Cν

A
ϑ(t).(61)

Along the same lines, one has :

ν

∫ t

0

‖|ξ|WNL(t′, ξ)‖2L2 dt
′

≤ Cν2

A

∫ t

0

∫
R3

(
1− e−

2A|ξ|
ν ϑ(t′)

)
(62) (∫ t′

0

|ξ|2e−ν(t′−t′′)|ξ|2 dϑ

dt
(t′′) g(t′′, ξ)2 dt′′

)
dξdt′(63)

≤ Cν2

A

∫ t

0

∫
R3

(∫ t

t′′
|ξ|2 e−ν(t′−t′′)|ξ|2 dt′

)
dϑ

dt
(t′′) g(t′′, ξ)2dξdt′′

≤ Cν

A

∫ t

0

∫
R3

(
1− e−ν(t−t′′)|ξ|2

) dϑ
dt

(t′′) g(t′′, ξ)2dξdt′′

≤ Cν

A
ϑ(t).(64)

Estimations (58) and (64) imply the following bootstrap :

ϑ(t) ≤ C

ν
inf

s∈[0,1]
(νt)s ‖|ξ|sû0(ξ)‖2L2 +

C ′

A
ϑ(t) ≤ 2C

ν
inf

s∈[0,1]
(νt)s ‖|ξ|sû0(ξ)‖2L2

provided the numerical constant A is chosen sufficiently large. To conclude the
analytic estimate of u, let us now focus on the time interval on which Λ(t) ≥ 1

2

√
νt.

Let us therefore define :

T ∗ = inf
{
t > 0 ; ∀t′ ∈ [0, t], ϑ(t′) ≤ ν3/2(t′)1/2

2A

}
.

The bootstrap inequality provides2 :

T ∗ ≥ sup
s∈] 12 ,1]

(
C0ν

5
2−s

‖u0‖2Ḣs

) 1
s− 1

2

≥ C2
0ν

3

‖∇u0‖4L2

.

2In particular, one can pass to the limit un → u on [0, T ∗] and this method guarantees
smoothness. Note that T ∗ = +∞ if ‖u0‖Ḣ1/2 ≤ ν

√
C0 so this method also provides a proof of

Kato’s theorem [32].
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On [0, T ∗], one has 1
2

√
νt ≤ Λ(t) ≤

√
νt hence (61) and again the bootstrap in-

equality gives : ∫
R3
e
√

νt|ξ||û(t, ξ)|2dξ ≤
∫

R3

∣∣∣eΛ(t)|ξ|û(t, ξ)
∣∣∣2 dξ

≤ {‖WL(t, ·)‖L2 + ‖WNL(t, ·)‖L2}2 ≤ C ‖u0‖2L2 .(65)

This inequality proves that the radius of analyticity of u(t, ·) exceeds 1
2

√
νt on

[0, T ∗]. The constant C is purely numerical. This estimates also holds with an
obvious change of notations on T3.

Let us now assume that u is a smooth solution of (1) on [0, T ]×R3 or [0, T ]×T3

with T possibly much larger than T ∗, one can translate (65) along the time line in
the following way. One defines :

τ =
ν3

sup[0,T ] ‖∇u‖
4
L2(Ω)

and δ0(τ) =
√
ντ .

Then for any time t0 ∈ [0, T ], the estimate (65) holds on [t0, t0 + C2
0τ ] with the

same constant C : ∀t0 ∈ [0, T ], ∀t ∈ [t0, t0 + C2
0τ ],

(66) C−1
∥∥∥e 1

2

√
−ν(t−t0)∆u(t, ·)

∥∥∥2

L2
≤ ‖u(t0, ·)‖2L2 ≤ ‖u0‖2L2 .

The best estimate at time t is therefore obtained by choosing t0 = t−C2
0τ provided

t > C2
0τ . When t ≤ C2

0τ , one can only rely on the initial estimate with t0 = 0.

One can now conclude the proof of Theorem 6.1 from a straighforward compu-
tation. As the Bessel-Parseval formula is slightly different let us detail it :

(67) ‖f‖2L2(Ω) =


1

(2π)3

∫
R3
|f̂(ξ)|2dξ on R3,

1
Vol(T3)

∑
k∈T̂3

|f̂(k)|2 on T3.

To simplify notations, let us denote by δ∗(t) = min{δ0(t), C0δ0(τ)}. On [0, T ]×T3,
the inequality (66) reads :

1
Vol(T3)

∑
k∈T̂3

eδ∗|k||û(t, k)|2 ≤ C ‖u0‖2L2

and (9) gives a sequence of dimensionless coefficients cK ≥ 0 such that :

E∗(K, t) = (2π)−2ρ

(
K

L

)
e−δ∗K

∑
|k|=K

eδ∗|k||û(t, k)|2

≤ C Vol(T3)
(
K

L

)
e−δ∗KE(0) · cK with

∑
K

cK ≤ 1.

On [0, T ] × R3, the inequality (66) does not directly provide a pointwise estimate
of E∗(t,K) so one considers instead :

Ẽ∗(K, t) =
1
K

∫ 2K

K

E∗(t, k)dk
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The spectrum is given by (4). One gets :

Ẽ∗(K, t) = (2π)−3 ρ

K

∫
R3

(∫ 2K

K

e−δ∗|ξ|

k
ψ

(
|ξ|
k

)
dk

)
eδ∗|ξ||û(t, ξ)|2 dξ

(2π)3
.

One checks easily, using the properties of the cut-off function ψ (uniform in the
limit ψ(r) ⇀ δr=1), that∫ 2K

K

e−δ∗|ξ|

k
ψ

(
|ξ|
k

)
dk ≤ e−

1
2 δ∗K

∫ |ξ|/K

|ξ|/2K

ψ(r)dr ≤ 2c(K)e−
1
2 δ∗K

with
∑

n∈Z c(2
nK) ≤ 1. Inequality (66) gives :

Ẽ∗(K, t) ≤ 2(2π)−3e−
1
2 δ∗K c(K)

K
ρ

∫
R3
eδ∗|ξ||û(t, ξ)|2 dξ

(2π)3

≤ CK−1e−
1
2 δ∗KE(0) · c(K).

This concludes the proof of (55) and of Theorem 6.1.

Bibliographical note on the analytic estimate (66). For physical reasons, one
was interested only in L2 norms, therefore a pointwise majoration in Fourier vari-
ables was sufficient. One should notice however the following idea suggested by
[49]. Instead of using |ξ| ≤ |ξ − η|+ |η|, one can rely on the exact formula :

∀α ∈ R3, eiα·∇(uv) =
(
eiα·∇u

) (
eiα·∇v

)
.

One could therefore replace (57) by a family of ODEs

ϑα(t) =
∫ t

0

∥∥∥∇eiΛα(τ) α·∇u(τ)
∥∥∥2

Lp
dτ with Λα(t) =

√
νt− λϑα(t)

that would provide uniform bounds on
∥∥∥e√νt iα·∇u(t)

∥∥∥2

Lp
for t ∈ [0, T ∗] and α ∈ B =

{β ∈ R3 ; |β| ≤ C}. One can then deduce the local-in-time Lp-analytic estimate of
u because an elementary exercise in Littlewood-Paley theory states that :∥∥∥e√−νt∆f

∥∥∥
Lp
≤ C sup

α∈B

∥∥∥e√νt iα·∇f
∥∥∥2

Lp
.

However, due to the lack of a uniform a-priori bound of ‖u(t)‖Lp when p 6= 2, one
can only propagate the local estimate along the time-line by stating that

(68) u is smooth, namely u ∈ L∞([0, T ]× Ω) =⇒ e
√
−min{νt,νt∗}∆u(t) ∈ Lp

but unlike (66), the corresponding inequality involves both u0 and sup[0,T ] ‖u‖Lp(Ω)

to compute t∗ and the Lp-analytic norm. Statements similar to (68) can be found
e.g. in [47], [49], [48] or [59]. However, as these authors make the wise choice not
to state the corresponding estimate, the status of (66) was unclear. In particular,
estimates hidden in (68) cannot usually be translated in time with uniform con-
stants. For the convenience of the reader I decided to provide an elementary proof
of (66). The method was greatly inspired by [18], where a statement similar to
(65) was proved for the L2([0, T ]× R3)-norm of e

√
−νt∆u(t).

Some subtle mathematical problems are closely related to Theorem 6.1. Ana-
lyticity in time and Gevrey classes have been studied in [28]. The difficult question
of analyticity for general domains seems to have been studied only once, in [55],
and the question of external forces is dealt with in [34]. Readers interested in
analyticity questions for 2D-turbulence should refer e.g. to [4].
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7. Necessary conditions satisfied by turbulent flows

In this section, one investigates the necessary conditions satisfied by K41-
turbulent flows. One proves the relation between Integral and Taylor Scale Reynolds
numbers (Theorem 7.1). On T3, this relation is shown to characterize a time-scale
on which free turbulence can be observed (Theorem 7.2). Finaly one investigates
whether smooth solutions can be K41-turbulent (Theorems 7.3 and 7.4).

7.1. Reynolds numbers. The Reynolds number < =
(

K+
K−

)4/3

is the so-
called Integral Scale Reynolds number [31, §7.18 p.107]. In experiments, one uses
mostly the Taylor Scale Reynolds number UrmsλT

ν with Urms(t) =
√
E(t) and the

Taylor scale defined by 1
λ2

T(t)
=

‖∇u(t)‖2
L2

‖u(t)‖2
L2

; in other words :

UrmsλT

ν
=
ρ1/2 ‖u(t)‖2L2

ν ‖∇u(t)‖L2

·

Usually Rλ is “tailored” to the needs of each experiment to get a time-independent
number.

Definition 7.1. If u is a Leray solution of (1), the Taylor-Scale Reynolds
number of u on [T0, T1] is :

(69) Rλ =
ρ1/2〈‖u‖2L2〉

α3/2ν〈‖∇u‖2L2〉1/2
=

√
Ē2

α3νε̄
·

Observations [31, 7.17 p.107] suggest that Rλ ' <1/2. This is indeed a rigorous
fact.

Theorem 7.1. Assume that u is a Leray solution of (1) and a K41-function.
(1) For Ω = R3, assume also that u0 ∈ L1 ∩ L2. Then :

(70)
<−9γ/4

216(1−<−1)(1−<−1/2)2
≤ <
R2

λ

≤ 16<9γ/4

27(1−<−1)(1−<−1/2)2
.

In particular :

(71) ε̄ ' Ē2

α3ν<
' Ē3/2

α3/2 Vol(u; [T0, T1])1/3
and < ' Ē1/2 Vol(u; [T0, T1])1/3

α3/2ν
·

According to (32), the symbol ' means that both inequalities hold with
constants depending on < and <γ but that the constants have a purely
numerical limit in the asymptotic (31).

(2) For T3, let us assume that
∫

T3
ρu0(x)dx = 0 and that (39) is satisfied.

Then similar inequalities hold. The numerical values are :

(72)
(1− C(n−))2

864
+ o(<; γ) ≤ <

R2
λ

≤ 2048
3375

+ o(<; γ)

where o(<; γ) → 0 in the asymptotic (31).

Note that the right-hand side of (72) requires only a lower bound on K−/Kc,
thus it holds regardless of (39).
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Proof. Using the definition of < and (35), (36a) for Kd and Kc, one gets :

< =
(
K+

K−

)4/3

and
(
Kd

Kc

)4/3

=
Ē2

α3νε̄
= R2

λ

thus Theorem 4.1 implies < ' R2
λ. Proposition 5.1 provides Vol(u; [T0, T1]) '

(K−)−3 hence

< '
(
Vol(u; [T0, T1])1/3Kd

)4/3

=
ε̄1/3

αν
Vol(u; [T0, T1])4/9.

Using < ' R2
λ provides

ε̄ '
(

Ē2

α2 Vol(u; [T0, T1])4/9

)3/4

=
Ē3/2

α3/2 Vol(u; [T0, T1])1/3
·

Substitution of this formula in the previous expression of < yields the last formula
in (71). In the case of Ω = T3, the proof is similar.

7.2. Time-scale on which free turbulence can be observed.

Definition 7.2. Given a Leray solution u of (1) on Ω = T3 with
∫

T3
ρu0 = 0,

let us define the following time scale, that one could call for example the “transfer
time from u0 to ω = rotu on [T0, T1]” :

(73) T (u0;ω) =
α3ν2

ρ
×

∫ T1

T0

‖ω(t)‖2L2 dt

‖u0‖4L2

·

According to (19b), one has T (u0, ω) ≤ α3ν
E0
· The following statement proves

that <T (u0, ω) is the precise time-scale on which turbulence can be observed :
for a two short observation time one will not see K41-properties and for a too
long observation time the time-average will describe the fluid as being mostly at
rest. This time-scale appears also naturally in the computation of ε̄ for a smooth
flow (see (79) below).

Theorem 7.2. If u is a K41-function on [T0, T1] × T3 and a Leray solution

of (1) with
∫

T3
ρu0(x)dx = 0, the following inequality holds for numerical factors

Cj(<, γ) → 1 in the asymptotic (31) :

(74)
3375
2048

C1(<, γ)<T (u0;ω) ≤ T1−T0 ≤
128C2(<, γ)

3375π4

1
< T (u0;ω)

× Vol(T3)4/3

ν2
·

Moreover, if (39) is satisfied, then :

(75)
3375
2048

C3(<, γ) ≤
(
Ē

E0

)2
T1 − T0

< T (u0;ω)
≤ 864C4(<, γ)

(1− C(n−))2
.

In particular, (74) gives :

(76)
<
<c

≤ 512C5(<, γ)
3375π2

with <c =
Vol(T3)2/3

νT (u0;ω)
·
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Proof. Poincaré’s inequality reads :∥∥∥∥u(t)− ∫
Ω

u(t, x)dx
∥∥∥∥

L2(T3)

≤ Vol(T3)1/3

2π
‖∇u(t)‖L2(T3) .

On T3, the total impulsion is preserved so (43) holds for any t ≥ T0. Combined
with (19) one gets :

‖u(t)‖2L2 + 2ν
(

2π
Vol(T3)1/3

)2 ∫ t

T0

‖u(t′)‖2L2 dt
′ ≤ ‖u(T0)‖2L2

and Gronwall’s lemma provides (see [38] for a numerical confirmation) :

‖u(t)‖L2(T3) ≤ ‖u(T0)‖L2(T3) exp

(
−
(

2π
Vol(T3)1/3

)2

ν(t− T0)

)
.

In turn, this gives :

Ē(K) ≤ E0Φ

((
2π

Vol(T3)1/3

)2

ν(T1 − T0)

)
with Φ(s) =

1− e−s

s
·

Combining the definition of ε̄ and Rλ gives :

(77)
∫ T1

T0

‖ω(t)‖2L2 dt =
(T1 − T0)Ē2

α3ρν2<
× <
R2

λ

·

Theorem 7.1 on T3 ensures < ≤ ( 2048
3375 + o(1))R2

λ, which now reads∫ T1

T0

‖ω(t)‖2L2 dt ≤
(

2048
3375

+ o(1)
)

E2
0

α3ρν2<

×(T1 − T0)Φ2

((
2π

Vol(T3)1/3

)2

ν(T1 − T0)

)
and Φ2(s) ≤ min{1; 1/s2} provides both upper and lower estimates on T1 − T0

in (74). Note that one does not even require (39), for this assumption is only
needed to get a more precise upper-bound of T1 − T0.

Conversely, if (39) holds, then < ≥ ((1−C(n−))2/864+o(1))R2
λ and (77) boils

down to (75).

Compatibility with the time scale on which smoothness is guaranteed. Mathe-
maticians can guarantee the smoothness of the solution of (1) on at least [T0, T0+Θ]
with e.g.

Θ =
C0ν

3

‖ω0‖4L2

·

Is such an interval long enough for the observation of free turbulence ? According
to Theorem 7.2, the answer is yes provided Θ & <T (u0, ω). Indeed, if T1− T0 ≤
Θ ≤ C T (u0, ω) then the only possible Reynolds number on [T0, T1] is < . C and
the turbulent asymptotic (31) cannot be achieved.

Inequality Θ & <T (u0, ω) is equivalent to

ρν ‖u0‖4L2 & α3<‖ω0‖4L2

∫ T1

T0

‖ω‖2L2 ,
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which, combined with Poincaré’s inequality and ρ = Vol(Ω)−1, implies :

(78)
α3<
ρν

(T1 − T0)ε̄ = α3<
∫ T1

T0

‖ω‖2L2 . ν Vol(Ω)1/3.

For large initial data, this makes it impossible for the initial energy to dissipate
almost completely on [T0, T1] because the left-hand side would then be equivalent
to α3<(ρν)−1E0 � ν Vol(Ω)1/3.

To put it simply, the time-scale Θ on which regularity is guaranteed is too
short to observe a fully developed free turbulence and thus it might not have a deep
physical meaning. One should however refrain from jumping to the conclusion that
K41-turbulence is an obstruction to smoothness. If one keeps (53) in mind (which
is accepted in every physics textbook), it indicates instead that (1) can develop a
very specific dynamic in Fourier space and that the techniques used to prove local
smoothness have failed to capture it. We will see in §8.8, that K41-turbulence is
troublingly close to the best known local smoothing effect.

7.3. Two necessary conditions satisfied by smooth turbulent flows.
The goal of this last section is to investigate the necessary conditions that occur
when a smooth solution u of (1) happens to be a K41-function. Two Theorems can
be stated.

7.3.1. Necessity of intermittency. In section §3.4, temporal intermittency was
defined as a substantial deviation between ε(t) and ε̄. If u is smooth on [T0, T1],
one can compute ε̄ with (24) :

ε̄ =
E0 − E1

T1 − T0
·

The conservation of energy reads :

E0 − E1 = ρν

∫ T1

T0

‖ω(t)‖2L2 dt =
E2

0

α3ν
T (u0;ω)

hence

(79) ε̄ =
E2

0

α3ν

T (u0;ω)
T1 − T0

·

Theorem 7.3. If u is a smooth solution of (1) i.e. u ∈ L∞([T0, T1] × Ω)
with Ω = R3 or T3 and a K41-function on [T0, T1], the following condition must be
satisfied :

(80)
E0 + E1

2E0
+
∫ T1

T0

|ε(t)− ε̄|
E0

dt ≥ C(<, γ)

√
< T (u0;ω)
T1 − T0

×


3
√

3
4 if Ω = R3,

15
√

15
32
√

2
if Ω = T3,

with C(<, γ) → 1 in the asymptotic (31). The numerical constant is bounded from
below by 1.299 on R3 and by 1.283 on T3.

Proof. Theorem 7.1 provides in the asymptotic (31) :

ε̄ =
Ē2

α3ν<
× <
R2

λ

≤ Ē2

α3ν<
×

{
16
27 + o(1) if Ω = R3,

2048
3375 + o(1) if Ω = T3.
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Estimate (25) reads :

Ē2 ≤

(
E0 + E1

2
+
∫ T1

T0

|ε(t)− ε̄|dt

)2

and (80) follows immediately from the comparison with (79).

One can wonder whether (80) actually provides a lower bound on intermittency.
For Ω = T3, the answer is subtle but positive. According to Theorem 7.2 and a
careful track of constants, the right-hand side of (80) cannot asymptotically exceed
1. On the other hand, the energy estimate gives E0+E1

2E0
∈ [1/2; 1]. Therefore, if one

assumes that :
• most of the initial energy has been dissipated, i.e. E1 � E0, then E0+E1

2E0
'

1
2

• and that the observation time is the minimal, i.e. T1 is chosen short
enough such that the right-hand side of (80) belongs to ] 12 , 1]

then the left-hand side can be bootstrapped in the right-hand side and inequality
(80) indeed provides a lower bound of intermittency :∫ T1

T0

|ε(t)− ε̄|dt ≥ C

2
E0

with C ∈]0, 1]. Given smooth data u0, it is not clear whether one can find T1

such that both conditions are simultaneously satisfied (the problem is to prove that
E(T0 + < T (u0;ω)) ≤ cE(T0) with a sufficiently small numerical constant c < 1).
However, physical intuition suggests that this is the case since the best time-scale to
observe free turbulence is to wait till most of the initial energy has been dissipated
but not any longer.

7.3.2. Compatibility of the K−5/3 law with the analytic smoothing effect. The
question dealt with in this section is the following : are the finer scales of turbulent
vortex structures limited by the analyticity radius of the solution ? In other words,
if δ denotes the analyticity radius of a K41-turbulent solution u, what is the possible
range of δK+ ? In the regime δK+ ≤ C the finer scale of turbulent structures isK−1

+

and is limited from below by C−1δ, which drastically limits the possible Reynolds
numbers :

< ≤
(

C

δK−

)4/3

and in particular < ≤
(
C

2π
L

δ

)4/3

on T3.

Conversely, the regime δK+ � 1 means that turbulent structures exist at much
finer scales than the analyticity radius and the asymptotic (31) remains possible
(see also §8.7.2 below).

The following result denotes the compatibility at K = K+ between K41-
property (33) and the high-frequency bound on the spectrum given by Theorem 6.1.
There are two cases depending on whether the initial data is supposed to have no
additional smoothness to being L∞ ∩H1(Ω) or if on the contrary, one considers a
flow already “well prepared” by the analytic smoothing effect.

Theorem 7.4. Let u be a smooth solution of (1) on [T0, T1]× Ω with Ω = R3

or T3 and a K41-function on [T0, T1]. There exists a numerical constant C > 0
such that the following conditions are satisfied.
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1. Unprepared data on T3 –: If u(T0) ∈ H1(T3) with
∫

T3
ρu0(x)dx = 0

and if u ∈ L∞([T0, T1]× Ω), then :

(81)
1− C(n−)
<3γ/2

Ē

E(T0)
≤ C<2

{
E−δ0K+ +

δ0K+

1 + (δ0K+)3
3C2

0τ

T1 − T0

}
provided (39) holds and where δ0 =

C0

2
√
ντ =

C0ν
2

2 sup[T0,T1] ‖ω‖
2
L2

is the

analyticity radius guaranteed by Theorem 6.1 on [T0 + τ, T1].
2. Well prepared data on T3 –: If moreover one assumes that the initial

data u0 ∈ H1(T3) was given at t = 0 and that the K41-property holds on
[T0, T1] with

(82) T0 ≥
ν3

sup[0,T1] ‖ω‖
4
L2

then Theorem 6.1 guarantees an analyticity radius of at least

δ1 =
C0ν

2

2 sup[0,T1] ‖ω‖
2
L2

on [T0, T1]. In this case, (81) can be improved to read :

(83) δ1K+ ≤ log
(

C<3γ/2

1− C(n−)

)
+ log

(
E(0)
Ē

)
+ 2 log<.

3. Case of R3 –: Similar results are also valid for Ω = R3 except that the
assumptions

∫
T3 ρu0(x)dx = 0 and (39) must be dropped and replaced by

u0 ∈ L1 ∩ L2(R3). Estimate (81) reads :

(84)
1−<−1/2

<3γ/2

Ē

E(T0)
≤ C<1/2

{
E−δ0K+ +

δ0K+

1 + (δ0K+)3
3C2

0τ

T1 − T0

}
and (83) becomes instead :

(85) δ1K+ ≤ log
(

C<3γ/2

1−<−1/2

)
+ log

(
E(0)
Ē

)
+

1
2

log<.

Remarks.
(1) According to the comments at the end of §7.2, the “well-preparedness”

assumption (82) is likely to be satisfied if the initial data is large enough.
(2) In the unprepared case, one almost gets the asymptotic δ0K+ . (E0/Ē)<

on T3 and (E0/Ē)1/2 <1/4 on R3. In the well prepared case, it improves
rigorously to :

δ1K+ ≤ C ′ + log(E0/Ē) +

{
2 log< on Ω = T3

1
2 log< on Ω = R3.

It will be shown in §8.7.2 that there is an experimental hint towards
δK+ & 1 and that δK+ ' 1 must hold when physicists claim to observe
fully developed turbulence.

(3) One can compute δiK+ (i = 0, 1) using only norms of the vorticity :

δiK+ ' ν5/4ε̄1/4

α3/4 supt ‖ω(t)‖2L2

·
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Thus, using Ē2 ' α3νε̄< from (71), the well prepared case can be refor-
mulated in the following form :

(86) α3νε̄ · exp

(
cν5/4ε̄1/4

α3/4 sup[0,T1] ‖ω‖
2
L2

)
≤ C E2

0 ×

{
<3 on Ω = T3

1 on Ω = R3.

Proof. Let us first investigate the case of T3. Comparison of Theorem 6.1 with
(33) for K = K+ provides :

<−3γ/4αε̄2/3K
−5/3
+ ≤ Ē∗(K+) ≤ CK+L

2〈e−δ(t)K+〉 E(T0)

where δ(t) is defined in Theorem 6.1. Let us write it down as :

<−3γ/4αε̄2/3K
−2/3
+ ≤ C(K+L)2〈e−δ(t)K+〉 E(T0).

According to definition (36b) and Theorem 4.1, one has :

αε̄2/3K
−2/3
+ =

(
Kc

K+

)2/3

Ē ≥ 1− C(n−)
12<3γ/4

Ē

<1/2
·

Similarly, (K+L)2 = (K−L)2<3/2 ≤ (2π)2<3/2. A direct computation of the time-
average of e−δ(t)K+ reads :〈

e−δ(t)K+

〉
= e−δ0K+ +

τ

T1 − T0
Ψ(δ0K+)

with τ =
ν3

sup[T0,T1] ‖ω‖
4
L2

and δ0 =
C0

2
√
ντ and the function

Ψ(s) = C2
0

(
2(1− (1 + s)e−s)

s
− e−s

)
that satisfy

1
4

(
C2

0s

1 + s3

)
≤ ψ(s) ≤ 3

(
C2

0s

1 + s3

)
for any s ∈ R+. This gives (81). In

the case of “well prepared” data, Theorem 6.1 gives δ(t) = δ0 for any t ∈ [T0, T1]
thus

〈
e−δ(t)K

〉
= e−δ0K+ and

1− C(n−)
<3γ/2

Ē

E(0)
≤ C<2e−δ0K+

from which (83) follows immediately.
On R3 and provided u0 ∈ L1, a comparison of Theorem 6.1 and (33) implies

instead :
1−<−1/2

<3γ/2

Ē

E0
≤ C

〈
e−δ(t)K+

〉
<1/2

which explains the different game of powers of the Reynolds number <.

8. Final remarks and some open problems

Let us end this article with some comments on the questions at stake and
especially the compatibility between the spectral theory presented above and the
experimentally accessible quantities called structure functions. I will conclude with
a striking numerical fact that suggests that turbulent flows might actually saturate
the current estimation of analytic regularity.
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8.1. Finding examples of turbulent flows. The burning question is to find
examples of K41-turbulent flows. According to our definition, this problem can be
split in two. The first step is to find K41-functions that are solutions of (1). The
second one is to find, among those functions, some that satisfy the asymptotic (31).

Proving that a given function is K41 requires to compute a lower bound on
Vol(u; [T0, T1]) and then check that a substantial amount of enstrophy is contained
in the scales below this bound. It can at least be tested numerically as this property
is stable in Leray space. Satisfying (31) is more subtle and is likely to require
additional assumptions. The most obvious one will be a form of isotropy (with
a proper definition, still to be found) because the energy spectrum was defined
with isotropic spectral cutoffs. The question of an anisotropic theory is also widely
open and could be of interest in concrete situations. For example, atmospheric
turbulence in the jet stream (rapid air flows at high altitude, well known to jet
pilots) is anisotropic because the ratio height/width is a tiny parameter.

For bounded domains, one could for example investigate solutions whose vor-
ticity satisfies : ∣∣∣∣∫

Ω

ω(t, x)
|ω(t, x)|

dx

∣∣∣∣ ≤ c0.

The cheapest conjecture is that for c0 small enough (which means that the vortex
lines are somehow distributed isotropically), the asymptotic (31) should hold.

This is also where probabilities might prove handy. The corresponding conjec-
ture is that (31) holds in an average sense over a statistical ensemble of solutions,
for some ergodic probability measure.

However, these conjectures should be balanced by taking into account substan-
tial fluctuations of the dissipation rate ε both in the temporal and in the spatial
domain, i.e. intermittency (see §8.2).

8.2. Geometrical structures of turbulence, localization and intermit-
tency. Understanding the geometrical structures involved in turbulence is a major
challenge and the core of modern research on turbulence (see e.g. [9], [22], [63]
and the references therein). The main idea is that substantial fluctuations of the
dissipation rate exist both at large scales (caused by the mechanisms of agitation)
and at small scales (caused by the stretching of vortex lines). In consequence, a
refined theory of turbulence cannot rely solely on the average value ε̄. In this article
the focus was on “large scale” turbulence, i.e. in the case where the fluctuations of
ε are small compared to ε̄.

The properties of Vol(u; [T0, T1]) and T (u0;ω) in regard to the characteristic
scales of the geometric structures in turbulent flows call for a closer look. For
example, a starting point for studying intermittency is the following definition.

Definition 8.1. Given Ω′(t) ⊂ Ω a smooth family of smooth subsets of Ω, a
function u ∈ L(Ω) is said to be a local K41-function on Ω′ × [T0, T1] if

u′(t, x) = u(t, x)χ(t, x)

is a K41-function on Ω× [T0, T1] where χ is a smooth cutoff function such that

χ(t, x) = 1 if x ∈ Ω′(t) and Vol(χ; [T0, T1]) ' Vol(1Ω′ ; [T0, T1]).

The first question of localization and intermittency is to study which sub-
domains of Ω0 × [T0, T1] are admissible if u is a local K41-function on Ω0 × [T0, T1]
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and to determine the corresponding parameters K±(Ω′), <(Ω′) and γ(Ω′). Using
(37d), an obvious restriction is Vol(u′) . Vol(χ) . Vol(u).

Related to the volume function is the following inequality, which (with Leray’s
inequality) is one of the only estimates that has a sub-linear growth in time :

‖u(t)‖L1(R3) ≤ ‖u0‖L1 + C

√
t

ν
‖u0‖2L2 .

Improving this inequality for a given flow on R3 or finding examples of saturations
on some time intervals would definitely be interesting.

8.3. Modelisation versus PDEs. When dealing with the spectral descrip-
tion of turbulence, two natural questions occur. Which solutions of (1) satisfy the
spectral asymptotic (31) ? And in that case, what are their qualitative properties
?

Historically, Kolmogorov addressed both questions simultaneously by proposing
a model based on strong probabilistic assumptions that cannot be checked directly,
namely by assuming that “the difference u(t, x)−u(t′, x′) is a probabilistic variable
whose law does not depend on t, t′, x, x′ and is not affected either by rotations of the
coordinate system” [40]. Obviously the consequences of his predictions have been
extensively studied and most of them where found valid, but sometimes with not
as good a precision as one could hope for : structure functions Sp(`) (see §8.7) are
predicted to scale as `p/3 but for p ≥ 4 one observes that the exponent p/3 must
be corrected by some small negative term. These mishaps are known under the
generic name of “intermittency” and various models have been sought to explain
them, including a second probabilistic model by Kolmogorov [43].

The main contribution of this article is to show that one can study the quali-
tative properties of turbulent flows independently from the a-priori models of the
structure of such a flow and that it can be done using deterministic tools. This
path should allow colleagues to concentrate on the core mathematical problems.

8.4. Spectral problems for general domains. One cannot deny that the
tradition of probabilistic models in turbulence is a convenient way to avoid dealing
with the spectrum of the Stokes operator on domains. . . However, the lack of
precision on the true energy spectrum (the function denoted by E†, defined on
σ(A1/2) where A is the Stokes operator) considerably darkens the foundations of
some experimental protocols that focus on the spectrum E∗ defined with Fourier
coefficients and assumed without proof to be the shell averages of E†.

More precisely, as the spectral theory of the Stokes operator is not known, the
naive protocol is to collect data in some subregion, then compute Fourier coefficients
as if the flow was periodic, using an FFT-type algorithm with ad-hoc anti-aliasing
techniques, and then finally compute the energy spectrum with the formula (13)
valid for T3. The question is : does one really look at the spectrum of u ?

For example, sorting the spectrum of the Stokes operator on
∏

(R/LiZ) and
checking (14) raises non-trivial problems of rational approximation as soon as Li 6=
Lj . However, (14) played a crucial role in the proof of (13) on T3. Worse, if one
assumes generically simple eigenvalues, Weyl’s asymptotic for the Dirichlet problem
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in dimension n gives K2
j ∼ C(n; |Ω|)j2/n which suggests

Kj+1 −Kj .
C ′(n; |Ω|)
Kn−1

j

with no general lower bound if the domain is a small perturbation of one with
multiple eigenvalues.

Of course, other less naive experimental protocols are used but they also have
their share of mathematical problems (see §8.7.2 and §8.7.3 on structure functions).

The author conjectures that the properties of E†(K, t) : σ(A1/2) × R+ → R+

reflect a general arithmetic of the specific nonlinearity P((u ·∇)u) and thus could be
truly universal. However, discrepancies between the various possible spectra of the
Stokes operator might explain why E∗ defined by (13) is not always the appropriate
experimental quantity.

This might be a first key explaining why there seem to be “many” theories of
turbulence, depending on what kind of flow one deals with ; it is likely that the
spectral theory for the Stokes operator in an outer domain has little in common
with the spectral theory in a wind tunnel or that of a swimming pool. . .

8.5. Universality of the Kolmogorov constant. Conversely, to give some
credit to the protocols based on computing the sum of Fourier coefficients on spher-
ical shells of frequencies, one could investigate the properties of sub-domains of
turbulent flows and show that “away from anything” the rule of thumb is that of
R3 or T3.

For example, experimental evidence suggests that the Kolmogorov constant α in
(33) is universal and that, with reasonable precision, it does not even depend on the
flow or the shape of the domain (provided turbulence is homogeneous and isotropic).
Published values are in the range α ∈ [0.45, 2.4] with a common agreement [62]
around α = 0.5. See also [67], [36] and the references therein. The proof of the
universality of a small range for α would be very instructive3.

8.6. Scale-by-scale balance of energy and energy cascade. The follow-
ing identity describes the scale-by-scale energy budget and follows directly from an
energy estimate of (1). Let us denote by SK = χ

(
A1/2

K

)
the low-pass filter and S∗K

its adjoint on L2(Ω) :

d

dt

(∫ K

0

E∗(k, t)dk

)
=

1
2
d

dt

(
ρ ‖SKu‖2L2

)
= −2ρν ‖∇(SKu)‖2L2 − 2ρ (S∗KSK((u · ∇)u)|u)L2

+ 2ρ ([S∗KSK , ν∆]u− [S∗KSK ,∇]p|u)L2

3As a “per unit of mass” theory, the transformation (u, p, ρ) 7→ (u, µp, µρ) was disregarded
before. However, to the best of my ignorance, the following experiment has never been done :
compare the Kolmogorov constant α for flows of fluids having similar viscosities but a fixed mass
ratio between molecules, when the the same number of molecules and similar velocity fields are
involved. For example, a water flow and a flow of heavy water where hydrogen atoms are replaced
with its heavier isotope deuterium. Would the Kolmogorov constant be identical ?
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On R3 or T3, all the commutators vanish and one gets :

(87)
d

dt

(∫ K

0

E∗(k, t)dk

)
= −2ρν ‖∇(SKu)‖2L2 − 2ρ (S∗KSK(u⊗ u)|∇u)L2 .

This identity is the base of the famous “energy cascade” interpretation. The left-
hand side denotes the rate of change of the energy contained at low frequencies,
i.e. “at scales larger than K−1”. It is balanced by the energy dissipation at such
scales (first term on the right-hand side) plus the so called “energy flux to smaller
scales” (second term). If this term is negative, energy is indeed transferred away
from [0,K] hence goes towards lower scales. There is no “energy injection” term
as in our case the external force is zero.

Definition 8.2. A solution of (1) on Ω = R3 or T3 has the “energy cascade”
property at time t ≥ 0 if there exists K∗

− < K∗
+ such that :

(88) ∀K ∈ [K∗
−,K

∗
+],

∑
i,j

∫
Ω

S∗KSK(ui ⊗ uj) · ∂iuj(t, x)dx > 0.

In the limit of non-smooth frequency cutoff, S∗KSK → F−1 ◦ 1|ξ|≤K ◦ F .

There is yet no mathematical evidence that this property holds for a general
class of solutions of (1), not even for the few explicit solutions known. A rigorous
connection between this definition of the energy cascade and K41-turbulence is an
open problem, in particular the relation between K± and K∗

±.

Let us however mention this interesting property that was pointed out to the
author by [58].

Theorem 8.1. Assume that u is a Leray solution on R3 and that for all t ∈
[T0, T1], one has a “reverse” cascade :

(89) ∀K ≥ 0,
∑
i,j

∫
Ω

S∗KSK(ui ⊗ uj) · ∂iuj(t, x)dx ≤ 0.

Then the energy equality ‖u(T0)‖2L2 = ‖u(T1)‖2L2 + 2ν
∫ T1

T0

‖∇u(t)‖2L2 dt holds.

Proof. For all K ≥ 0, assumption (89) and the identity (87) provide :

‖SKu(T0)‖2L2 ≤ ‖SKu(T0)‖2L2 − 2
∫ T1

T0

(S∗KSK(u⊗ u)|∇u)L2

= ‖SKu(T1)‖2L2 + 2ν
∫ T1

T0

‖∇(SKu)‖2L2 .

Letting K →∞, one gets :

‖u(T0)‖2L2 ≤ ‖u(T1)‖2L2 + 2ν
∫ T1

T0

‖∇u‖2L2 ≤ ‖u(T0)‖2L2

the right-hand side being the classical Leray inequality.
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8.7. Structure functions Sp(`). As the energy spectrum is not always avail-
able, other universal properties have been looked for as substitutes to (31) and are
commonly accepted as experimental evidence of turbulence. However, the connec-
tion between these properties and the spectral definition of K41-turbulence is not
as rigorous as one could hope for and constitutes an immediate source of interesting
mathematical problems.

8.7.1. The second-order structure function.

Definition 8.3. Let us introduce the correlation function :

(90) Γ(t, y) = ρ

∫
R3
u(t, x+ y)u(t, x) dx = E(t)− S2(t, y)

with

(91) S2(t, y) =
ρ

2

∫
R3
|u(t, x+ y)− u(t, x)|2dx.

The following quantity is called the second-order structure function of u on [T0, T1] :

(92) ∀` ≥ 0 S2(`) =
∫

S2
S̄2(`θ)dθ.

Recall that the S̄2(y) denotes the time average (23) of S2(t, y) on [T0, T1].

The following result is sometimes called the Wiener-Khinchin formula.

Theorem 8.2. For any function u ∈ L1([T0, T1];L2(R3)), one has :

(93)
S2(`)
4π

= Ē −
∫ ∞

0

sin(`K)
`K

Ē†(K)dK =
∫ ∞

0

(
1− sin(`K)

`K

)
Ē†(K)dK.

It is usually suggested in physics textbooks that “the energy spectrum is the
Fourier transform of the correlation function” but the formula is systematically left
unstated. As far as proof is concerned, it is usually claimed to be a consequence
of various probabilistic assumptions. One can prove instead that it is a perfectly
determinist statement that relies on the following property : the Fourier transform
in R3 commutes with the process of replacing a given function by the radial one
whose values are the averages of the initial function on each sphere.

Proposition 8.1. For a function f ∈ S(R3), let us define :

(94) F (r) =
∫

S2
f(rθ)dθ and G(λ) =

∫
S2
f̂(λθ)dθ

and S(σ) = σ sinσ. Then, one has :

(95a) λ2G(λ) = 4π
∫ ∞

0

F (r) S(rλ)dr.

The inversion formula reads :

(95b) r2F (r) =
1

2π2

∫ ∞

0

G(λ) S(rλ)dλ.

Moreover, if f(x) = 1
4πF (|x|) is radial, then f̂ is also a radial function thus f̂(ξ) =

1
4πG(|ξ|) can be computed with (95a)-(95b).
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The radial statement is classical (see [64, Chap. 4, Theorem 3.3]). The rest is
implicit to the stability under Fourier transform of the orthogonal decomposition
of L2(R3) into spherical harmonics [64, Chap. 4, Lemma 2.18]. Indeed, joining
L2 =

⊕
Hj and F : Hj → Hj implies that F commutes with the orthogonal

projection on each Hj . This abstract argument allows one to claim that 1
4πF

is defined for any f ∈ L2(R3) as its orthogonal projection on H0 and that the
statement still holds in this case.
Proof. Let us first establish the statement for a radial function f(|x|) on R3. Its
Fourier transform is :

|ξ|2f̂(ξ) =
∫ ∞

0

S

(
r|ξ|; ξ

|ξ|

)
f(r)dr with S(ρ, θ′) = ρ2

∫
S2
e−iρ θ·θ′dθ.

The function S : R+ × S2 → C is invariant by rotations of the second variable :

S(ρ, θ) = S(ρ, e1).

As ρ−1S(ρ, e1) has the same value and derivative at the origin as 4π sin ρ, one
has S(ρ, e1) = 4πρ sin ρ (one could also directly compute the integral in polar
coordinates) and

|ξ|2f̂(ξ) = 4π
∫ ∞

0

f(r) S(r|ξ|)dr.

This proves the theorem in the case of a radial function.

Let us now turn to the general case. One defines a function f0 by :

f(x) =
1
4π
F (|x|) + f0(x)

which ensures that :

∀r ≥ 0,
∫

S2
f0(rθ)dθ = 0.

Applying the theorem for the radial part gives :

G(λ) =
4π
λ2

∫ ∞

0

F (r) S(rλ)dr +
∫

S2
f̂0(λθ)dθ.

The last term boils down easily using Fubini’s theorem :∫
S2
f̂0(λθ)dθ =

1
λ3

∫∫
R3×S2

e−iy·θf0

( y
λ

)
dydθ

=
1
λ3

∫∫∫
R+×S2×S2

e−iρθ·θ′f0

(ρ
λ
θ
)
ρ2dρdθdθ′

=
4π
λ3

∫∫
R+×S2

sin ρ
ρ

f0

(ρ
λ
θ
)
ρ2dρdθ

= 0.

The second to last identity is the previous computation of S(ρ, θ) = 4πρ sin ρ and
the last one is the fact that the sphere averages of f0 vanish.

Proof of Theorem 8.2. The first step is :

S2(`) = 4πĒ −
∫

S2
Γ̄(`θ)dθ
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which results immediately from the definitions. Next, one observes that :

(96) ρ|û(t, ξ)|2 =
∫

R3
e−iy·ξΓ(t, y)dy

which express the duality between convolution and regular multiplication. Taking
the time average on [T0, T1], then sphere averages, and finally substituting the
definition (5), one gets : ∫

S2

̂̄Γ(Kθ)dθ =
(2π)3

K2
Ē†(K).

The conclusion now follows directly from Proposition 8.1.

8.7.2. Range of validity of the “2/3 law” and radius of analyticity of u. Exper-
imental evidence [31, p.57-61] suggests that :

(97) ∀` ∈ [η, `0], S2(`) ' β(ε̄`)2/3

where η ' K−1
+ is the dissipation scale and `0 ' K−1

− is the size of large eddies.
Usually, physics courses state that this so called 2/3 law is equivalent to the K−5/3

decay of the energy spectrum. This “equivalence” calls for a closer look.
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Figure 5. Numerical investigation of the domain of validity of (97).

In Figure 5, [Top four] – S2(`) is computed by Theorem 8.2 using an idealized
spectrum Ē†(K) = K−5/31[1,R](K) for different values of R. Plot in Log-Log
scale on [R−1, 10]. Also represented is (R`)2S2(R−1) for ` < 10/R and `2/3. One
observes a close fit of S2(`) and `2/3 on [10/R, 1]. The graph was obtained by formal
integration with Mathematica c©. [Bottom left] – S2(`) computed for a “real” energy
spectrum

Ē†(K) =


K2 K ≤ 1
K−5/3 K ∈ [1, R]
R−5/3e−δ(K−R) K ≥ R
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with R = 103 and a radius of analyticity δ ∈ {10−2, 10−3, 10−4} (this time with
numerical integration). The range of validity of (97) is maximal for Rδ = 1 but
drops drastically when Rδ � 1. [Bottom right] – Spectral precision ` d

d` logS2(`)− 2
3

for an idealized spectrum and R ∈ {102, 103, 104}. When the precision is in the
gray band, (97) is satisfied with a relative error of less than 10%. Also represented
is the precision for the previous “real” spectrum with R = 103 and δ = 10−3. For
` ≥ 10, the function S2(`) is oscillatory, which reduces the precision of the numerical
integration in the case of the “real” spectrum.

The poor man’s argument is the following. Let us consider an ideal case where
u would be a radial power function whose energy spectrum is exactly K−5/3 (this
means |û(t, ξ)| = |ξ|−11/6 even though this function is not a solution of (1) nor even
a square integrable one). Then, for any ` > 0 and θ ∈ S2, (96) gives :

Γ̄(`θ) = `2/3Γ̄(θ).

However in this case Ē = +∞ and S2(`) are undefined. Even excellent physics
textbooks do not further justify the “equivalence” between the 2/3 law and the
K−5/3 except by a vague reference to a probabilistic version of Theorem 8.2. . .

Slightly more careful physicists [31, p. 87] state that the 2/3 law is only an
asymptotic property that holds provided the limits are taken in the proper order :
T1−T0 →∞, then ν → 0, then `→ 0, and that taking the limits in any other order
will lead to trouble. From a mathematical point of view, a rigorous upper bound
for S2(`) can be found in [23]. However, the relation with (31) is not established.

One can check numerically that (31) and the 2/3 law indeed share a strong
connection (see Figure 5). The conclusion of this computation is that the domain of
validity of (97) is [CK−1

+ ,K−1
− ] if the analyticity radius of u exceeds K−1

+ . However,
if the analyticity radius becomes smaller thanK−1

+ , then the range of validity of (97)
shrinks dramatically.

This fact should be put in perspective with a common experimental fact :
physicists observe the range of validity of (97) to be often of much smaller amplitude
than the inertial range. Figure 5 suggests that the analyticity radius δ of such a flow
is smaller than Kolmogorov’s dissipation scale K−1

+ . Conversely, a fully developed
turbulence for the structure function S2(`) indicates that δ ≥ K−1

+ .

Even though this numerical study is encouraging, it leaves the rigorous con-
nexion between K41-turbulence and the structure function S2(`) on the list of open
problems. Moreover, as the numerical observation suggests that S2(`) = O(`2)
around `→ 0 thus one cannot expect to prove (97) by a finite expansion of S2(`).
Instead one will have to prove directly that there exists a smooth function γ0 with
γ0(s) � 1 if s ≥ 1 and such that

sup
`∈[CK−1

+ ;K−1
− ]

∣∣∣∣` dd` logS2(`)−
2
3

∣∣∣∣ log

(
K−1
−

CK−1
+

)
≤ γ0(δK+)

where δ denotes the radius of analyticity of a K41-function u. This subtle exercise
in harmonic analysis should be an excellent warm-up round before tackling the
question of finding examples of turbulent flows. This also explains why physicists
dodge the problem of accessing the “intermediary” regime of (97) by taking suitable
asymptotics that will push its domain of validity all the way to `→ 0.
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8.7.3. Higher order structure functions and the “4/5 law”. Other structure
functions play a central role in experimental protocols. The most celebrated is the
so called “4/5 law at inertial scales” for the third-order function (this function was
historically related to the measurement mechanisms used to acquire experimental
data in real flows) :

(98) S
||
3 (`) =

〈∫∫
Ω×S2

((u(t, x+ `θ)− u(t, x)) · θ)3 dxdθ

Vol(Ω)

〉
' −4

5
ε̄`

Recall that the brackets 〈·〉 denote time average. This fact is claimed as being
“rigorously established” in most physics textbooks (see [9, chap. 2] or [31, p.76-
86]). It was indeed addressed in the first paper of Kolmogorov [40]. However,
the rigorous path from (31) to (98) still requires some enlightenment. Worse, one
can conjecture that the property S3(`) = C`+O(`2) holds independently from the
asymptotic (31) and that it is only a consequence of the rapid decay at infinity of
the energy spectrum. Let us follow a proof step by step and point out the dark
spots.

The starting point is the following identity, called the Karman-Howarth-Monin
relation (let us recall that Γ has been defined by (90)) :

(99) ∂tΓ− 2ν∆yΓ = σ

with

σ(t, y) =
ρ

2

∫
R3

Tr
{

t(u⊗ u)(t, x) · [∇u(t, x+ y) +∇u(t, x− y)]
}
dx.

Even though it is often presented as a consequence of the probabilistic assumptions,
it is a perfectly deterministic relation that follows immediately from equation (1),
the definition of Γ and the obvious fact that :

∆Γ(t, y) = −ρ
2

∫
R3
∇u(x+ y)∇u(x)dx.

One can rewrite the right-hand side in the following way :

(100) σ(t, y) =
ρ

4
divy

(∫
R3
|δ(t, x, y)|2δ(t, x, y) dx

)
.

with δ(t, x, y) = u(t, x+ y)− u(t, x).

Let us now compute the Fourier transform and integrate over a sphere of radius
K. One gets :

(101) ∂tE
†(K, t) + 2νK2E†(K, t) = ∂KΠ(K, t).

One can compute Π(K, t) directly from σ(t, y) using Proposition 8.1 :

Π(K, t) =
2

(2π)3

∫ K

0

∫
S2

∫
R3
e−kiy·θσ(t, y)k2dkdθdy

=
1
π2

∫
R3

sin(K|y|)−K|y| cos(K|y|)
|y|3

σ(t, y)dy

=
1
2π

∫ ∞

0

2
π

sin(K`)
`

× (1 + `∂`) [σ0(t, `)] d`
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where σ0(t, `) =
∫

S2
σ(t, `θ)dθ and

∫ ∞

0

2
π

sin(K`)
`

d` = 1. Next, one computes the

time averages on [T0, T1]. The Fourier inversion formula in Proposition 8.1 then
reads :

(102) (1 + `∂`)σ̄0 =
`

8π

∫ ∞

0

sinK`
K

Π̄(K)dK.

The time average of (101) over [T0, T1] then integrated over [K−,K] reads :

Π̄(K)− Π̄(K−) = 2ν
∫ K

K−

κ2Ē†(κ)dκ−
∫ K

K−

E†(κ, T0)− E†(κ, T1)
T1 − T0

dκ.

If the spectrum decays sufficiently fast, the right hand-side is almost constant in
the range K ≥ K+. Each term is also equivalent to ε̄ if the solution is smooth.
Thus, for K ≥ K+, one gets Π̄(K) ' Π̄(K−). Usually, this claim is the first dark
spot justified by some “suitable” asymptotic like letting t → ∞, then ν → 0 with
fixed ε̄. It seems however to be merely a consequence of the analytic regularity.

The last step is to use (102) to convert the constancy of Π∞ = Π̄(K) = Π̄(K−)
for K ≥ K+. The right-hand side can be developed as follows for `→ 0 :

(1 + `∂`)σ̄0 =
Π∞

8
+O(`).

This singular ODE admits only one bounded solution as ` → 0, namely σ̄0(`) =
1
8Π∞ +O(`). Substituting the definition of σ(t, x), one gets :

2σ̄0(`) =
1
`2

d

d`

[
`2
∫∫

R3×S2
|δ(t, x, `θ)|2δ(t, x, `θ) dxdθ

]
=

Π∞

4
+O(`).

It is a weak form of (98) that implies by integration of the finite expansion :

(103)
∫∫

R3×S2
|δ(t, x, `θ)|2δ(t, x, `θ) dxdθ = C`+O(`2)

for some numerical constant C = 1
12Π∞. As the remainder terms have been ne-

glected, this identity is not rigorously established but one can conjecture that it
will hold for any smooth solution of (1) whose spectrum decays sufficiently fast.

Using a probabilistic assumption of homogeneity and isotropy in the region of
observation Ω, physicists claim that :

σ̄0(`) = −Vol(Ω)
96

(3 + `∂`)(5 + `∂`)

[
S
||
3 (`)
`

]
.

This identity is the second dark spot because it is not clear how to get a similar for-
mula independently of any a-priori model of the flow. Substitution in the previous
equation for σ0 then gives :

− 1
12

(1 + `∂`)(3 + `∂`)(5 + `∂`)

[
S
||
3 (`)
`

]
= Π∞

and this singular ODE admits only one bounded solution as `→ 0, namely S||3 (`) =
− 4

5Π∞`. One can check immediately that Π∞ has the dimensions of a dissipation
and physicists claim indeed (and this is the third dark spot) that Π∞ = ε̄.
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8.8. Extremal properties of turbulent flows regarding the optimality
of analytic estimates. Let us put an end to this section and this article with a
striking observation inspired by a comment of Claude Bardos : “Personally I do not
believe that the solutions of the incompressible Euler or Navier-Stokes equations
blow up, but it may well be that there are no other general estimates than the one
presently found” [1].

0.1 1 10 100 1000 104 105

10-11

10-8

10-5

0.01

10

(a)

0.1 1 10 100 1000 104 105
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0.50
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1.50

0.70

(b)

Figure 6. (a). Plot of χδ(K) in Log-Log scale for δ =
10−4. The straigh line is 0.85K−5/3. The upper graph is
the rigorous bound K−1e−δK of the energy spectrum. (b).
Relative error χδ(K)/(0.85K−5/3) in Log-Log scale for δ ∈
{10−1, 10−2, 10−3, 10−4, 10−5}. For δ = 10−3, it shows that χδ(K)
matches 0.85K−5/3 with less than 25% of relative error on almost
4 decades. A striking observation : a logarithmic correction to the
rigorous analytic estimates of the energy spectrum has a definite
K−5/3 behavior on a large range of K.

Let us recall our upper bound of the energy spectrum for smooth “old” solu-
tions :

Ē∗(K) . K−1e−δKE(T ).
This estimate has been proved by a technique that seems to be the cutting edge
of quantitative smoothness estimates for parabolic equations. It is natural to ask
whether flows exist for which this inequality is optimal on some large range of
K. If this is the case, then the energy spectrum of such flows would exceed any
substantial correction to this estimate.

Let us plot therefore the following logarithmic correction (see Figure 6) :

χδ(K) =
K−1e−δK

log2(2 +K)
·

An extremely troubling fact is that, on a log-log diagram, this corrector shows a
definite K−5/3 behavior ! For example when δ ∈ [10−5, 10−1], the K−5/3 behavior
appears for roughly K ∈ [1, 1

δ ].
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This observation is a powerful suggestion that K41-turbulent flows might exist
among smooth solutions of (1) and that these flows are responsible for the failure
of extending local regularity methods. They will nonetheless provide examples
saturating the classical inequalities of fluid mechanics.
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[2] Batchelor, G. K., The theory of homogeneous turbulence. Reprint. Cambridge Science
Classics. Cambridge University Press, Cambridge-New York, 1982.

[3] Bateman, P.T., On the representations of a number as the sum of three squares. Trans.
Amer. Math. Soc. 71, (1951), 70–101.

[4] Bercovici, H., Constantin, P., Foias, C., Manley, O. P., Exponential decay of the power
spectrum of turbulence. J. Statist. Phys. 80 (1995), no. 3-4, 579–602.

[5] Biryuk, A., Craig, W., Bounds on Kolmogorov spectra for the Navier-Stokes equations.
Preprint [arXiv:0807.4505v2], 2009.

[6] Boratav, O.N., Pelz, R.B., Structures and structure functions in the inertial range of
turbulence. Phys. Fluids 9 (1997), no. 5, 1400–1415.

[7] Borue, V, Orszag, S.A., Spectra in helical three-dimensional homogeneous isotropic
turbulence. Phys. Rev. E (3) 55 (1997), no. 6, part A, 7005–7009.

[8] Brachet, M. E., Meiron, D., Orszag, S., Nickel, B., Morf, R., Frisch, U., The Taylor-
Green vortex and fully developed turbulence. J. Statist. Phys. 34 (1984), no. 5-6, 1049–
1063.

[9] Brachet, M.E., A primer in classical turbulence theory. Instabilities and nonequilibrium
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