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ABSTRACT. We study the asymptotic behavior of solutions to stochastic evo-
lution equations with monotone drift and multiplicative Poisson noise in the
variational setting, thus covering a large class of (fully) nonlinear partial dif-
ferential equations perturbed by jump noise. In particular, we provide suf-
ficient conditions for the existence, ergodicity, and uniqueness of invariant
measures. Furthermore, under mild additional assumptions, we prove that the
Kolmogorov equation associated to the stochastic equation with additive noise
is solvable in L spaces with respect to an invariant measure.

CONTENTS
1. Introduction
2. Invariant measures and ergodicity
3. Essential m-dissipativity of the Kolmogorov operator
4. Applications
References

[\

12
18
21

1991 Mathematics Subject Classification. Primary: 60H15, 37A25. Secondary: 60G57,

47HO5.

Key words and phrases. Stochastic PDEs, invariant measures, monotone operators, Kol-

mogorov equations, Poisson measures.

The authors are sincerely grateful to two anonymous referees for their very careful reading
of the first version of this paper. The work for this paper was carried out while the first author
was visiting the Department of Statistics of Purdue University supported by a MOIF fellowship.
The second author was supported by Project NeSt funded by Provincia Autonoma di Trento and

by SFB 701, University of Bielefeld.

(©2010 International Press



2 CARLO MARINELLI AND GTACOMO ZIGLIO

1. Introduction

This paper is devoted to the study of asymptotic properties of the solution to
an infinite dimensional stochastic differential equation of the type

du(t) + Au(t)dt = /ZG(u(t—), z) p(dt, dz)

(1)
u(0) ==z

where A is a nonlinear monotone operator defined on an evolution triple V' C
H C V' (see e.g. the classical works [17, 21]), and f is a compensated Poisson
measure. Precise assumptions on the data of the problem will be given below.
In particular, A may be chosen as the p-Laplace operator, as well as the porous
media diffusion operator —AS(-), thus covering a wide class of nonlinear partial
differential equations with discontinuous random perturbations.

While existence and uniqueness of solutions for (1) has been established in
[12] (in fact allowing i to be a general compensated random measure), we are not
aware of any result on the asymptotic behavior of the solutions to such equations.
Furthermore, as we show in this paper, invariant measures provide a suitable class
of reference measures with respect to which one can study infinite dimensional
Kolmogorov equations of non-local type, thus extending results that, to the best of
our knowledge, were available only for second-order (local) Kolmogorov equations
(see e.g. [8]).

Let us briefly describe our main results in more detail: we first prove the exis-
tence of an invariant measure for the Markovian semigroup associated to (1), under
the (standing) assumption that V' is compactly embedded in H. Moreover, suit-
able a priori estimates on any invariant measure imply the existence of an ergodic
invariant measure, and an extra superlinearity assumption on A yields exponential
mixing, hence uniqueness. Finally, we prove that the (non-local) Kolmogorov op-
erator L associated to (1), with G independent of u, is essentially m-dissipative in
Li(H,v), with v an infinitesimally invariant measure for L. The last result in par-
ticular is equivalent to the solvability in L1 (H, v) of the (elliptic) integro-differential
Kolmogorov equation associated to (1).

We should mention that the case where the right-hand side in (1) is replaced by
an additive Gaussian noise has been considered in [6], where sufficient conditions
for the existence and the uniqueness of invariant measures are given. Moreover, the
authors study associated the Kolmogorov equation in Lo(H, ), assuming that A
is differentiable and its differential satisfies a certain polynomial growth condition.
Our L; approach does not require any such hypothesis. On the other hand, we
need to employ a more sophisticated infinite-dimensional stochastic calculus, which
in turns gives rise to a non-local part in the Kolmogorov operator. It is interesting
that exactly because of the analytical difficulties created by non-locality we had to
adopt the L;(H,v) setting, and we could not (better said, we were not able to)
use the Lo(H, v) setting, which is perhaps more natural (see in this respect Lemma
3.1 and Remark 3.4 below). From a qualitative point of view, our results on ex-
istence, uniqueness, and ergodicity of invariant measures are perfectly comparable
to those of the “classical” case with Wiener noise. Finally, one should mention
that combining the results in [6] with ours and appealing to the Lévy-Itd decom-
position theorem, one could rather easily obtain corresponding results for evolution
equations driven by general (locally) square-integrable Lévy noise.
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In this regard, let us also recall that results on existence and uniqueness of
invariant measures for semilinear evolution equations driven by Lévy noise can
be found in the recent monograph [23], as well as in [18]. However, the authors
work in the mild setting, hence equations with fully nonlinear drift (i.e. without
a leading linear operator generating a strongly continuous semigroup) cannot be
covered. Moreover, ergodicity and polynomial mixing for the complex Ginzburg-
Landau equation (which is also semilinear) driven by a finite intensity Lévy noise
have been established in [20].

The rest of the paper is organized as follows: results on existence, unique-
ness, and ergodicity of invariant measures v are contained in Section 2. In Section
3, assuming that G does not depend on u and that A satisfies a (mild) “reg-
ularizability” hypothesis, we prove that the Kolmogorov operator associated to
the stochastic equation (1) is dissipative, hence closable, and its closure is m-
dissipative in Li(H,v). Equivalently, this amounts to saying that the (elliptic)
infinite-dimensional non-local Kolmogorov equation associated to (1) is uniquely
solvable in Lqi(H,v). In Section 4 we show that our abstract results apply to
several situations of interest. In particular, we concentrate on equations with non-
linear drift in divergence form (thus including the p-Laplace operator) and on the
generalized porous media equations with pure-jump noise.

1.1. Notation. Given a Banach (or Hilbert) space E, its norm will be denoted
by | - |z. We shall denote the space of all Borel measureable bounded functions
from F to R by By(E). Given another Banach space F, the space of k-times
continuously differentiable functions from E to F will be denoted by C*(E — F),
with C°(E — F) simply denoting the set continuous functions. We shall add a
subscript - if the functions themselves and all their derivatives (up to order k) are
bounded. If ¢ : E — F is Lipschitz continuous, we shall write ¢ € C*'(E — F),

and we define
|9(x) — d(y)|F
Oleoam_m = Ssup ———————.
| |co WE—F) e e Boadty |a7 _ y|E

If F = R, we shall simply write C*(E) etc. Sometimes we shall just write C* etc. if
it is obvious what F and F are. By M (F) we shall indicate the space of probability
measures on F, endowed with the o(M;(E), Cy(E)) topology induced by duality
with bounded continuous functions, and usually known as the topology of weak
convergence. Weak convergence (of functions and measures) will be denoted by —,
without explicit reference to the underlying topology if no confusion may arise.

If X < NY for some positive constant N, we shall equivalently write X <Y. If
N depends on a set of parameters p1,. .., p,, we shall also write N = N(p1,...,pn)
and X $p Y

15--Pn .

2. Invariant measures and ergodicity

Let (Q,F, (Fi)t>0,P) be a filtered probability space satisfying the “usual hy-
potheses” (see e.g. [19, Definition 1.1]), and E denote expectation with respect to
P. All stochastic elements will be defined on this stochastic basis, unless otherwise
specified. Let (Z, Z,m) be a measure space with a o-finite measure m and p a Pois-
son random measure on R} x Z with compensator Leb®m, and set i := p—Leb®m
(Leb stands for Lebesgue measure on R). For a comprehensive account of stochas-
tic integration with respect to compensated Poisson random measure see e.g. [19,
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§31], or [15]. Let H be a real separable Hilbert space, and G : H x Z — H a
measurable function such that

|G (x, )3, = /Z |G, 2)|3 m(dz) < o0 Vo € H.

Let V and V' be a reflexive Banach space and its dual, respectively, such that V' «—
H — V' with dense and continous embeddings. Thanks to Asplund’s renorming
theorem [3], we shall assume without loss of generality that both V' and V' are
strictly convex. Furthermore, we shall assume that V' — H is compact. Both the
duality pairing between V and V' and the inner product in H will be denoted by
<.7 >

The operator A : V. — V' is assumed to be demicontinuous (i.e. strongly-
weakly closed) and to satisfy the monotonicity condition

(2) 2(Ax — Ay, x —y) —|G(2,") =Gy, )5, 20 Va,yeV,
as well as the following coercivity and growth conditions:

3) 2(Az, z) — |Gz, )[7,
(4) |Az|y: < Cilzt 4 Oy Ve eV,

for some constants ag > 0, a3 > 0, Cp,C; > 0, C3 € R and p > 2. Instead of (3)
one could assume that there exists a constant a; > 0 such that

2(Az, ) — |G(z,")|?, > aql|z|? Ve e V.
Note that, by (3) and (4), one has
(5) |G(z,)|2, < 2C1 |z}, + aolz|F; +2Cs|z|vy +Co Yz €V.
All assumptions stated so far will be in force throughout the paper and will be used
without further mention.
Let us recall the following well-posedness result for (1) due to Gyongy [12,
Thm. 2.10]. Here and in the following we shall denote the space of H-valued

random variables with finite p-th moment by L,(H), and the space of adapted
processes X : [0,T] — H such that Esup,., | X (¢)[}; < oo by H,(T).

+ aolz|3; > arlz]} — Co Ve eV,

| 2
m

PROPOSITION 2.1. Let x € Lo(H) and T > 0. Then equation (1) admits a
unique strong solution u such that u(t) € V P-a.s. for a.a. t € [0,T], t — u(t) is
cadlag in H, and satisfies

T
Esup |u(t)|% + IE/ [u(t)]}, dt < co.
t<T 0

Moreover, u is a Markov process, and the solution map x — wu is Lipschitz contin-
uous from Lo to Ha(T).

The solution to (1) generates a Markovian semigroup P; on By(H) by the usual
prescription P;¢(x) = E¢(u(t, x)), ¢ € By(H), where u(-, ) denotes the solution to
(1). The continuity of the solution map ensures that P, is Feller, i.e. ¢ € CY(H)
implies P;¢ € CP(H) for all t > 0 (see e.g. [8, §1.2.5]).

In the following subsection we establish the existence and uniqueness of an
ergodic invariant measure for P; under an assumption stronger than (2). The proof
is adapted from a classical method used for stochastic evolution equations with
Wiener noise in the mild setting (see e.g. [8, §3.4]). This simple result is included
only for completeness, while the main results of this section are contained in §2.2.
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2.1. Strictly dissipative case. Throughout this subsection we assume that
there exists a € (0, 00) such that
(6) 2<A£L'—Ay,.’l,'—y> _|G($7)_G(y7)|72n 2O‘|$_y|%1 anyev

We shall need a few preparatory results. The following inequality can be obtained
by a simple computation based on (5), (6) and Young’s inequality (see e.g. [24,
§4.3] for a related case).

LEMMA 2.2. Let nn € (0,a). There exist 0, € (0,00) such that
(7) 2(Az,2) — |Gz, )5 > nlalfy — 8, VzeV.
Let us define the random measure p; on R X Z as

_ ot A), t20, A€Z,
pa(t, A) -—{#0(_@14), t<0, Ae€Z,

with po an independent copy of u, on the naturally associated filtration (ﬁt)teR.
Let us also define the compensated measure measure ji := p; — Leb ® m.
For s € R, consider the equation

du(t) + Au(t)dt = / G(u(t—), z)p(dt, dz), t>s,
z

u(s) = .

(8)

It is clear that (8) admits a unique solution wu(t, s, ) which generates a semigroup
P, on By(H), exactly as above.

LEMMA 2.3. Let s € (—00,0] and x € Lo(H). There exists v € Lo(H), inde-
pendent of x, such that

hm E|u(0,s,z) — v|3 = 0.

Moreover, one has
E[u(0,s,2) — vl S e (1 + Elz[F).

PROOF. For s1, 89 € (—00,0], 51 < s2 and « € Lo(H), we have

0
u(0, s1, ) — u(0, s2,2) = — / [Au(r, s1,2) — Au(r, s2, )]dr

/ / u(r, s1,2),2) — G(u(r, s2, ), 2)|a(dr, dz)
+ u(s2, 81, 2) — .

Appealing to It6’s formula for the square of the norm (see [14]), and recalling (6),
we obtain

E|u(07 51, 'r) - U(O, 52, I)ﬁl

0
< 2IE/ (A(u(r, s1,2) — u(r, s2,x)), u(r, s1,x) — u(r, s2,x)) dr

—i—E/ |G (u(r, s1,x), - )—G(u(r,SQ,x),-)|fndr—|—IE|u(52,sl,;v)—xﬁ{

< 2e** [Elu(s, s1,2)|3r + Elzl%] ,
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as well as, recalling (7),
5 ]
Elu(sz, s1, 2)[F < (22 + Blaly ) e~ < (22 + Elaf ).
n n
Combining these inequalities we obtain
5
(9) E|u(07 81, JI) - u(07 52, .’L')ﬁ{ < 2(_77 + 2E|x|§{)easz'
n
Letting s2 tend to —oo, it follows that there exists v(z) € La(H) such that
lim Elu(0,s,z) —v(x)|% = 0.
By the same arguments one can prove that
lim Elu(0,s,z) —u(0,s,y)|% =0

for all ,y € La(H), hence that v is independent of x € Ly(H). Letting s; tend to
—o0 in (9) one obtains the exponential convergence. (]

We can now prove the main result of this subsection.

THEOREM 2.4. Assume that (6) holds and that x € Lo(H). There exists a
unique invariant measure v for the semigroup Py associated to (1). Moreover, one
has

/Iylff v(dy) < oo,

and

Pests) = [t vidw)| < = Hlolonsy [ v uls vt
forallt >0,y € H and ¢ : H — R bounded and Lipschitz.

PROOF. Let v be the law of the random variable v constructed in Lemma 2.3.
In particular, [ |y|? v(dy) < oo is equivalent to v € Lo(H). Similarly, the previous
lemma immediately yields Pd, — v for all y € H in M;(H) as s — —o0.
Moreover, for any ¢ : H — R Lipschitz continuous and bounded, we have

[Rrsgrv = tim_[(Pre) dPio,) = tim (Peora)w) = [ o

§——00

i.e. v is invariant for P;. Moreover, if v is an invariant measure for P;,

Peot) [ wav| = | [(Protw)-Protw)) vdw)| < e Hlieloas i [ ly=ulirvidu)
for all ¢ > 0. In fact, by the same arguments used to derive (9), we get
Elu(t,y) — u(t, w)|f < ey — wlf

and

| [(Peotw) = Pro@)) (@) < Ielens ) [ Bluttsn) = utt. )l v(dw)
< Ielonsn [ (Elut.y) = u(t,w))* vidu)

< e*%t|¢|0011(H)/|y_w|H v(dw).
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Let us prove uniqueness of v. Let v/ be an invariant measure for P, i.e.

/ Prp(y) V' (dy) = / e(y) V' (dy)
H H

for all ¢ € CP(H). Then, letting ¢ tend to +oo, since

lim Ptgo(y):/ pdv
H

t——+oo

for all y € H, p € CY(H), we obtain, by the dominated convergence theorem,

/H(/Hcpdu) vty = [ pav= [ oar

for all p € CP(H), i.e. v=1/". O

2.2. General case. We can still prove the existence of an ergodic invariant
measure without the assumption that the couple (4, G) is strictly dissipative, using
an argument based on Krylov-Bogoliubov’s theorem (see e.g. [8, Thm. 1.11]).

THEOREM 2.5. There exists an invariant measure v for P;. Moreover, v is
concentrated on 'V, i.e. v(V) =1.

PrOOF. We assume p > 2, since the proof for the case p = 2 is completely
similar. Let z € Lo (H). By Ito’s formula for the square of the norm in H (see [14])
we have

Ju(t, «)| % — Jolfr = 2/0 (u(s—, z), du(s, x)) + [u](t)
= —2/0 (Au(s,x),u(s,x)>ds+2/0 /Z<u(s—,x),G(u(s—,x),z)>ﬂ(ds,dz)
a0+ [ (Gt ) s do)

where [u] stands for the quadratic variation of u (see e.g. [19, §25]). Taking

expectations on both side and recalling that the compensator of i is Leb ® m, we
obtain

t t
Blu(t, )y = ~28 [ (Au(s,) (s, ) ds + Blofy + [ [Glu(s,0), 0, ds
0 0
hence, thanks to (3),
t t
(11)  Elu(t,z)|3 < aOE/ lu(s, z)|3 ds — alE/ lu(s, z) [t ds + E|z|; + tCo.
0 0

Since V — H is continuous, there exists a constant ¢ > 0 such that |v|g < c|v|v
for all v € V, hence

t t
Elu(t,z)|% < aQIE/ lu(s, z)|% ds — a—;E/ lu(s, z)[}; ds + E|z| + tCo.
0 ¢ 0

The elementary inequality £2|y|? < eP|y|P + 1 (with € > 0 and p > 2) yields

~Elu(t,2)[}; < —e*PElu(t, 2)[} +¢77,
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thus also
2—p t —p
Eju(t, ), < - (‘“5 - ao) | Bluts. o) s+ (‘“E " oo> T Bl
cP 0 cP
t
(12) = —7/ Elu(s, z)|3ds + E|z|f; + tC
0
where )
apeT? _oqe’?
o= pr — Qp, C = pr + Cp.
Choosing € so that v > 0 and applying Gronwall’s inequality to (12), it follows that
(13) Elu(t,z)|% < Elz|4e " + K YVt >0
where K is a constant independent of ¢. Moreover, by (11) and (13) we obtain
t t
1
E/ lu(s, )|}, ds < — (aoE/ lu(s, z)|%ds + E|z|3 + tCO)
0 31 0
1 (&%) 2
(14) < — || —=+1)Elz|f +t(lagK + Cp)
Qai Y
for all ¢t > 0.

We shall now use the estimates just obtained to prove the tightness of the
sequence of measures

1 n
Un, ::—/ A dt, n €N,
n Jo

where ); stands for the law of the random variable u(t,0), so that

/ pdv, = l/ Ep(u(t,0))dt
H nJo
for all ¢ € By(H). By (14) we obtain

t
E/ lu(s,0)[1, ds St vt > 0,
0
which in turn implies

1 n
(15) [ Wl vty = [ B0 ds 51 vnen.
H nJo

By Markov’s inequality we thus obtain
1 " » 1
ilelgvnﬂylv >R) < Sub g . Elu(s, 0)lv ds S &5

which converges to zero as R — oo. Since the ball Br := {y € H : |y|ly < R} is
bounded in V', and V — H is compact, it follows that, for any given ¢, there exists
R € Ry such that v,(Bg) > 1 — ¢ uniformly over n, with By a compact subset
of H. In other words, the sequence v, is tight, and Prohorov’s theorem (see e.g.
[1, §15.5]) yields the existence of a subsequence v, such that v,, — v in M;(H).
Furthermore, recalling that P; is Feller on H, v is an invariant measure for P; by
Krylov-Bogoliubov’s theorem.

Let us now show that v is concentrated on V. To this end, let us define the
function ©(y) := supyey |(Ck,y)|, where {{;}ren is a countable dense subset of

BY/ N H in the topology of H, and BYI is the closed unit ball in V’. Hence it
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follows (e.g. by [24, p. 74]) that © : H — [0, o0] is a lower semicontinuous function

such that
ylv, yev,
o) =MV
+oo, ye H\V.

Then (15) implies

/ O(y = lim lim (sup [(Cr, y)[" A M) v(dy)

L—o00 M—oco H k<L

= sup lim (sup [k, y) [P A M) Un,, (dy)
L,MeNh—oo Jg " k<L

< liminf sup / (sup|<€;€,y>|p/\M)l/nh(dy)
h—oo [ MeNJH k<L

= liminf/ Y|} vn, (dy) < oo,
H

h—o0
hence © < oo v-a.e., thus also v(V) = 1 since {y € H: O(y) < o0} =V. O

THEOREM 2.6. Let v be an invariant measure for P;. Then v satisfies the
estimate

[ ol + ) ) < o0
H

PROOF. Let z € H and consider the one dimensional process U (t) := |u(t, x)|%,
which can be written, in view of (10), as

U(t)=|;v|%1+/0 Fl(s)ds—i—/o ZFg(s,z)ﬂ(ds,dz)—i—/o/ZF3(s,z)u(ds,dz),

where Fy, F, F; are defined in the obvious way. Let x € C}(R4,R) be a smooth
cutoff function with x(z) = 1 for all x € [0, 1], x(z ) =0forallz > 2, and x'(z) <0
for all z € Ry. Setting xn(z) = x(z/N) and o (z) = [ xn(y) dy for all z € Ry,
1t6’s formula yields, suppressing the -z subscript for simplicity of notation,

on (U(1) = on(|2]?) + / (U (s-)) dU(s)
(16) + Z on(U(s—) + AU(s)) — o (U(s-)) — @y (U(s—) AU (s)]

By Taylor’s formula, there exists 8 € (0,1) such that the summand in the last term
on the right-hand side can be written as

S (U(s) + 0AU(5)) [AU(5)P,

which is negative P-a.s. because ¢’ () = ¥y () = N~1x/(z/N) < 0forall z € R;.
Moreover, the second term on the right-hand side of (16) can be written as

—2/0th<|u< ) Au(s), ds+2/ [ st~

(u(s-), Glu(s—), 2)) a(ds, dz) / / s (lu(s—)2)[Gu(s—), ) u(ds, dz).
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Therefore, taking expectation on both sides of (16), recalling that the compensator
of u is Leb ® m, we are left with

Epn ([u(t)]?) < Eon(|2f*) - 2E/O X ([u(s)[*)(Au(s), u(s)) ds

{E / /Z e (u(s)2)[G uls), 2) 2 m(dz) ds.

Recalling (3), Tonelli’s theorem yields
t
Bon (u(OF) + a1 [ Exw(lu()Plu(s) ds

< Epn(22) + a0 / Ex (Ju(s)]2)us) ? ds + 1Co.

for all t > 0. Integrating both sides with respect to v on H, applying again Tonelli’s
theorem, the definition of invariant measure, and setting ¢t = 1, we obtain

00 o [ el vide) < oo [ (el el v(d) + o
H H
By the inequality €2|z|?> < eP|z|P + 1 and the continuity of V — H, we have
[ xnliaPlaf? vida) < &2 [ (ol falf vida) + 2
H H

hence
P—2.p

[ ovliaPlaf? vdn) < 72 4.2

H

Choosing ¢ sufficiently small we get
| el )iaf vide) <1,

thus also, by the monotone convergence theorem, [, |z|? v(dz) < oo. This imme-
diately yields the result, in view of (17). O

(ao/HXN(|:v|2)|x|21/(d:v)—i—CO).

The estimates just established allow one to deduce the existence of an ergodic
invariant measure.

COROLLARY 2.7. There exists an ergodic invariant measure for the semigroup
P;.

PROOF. The last estimate in the proof of the previous theorem and (17) allow
to conclude that there exists a constant N, independent of v, such that

/ |z, v(dz) < N
H

for any invariant measure v. Denoting by ' C M (H) the set of invariant measures
of P;, Markov’s inequality yields

R—+o00
—_

1 N
sup v(|zly > R g—sup/ z|b v(dr) < = 0.
swp vty > B) < o [l v(de) <

Therefore, by the same argument used in the proof of Theorem 2.5, we conclude that
N is tight, hence, thanks to Prohorov’s theorem, (relatively) compact in M1 (H).
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Since N is non-empty and convex, Krein-Milman’s theorem ensures that A has ex-
treme points, which are ergodic invariant measures for P; by a well-known criterion
(see e.g. [1, thm. 19.25]). O

Finally, we give a sufficient condition for uniqueness of an invariant measure
under an extra superlinearity assumption on the couple (4, G).

PROPOSITION 2.8. Assume that there exist n > 0 and 6 > 0 such that
(18)  2(Av — Aw,v — w) — |G(v,-) — G(w, )|, > nlv — w|3?, Yo, w e V.
Then P; has a unique strongly mizing invariant measure.

PROOF. Let x,y € H. Then Ito’s formula for the square of the norm in H
implies, after taking expectations,

E|u(t, ) — u(t,y)|* + ZE/ (Au(s,x) — Au(s,y),u(s,z) — u(s,y)) ds

0
= |r — 2 ! u\s,r),z) — uls z2m2 S
= |z —y] “E/O/Z'G“’)’) Glu(s,y), ) m(dz) ds,

and, by the superlinearity assumption (18),
t
Blu(t,x) ~ u(t. ) < o~y = 1 | Elu(s.a) ~ uls.g) P+ ds
0

t
1+6/2
< |z —yl? —’7/ (Elu(s, z) — u(s,y)2) """ ds
0

for all ¢ > 0, where we have used Jensen’s inequality in the last step. Since the
solution ¢ : Ry — Ry of the ordinary differential equation

¢=-n¢"20 0) = |z —y?

is such that lim; o, ((¢) = 0 for all z, y € H, we conclude by a standard comparison
argument that Elu(t, z) — u(t,y)|* — 0 as t — oco.

Let v be an invariant measure for P;. Then for any Lipschitz continuous and
bounded f: H — R we have

Pt = [ ] =| [ P vian - [ P
< [ \Piste) = Pes ] )
<Uflensin [ (Blutta) = utn))* vid)

Since (E|u(t,z) — u(t,y)[*)*/? < |z — y| and [, |z — y|v(dy) < oo, we can pass to
the limit under the integral sign as ¢ — oo by the dominated convergence theorem,
thus concluding that |P, f(z) — [}, f dv] — 0 as t — oo, and in particular that v is
the unique invariant measure. Moreover, since C} (H) is dense in Ly(H, v), one has
that for any f € Lo(H,v),

t—o0

lim Ptf(x):/Hde, x € H,

i.e. v is strongly mixing (in particular ergodic) as required. (Il
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3. Essential m-dissipativity of the Kolmogorov operator

We recall that in this section we will work under the assumption that the noise
in (1) is additive, i.e. G(x,z) = G(z). Unfortunately we are not able, at the mo-
ment, to consider Kolmogorov equations associated to stochastic equations with
multiplicative noise, as several highly non-trivial complications arise. The situa-
tion is not different in the context of equations with Wiener noise, where results on
“multiplicative” Kolmogorov equations have been obtained only as perturbations of
the infinite-dimensional heat equation, or assuming very regular coefficients (typ-
ically of class C?). We refer to [9] for more details on these and related issues.
Studying (non-local) Kolmogorov equations associated to (1) in its full generality
remains nonetheless a very interesting problem.

Denoting by u(-, z) the solution to the stochastic equation (1), we have proved
in the previous section that the semigroup

Pif(z) :=Ef(u(t,z)),  f€By(H)

admits a (not necessarily unique) invariant measure v. As is well-known, P, can
be extended to a strongly continuous Markovian semigroup of contractions on
L,(H,v), p > 1. In the following we shall denote the extension of P, to L,(H,v)
again by P;.

Let us define the operator (L, D(L)) in Li(H,v) by

Lf(@) = —(Az, Df(2)) + Tf(z), z €V,
Tf(z) = / [f( +G(2)) - f(x) — (Df(x), G(2))] m(d2),
D(L) ={feCy (H)nCLV")},

where C'' (H) denotes the set of functions ¢ € C}(H) with D¢ : H — H Lipschitz
continuous. Note that the nonlocal term Z f in the definition of L is a well-defined
element of Ly (H,v) for f € C;’I(H). In fact, the fundamental theorem of calculus
yields

[Fa +G(E) ~ @)~ (DF (). G))|
<| [ 101G +66(). 62 a8 = (Df(@). G| < D fleos |G

therefore, since G € Lo(Z,m), we have that |Zf| < 1, thus also Zf € Li(H,v).
Similarly, * — (Az,Df(z)) € Li(H,v), as explained below in a slightly more
general setting.

By a computation based on Itd’s formula one can see that the infinitesimal
generator of P, in Li(H,v) acts on smooth enough functions as the operator L
just defined. Since P; is a contraction for all ¢ > 0, we have that (L, D(L)) is
dissipative in Li(H,v). The question of Li-uniqueness then arises naturally: is
P, the only strongly continuous semigroup on Li(H,v) such that its infinitesimal
generator extends (L, D(L))? Under a “regularizability” hypothesis on A, we shall
give an affirmative answer to this question, proving that the closure of L in L1 (H, v)
generates a strongly continuous semigroup. In fact, since L is dissipative, this will
imply that the semigroup coincides with P;.



ERGODICITY FOR STOCHASTIC EQUATIONS WITH JUMPS 13

Throughout this section we shall assume that there exists a sequence of mono-
tone operators A° € C%Y(H — H) N C}H(V — V') such that A°z — Az in V' for
all z € V and |A%z|y, < N(|z5" + 1) with N independent of .

We are going to prove that L is dissipative in Li(H,v) just assuming that v is
an infinitesimally invariant for L satisfying the integrability condition

(19) x|z}, + |2l € Li(H,v).

More precisely, the assumption of v being infinitesimally invariant amounts to as-
suming that

/ Lfdv=0 VfeD).
H

Note that (19) and f € D(L) imply that Lf € L1(H,v), so that the above condition
is meaningful. In fact, one has Zf € Ly(H,v) for all f € Cp''(H), as seen above,

and
[(Az, Df(z))| < |Az[v- sup IDf(y)| < [zff, +1 € Li(H,v).
ye

Let us recall that any invariant measure is infinitesimally invariant, but the converse
does not hold, in general. Moreover, any invariant measure for (1) satisfies the
integrability condition (19) thanks to Theorem 2.6.

LEMMA 3.1. The operator (L, D(L)) is dissipative, hence closable, in L1(H,v).

PROOF. Let f € D(L) and 7. € C?(R) be a convex function such that . €
Cg (R) is a smooth approximation of the signum graph

-1, z <0,
sgn(z) =< [-1,1], = =0,
1, z > 0.

Then we have

(20) Le(f) = (Az, D)YL(f) + Tv=(f),

where, by a direct calculation,
() — LTS
= [ Belfa+ G = 2e(5 ) ~ L@ o+ G — )] mi2)
_R.(f).

Since 7. is convex and differentiable, we infer that R.(f) > 0. Therefore, taking
the previous inequality into account and the infinitesimal invariance of v, one has,
integrating (20) with respect to v,

[retnav=o= [nisav+ [ Raian
hence [~.(f)Lfdv <0, and passing to the limit as ¢ — 0,
[rreav <o

where € € Loo(H,v), & € sgn(f) v-a.e. Since Ly(H,v) = Lo (H,v), recalling that
the duality map J : Li(H,v) — 2F=(1¥) ig given by

Jiu— {v€ Lo(H,v): vE|ulp,(mmsgn(u) v-ae.}
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(see e.g. [4, §1.1]), we infer by the previous inequality that L is dissipative in
L1 (H, V). O

The following result gives a positive answer to the L;-uniqueness question posed
above.

THEOREM 3.2. Let (L, D(L)) be the closure of the Kolmogorov operator L in
Li(H,v). Then (L, D(L)) generates a strongly continuous Markovian semigroup of
contractions Ty in L1(H,v), for which v is an invariant measure.

PROOF. By the Lumer-Phillips theorem (see e.g. [22, §1.4, Thm. 4.3]), L
generates a strongly continuous semigroup of contractions if R(al — L) is dense in
L(H,v) for some a > 0.

Consider the regularized equation

(21) du(t) + A udt = / G(z)dp(dt,dz), u(0) =z € H,
z

with
AP g = / e A¢ (6)\0$ + y)Técfl(ezm_l)(dy), A >0,
H

where C': D(C) C V — H is a self-adjoint, negative definite linear operator such
that C~! is of trace class, and T¢ stands for a centered Gaussian measure on H
with covariance operator (). Then, by the Cameron-Martin formula (see e.g. [8,
p. 10]), one has

A € C*°(H — H), (AN € Cp°(H — L(H — H))

and Az — Az forallz € H as A — 0 (see e.g. [8, §2.3-2.4] for details). Moreover,
A= inherits the monotonicity of A%, and

(U0 = [ @CUY (4 OT s e ()

so that A** € CL(V — V).
Since A% is Lipschitz continuous on H, (21) admits a unique strong solution
uey (e.g. by [19, thm. 34.7]). Set

(22) fer(z) := IE/OOO e “o(uca(t,x))dt, r € H,

where ¢ € D(L) and o > 0 are fixed. Since A** € CY(H — H), one has, thanks
to [19, thm. 36.9], that & — u.\ (¢, z) is Fréchet differentiable for all ¢ > 0, and its
Fréchet derivative acting on an arbitrary y € H, denoted by v?, := Du.x[y], solves
the initial value problem (in the P-a.s. sense)

d
(23) TV (A7) (wen)vly =0, v (0,2) =y

A computation based on It6’s lemma for the square of the norm and the mono-
tonicity of A%} reveals that x +— wuc\(,7) € COY(H — Hy(T)) for all T > 0,
and

corgom S1 V20,

This immediately implies that |v?, | < |y| for all y € H, as the operator norm of the
Fréchet derivative of a Lipschitz continuous function cannot exceed its Lipschitz
constant. Moreover, since (4°}) (&) € CP(H — H) for all £ € H, from (23) we
infer that © — wu.x(t, ) is continuously differentiable P-a.s. for all ¢ > 0 (e.g. by

‘a: — uEA(t,I)|
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[11, §X.8]). Applying the chain rule for Fréchet derivatives (see e.g. [2, Prop. 1.4])
in (22), taking into account that ¢ € C;’l(H) and wu.) is Fréchet differentiable with
| Duey(t)| bounded uniformly over ¢, we get

(24) DIy =B [ ¢ " Dpluan(t. )y (t.2)
0

for all y € H, which also immediately yields

(25) |Dfor(@)y)] Slyl vy € H,

that is f.n € C}(H). In order to conclude that f.) € Cg’l(H) we thus have to
prove that Df. € C%'(H — H). Let us observe that we can write

|Dfex(@)[y] — D for(2)[2]]

< E/ e_at|D<P(u€>\ (tv x))vg)\ (t5 I) - D@(us)\(ta Z))vgy)\ (tv Z)‘ dt
0

< E/ eiat|D</)(u€>\ (tv x))vg)\ (t5 I) - D@(us)\(ta I))ng (tv Z)‘ dt
0

+ E/ eiat‘Dg)(uE)\ (tv x))vg)\ (t5 Z) - D‘P(usk (tv Z))vg)\(ta Z)’ dta
0

where, recalling that x — wu.) (¢, ) and v.y(¢) are respectively Lipschitz and bounded
uniformly over ¢, A and ¢, and that ¢ € C’l}’l(H),

’DSD(UEA(tax))UgA(tuz) — Dp(uc(t, z))v i&(t 2)‘
< |DS"|COyl(HHH)|UaA(t7x) uea(t, 2)| |02, (8, 2)|
S o= z[lyl-

Moreover, we also have

| Dip(uen(t, 2) vy (t, ) — Dip(uex(t, @)l (¢, 2)| < |Dgloo(rr—mm [v2\ (t 2) — v2\(t, 2)],

from which it follows that in order to show that D f.) is Lipschitz on H it suffices
to prove that x — vy (¢, z) is Lipschitz on H. We have

%(vg)\(t, z) — v (¢, z)) + (AE)\)/(UE)\(t,{E))Ug)\(t,ZE) - (AE)\)/(’LLE)\(t, z))v?\ (t,z) =0,

hence, taking scalar products with v?, (t,z) — v, (¢, 2),
1d 2
55‘1}3(1%,:1@)—1}&(&2)‘ +1=0,

where I = I(e, A\ t, z, 2, y) satisfies

I= <(AE)‘)’(u5A(t,x))(v€y/\(t,x) — vay/\(t,z)), E)\(t x)—wv )\(t,z)>
+ (A=) (wea(t, 2)) 02y (t, 2) — (A (wea(t, 2) 02\ (8, 2), 23 (F, @) — 0¥y (8, 2))
> (A (uer (t, )0l (t, 2) = (A7) (uea(t, 2))02y (8, 2), 02 () — 02\ (¢, 2)),

once one takes into account that (A=*)'(ucx(t,7)) is a positive linear operator,
because A** : H — H is monotone and differentiable. Then we also get, recalling

A
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that [o24 (£, 2)] < [y,
1< (A (e (1,2) — (A2 (wen(t, )4 (0, )

1 2
+ et ) — ol (e, 2)

1 2 1 2
= §|y|2 [(A) ] [uea(t, 2) — uea(t, 2)[” + Eyng(t,x) —v\(t, )|
2
Syl e — 2 + [0\ (t,2) — v\ (¢, 2)] .
In the last step we have used that (A}) € C°(H — L(H — H) and that z —
uex(t, ) is Lipschitz. Gronwall’s inequality then yields
"Us)\(t,fb) — vex(t, z)‘ <z — 2|,

thus concluding the proof that fe) € Cg’l(H).

Let us now prove that f-x € C}(V'): in view of (24), it is enough to prove that
[v, (x)|v+ < |y|vs. Here we regard ¢ as a function from V' to R and & — ucx(t, x)
as a map from V' to itself, so that vex(t,2) € L(V' — V') and oY, (¢t,z) € V. Let
J: V' = V"~V denote the duality map between V' and V (or equivalently, let
J = F~! with F the duality map between V and V’). Multiplying both sides
of (23) by J(v!,(t,z)), in the sense of the duality pairing between V' and V, we
obtain, taking into account that (4°*)" is positive, [v¥) (z)|v+ < |y|v,. We have thus
proved that f.\ € D(L). This in turn implies that f.) satisfies

afon(@) + vi{AP 2, Dfr(e))y
~ [ [fala + G = frl@) — (Dfr(@), G m(d:) = (@), w € H
z
hence also
afer(w) + (Az, Dfer(2)) = Lfer(x) = () + (Az — Az, Dfor(2)),
and
‘Oéfa)\ + <A£L‘, Df€>\> - Ifa)"Ll(H,u) < |90|L1(H,1/) + ’<AJ; - As)\l’, Df€>‘>‘L1(H,u)'
Note that |Df.x(z)|v <1 thanks to the above bound on |v.y(z)|v/, so that

/ ’(Aa: — A% g, Dfs)\(a:)>’ v(dx)
H

< / |Ax — A%x|y v(dx) + / |Afz — A% x|y v(dx)
H H

which converges to 0 as A — 0 and € — 0 by the dominated convergence theorem. In
fact, thanks to the hypotheses on A and A%, we have [Az — A°z|y < |z[{, +1 for all
x € V, and v is concentrated on V by (19). Moreover, since H — V' is continuous
and |[A%*z| < |A%x| for all x € H, we have |A*z — A x|v/| < |zl + 1 € Li(H,v),
because of (19). We have thus shown that

lim )1\13%) (ozfs)\ + (Az, D fey) —IfsA) =

e—0

in Ly(H,v), i.e. that R(al — L) is dense in L;(H,v), because D(L) is dense in
Ly(H,v). Since L is also dissipative, we immediately infer that L is m-dissipative
in L1 (H,v).
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Let us denote the strongly continuous semigroup of contractions on L;(H,v)
with generator L by T;. Let us now prove that T} is Markovian: for this it is enough
to show that

/ Ef 1{f>1} dr <0 vVfe D(E)
H

(see e.g. [26, p. 109]). Let 7. € C%(R) be a convex function such that 7. € C} (R)
is a smooth approximation of & + 1j; 4 o[(2). Then, proceeding as in the proof of
the previous lemma, we obtain the claim for all f € D(L) first, and for all f € D(L)
by density.

In order to prove that v is an invariant measure for T, let us observe that one
has, by definition of infinitesimal invariance and by a density argument,

/ Lfdv=0 VfeD(L).
H

Since Ty f € D(L) for all t > 0 if f € D(L), we have, by the infinitesimal invariance

of v,
/Hthdy_/Hfdz/+/0t/HLTsfdyds_/Hfdu

for all f € D(L), thus also for all f € Ly(H,v) by density. O

REMARK 3.3. The theorem implies that if v is an invariant measure to the
stochastic equation (1) satisfying the integrability condition (19), then for all f €
By(H), one has that T} f is a v-version of P, f for all ¢ > 0.

REMARK 3.4. The dissipativity of L in Lo(H,v) is easier to prove: in fact, for
f € D(L), we have

L(f*) =2fLf +T(f, ),

where
M) = [ 1@+ GE) = @ m(dz) = 0
is the so-called carré du champ operator associated to Z, which is defined as
U(f,9) =2(fg) — fIg — gZf

and takes the form
I(f.9) = /Z (f(z +G(2) = f(x)) (9(z + G(2)) — g(x)) m(dz).

In particular one has the integration by parts formula

/fodu:—%/l"(f,f)du.

However, as one might expect, one needs stronger integrability assumptions on v
to prove the essential m-dissipativity of L, e.g. (roughly) of the type z — |Ax|? €
Ly(H,v). Such an assumption would in turn require the data of the problem to be
much more regular.
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4. Applications

4.1. SDEs with monotone drift. If V = H = R? so that (1) reduces to
an ordinary stochastic differential equation with monotone drift, our results on
ergodicity can be recovered applying [13, Thm. 2], which provides existence and
uniqueness of strong solutions (even in a more general situation than that treated
here), and [25, Thm. 1.25], which establishes boundedness in probability for the
solution by a Lyapunov-type criterion. In our case one can choose as Lyapunov
function simply V (z) = |z|2.

4.2. Stochastic equations with drift in divergence form. Let D C R¢
be a bounded domain with smooth boundary, and set H := La(D), V = VVp1 (D),
V' = Wq_l(D), with p > 2, p~! + ¢! = 1. Here Vi/pl(D), p € [1,00[, stands for
the closure of C°(D), the set of real-valued functions on D with compact support,
with respect to the norm

[¢lw (D) =[], (D) + [VOIL, (D)
(see e.g. [16, §8.0]). Note that V — H is compact by a Sobolev embedding theorem
(see e.g. [2, Thm. 0.4]). Consider the operator A: V — V' defined by
Au := —div (a(Vu)),

which must be interpreted, as usual, as
(u,0) = [ (@(Vu(©). Vo(@)sads VoV
D

Here a € C°(R? — R?) is a monotone function satisfying the polynomial growth
condition |a(z)| < |z|P~! + 1 and the coercivity condition za(z) > |z|P — 1. Note
that the p-Laplacian is a special case of this example obtained taking a(z) = |z[P~2x
(see e.g. [24, §4.1] for a related example).

Let a. € COY(R? — R%), 4. (x) := e '(z — (I +a) ') be the Yosida approxi-
mation of a, so that, in particular a. is monotone and Lipschitz continuous for each
e > 0 with Lipschitz constant 2/¢ (see e.g. [4, §2.1]). Set a. = a. * (., where {(.}
is a standard sequence of mollifiers (in particular a. € C*°, a. € C;°), and define
the operator A® on smooth functions as

Afu=—I—eA)""div (a.(V(I — aA)flu)),

where A stands for the Dirichlet Laplacian on D. We are going to show that A¢
satisfies the assumptions of the previous section. For this we shall need some elliptic
regularity results, which we recall here (see e.g. [16, §8.5] for details).

LEMMA 4.1. Let f € Ly(D), p > 2. Then there exists €1 such that, for all
€ < €1, there exists a unique solution u € VVp1 to the equation

u—cAu=f
on D with Dirichlet boundary conditions. Moreover u satisfies the estimate
lulL, () + 81/2|“|W;(D) < N|flz, D)

where N does not depend on €.
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Let us first show that A® is well-defined both as an operator from H to itself,
as well as from V' to V’. Using the notation
v = (I —eA)™to,

we may write
(26) (Au,v) = / (a-(Vu(®), Vo)) pa de.
D

Note that if v € H, then v(®) € VV21 and
Vo g < [0y py Se ola
Moreover, since a. is Lipschitz continuous, we have
jac(Vu®)| < Ja:(Vul) = a-(0)] + |a= (0)] S- [Vu' | + |a=(0)],
thus also
[(A%u,v)| < Jas(Vu) i [Vola <o (lulm + ac(0))]o],

vzhich shows that A° is well-defined from H to itself. Similarly, if u, v € V =
W, (D), we have, by Hélder’s inequality,

(A%, )| < Jac(Vu®)| 1,0y V0|, 0) S (Julv + Dlolv,

where we have used again Lemma 4.1 and || - ||z, 0y S || - Iz, (p) for p > ¢ and D
bounded. We have thus shown that A° is well-defined from V to V.

The monotonicity of A%, both as an operator from H to itself and from V to
V' is immediate by (26) and the monotonicity of a..

Let us now show that A° is Lipschitz continuous on H. In fact, taking into
account Lemma 4.1, we have

[(A%u — A%, w)| = ‘<a€(Vu(8)) — a.(Vo®), Vw(€)>|
Se [V =) [V <. Ju — vl [w]a-

Since a. € C!, a direct computation yields that A° is Gateaux differentiable from
V to V'’ with Gateaux differential

(27) (A% (u)[v], w) :/D<a’8(vu(s))vv(s)7vw(s)>w de

for all u, v, w € V. Note that the integral is well defined because |a.(x)| < 1 for
all z € RY, since a, is Lipschitz continuous. By a well-known criterion, we can
conclude that A° € C*(V — V') if we show that (A4°)" in (27) is continuous as
amap V — L(V — V'). Let u, — u in WZ}(D) as n — oo: applying Holder’s
inequality and Lemma 4.1 repeatedly, we obtain

sup  sup ((A%)'(un)[v] — (A7) (u)[v], w)

[v]lv<1 |w|v<1

< Ve, m) (@ (Vu?) = al(Tu@) VeS|,

S IVolp, oy al(Vule)) = al (Va)]

n—00
— 0.

< |a! )y — ¢ (e)
~ ’a’a(vun ) Qe (Vu )‘Lp/(p72)(D)
In fact, since a’ is Lipschitz, it follows that |a’(z)| < |z|P~2+1, and Vuld) — vu©

in L, implies convergence a.e. on a subsequence, from which we can conclude by
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the dominated convergence theorem (see e.g. [2, Thm. 1.2.6] for complete details
in a similar situation). We have thus proved that A° € CY(V — V').
We conclude proving that

lin}) |A®u — Aulyr =0 YueV.
e—

By (26) we have
/D ‘<%(Vu(5)), Vw(5)> —{a(Vu), Vw)| d¢

< / KOJE(VU(E)) — a(Vu), Vw)| d¢ +/ |<a5(Vu(8)), Vw'® — Vw)| de.
D D

Since |ac(z)| < N(|z[P~! 4+ 1) with N independent of &, the second term on the
right-hand side can be majorized by

‘Ga(vu(s) ‘Vw(s) -Vuw|, < (’Vu‘i_l +1) ’Vw(s) - Vuw|, =0, ,

e,
where we have used once again Lemma 4.1. Since Vu(®) — Vu in L, as ¢ — 0,
we can upgrade the convergence to a.e. convergence, passing to a subsequence,
still denoted by e. By Egorov’s theorem, there exists Ds C D, |D \ Ds| < §, such
that Vu(®) — Vu uniformly on Ds as ¢ — 0. Since a. and its limit function a are
continuous on R%, we have

lim lim a.(Ve™) = lim lim a.(Ve™) = a(Vu)

e—0n—0 n—0e—0
pointwise on Dg, hence by a diagonal extraction argument, there exists a further
subsequence of ¢, still denoted by e, such that, by the dominated convergence

theorem,
e—0

‘aE(VU(E)) - a(Vu)‘Lq(Dé) — 0.
On the other hand, we have
‘aE(VU(E)) - a(Vu)‘Lq(D\Dé) < / (|VulP + 1) d¢
D\Ds

< |D\D5| (|VU|LP + 1) < 5(|VU|LP + 1).

Since ¢ is arbitrary, we conclude that the integral above converges to zero as & — 0,
thus finishing the proof.

4.3. Stochastic porous media equations. Existence and uniqueness of in-
variant measures, their ergodicity, and Kolmogorov equations for stochastic porous
media equations perturbed by a Wiener noise have been considered in several recent
papers — see e.g. [7, 10] and references therein. Here we show how our abstract
results can be applied to a class of porous media equations perturbed by general
additive noise obtained as integral with respect to a compensated Poisson measure.

Let D, A, p, q, and {(.} be defined as in the previous subsection. Set V =
L,(D), H=W; YD), V' = A(L4(D)), so that V < H compactly by a Sobolev
embedding theorem (see e.g. [27, Prop. 4.6]). The norm in W, * (D) will be denoted
by | -|-1. Consider the operator

AV =V
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where 3 € C°(R) is increasing and satisfies
wf@) 2 lofP =1, |B@)| < a7t +1

for all x € R. Note that these conditions on § imply that A is well-defined (see e.g.
[24, §4.1] for details). Set

Be(z) :BE*Ca Bs = 'VvB@)Ae
so that 8. € Cp°, and define the operator
Au = —A(I —eA) ' B ((I —eA) M)

on smooth functions. Then A¢ is well-defined as an operator from H to itself, since
(A, w) = /Dga(u@))w(a) de < [09)],py 10: )]y Se s (jul 1 + 1)

for all u, w € Wy (D), because S is Lipschitz and [u(®)|1,p) < |u|-1 (see e.g. [5,
Thm. 3.3.1]). A completely analogous computation also shows that A® € C'O’l(H —
H). Let us also show that A® is well-defined as an operator from V to V’: for u,
w € L,(D), Holder’s inequality yields

)= [ 8 d < 0] o) 8.,y 5 0l (i) + 1),

where we have used Lemma 4.1 and the estimate |3 (z)| < |8(z)] < |z[P~1 4+ 1. The
latter also immediately implies that |A°z|y: < N(|z|07 " + 1), with N independent
of e.

As in the previous subsection, it is not difficult to see that A° is Gateaux
differentiable from V to V', with Gateaux differential

((A%)ufv],w) = / BL(u®)wEw® dg, u, v, w € Ly(D).
D

The continuity of the Gateaux differential (hence the Fréchet differentiability of
A%V — V') follows by an argument similar to the one used in the previous
subsection, and we shall be more concise here: for u,, — u in L,(D), we have

(A% ()] = (A @lel,w) < [0, 19:0682) = Belae@ ],

/

S ol oy el o) [0D) = AL,
We proceed now as above: since qu) — u(®) a.e. along a subsequence, we can appeal
to the dominated convergence theorem, in view of the obvious bound |GL(z)| <
|z[P=2 + 1.
The proof that A°u — Aw in V' for all u € V as € — 0 is completely similar to
the corresponding proof in the previous subsection, hence omitted.

References

1. C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, third ed., Springer, Berlin,
2006. MR MR2378491

2. A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, Cambridge University Press,
Cambridge, 1995. MR MR1336591 (96a:58019)

3. E. Asplund, Averaged norms, Israel J. Math. 5 (1967), 227-233. MR MR0222610 (36 #5660)

4. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Ley-
den, 1976. MR MR0390843 (52 #11666)



22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

CARLO MARINELLI AND GTACOMO ZIGLIO

, Partial differential equations and boundary value problems, Kluwer Academic Pub-
lishers, Dordrecht, 1998. MR MR1636579 (2000e:35002)

. V. Barbu and G. Da Prato, Ergodicity for nonlinear stochastic equations in variational for-
mulation, Appl. Math. Optim. 53 (2006), no. 2, 121-139. MR MR2172782 (2007d:60030)

. V. I. Bogachev, G. Da Prato, and M. Réckner, Invariant measures of generalized stochastic
equations of porous media, Dokl. Akad. Nauk 396 (2004), no. 1, 7-11. MR MR2115900
(2005k:60191)

. G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhauser Verlag, Basel, 2004.
MR MR2111320 (2005m:60002)

, Kolmogorov equations for stochastic PDE’s with multiplicative noise, Stochastic anal-

ysis and applications, Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 235-263. MR MR2397790

(2010a:60216)

G. Da Prato, M. Rockner, B. L. Rozovskii, and Feng-Yu Wang, Strong solutions of stochastic

generalized porous media equations: existence, uniqueness, and ergodicity, Comm. Partial

Differential Equations 31 (2006), no. 1-3, 277-291. MR MR2209754 (2007b:60153)

J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960. MR 22

#11074

I. Gyongy, On stochastic equations with respect to semimartingales. III, Stochastics 7 (1982),

no. 4, 231-254.

I. Gyongy and N. V. Krylov, On stochastic equations with respect to semimartingales. I,

Stochastics 4 (1980/81), no. 1, 1-21. MR MR587426 (82j:60104)

, On stochastics equations with respect to semimartingales II. Ité formula in Banach

spaces, Stochastics 6 (1981/82), no. 3-4, 153-173. MR MR665398 (84m:60070a)

N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, second

ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam,

1989. MR MR1011252 (90m:60069)

N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, American Math-

ematical Society, Providence, RI, 2008. MR MR2435520

N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Current problems in math-

ematics, Vol. 14 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii,

Moscow, 1979, pp. 71-147, 256. MR MR570795 (81m:60116)

C. Marinelli and M. Rockner, Well-posedness and ergodicity for stochastic reaction-diffusion

equations with multiplicative Poisson noise, 2009, arXiv:0903.3299.

M. Métivier, Semimartingales, Walter de Gruyter & Co., Berlin, 1982. MR MR688144

(841:60002)

V. Nersesyan, Polynomial mizing for the complex Ginzburg-Landau equation perturbed by

a random force at random times, J. Evol. Equ. 8 (2008), no. 1, 1-29. MR MR2383481

(2009d:35314)

E. Pardoux, FEquations aux derivées partielles stochastiques nonlinéaires monotones, Ph.D.

thesis, Université Paris XI, 1975.

A. Pazy, Semigroups of linear operators and applications to partial differential equations,

Springer-Verlag, New York, 1983. MR 85g:47061

Sz. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Cambridge

University Press, Cambridge, 2007. MR MR2356959

C. Prévot and M. Rockner, A concise course on stochastic partial differential equations,

Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR MR2329435

A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations,

“Naukova Dumka”, Kiev, 1987. MR MR913305 (88m:60164)

W. Stannat, (Nonsymmetric) Dirichlet operators on L': existence, uniqueness and associ-

ated Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 1, 99-140.

MR MR1679079 (2000b:31010)

H. Triebel, Theory of function spaces. III, Birkhauser Verlag, Basel, 2006. MR MR2250142

(2007k:46058)




ERGODICITY FOR STOCHASTIC EQUATIONS WITH JUMPS 23

(C. Marinelli) FAcoLTA DI EcoNoMmIiA, UNIVERSITA DI BOLzANO, P1azza UNIVERSITA 1, I-
39100 BOLZANO, ITALY AND DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI TRENTO, VIA SOM-
MARIVE 14, 1-38123 TRENTO, ITALY. HTTP://WWW.UNI-BONN.DE/~CM788

E-mail address: carlo.marinelli@unibz.it

(G. Ziglio) DIPARTIMENTO DI MATEMATICA, UNIVERSITA DI TRENTO, VIA SOMMARIVE 14,
1-38123 TRENTO, ITALY
E-mail address: ziglio@science.unitn.it



