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ABSTRACT. In this paper, we study the well-posedness for the fractional Navier-
Stokes equations in critical spaces G;(zﬁfl) (R™) and BMO~ (A=) (R™) which
are close to the largest critical space B;ﬁ?ﬁ*”(R”). In G;(2ﬁ71)(]R’””)7 we
establish the well-posedness based on a priori estimates for the fractional
Navier-Stokes equations in Besov spaces. To obtain the well-posedness in
BMO~(28=1)(R"), we find a relationship between Q415 (R™) and BMO(R™)
by giving an equivalent characterization of BM O’C(R"). As an application,
we get the well-posedness for fractional magnetohydrodynamics equations in
G, #P=Y(Rn) and BMO~(28-1)(R").
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1. Introduction

In this paper, we study the well-posedness of mild solutions to the fractional
Navier-Stokes equations on the half-space R = (0,00) x R", n > 2

Opu+ (=0 u+ (u-Vyu—Vp=0,  inR™

(1.1) V-ou=0, in RY™™;
ult=0 = a, in R™
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with 8 € (1/2,1). The mild solution to equations (1.1) is the fixed point of operator

t
(Tu)(t,z) = e 2 q(z) — / e~ (=2 Py (y @ u)(s, z)ds.
0

Here
e A f(z) = K (x) * f(x)  with  KJ(€) = e 17
and P is the Helmboltz-Weyl projection:
P={Pjr}jk=1,mn =10k + RjRr}jr=1n

with the Kronecker symbol ;5 and the Riesz transform R; = 9;(—A)~1/2.
Note that the following scaling
(1.2)
un(t,z) = NP7 Tu(\2Pt, ), palt,z) = AP 2p(\2Pt, Ax),  an(z) = AP La(02)

is important for equations (1.1). This leads us to study equations (1.1) in critical
function spaces which are invariant under the scaling f(z) — A2~ f(\z).

When 8 = 1, equations (1.1) become the classical Navier-Stokes equations.
The existence of mild solutions has been established locally in time and global
for small initial data in various critical spaces. Especially, Koch and Tataru in
[13] proved the well-posedness of classical Navier-Stokes equations in the space
BMO™1(R") = V- (BMO(R"™))". Xiao in [24] generalized the results of Koch and
Tataru [13] to QL (R") for v € (0,1). Chen and Xin in [5] studied the classical
Navier-Stokes equations in several critical spaces. See, Kato [12], Cannone [3],
Giga and Miyakawa [9], Bourgain and Pavlovié¢ [2] and the references therein for
more history and recent development.

For general case, Lions [16] proved the global existence of the classical solutions
to equations (1.1) when 8 > 2 in dimensional 3. Wu in [19] obtained a similar
result for g > % + 7 in dimension n. For the important case 8 < % + 7%, Wu in

[20, 21] considered the existence of solution to equations (1.1) in B;:;Ei (R™). In
Li and Zhai [14, 15], inspired by Koch and Tataru [13] and Xiao [24], they studied
equations (1.1) in critical space Q2 (R™) = V - (Q5(R™))™ for 3 € (1/2,1) and
a € (0,3). Here Q8 (R") for a € (—oc, 3) is the set of all measurable functions with

2
2(a+pB—-1)—n )l
sup(l( // Iz — y |n+2(a ﬁ+1)d zdy < 00

where the supremum is taken over all cubes I with the edge length I(I) and the
edges parallel to the coordinate axes in R™. Q%(R") is a generalization of Q,(R")
studied by Essen, Janson, Peng and Xiao [7], Xiao [23], Dafni and Xiao [6] and
reference therein. Meanwhile, Li and Zhai [14] proved that Besov spaceBé; 2B(R™)
for 8 € (1/2,1) is the biggest one among the critical spaces of equations (1.1).

In this paper, we accomplish two major goals. First, we prove the well-
posedness for equations (1.1) in spaces G;(m*l)(R") for 8 € (1/2,1). Here, for
s> 0,

Gy*(R")

{f e S® : |f] € S (B,

190 ey = 5B 55 ™2 ] oy < oo}
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which is a subclass of Besov spaces and also contains the Morrey-type space of mea-
sures. Second, to obtain the well-posedness in BMO~2#~1(R") for § € (1/2,1),
we find a relation between Q22! (R™) and BMO(R") :

(L3) QU (R") = (-0)" BMO(R") = BMO~®*"V(R")

fora = 1—-4, 3 € (1/2,1), by giving an equivalent characterization of BMO~¢(R").
Our well-posedness results extend that of Chen and Xin [5], Koch and Tataru [13].
The relation (1.3) between Q571 (R™) for 8 € (1/2,1) and BMO(R™) gives us a
clear link between Q2 (R™) and BMO(R™). When « # 1— 3, an interesting problem
is whether or not there is a similar link between Q2(R") and BMO(R"). We do
not know the answer now. As an application, we study the well-posedness for
fractional magnetohydrodynamics equations in critical spaces G, (26 71)(R”) and
BMO~(8-1(R™).

The space BMO~¢(R") was introduced by Zhou and Gala by using heat semi-
group ¢'2. In the following, we define BMO~S(R") by e t-2)" for 8 € (1/2,1).
This is motivated by the following well-known facts.

For a C* real-valued function on R™ satisfying the properties:

65 € L'(R™), |6(2)] S (1+ |a)~"*D),
(1.4) | 6i(e)dr =0 and (9)(@) =703 (7).

(1.5) fe€ BMOR") < sup r_"/ / |f * d¢(y)|*t Ldtdy < oo.
) 0 J|y—z|<r

z€R™,re(0,00

Here A < B means A < C'B with C > 0. Thus BMO(R") can be defined equiva-
lently as
(1.6)

r2h
o EVEUNY. 1-8
lssoen = s / /| I ) iy < o
y—x|<r

z€R™,re(0,00
Then, (1.6) leads us to introduce BMO~¢(R") as follows.

DEFINITION 1.1. For 3 € (1/2,1), 0 < ¢ < n/2, define BMO~¢(R") as the set
of all measurable functions f with

T’2B
||f||2BMo—<(1Rn) = sup 7°_"/ / 5" |e_t(_A)Bf(y)|2dtdy < 0.
z€R™,r€(0,00) 0 ly—z|<r
Obviously, BMO~¢(R") is invariant under the scaling f(z) — ASf(\z).
Note that Q5:7!(R™) is invariant under the scaling f(z) — A2~ f(Az). Thus
BMO~¢(R™) will be more useful than Q52 }(R").
We state our main results as follows. The first one is a priori estimates in
homogeneous Besov spaces for the fractional Navier-Stokes equations.

PROPISITION 1.2. Let 2 — 28 <w <26, 1+n/p+w < 45,2 <n < p < oo,
1<qg< o0 and

a e (SR, f(t) € (B ¥ (RY)<M,
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Then the solution to the integral equation

t
u(t) = e l=0), +/ e~ (t=9)(=2)" py . f(s)ds
0

satisfies the estimates

o < e am + a5 tl=5 opa
fut )||Bp;+p ®n) ~ HaHBp,ffﬁ Oty (R™) 0S<11I<)t8 Hf(s)”B’p,ofMp (R™)
and
35 ||u(t Cp_nen < Ces_1yan + 35 Cappm
||U( )HB:,;o(ZB 1>+Z (R") ~ ||a/||Bp’(:,B 1)+z (]R") 0S<1ilz<)t s ||f(8)||B;”’m25+g (Rn)

provided the right-hand sides of the above inequalities are finite, respectively.
Applying Proposition 1.2, we obtain the existence of solution to equations (1.1).
THEOREM 1.3. Let n > 2, 8 € (1/2,1), max{26 — 1,2 — 20} < w < 27,

1+n/p+w<4p,a € G;(2571)(R"), V-a=0.If ||a||G7(2g71)(Rn) is small enough,
then there is a unique solution to (1.1) satisfying

L R
”u(t)”G;(?B*I)(Rn) +12 ||u(t)||L°°(R") +125 ”u(t)”];g;fo(fﬁfl)(ﬂgn) S ||a||G;(25*1)(Rn)'

Here it is worth particularly mentioning that our previous result gives us the
existence of solution to equations (1.1) with initial data in Morrey-type spaces of
Radon measures. In fact, for 0 < s < p < oo, one has

M,

Here M,(R") (1 < g < 00) is the space of distributions f € S’(R™) such that f is

a locally finite Radon measure with

I llar, @y = sup 57" |f|(B(a,t)) < oo,
zERM >0

/s(R") ={f e G,*(R"): f 1isalocally finte Radon measure}.

where |f] is the total variation of f and B(x,t) is the open ball in R™ with radius
t centered at x.
By Proposition 1.2, we get the existence of solutions to equations (1.1) in

5—(28-D+%
Bp,co (R™).

PROPISITION 1.4. Letn > 2,5 € (1/2,1), n < p < oo, max{28—n/p,2—23} <
w < 20 and 1+n/p+w < 408. Assume that a € (B;iiﬁ*l)*?(w))” and V-a = 0. If

HGHB%MAH%(R is small enough, then there exists a unique solution to equations
p,00
(1.1) satisfying

28—1 w.
I, vy + 5 @l + 5 @)ooy

Byp,oo P (R™) Bp,c0 R™)
<
~ ||a||B;:ﬁ—1)+% &

In [21], Wu established a result similar to Proposition 1.4 by using lower bounds
for the integral involving (—A)P.
Now, we study the properties of BMO~¢(R").
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THEOREM 1.5. (BMO~¢ and Besov spaces) Let 3 € (1/2,1). For any f €
S'(R™) and r > 0, one has

26 —s(=n)?
e A gy < ( / /| o 15 |20 <>|2d:cds>
rx—zo|<r

that is, BMO™¢(R") < B3, (R™)

/2

THEOREM 1.6. A distribution f belongs to BMO™¢(R™) if and only if there
exists a distribution g € BMO(R™) such that f = (—A)%g.

Zhou and Gala established results similar to Theorems 1.5-1.6 for BMO~¢(R")
defined by heat semigroup e*©. Thus, BMO~¢(R") is independent of e t=2)" for
Be(1/2,1].

It follows from the definition of BMO™¢(R") and QF:7}(R™) (see [14]) that
when a = 1—43, Q2. .} (R") = BMO~¢(R™) for ¢ = 26— 1. Thus, we can obtain the
existence of mild solution to equations (1.1) with initial data in BMO~@=1(R?)
as follows.

We need to define some notations.

DEFINITION 1.7. Let 1/2 < 8 < 1.
(1) A tempered distribution f on R™ belongs to BM O, (28 _1)(R") provided

||f||BMO;(2ﬁ71)(R") =

28 1/2
—1
sup rfn/ / |KP *f(y)|2tBTdydt < 005
z€R™,re(0,T) 0 ly—z|<r

(i) A tempered distribution f on R™ belongs to VBMO~(28-1)(R™) provided

Tliin@ ||f||BMO;(2B71)(R")

(ili) A function g on R{™™ belongs to the space X?(R") provided

1
gl sy = sup 27 ||g(t, )|l oo (re
XB(Rn) re(0.T) (R™)

/2

+ sup / / ty|t 7 dydt < 00.
z€R™,r26€(0,T) ly— w\<r

Using the fact when a = 1 — 3, Q% 1 (R") = BMO~ ¢(R") for ¢ = 28— 1 and
the boundedness of bilinear operator

B(u,v)z/ot ~(t=9)(=2) py . (u®@v)(s)ds

on the spaces Xg (R™) for T € (0, 0], see Li and Zhai’s [14, Theorem 4.13], we can
get the following result.

THEOREM 1.8. Letn >2,1/2< 3 < 1. Then
(i) The fractional Navier-Stokes system (1.1) has a unique small global mild solution
in (X2 (R™))" for all initial data a with V -a =0 and || being
small.

aj|‘(BMO;(2571)(RTL))n



30 ZHICHUN ZHAI

(ii) For any T € (0,00), there is an € > 0 such that the fractional Navier-Stokes
system (1.1) has a unique small mild solution in (Xg(R"))" on (0,T) x R™ when

the initial data a satisfies V-a =0 and ||a||(BMof(2B71)(Rn))n <e. In particular for
T

all a € (VBMO~@B=1)(R™))" with V - a = 0 there exists a unique small local mild
solution in (X5 (R™)" on (0,T) x R™.
Proposition 1.8 is an generalization of Koch and Tataru [13, Theorem 2-3] since
BMO~@3-D(R") = (—A)~ =" BMO(R™).
Similar to Proposition 1.8, we can consider the well-posedness for dissipative quasi-
geostrophic equations in BMO~(8-1)(R?).
As an application, we prove the existence of solutions to the fractional magne-

tohydrodynamics equations
ou+ (=AN)Pu4u-Vu+Vp—b-Vb=0, in R}f";

O+ (=2)Pb+b-Vb—b-Vu=0, in Ry
(1.7) s

V.ou=V-b=0, in Ry™;

ult=0 = uo, blt=0 = bo, in R™.

We refer the readers to Wu [19] and [22], Cao and Wu [4], Zhou [26] and the
references therein for more information about this system.

PROPISITION 1.9. Let n > 2, § € (1/2,1), max{26 — 1,2 — 23} < w < 20,
L4+n/p+w < 48, (uo,by) € Gn P VR, V-ug = 0 and V - by = 0. If
HUOHG;W*”(R”) + ||b0||G;(2ﬁ71)(Rn) is small enough, then there is a unique mild
solution (u,b) to (1.7) satisfying

L .

[l - @o-0 (gny + 17 ()| Lo @n) + 127 [[u(B)]] gu-26-1 gy S lall @80 gnys
L w

”b(t)Hg:L(?B*l)(Rn) + 127 Hb(t)HL”"(R”) + 128 ”b(t)”B;“OTo(fﬁfl)(Rn) N ||a||G;(25*1)(Rn)-

Using the boundedness of operator B(u,v) on spaces Xg (R™) for T € (0, o0
and the contraction mapping principle, we get the well-posedness for system (1.7)

with initial data in (BMO;(w_l)(R”) even in more general classes Qg;l(R") for
T € (0,00]. Here, we only state the result about (BMO;(2Q71)(R").

PROPISITION 1.10. Letn >2,1/2 < 3 < 1. Then
(i) The system (1.7) has a unique small global mild solution (u,b) in (X2 (R™))" x
(X8 (R™)™ for all initial data (ug,bo) with

leoll(garoz@a-5 @nyyn @nd [Boll 5rroz @ gy
small enough and
V.up=V-by = 0.
(ii) For any T € (0,00), there is an € > 0 such that the system (1.7) has a unique
small mild solution (u,b) in (Xg(R"))” X (Xg(R"))" when the initial data (uo,bo)
satisfies
V'UO = Vbo = 0, ||u0||(BMO;(2571)(R"))" <e and ||b0||(BMO;(2571)(R”))" <e.

In particular for all ug € (VBMO~@-1D(R"))" and by € (V BMO~(26-1)(R"))"
with
V'UOZV'Z)OZO,
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there exists a unique small local mild solution (u,b) in (Xg(R”))" X (Xg(R”))"

The rest of this paper is organized as follows. In Section 2, we give the definition
and some basic properties of Besov spaces. In Section 3, we prove our main results.
First we prove Proposition 1.2 — a prior estimates for fractional Navier-Stokes equa-
tions. Then, we verify Theorem 1.3 by applying Proposition 1.2 and demonstrate
Proposition 1.4 by using the contraction mapping principle and Proposition 1.2.
Meanwhile, Theorems 1.5 and 1.6 are shown by applying Littlewood-Paley theory.
Finally, we show Proposition 1.9 by the contraction mapping principle.

2. Preliminary lemmas

In this section, we provide the definition and several properties of the homoge-
neous Besov spaces.

We recall the definition of homogeneous Besov spaces. For details, see Berg and
Lofstrom [1] and Triebel [18]. We start with the fourier transform. The Fourier

transform fof f € S is defined as

-~

f(&) = (2m)™/? . f(x)e *4da.

Here S(R™) denotes the Schwartz class of rapidly decreasing smooth functions and
S'(R™) is the space of tempered distributions. The fractional power of the Laplacian
can be defined by the Fourier transform. For 6 € R,

(—2)02f(€) = [€]° F(£)-
We will use f¥ to denote the inverse Fourier transform of f. Then we introduce the
Littlewood-Paley decomposition by means of {¢;} Take a function ¢ € C§°
with

o0
j=—o0

supp(¢) = {{ € R" : 1/2 < [¢] < 2}
such that E;’;_Oo #(279¢) = 1 for all £ # 0. Then we define functions ¢;(j =
0,+1,+2,---) as
9; (&) = o(2779).
Let Ajf = @j* f, for j =0,£1,£2,£3,--- . Then, for s e Rand 1 < p,q < o0, we
define

o 1/q
”f”B’;Yq(R") = Z 21285 fll Loy ) ; 1<g<oo
J=—00
15y ey = s YA flle@e), a=o0,
’ —oo<y<0o0
where LP(R™) means the usual Lebesgue space on R™ with the norm || - || z»(gn).

The homogeneous Bosev space B;q(R") is defined by
By ,R") = {f €8 : |Ifllp; (zn) <o}
We will use the following properties about homogeneous Besov space.

LEMMA 2.1. The following properties hold: . .
(i) f1<q1 <g2<00, 1 <p<ocoandsé€R, then B, , (R") — By (R").

P,q2
(ii)ff1§p1§p2§0071§Q§007—00<S1§52<00fmd82—p%251—p£17
then

Bp2 g (R") = By o(R).
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(iii) If B,s € R, 1 < p,q < oo, then the operator (—A\)P/? is an isomorphism from
Bs (R™) to By A (R™).
LEMMA 2.2. Let 0 < 0 < 1,1 < p,g <00, —0 < 81 < §2 < 0 and s =
(1 —0)s1 + 0sa. Then
(Bpioo (R™), B2 (R™))o,q = By o (R")
for s = s1(1—8) + s20, where (-, -)o,q4 means the real interpolation functor, see Berg
and Lofstrom [1].

We will use the LP — LY—type estimates for e~t=2)" in homogeneous Besov

spaces. For § = 1, the LP — LP-estimates for e!® in Besov spaces were studied by
Kozono, Ogawa and Taniuchi in [11]. Zhai in [25] proved the general case of 6 > 0.

LEMMA 2.3. Let 0 >0 and ¢ > 0. Ifs1 < s2, 1 <p1 <pa <0 and 1 < g < oo,
then

_s2=si w1 1
(21) ”eft(*A)@f.HB;g’q(Rn) <t 20 (m Pz) ||f||B;i,q(]R”)'
The following equivalent characterization of homogeneous Besov spaces will be
useful.
LEMMA 2.4. ([18]) Let 0 < s <1 and 1 < p < o0, then in B;)OO(R”), we have
b 1/ +y) —ul)llr@m
y#0 |y|S

We need a variant of Mikhlin theorem on Fourier multipliers.

11l 35 ey =

LEMMA 2.5. ([18]) Let —o0 < s < oo and ¢(x) be a complez-valued infinitely
differentiable function on R™\{0} so that

sup sup |z||V7/¢(x)| < oo
j<k z€Rn

for a sufficiently large positive integer k. Then
160) " N1 5 @y S lull s, ey

foru € B;q(R”) with 1 < p,q < o0.

We need a useful lemma, see Grafakos [10], Frazier, Jawerth and Weiss [8].

LEMMA 2.6. Let f € S'(R™). Then the following statements are equivalent:
(i) f € BMO(R™);
(ii) for all ¢ € S'(R™) satisfying:

RPN dtd,
oo =0, swp [P < oo
0

Rn £ERM

and |p(x)] < Wl‘)n“ for some ¢, then the measure du(t, ) = |¢y * b(x)[> Lz is q

Carleson measure on Rif".
LEMMA 2.7. Let 20— 1<w<23,2<n<p<oo,1<q< o0, then one has

2821 w—(26-1)
7 (@) oy + 8 O] jozsry

S il L10) JUST e
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PRrROOF. It follows from Lemmas 2.1-2.2 and [18, Proposition 2.5.7] that

Sw—203 ny __ S5—(28—1 n Sw—(28—1 n
By 2@ = (B, V@), By I®Y),

and

B o (R") 5 LX(R") 5 B, (R") = (B VR, Ba 27 V(R"))

which contains

SR we (261
(Brse TR, By (") 1

Hence, one has

1 1
w(t, t28 )| ooy + [|[W(t, 28 || w2y n
ot 3 ey + ) o

1 L
S ||u(t,t2ﬂ')||B,(2g,1)+%(w) + Ju(t, 227 )] w-es-nrn

p,00 BP,OO (Rn)

By changing variables, we get

28—-1 w—(28—1)
7 @l ey + 8 u®)] yosey

< ||u(t)||B;(iﬁle% ®") +1% ||U(t)||B:;(2ﬁ—1)+% ®")

LEMMA 2.8. For 8 € (1/2,1), u,v € (L®(R")" N (Grn "D (@®R™)", one has
—t(—A)B 1-25
Ile t(=2)"py. (u® U)HG;(w*l)(Rn) <tep ||’U,||Loo(]Rn)||U||G;(2ﬁ—1)(Rn).
PROOF. It is easy to see that for 8 € (1/2,1),
102,00, 87 00, K7 (@) |11 mny S €72 (i1, = 1,2, ).
Since the operation with respect to the convolution is commutative, by letting

Ki gt = (51] - 8ﬂﬂiaﬂﬂjA_l)akatﬁ(I)a
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one has, for s > 0,

TS~ AVE | ()P
le=* A e A PY - (w0 @ v)| || oo )

KD 5 | K ke % (urvg)]]| oo ()

M=
M=

s
Il
-

<
Il
-
£
Il
-

KD | K gl * [urvg] || Lo rny

M=
M=

s
Il
-

<
Il
-
£
Il
-

B gkt KL o Jugvg ||| oo oy

NIE
NIE

s
Il
-

<
Il
-
£
Il
-

1Kokt ll o ) K ¢ Jugvs ]| oo ey

NIE
NIE

1=1 j=1 k=1
< N IVE @ + )30 100,00, A7 00, K || 1 )
i=1 j=1 k=1
—s(—A)B
e (=4) |ukvj|HL°°(R")
_ _s(—A)B
St luflpe e lle (=2) [v]|| o (7

So,

20-1 TN
S‘i%’s 7 |le ( A)|e t(=4) PV - (u®0)||| oo @n)

S fJufl poerny sup s 7 [le A o] oo ny.
s>0

3. Proof of main results

3.1. Proof of Proposition 1.2 It follows from Lemma 2.5 that

(3.1) 1Pvll 5 (ny + IV (=)~ 2| By @) S vllzs @)

On the other hand, it is easy to see that for £ > 0,
[VF e A 0| Logany S ¢35 [0l o)

Then (iii) of Lemma 2.1 tells us
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This implies

A

A

[u(t) =

sup T
7>0 By,
23— [w (2B 1)+" —48+[w—(26-1)+2]
sup 7 / / t+1—5)" 2 s
>0 t/2
X sup $29 w n
sup B oo
26-[w—(2p-v)+2] ot —4B+[w—(26-1)+ 2]
< supT 20 tiﬁ/ (t+7—29) 25 ds
>0 0
X sup s 29 S| . w—2p+2
S 1/ ( )”BZNM“’(M
26— [w—(26-1)+2] —4pt{w—(26-0+2] b
+supr @ (t+7) 25 / s”20ds
7>0 0
w
X sup $28 || f(S)| . w2812
S 1/ ( )||prw2ﬁ+p(Rn)
26— [w—(25—-1)+2] t —4f+w— (26— 1)+ 2]
< supT#pt_%/ (t+7—29) 28 “ds
>0 0

fu(t) = e al o nig

26-[w—(26-1)+2]

< osupT 26
7>0
t
AﬁH/ e_(t_sJ”)(_A)BA_lPV-f(s)ds
0
26-[w—(26-1)+ 2] rt 28
< supTT/ (t+7—35) 20
7>0 0
pem T ATIPY L ()
Lr(R)
26-[w—(26-1)+ 2]  rt —4B+[w—(26-1+ 2]
hS SupTﬁ/(t—FT—S)#
7>0 0
APV .- w n o d
|| FOM e, s
26-[w—(26-D+2] pt — 4B+ [w—(26-1)+ L]
hS SupTﬁ/(t—FT—S)#
7>0 0

A2y,
IP2) 2T f(&)] oo .

e t=2)" a|| Lw— (26— 1)+ 2

Bp, P (R™)

w
X sup s 28 S| . wooprn
S I1£( )IIB%;M(RR)

Lr(R™)

26-[w—(26-1+2] t — 4B+ [w—(26-1)+ L]
Bl AR R S VDT

35
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+sup(t + 7) 25 23 s 27ds

2,6‘7[11;7(2,6‘71)4»%]+74B+[w7(2ﬁ—1)+%] /t "
>0 0

w
X sup s28 w n
S £ (s )IIBP s T

26-[w-(26-D+2] ot —4B+[w—(26-1D+ 2]
sup 7 26 (A / (t+71—5) 25 ds
0

>0

A

X sup s 27 S| w_oprn
S I1f( )IIBP’;M(RR)

+su t+7'_1t17%>< sup s7 S| w_opsn
T>]3( ) S, [ £( )IIBP,O;M(R”)

< 735 25
< JSup s 1f(s )IIB:;B%(R”)

since 1 4+ n/p +w < 45. Thus, by (iii) of Lemma 2.1 and Lemma 2.3, one has, for
2-2B8<w<26<2,

t t( N)P B n
[Ju(t) - aIIBP @+
t
< e~ (t=9)(=2)"y . ‘772 d
~ f(s) prffﬁ 1)+p(Rn) S
t
< t— sz o ds
S [ =0T U g

t
< /<t—s>-22—ﬂs-“<1 B sup sBODFE)] aniy
0 0<s,t B (Rn)

< su 5%+ B w n
S et QL B @y’

A combination of the previous estimates implies

t35 u®)l] w2

By o P (R")
5t%||e*t<fA>ﬂa||B:;f2ﬁfl>+%(Rn) +Os<1£t5%||f( )HB;”Of”*?(R .
and
||U(t)||B;;2ﬁ D43 g
ST e g+ 0 BRSO e

Thus we can get our estimates by applying Lemma 2.3 and inequality (3.1).
3.2. Proof of Theorem 1.3 Define

X ={u:[0,00) — G DRV u =0, ullx < o0}
with
fullx = sup ()l g8 gy + 1 0Ol -2 gy ) -
Set .
T(u)(t):e_t(_A)Ba—/ ~=(2)" Py . (u(s) @ v(s))ds.

0
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We want to show that T is a contraction mapping from a ball of X to itself. The

case of p = oo in Lemma 2.7 implies that

w=20 261
£ T o ()] - gy £ o(0) |2

< 0@l e gy + 35 10O -5 gy

Then, Proposition 1.2 and Lemma 2.4 imply
5 I(Tu) (0] oo gy

w
”a”B;{if’”(R") + OS<111;<>t 520 ||lu(s) ® u(s)HBifff(R")

On the other hand, Lemma 2.8 tells us

A

A

<

A

A

A

A

<

28-1
||a||3;{20f“f*1)(]1{71) + Sggt‘s 20 ||u(8)®U(S)||B;€£*1)(Rn)

wi2B-1
+ sup s 2
0<s<t

= Jlu(s) @ u(s) | oo gy

||a||B (2p- 1>(Rn)+ Sup s ||u( )®v(s)||G;(zg71)(Rn)

s<t

wi2B-1
—|—sups 2
0<

26-1
ol o my + 59 857 (o)l e [05) 5

wi2B—1
—|—sups 2
0<

||a||G;<zﬁfn(Rn) + lulk-

|| (TU’) (t) ||Gg*(2l"*1)(Rn)

28-1
sup s 27 |le
s>0

# [ e pv - i o)

lall o) gy + / (t = )5 u(s) | o8- g 10(5) | e

lall o0 g+l

Hence, one has

H(—2)7 —s(—n)rete

= luls) © u(s) | -0y

= [lu(s) e 10(3) | @ oy

|a|||L°°(]R")

G;@ﬁ*l) (R™)

ITu®)x < llallg- a0 gn, + lulk and [Tu—Tv|x < (lulx + lvllx)lu—vllx.

Therefore, the contraction mapping principle implies that there exists a unique
solution to equations (1.1) if ||a||G7(2g71)(Rn) is small enough.
3.3. Proof of Proposition 1.4 Define

with

1l = sup (nu( R
t>0

poo

(R

(28-1)+3

= {rer=(0.00:8,%

™)

(R"):V-f =0, flx < oof

<Rn>> '

+ {25 ||U(t)||Bw—(2ﬁ—1)+%

p,00
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Let

t

Tu(t) = e =8 g — / e~ (t=9(=2) py. (u(s) ® u(s))ds.
0

We want to prove that T is a contraction mapping from a ball of K to itself. It

follows from Lemmas 2.4 and 2.7 that

ITu]—eonen A+ Tu]] oo

B, &V @ Bpoe P ED)
S ||@||B;<;ﬁ*1)+%(w)
t
s /0 Hef(tfs)(fA)pr (u(s) ® u(s))‘ BT E gy ds
< ||G||B;i2oﬁfl)+%(Rn) + Oitigts% [ (u(s) ® u(s))”B:;zw%(Rn)
S Mall yeoneg )+ sup sF ()l @ () jo-zors
< HQHB;(;BAH%(R") + Jlull%

since 0 <w — 20+ 2 <1, n < p < occ. Similarly, one has

[Tu—=Tollx < (lullk + olx)lu—vllx, for u,ve K.

These estimates imply that 7" is a contraction mapping since ||af . -@s-1)+=2 (R")
p,00

is small enough. Therefore, we can finish the proof by the contraction mapping

principle.

3.4. Proof of Theorem 1.5 We can write
e—t(—A)ﬁf — e—(t—U)(—A)ﬁe—U(—A)Bf

and
8 2 [1/? 8 8
=2 f(g) = ;/ e~ (t=0)(=8)" g=u(=0)° f g
0

According to the definition of e_t(_A)B, it is a convolution operator with a positive

Kernel
Kl (@) = (2m) 2 [ mte ge with KP(a) = —— KP(=L )
' t gnr2p 1 \a7E)"

n

Then, using Holder’s inequality, one has

9 [t/2
e A (o) = |2 / K (2 = w0)e ™) f(2)dads
0 Rn

t
9 [t/2 o 1/2
$3 (L e a2 fan)as )
0 R™
1/2
(/ |Ktﬁ_u(:b—:1c0)|dac> ds
9 t/2 o 1/2
= ;/o ( K@ = ao)le™ A>‘*f<xo>|2d"’”) *

1/2

2 t/2 3 <1 N
/ K}y (x = zo)u’ |e "2 f (o) Pdads
0 R™

¢—1
tF
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It follows from Miao, Yuan and Zhang’s [17, Lemma 2.1] that

1 1
B — ) <
Ki_u(z —20) S (t — u)n/2h . NG
( m)
Thus
h= / K{ (@ = wo)u’T [e 2 f(z)[2dx
1 EE
u —u
S Lyt P
(1 + m)
1 -1
u B
s | == £(2) da.
~ x—xzq n (t—u n/283 T n+23
mﬁ‘—ek“”[o,l] ( ) (1+ (t‘_u)l(/ﬂzﬁ)

Since0<u<%and§<t—u<t,

< WF|eu dz.
At

This gives
_12B(_ A\
o= fll gy
1/2
S ( LA e <>|dxds>
|z— zo|<t
5 (26 1/2
5<g" / Tlem Ay <>|dwds> ,
t B 0 |x— 10|<t
that is,

Tt

1/2
428 _ ; .
€l D f ey S (t A R S C da:ds> .
r—xo

It follows from Miao, Yuan and Zhang’s [17, Prorposition 2.1] that, for s < 0,
[ € B3, »(R") if and only if
s N

supr /28|l (=) fllLeemny < 00.

r>0
Thus, the previous estimate implies that BMO~¢(R") — Bo_ofoo (R™).

3.5. Proof of Theorem 1.6 We need the following lemma which can be

proved easily.

LEMMA 3.1. For ¢ >0, (—A)C/%_(_A)B 15 a convolution operator with kernel
K%P(z) € LY(R™).

We divide the proof into two parts. First, we prove that f € BMO~¢(R") under
the assumption of the existence of a distribution g € BMO(R") with f = (—=A)%/2g.
From this assumption, one has, for all s > 0,

N N L
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with
_n xT
K @ = 7K ().

Here K € L'(R") and

K (€)= Ke(s2) = s [¢[ e,
Thus
1
K ds =0 and | K <
o C(«I) S an | C($)| ~ (1+ |$|)W+C

For more about the kernel of e‘t(_A)B, see Miao, Yuan and Zhang [17]. Then we
have

0 =~ dt =~ dt
sw [ K] = sw [ K9P
€er™ Jo l¢l=1Jo

i dt
= sup/ (t<67t2ﬁ)2—
€1=1Jo t

o0
= / $20- 1627 gy
0

— (277 —1)BIT(¢/B) < oo,

« g[? e

since % > 0. So du(z,s) = |KC is a Carleson measure and

1
;525
dsdx n

K * 222 < gl 25
//o<s<t,|w—mo<tﬁ|( ¢,s27 9)(@)] S N”gHBMo(R)

Thus || fll pmo-<®r) S 9]l Braro@n)-
Second, we prove that there exists g € BMO(R™) with

f=(-A)2g when fe BMO ¢(R").

Proposition 1.5 implies

9=>_0; =90+ 9

§<0 §>0
with g; = A\ ;g such that f = (—A)%/2g and g € Bgo)oo(R"). In fact,

9 =5 — (&) +>_ 59,

J<0 >0
and
€19©) = D_I€l°gi(©) — Il q(©) + D 1615 (¢)
j<0 Jj>0
NG EDNGIGENIGE
JEZ JEL

according to the homogeneous Littlewood-Paley decomposition of f. On the other

hand, to see g € Bgom(R"), we have,

gj = Djg=D0;(-D)2f
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and
G = I e of©
= 270272 ‘Jf)f(é)
= 277h;(€)|277¢ 7 p(277E) f(€).
Here h; € C3°(R"™) satisfying h; = 1 on C; and supp(h;) C 2C;. Let
g5 =270, (hy|277¢€]7)Y,
;Vo?(eéi (hj|279¢|7¢)Y € L*°(R™). It follows from h;|279¢|~¢ € 1°°(Z) that || Ajg|| o rn) €
We need to prove that g € BMO(R"™). In fact, let n by 7’7\(5%5) = |Sﬁ€|<€_8|£|2ﬁ.
So
— L A e _glelfa
0,5 *9(6) =M(s27)g(€) = |s27¢| e g(€)

and

="l A(£)(E) = lEITC Fl).

JEZ
This tells us
¢

0 7 9(&) = s e T F(e) and s g(a) = s A f ().

Since f € BMO~¢(R") and 7 satisfies the assumptions of Lemma 2.6,

t
dsd
Blao P [y P
0 J|z—m0|<t2B 28

— tw/ / |52<56 s(=A)P ( )|2deCC
0<s<t J|x— zo|<t2

28
< sup sup t*"/ / e Ay f(z)|]?dsdx
t>0 zgER™ 0 |z— zo|<t

<
The previous estimate and Lemma 2.6 imply that g € BMO(R™). This finishes the
proof of Proposition 1.6.
3.6. Proof of Proposition 1.9 The solution (u,b) to equations (1.7) can be
written as

11 Brr0-c n)-

u(t,z) = e "2 ug(x) — Blu,u) + Bu,u) = Fi(u,b),
b(t,z) = e~ by (z) — B(u,b) + B(b,u) := Fy(u,b),
with ,
B(u,v) = / e~ (=) (=2)" py . (u®@v)(s)ds.
Define ’
Y = {(u,b) £ (0,00) — G DR .y =V b =0, ||(u, )|y < oo}
with
1Bl = sup (10, B) (1) 00 gy + 257 N0 DO -0y ) < 0

[[(w, D) ly = llully + [1b]ly-
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We want to show that F; and F, are contraction mappings from a ball of Y to
itself. We rewrite the solution (u,b) as

< b > B ( %EZ% > = F(u,b).
Then one has

35 || Fy (u, D) (D)l g 26-1) (my

< ||U0||B;{2Oé3—l)(Rn)+Osup S%H(u®u,b®b)(s)||3§;2oﬁ(Rn)
<s<t
281
S ||“0||B;{i§*“(uan)+os<‘§<’ts [ (u @ u, b @ b)(s)l| p@a-1) @y
wi26—1
g " 00 b9 DOz -
281
S ||“0||B;{i§*“(uan)+os<‘§<’t3 2 [(u @ u, b @ b)(8)|l @1 gy
wi26-1
+ 5 s ()8 g en-n gy 1 ) (S) [ e
281
S Mwollgen-n gy + sup s 2 [(w, b)(8) 2ol (w, )(5)ll o 2 oy
wi26-1
+ 5 s ()8 g en-n gy 1 ) (S) e
28-—1
< ol a-@s-1) jpny + sup {8727 ||(u,b)(8)||L~
leoll 200 gy + 4P 1, ) ()l

(ORI E——
S HUOHG;(M*U(Rn) + ||(u=b)||§’
Similarly,

13 (u, D) ()| = 261 oy

S sups e A e A ugl(s) ey
+ /Ot ||e_(t_s)(_A)BPV (u® u)(s)||G;<2571>(Rn)ds
. /Ot le==9C2 Py (b b) ()|l =251 (g ds
S luollg-co-n gay + /Ot(t ~ )5 |(u, Ol = @80 gy 1 (1 B) (8) | oo (e s

S ol gm0 oy + (B3
Thus, we get
171 (u, B)lly < Mol - 2-1) gy + 1, D)5

and

11 (u, 0)(8) = Fr(u',6)lly < [l(uw = ', =)Ly (| (w, D)y + (| (', ) [[y)-
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Similarly, we can prove that

and

[1E2(u, D)y < lJuoll - @o-1) gy + [l [10]ly

12w, 0)(8) = Fa(u, )y S MI(uw = u'sb =)y (| (w, D)y + (I (', &) [[y)-

These estimates imply that

17 (u,0) = F(u',0) [y Sl (u = w0 = &)y (Il (w, D)y + (1w, 6) |y )-

Therefore, the contraction mapping principle finishes the proof.
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