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Abstract. We study the asymptotic behavior of solutions to stochastic evo-
lution equations with monotone drift and multiplicative Poisson noise in the
variational setting, thus covering a large class of (fully) nonlinear partial dif-
ferential equations perturbed by jump noise. In particular, we provide suf-
ficient conditions for the existence, ergodicity, and uniqueness of invariant
measures. Furthermore, under mild additional assumptions, we prove that the
Kolmogorov equation associated to the stochastic equation with additive noise
is solvable in L1 spaces with respect to an invariant measure.
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1. Introduction

This paper is devoted to the study of asymptotic properties of the solution to
an infinite dimensional stochastic differential equation of the type

(1)







du(t) + Au(t)dt =

∫

Z

G(u(t−), z) µ̄(dt, dz)

u(0) = x

where A is a nonlinear monotone operator defined on an evolution triple V ⊂
H ⊂ V ′ (see e.g. the classical works [17, 21]), and µ̄ is a compensated Poisson
measure. Precise assumptions on the data of the problem will be given below.
In particular, A may be chosen as the p-Laplace operator, as well as the porous
media diffusion operator −∆β(·), thus covering a wide class of nonlinear partial
differential equations with discontinuous random perturbations.

While existence and uniqueness of solutions for (1) has been established in
[12] (in fact allowing µ̄ to be a general compensated random measure), we are not
aware of any result on the asymptotic behavior of the solutions to such equations.
Furthermore, as we show in this paper, invariant measures provide a suitable class
of reference measures with respect to which one can study infinite dimensional
Kolmogorov equations of non-local type, thus extending results that, to the best of
our knowledge, were available only for second-order (local) Kolmogorov equations
(see e.g. [8]).

Let us briefly describe our main results in more detail: we first prove the exis-
tence of an invariant measure for the Markovian semigroup associated to (1), under
the (standing) assumption that V is compactly embedded in H . Moreover, suit-
able a priori estimates on any invariant measure imply the existence of an ergodic
invariant measure, and an extra superlinearity assumption on A yields exponential
mixing, hence uniqueness. Finally, we prove that the (non-local) Kolmogorov op-
erator L associated to (1), with G independent of u, is essentially m-dissipative in
L1(H, ν), with ν an infinitesimally invariant measure for L. The last result in par-
ticular is equivalent to the solvability in L1(H, ν) of the (elliptic) integro-differential
Kolmogorov equation associated to (1).

We should mention that the case where the right-hand side in (1) is replaced by
an additive Gaussian noise has been considered in [6], where sufficient conditions
for the existence and the uniqueness of invariant measures are given. Moreover, the
authors study associated the Kolmogorov equation in L2(H, ν), assuming that A
is differentiable and its differential satisfies a certain polynomial growth condition.
Our L1 approach does not require any such hypothesis. On the other hand, we
need to employ a more sophisticated infinite-dimensional stochastic calculus, which
in turns gives rise to a non-local part in the Kolmogorov operator. It is interesting
that exactly because of the analytical difficulties created by non-locality we had to
adopt the L1(H, ν) setting, and we could not (better said, we were not able to)
use the L2(H, ν) setting, which is perhaps more natural (see in this respect Lemma
3.1 and Remark 3.4 below). From a qualitative point of view, our results on ex-
istence, uniqueness, and ergodicity of invariant measures are perfectly comparable
to those of the “classical” case with Wiener noise. Finally, one should mention
that combining the results in [6] with ours and appealing to the Lévy-Itô decom-
position theorem, one could rather easily obtain corresponding results for evolution
equations driven by general (locally) square-integrable Lévy noise.
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In this regard, let us also recall that results on existence and uniqueness of
invariant measures for semilinear evolution equations driven by Lévy noise can
be found in the recent monograph [23], as well as in [18]. However, the authors
work in the mild setting, hence equations with fully nonlinear drift (i.e. without
a leading linear operator generating a strongly continuous semigroup) cannot be
covered. Moreover, ergodicity and polynomial mixing for the complex Ginzburg-
Landau equation (which is also semilinear) driven by a finite intensity Lévy noise
have been established in [20].

The rest of the paper is organized as follows: results on existence, unique-
ness, and ergodicity of invariant measures ν are contained in Section 2. In Section
3, assuming that G does not depend on u and that A satisfies a (mild) “reg-
ularizability” hypothesis, we prove that the Kolmogorov operator associated to
the stochastic equation (1) is dissipative, hence closable, and its closure is m-
dissipative in L1(H, ν). Equivalently, this amounts to saying that the (elliptic)
infinite-dimensional non-local Kolmogorov equation associated to (1) is uniquely
solvable in L1(H, ν). In Section 4 we show that our abstract results apply to
several situations of interest. In particular, we concentrate on equations with non-
linear drift in divergence form (thus including the p-Laplace operator) and on the
generalized porous media equations with pure-jump noise.

1.1. Notation. Given a Banach (or Hilbert) space E, its norm will be denoted
by | · |E . We shall denote the space of all Borel measureable bounded functions
from E to R by Bb(E). Given another Banach space F , the space of k-times
continuously differentiable functions from E to F will be denoted by Ck(E → F ),
with C0(E → F ) simply denoting the set continuous functions. We shall add a
subscript ·b if the functions themselves and all their derivatives (up to order k) are

bounded. If φ : E → F is Lipschitz continuous, we shall write φ ∈ Ċ0,1(E → F ),
and we define

|φ|Ċ0,1(E→F ) := sup
x,y∈E,x 6=y

|φ(x) − φ(y)|F
|x − y|E

.

If F = R, we shall simply write Ck(E) etc. Sometimes we shall just write Ck etc. if
it is obvious what E and F are. By M1(E) we shall indicate the space of probability
measures on E, endowed with the σ(M1(E), C0

b (E)) topology induced by duality
with bounded continuous functions, and usually known as the topology of weak
convergence. Weak convergence (of functions and measures) will be denoted by ⇀,
without explicit reference to the underlying topology if no confusion may arise.

If X ≤ NY for some positive constant N , we shall equivalently write X . Y . If
N depends on a set of parameters p1, . . . , pn, we shall also write N = N(p1, . . . , pn)
and X .p1,...,pn Y .

2. Invariant measures and ergodicity

Let (Ω,F , (Ft)t≥0, P) be a filtered probability space satisfying the “usual hy-
potheses” (see e.g. [19, Definition 1.1]), and E denote expectation with respect to
P. All stochastic elements will be defined on this stochastic basis, unless otherwise
specified. Let (Z,Z, m) be a measure space with a σ-finite measure m and µ a Pois-
son random measure on R+×Z with compensator Leb⊗m, and set µ̄ := µ−Leb⊗m
(Leb stands for Lebesgue measure on R). For a comprehensive account of stochas-
tic integration with respect to compensated Poisson random measure see e.g. [19,
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§31], or [15]. Let H be a real separable Hilbert space, and G : H × Z → H a
measurable function such that

|G(x, ·)|2m :=

∫

Z

|G(x, z)|2H m(dz) < ∞ ∀x ∈ H.

Let V and V ′ be a reflexive Banach space and its dual, respectively, such that V →֒
H →֒ V ′ with dense and continous embeddings. Thanks to Asplund’s renorming
theorem [3], we shall assume without loss of generality that both V and V ′ are
strictly convex. Furthermore, we shall assume that V →֒ H is compact. Both the
duality pairing between V and V ′ and the inner product in H will be denoted by
〈·, ·〉.

The operator A : V → V ′ is assumed to be demicontinuous (i.e. strongly-
weakly closed) and to satisfy the monotonicity condition

(2) 2〈Ax − Ay, x − y〉 − |G(x, ·) − G(y, ·)|2m ≥ 0 ∀x, y ∈ V,

as well as the following coercivity and growth conditions:

2〈Ax, x〉 − |G(x, ·)|2m + α0|x|
2
H ≥ α1|x|

p
V − C0 ∀x ∈ V,(3)

|Ax|V ′ ≤ C1|x|
p−1
V + C2 ∀x ∈ V,(4)

for some constants α0 ≥ 0, α1 > 0, C0, C1 > 0, C2 ∈ R and p > 2. Instead of (3)
one could assume that there exists a constant α1 > 0 such that

2〈Ax, x〉 − |G(x, ·)|2m ≥ α1|x|
2
V ∀x ∈ V.

Note that, by (3) and (4), one has

(5) |G(x, ·)|2m ≤ 2C1|x|
p
V + α0|x|

2
H + 2C2|x|V + C0 ∀x ∈ V.

All assumptions stated so far will be in force throughout the paper and will be used
without further mention.

Let us recall the following well-posedness result for (1) due to Gyöngy [12,
Thm. 2.10]. Here and in the following we shall denote the space of H-valued
random variables with finite p-th moment by Lp(H), and the space of adapted
processes X : [0, T ] → H such that E supt≤T |X(t)|pH < ∞ by Hp(T ).

Proposition 2.1. Let x ∈ L2(H) and T ≥ 0. Then equation (1) admits a
unique strong solution u such that u(t) ∈ V P-a.s. for a.a. t ∈ [0, T ], t 7→ u(t) is
càdlàg in H, and satisfies

E sup
t≤T

|u(t)|2H + E

∫ T

0

|u(t)|pV dt < ∞.

Moreover, u is a Markov process, and the solution map x 7→ u is Lipschitz contin-
uous from L2 to H2(T ).

The solution to (1) generates a Markovian semigroup Pt on Bb(H) by the usual
prescription Ptφ(x) = Eφ(u(t, x)), φ ∈ Bb(H), where u(·, x) denotes the solution to
(1). The continuity of the solution map ensures that Pt is Feller, i.e. φ ∈ C0

b (H)
implies Ptφ ∈ C0

b (H) for all t ≥ 0 (see e.g. [8, §1.2.5]).

In the following subsection we establish the existence and uniqueness of an
ergodic invariant measure for Pt under an assumption stronger than (2). The proof
is adapted from a classical method used for stochastic evolution equations with
Wiener noise in the mild setting (see e.g. [8, §3.4]). This simple result is included
only for completeness, while the main results of this section are contained in §2.2.
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2.1. Strictly dissipative case. Throughout this subsection we assume that
there exists α ∈ (0,∞) such that

(6) 2〈Ax − Ay, x − y〉 − |G(x, ·) − G(y, ·)|2m ≥ α|x − y|2H ∀x, y ∈ V.

We shall need a few preparatory results. The following inequality can be obtained
by a simple computation based on (5), (6) and Young’s inequality (see e.g. [24,
§4.3] for a related case).

Lemma 2.2. Let η ∈ (0, α). There exist δη ∈ (0,∞) such that

(7) 2〈Ax, x〉 − |G(x, ·)|2m ≥ η|x|2H − δη ∀x ∈ V.

Let us define the random measure µ1 on R × Z as

µ1(t, A) :=

{

µ(t, A), t ≥ 0, A ∈ Z,
µ0(−t, A), t < 0, A ∈ Z,

with µ0 an independent copy of µ, on the naturally associated filtration (F̃t)t∈R.
Let us also define the compensated measure measure µ̃ := µ1 − Leb ⊗ m.

For s ∈ R, consider the equation

(8)







du(t) + Au(t)dt =

∫

Z

G(u(t−), z)µ̃(dt, dz), t ≥ s,

u(s) = x.

It is clear that (8) admits a unique solution u(t, s, x) which generates a semigroup
Ps,t on Bb(H), exactly as above.

Lemma 2.3. Let s ∈ (−∞, 0] and x ∈ L2(H). There exists υ ∈ L2(H), inde-
pendent of x, such that

lim
s→−∞

E|u(0, s, x) − υ|2H = 0.

Moreover, one has

E|u(0, s, x) − υ|2H . eαs(1 + E|x|2H).

Proof. For s1, s2 ∈ (−∞, 0], s1 ≤ s2 and x ∈ L2(H), we have

u(0, s1, x) − u(0, s2, x) = −

∫ 0

s2

[Au(r, s1, x) − Au(r, s2, x)]dr

+

∫ 0

s2

∫

Z

[G(u(r, s1, x), z) − G(u(r, s2, x), z)]µ̃(dr, dz)

+ u(s2, s1, x) − x.

Appealing to Itô’s formula for the square of the norm (see [14]), and recalling (6),
we obtain

E|u(0, s1, x) − u(0, s2, x)|2H

≤ −2E

∫ 0

s2

〈A(u(r, s1, x) − u(r, s2, x)), u(r, s1, x) − u(r, s2, x)〉 dr

+ E

∫ 0

s2

|G(u(r, s1, x), ·) − G(u(r, s2, x), ·)|2m dr + E|u(s2, s1, x) − x|2H

≤ 2eαs2
[

E|u(s2, s1, x)|2H + E|x|2H
]

,
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as well as, recalling (7),

E|u(s2, s1, x)|2H ≤
(δη

η
+ E|x|2H

)

eη(s1−s2) ≤
(δη

η
+ E|x|2H

)

.

Combining these inequalities we obtain

(9) E|u(0, s1, x) − u(0, s2, x)|2H ≤ 2
(δη

η
+ 2E|x|2H

)

eαs2 .

Letting s2 tend to −∞, it follows that there exists υ(x) ∈ L2(H) such that

lim
s→−∞

E|u(0, s, x) − υ(x)|2H = 0.

By the same arguments one can prove that

lim
s→−∞

E|u(0, s, x) − u(0, s, y)|2H = 0

for all x, y ∈ L2(H), hence that υ is independent of x ∈ L2(H). Letting s1 tend to
−∞ in (9) one obtains the exponential convergence. �

We can now prove the main result of this subsection.

Theorem 2.4. Assume that (6) holds and that x ∈ L2(H). There exists a
unique invariant measure ν for the semigroup Pt associated to (1). Moreover, one
has

∫

|y|2H ν(dy) < ∞,

and
∣

∣

∣

∣

Ptϕ(y) −

∫

ϕ(w) ν(dw)

∣

∣

∣

∣

≤ e−
α
2 t|ϕ|Ċ0,1(H)

∫

|y − w|H ν(dw)

for all t ≥ 0, y ∈ H and ϕ : H → R bounded and Lipschitz.

Proof. Let ν be the law of the random variable υ constructed in Lemma 2.3.
In particular,

∫

|y|2 ν(dy) < ∞ is equivalent to υ ∈ L2(H). Similarly, the previous
lemma immediately yields P ∗

s,0δy ⇀ ν for all y ∈ H in M1(H) as s → −∞.
Moreover, for any ϕ : H → R Lipschitz continuous and bounded, we have

∫

(P0,tϕ) dν = lim
s→−∞

∫

(P0,tϕ) d(P ∗
s,0δy) = lim

s→−∞
(Ps−t,0ϕ)(y) =

∫

ϕdν,

i.e. ν is invariant for Pt. Moreover, if ν is an invariant measure for Pt,
∣

∣

∣
Ptϕ(y)−

∫

ϕdν
∣

∣

∣
=

∣

∣

∣

∫

(Ptϕ(y)−Ptϕ(w)) ν(dw)
∣

∣

∣
≤ e−

α
2 t|ϕ|Ċ0,1(H)

∫

|y−w|H ν(dw)

for all t ≥ 0. In fact, by the same arguments used to derive (9), we get

E|u(t, y) − u(t, w)|2H ≤ e−αt|y − w|2H

and
∣

∣

∣

∫

(Ptϕ(y) − Ptϕ(w)) ν(dw)
∣

∣

∣
≤ |ϕ|Ċ0,1(H)

∫

E|u(t, y) − u(t, w)|H ν(dw)

≤ |ϕ|Ċ0,1(H)

∫

(

E|u(t, y) − u(t, w)|2H
)

1
2 ν(dw)

≤ e−
α
2 t|ϕ|Ċ0,1(H)

∫

|y − w|H ν(dw).



ERGODICITY FOR STOCHASTIC EQUATIONS WITH JUMPS 7

Let us prove uniqueness of ν. Let ν′ be an invariant measure for Pt, i.e.
∫

H

Ptϕ(y) ν′(dy) =

∫

H

ϕ(y) ν′(dy)

for all ϕ ∈ C0
b (H). Then, letting t tend to +∞, since

lim
t→+∞

Ptϕ(y) =

∫

H

ϕdν

for all y ∈ H , ϕ ∈ C0
b (H), we obtain, by the dominated convergence theorem,
∫

H

(
∫

H

ϕdν

)

ν′(dy) =

∫

H

ϕdν =

∫

H

ϕdν′

for all ϕ ∈ C0
b (H), i.e. ν = ν′. �

2.2. General case. We can still prove the existence of an ergodic invariant
measure without the assumption that the couple (A, G) is strictly dissipative, using
an argument based on Krylov-Bogoliubov’s theorem (see e.g. [8, Thm. 1.11]).

Theorem 2.5. There exists an invariant measure ν for Pt. Moreover, ν is
concentrated on V , i.e. ν(V ) = 1.

Proof. We assume p > 2, since the proof for the case p = 2 is completely
similar. Let x ∈ L2(H). By Itô’s formula for the square of the norm in H (see [14])
we have

|u(t, x)|2H − |x|2H = 2

∫ t

0

〈u(s−, x), du(s, x)〉 + [u](t)

= −2

∫ t

0

〈Au(s, x), u(s, x)〉 ds + 2

∫ t

0

∫

Z

〈u(s−, x), G(u(s−, x), z)〉 µ̄(ds, dz)

+

∫ t

0

∫

Z

|G(u(s−, x), z)|2H µ(ds, dz),(10)

where [u] stands for the quadratic variation of u (see e.g. [19, §25]). Taking
expectations on both side and recalling that the compensator of µ is Leb ⊗ m, we
obtain

E|u(t, x)|2H = −2E

∫ t

0

〈Au(s, x), u(s, x)〉 ds + E|x|2H +

∫ t

0

|G(u(s, x), ·)|2m ds,

hence, thanks to (3),

(11) E|u(t, x)|2H ≤ α0E

∫ t

0

|u(s, x)|2H ds − α1E

∫ t

0

|u(s, x)|pV ds + E|x|2H + tC0.

Since V →֒ H is continuous, there exists a constant c > 0 such that |v|H ≤ c|v|V
for all v ∈ V , hence

E|u(t, x)|2H ≤ α0E

∫ t

0

|u(s, x)|2H ds −
α1

cp
E

∫ t

0

|u(s, x)|pH ds + E|x|2H + tC0.

The elementary inequality ε2|y|2 ≤ εp|y|p + 1 (with ε > 0 and p ≥ 2) yields

−E|u(t, x)|pH ≤ −ε2−p
E|u(t, x)|2H + ε−p,
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thus also

E|u(t, x)|2H ≤ −

(

α1ε
2−p

cp
− α0

)
∫ t

0

E|u(s, x)|2H ds + t

(

α1ε
−p

cp
+ C0

)

+ E|x|2H

= −γ

∫ t

0

E|u(s, x)|2Hds + E|x|2H + tC(12)

where

γ :=
α1ε

2−p

cp
− α0, C :=

α1ε
−p

cp
+ C0.

Choosing ε so that γ > 0 and applying Gronwall’s inequality to (12), it follows that

(13) E|u(t, x)|2H ≤ E|x|2He−γt + K ∀t ≥ 0

where K is a constant independent of t. Moreover, by (11) and (13) we obtain

E

∫ t

0

|u(s, x)|pV ds ≤
1

α1

(

α0E

∫ t

0

|u(s, x)|2Hds + E|x|2H + tC0

)

≤
1

α1

[(

α0

γ
+ 1

)

E|x|2H + t(α0K + C0)

]

(14)

for all t > 0.
We shall now use the estimates just obtained to prove the tightness of the

sequence of measures

νn :=
1

n

∫ n

0

λt dt, n ∈ N,

where λt stands for the law of the random variable u(t, 0), so that
∫

H

ϕdνn =
1

n

∫ n

0

Eϕ(u(t, 0)) dt

for all ϕ ∈ Bb(H). By (14) we obtain

E

∫ t

0

|u(s, 0)|pV ds . t ∀t > 0,

which in turn implies

(15)

∫

H

|y|pV νn(dy) =
1

n

∫ n

0

E|u(s, 0)|pV ds . 1 ∀n ∈ N.

By Markov’s inequality we thus obtain

sup
n∈N

νn(|y|V ≥ R) ≤ sup
n∈N

1

nRp

∫ n

0

E|u(s, 0)|pV ds .
1

Rp
,

which converges to zero as R → ∞. Since the ball BR := {y ∈ H : |y|V ≤ R} is
bounded in V , and V →֒ H is compact, it follows that, for any given ε, there exists
R̄ ∈ R+ such that νn(BR̄) > 1 − ε uniformly over n, with BR̄ a compact subset
of H . In other words, the sequence νn is tight, and Prohorov’s theorem (see e.g.
[1, §15.5]) yields the existence of a subsequence νnk

such that νnk
⇀ ν in M1(H).

Furthermore, recalling that Pt is Feller on H , ν is an invariant measure for Pt by
Krylov-Bogoliubov’s theorem.

Let us now show that ν is concentrated on V . To this end, let us define the
function Θ(y) := supk∈N

∣

∣〈ℓk, y〉
∣

∣, where {ℓk}k∈N is a countable dense subset of

BV ′

1 ∩ H in the topology of H , and BV ′

1 is the closed unit ball in V ′. Hence it
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follows (e.g. by [24, p. 74]) that Θ : H → [0,∞] is a lower semicontinuous function
such that

Θ(y) =

{

|y|V , y ∈ V,

+∞, y ∈ H \ V.

Then (15) implies
∫

H

Θ(y)p ν(dy) = lim
L→∞

lim
M→∞

∫

H

(

sup
k≤L

|〈ℓk, y〉|p ∧ M
)

ν(dy)

= sup
L,M∈N

lim
h→∞

∫

H

(

sup
k≤L

|〈ℓk, y〉|p ∧ M
)

νnh
(dy)

≤ lim inf
h→∞

sup
L,M∈N

∫

H

(

sup
k≤L

|〈ℓk, y〉|p ∧ M
)

νnh
(dy)

= lim inf
h→∞

∫

H

|y|pV νnh
(dy) < ∞,

hence Θ < ∞ ν-a.e., thus also ν(V ) = 1 since {y ∈ H : Θ(y) < ∞} = V . �

Theorem 2.6. Let ν be an invariant measure for Pt. Then ν satisfies the
estimate

∫

H

(

|x|2H + |x|pV
)

ν(dx) < ∞.

Proof. Let x ∈ H and consider the one dimensional process U(t) := |u(t, x)|2H ,
which can be written, in view of (10), as

U(t) = |x|2H +

∫ t

0

F1(s) ds +

∫ t

0

∫

Z

F2(s, z) µ̄(ds, dz) +

∫ t

0

∫

Z

F3(s, z)µ(ds, dz),

where F1, F2, F3 are defined in the obvious way. Let χ ∈ C1
b (R+, R) be a smooth

cutoff function with χ(x) = 1 for all x ∈ [0, 1], χ(x) = 0 for all x ≥ 2, and χ′(x) ≤ 0
for all x ∈ R+. Setting χN (x) = χ(x/N) and ϕN (x) =

∫ x

0 χN (y) dy for all x ∈ R+,
Itô’s formula yields, suppressing the ·H subscript for simplicity of notation,

ϕN (U(t)) = ϕN (|x|2) +

∫ t

0

ϕ′
N (U(s−)) dU(s)

+
∑

s≤t

[

ϕN (U(s−) + ∆U(s)) − ϕN (U(s−)) − ϕ′
N (U(s−))∆U(s)

]

(16)

By Taylor’s formula, there exists θ ∈ (0, 1) such that the summand in the last term
on the right-hand side can be written as

1

2
ϕ′′

N

(

U(s−) + θ∆U(s)
)

|∆U(s)|2,

which is negative P-a.s. because ϕ′′
N (x) = χ′

N (x) = N−1χ′(x/N) ≤ 0 for all x ∈ R+.
Moreover, the second term on the right-hand side of (16) can be written as

−2

∫ t

0

χN (|u(s)|2)〈Au(s), u(s)〉 ds + 2

∫ t

0

∫

Z

χN (|u(s−)|2)

〈u(s−), G(u(s−), z)〉 µ̄(ds, dz) +

∫ t

0

∫

Z

χN (|u(s−)|2)|G(u(s−), z)|2 µ(ds, dz).
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Therefore, taking expectation on both sides of (16), recalling that the compensator
of µ is Leb ⊗ m, we are left with

EϕN (|u(t)|2) ≤ EϕN (|x|2) − 2E

∫ t

0

χN (|u(s)|2)〈Au(s), u(s)〉 ds

+ E

∫ t

0

∫

Z

χN (|u(s)|2)|G(u(s), z)|2 m(dz) ds.

Recalling (3), Tonelli’s theorem yields

EϕN (|u(t)|2) + α1

∫ t

0

EχN (|u(s)|2)|u(s)|pV ds

≤ EϕN (|x|2) + α0

∫ t

0

EχN (|u(s)|2)|u(s)|2 ds + tC0.

for all t ≥ 0. Integrating both sides with respect to ν on H , applying again Tonelli’s
theorem, the definition of invariant measure, and setting t = 1, we obtain

(17) α1

∫

H

χN (|x|2)|x|pV ν(dx) ≤ α0

∫

H

χN (|x|2)|x|2 ν(dx) + C0.

By the inequality ε2|x|2 ≤ εp|x|p + 1 and the continuity of V →֒ H , we have
∫

H

χN (|x|2)|x|2 ν(dx) ≤ εp−2cp

∫

H

χN (|x|2)|x|pV ν(dx) + ε−2,

hence
∫

H

χN (|x|2)|x|2 ν(dx) ≤ ε−2 +
εp−2cp

α1

(

α0

∫

H

χN (|x|2)|x|2 ν(dx) + C0

)

.

Choosing ε sufficiently small we get
∫

H

χN (|x|2)|x|2 ν(dx) . 1,

thus also, by the monotone convergence theorem,
∫

H |x|2 ν(dx) < ∞. This imme-
diately yields the result, in view of (17). �

The estimates just established allow one to deduce the existence of an ergodic
invariant measure.

Corollary 2.7. There exists an ergodic invariant measure for the semigroup
Pt.

Proof. The last estimate in the proof of the previous theorem and (17) allow
to conclude that there exists a constant N , independent of ν, such that

∫

H

|x|pV ν(dx) < N

for any invariant measure ν. Denoting by N ⊂ M1(H) the set of invariant measures
of Pt, Markov’s inequality yields

sup
ν∈N

ν(|x|V > R) ≤
1

Rp
sup
ν∈N

∫

H

|x|pV ν(dx) <
N

Rp

R→+∞
−−−−−→ 0.

Therefore, by the same argument used in the proof of Theorem 2.5, we conclude that
N is tight, hence, thanks to Prohorov’s theorem, (relatively) compact in M1(H).
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Since N is non-empty and convex, Krein-Milman’s theorem ensures that N has ex-
treme points, which are ergodic invariant measures for Pt by a well-known criterion
(see e.g. [1, thm. 19.25]). �

Finally, we give a sufficient condition for uniqueness of an invariant measure
under an extra superlinearity assumption on the couple (A, G).

Proposition 2.8. Assume that there exist η > 0 and δ > 0 such that

(18) 2〈Av − Aw, v − w〉 − |G(v, ·) − G(w, ·)|2m ≥ η|v − w|2+δ
H , ∀v, w ∈ V.

Then Pt has a unique strongly mixing invariant measure.

Proof. Let x, y ∈ H . Then Itô’s formula for the square of the norm in H
implies, after taking expectations,

E|u(t, x) − u(t, y)|2 + 2E

∫ t

0

〈Au(s, x) − Au(s, y), u(s, x) − u(s, y)〉 ds

= |x − y|2 + E

∫ t

0

∫

Z

|G(u(s, x), z) − G(u(s, y), z)|2 m(dz) ds,

and, by the superlinearity assumption (18),

E|u(t, x) − u(t, y)|2 ≤ |x − y|2 − η

∫ t

0

E|u(s, x) − u(s, y)|2+δ ds

≤ |x − y|2 − η

∫ t

0

(

E|u(s, x) − u(s, y)|2
)1+δ/2

ds

for all t > 0, where we have used Jensen’s inequality in the last step. Since the
solution ζ : R+ → R+ of the ordinary differential equation

ζ′ = −ηζ1+δ/2, ζ(0) = |x − y|2

is such that limt→∞ ζ(t) = 0 for all x, y ∈ H , we conclude by a standard comparison
argument that E|u(t, x) − u(t, y)|2 → 0 as t → ∞.

Let ν be an invariant measure for Pt. Then for any Lipschitz continuous and
bounded f : H → R we have

∣

∣

∣
Ptf(x) −

∫

H

f dν
∣

∣

∣
=

∣

∣

∣

∫

H

Ptf(x) ν(dy) −

∫

H

Ptf(y) ν(dy)
∣

∣

∣

≤

∫

H

|Ptf(x) − Ptf(y)| ν(dy)

≤ |f |Ċ0,1(H)

∫

H

(

E|u(t, x) − u(t, y)|2
)1/2

ν(dy).

Since (E|u(t, x) − u(t, y)|2)1/2 ≤ |x − y| and
∫

H |x − y| ν(dy) < ∞, we can pass to
the limit under the integral sign as t → ∞ by the dominated convergence theorem,
thus concluding that |Ptf(x) −

∫

H
f dν| → 0 as t → ∞, and in particular that ν is

the unique invariant measure. Moreover, since C1
b (H) is dense in L2(H, ν), one has

that for any f ∈ L2(H, ν),

lim
t→∞

Ptf(x) =

∫

H

f dν, x ∈ H,

i.e. ν is strongly mixing (in particular ergodic) as required. �



12 CARLO MARINELLI AND GIACOMO ZIGLIO

3. Essential m-dissipativity of the Kolmogorov operator

We recall that in this section we will work under the assumption that the noise
in (1) is additive, i.e. G(x, z) = G(z). Unfortunately we are not able, at the mo-
ment, to consider Kolmogorov equations associated to stochastic equations with
multiplicative noise, as several highly non-trivial complications arise. The situa-
tion is not different in the context of equations with Wiener noise, where results on
“multiplicative” Kolmogorov equations have been obtained only as perturbations of
the infinite-dimensional heat equation, or assuming very regular coefficients (typ-
ically of class C3

b ). We refer to [9] for more details on these and related issues.
Studying (non-local) Kolmogorov equations associated to (1) in its full generality
remains nonetheless a very interesting problem.

Denoting by u(·, x) the solution to the stochastic equation (1), we have proved
in the previous section that the semigroup

Ptf(x) := Ef(u(t, x)), f ∈ Bb(H)

admits a (not necessarily unique) invariant measure ν. As is well-known, Pt can
be extended to a strongly continuous Markovian semigroup of contractions on
Lp(H, ν), p ≥ 1. In the following we shall denote the extension of Pt to Lp(H, ν)
again by Pt.

Let us define the operator (L, D(L)) in L1(H, ν) by

Lf(x) = −〈Ax, Df(x)〉 + If(x), x ∈ V,

If(x) =

∫

Z

[

f(x + G(z)) − f(x) − 〈Df(x), G(z)〉
]

m(dz),

D(L) =
{

f ∈ C1,1
b (H) ∩ C1

b (V ′)
}

,

where C1,1
b (H) denotes the set of functions φ ∈ C1

b (H) with Dφ : H → H Lipschitz
continuous. Note that the nonlocal term If in the definition of L is a well-defined
element of L1(H, ν) for f ∈ C1,1

b (H). In fact, the fundamental theorem of calculus
yields

∣

∣f(x + G(z)) − f(x) − 〈Df(x), G(z)〉
∣

∣

≤
∣

∣

∣

∫ 1

0

〈Df(x + θG(z)), G(z)〉 dθ − 〈Df(x), G(z)〉
∣

∣

∣
≤ |Df |Ċ0,1(H→H)|G(z)|2

therefore, since G ∈ L2(Z, m), we have that |If | . 1, thus also If ∈ L1(H, ν).
Similarly, x 7→ 〈Ax, Df(x)〉 ∈ L1(H, ν), as explained below in a slightly more
general setting.

By a computation based on Itô’s formula one can see that the infinitesimal
generator of Pt in L1(H, ν) acts on smooth enough functions as the operator L
just defined. Since Pt is a contraction for all t ≥ 0, we have that (L, D(L)) is
dissipative in L1(H, ν). The question of L1-uniqueness then arises naturally: is
Pt the only strongly continuous semigroup on L1(H, ν) such that its infinitesimal
generator extends (L, D(L))? Under a “regularizability” hypothesis on A, we shall
give an affirmative answer to this question, proving that the closure of L in L1(H, ν)
generates a strongly continuous semigroup. In fact, since L is dissipative, this will
imply that the semigroup coincides with Pt.
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Throughout this section we shall assume that there exists a sequence of mono-
tone operators Aε ∈ Ċ0,1(H → H) ∩ C1

b (V → V ′) such that Aεx → Ax in V ′ for

all x ∈ V and |Aεx|V ′ ≤ N(|x|p−1
V + 1) with N independent of ε.

We are going to prove that L is dissipative in L1(H, ν) just assuming that ν is
an infinitesimally invariant for L satisfying the integrability condition

(19) x 7→ |x|pV + |x|H ∈ L1(H, ν).

More precisely, the assumption of ν being infinitesimally invariant amounts to as-
suming that

∫

H

Lf dν = 0 ∀f ∈ D(L).

Note that (19) and f ∈ D(L) imply that Lf ∈ L1(H, ν), so that the above condition

is meaningful. In fact, one has If ∈ L1(H, ν) for all f ∈ C1,1
b (H), as seen above,

and
|〈Ax, Df(x)〉| ≤ |Ax|V ′ sup

y∈V
|Df(y)| . |x|pV + 1 ∈ L1(H, ν).

Let us recall that any invariant measure is infinitesimally invariant, but the converse
does not hold, in general. Moreover, any invariant measure for (1) satisfies the
integrability condition (19) thanks to Theorem 2.6.

Lemma 3.1. The operator (L, D(L)) is dissipative, hence closable, in L1(H, ν).

Proof. Let f ∈ D(L) and γε ∈ C2(R) be a convex function such that γ′
ε ∈

C1
b (R) is a smooth approximation of the signum graph

sgn(x) =











−1, x < 0,

[−1, 1], x = 0,

1, x > 0.

Then we have

(20) Lγε(f) = 〈Ax, Df〉γ′
ε(f) + Iγε(f),

where, by a direct calculation,

Iγε(f) − γ′
ε(f)If

=

∫

Z

[

γε(f(x + G(z))) − γε(f(x)) − γ′
ε(f(x))

(

f(x + G(z)) − f(x)
)]

m(dz)

=: Rε(f).

Since γε is convex and differentiable, we infer that Rε(f) ≥ 0. Therefore, taking
the previous inequality into account and the infinitesimal invariance of ν, one has,
integrating (20) with respect to ν,

∫

Lγε(f) dν = 0 =

∫

γ′
ε(f)Lf dν +

∫

Rε(f) dν,

hence
∫

γ′
ε(f)Lf dν ≤ 0, and passing to the limit as ε → 0,

∫

Lf ξ dν ≤ 0,

where ξ ∈ L∞(H, ν), ξ ∈ sgn(f) ν-a.e. Since L1(H, ν)′ = L∞(H, ν), recalling that
the duality map J : L1(H, ν) → 2L∞(H,ν) is given by

J : u 7→
{

v ∈ L∞(H, ν) : v ∈ |u|L1(H,ν)sgn(u) ν-a.e.
}
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(see e.g. [4, §1.1]), we infer by the previous inequality that L is dissipative in
L1(H, ν). �

The following result gives a positive answer to the L1-uniqueness question posed
above.

Theorem 3.2. Let (L̄, D(L̄)) be the closure of the Kolmogorov operator L in
L1(H, ν). Then (L̄, D(L̄)) generates a strongly continuous Markovian semigroup of
contractions Tt in L1(H, ν), for which ν is an invariant measure.

Proof. By the Lumer-Phillips theorem (see e.g. [22, §1.4, Thm. 4.3]), L̄
generates a strongly continuous semigroup of contractions if R(αI − L̄) is dense in
L1(H, ν) for some α > 0.

Consider the regularized equation

(21) du(t) + Aελu dt =

∫

Z

G(z) dµ̄(dt, dz), u(0) = x ∈ H,

with

Aελx :=

∫

H

eλCAε(eλCx + y)Υ 1
2C−1(e2λC−1)(dy), λ > 0,

where C : D(C) ⊂ V → H is a self-adjoint, negative definite linear operator such
that C−1 is of trace class, and ΥQ stands for a centered Gaussian measure on H
with covariance operator Q. Then, by the Cameron-Martin formula (see e.g. [8,
p. 10]), one has

Aελ ∈ C∞(H → H), (Aελ)′ ∈ C∞
b (H → L(H → H))

and Aελx → Aεx for all x ∈ H as λ → 0 (see e.g. [8, §2.3-2.4] for details). Moreover,
Aελ inherits the monotonicity of Aε, and

(Aελ)′x =

∫

H

eλC(Aε)′(eλCx + y)eλCΥ 1
2C−1(e2λC−1)(dy),

so that Aελ ∈ C1
b (V → V ′).

Since Aελ is Lipschitz continuous on H , (21) admits a unique strong solution
uελ (e.g. by [19, thm. 34.7]). Set

(22) fελ(x) := E

∫ ∞

0

e−αtϕ(uελ(t, x)) dt, x ∈ H,

where ϕ ∈ D(L) and α > 0 are fixed. Since Aελ ∈ C1(H → H), one has, thanks
to [19, thm. 36.9], that x 7→ uελ(t, x) is Fréchet differentiable for all t ≥ 0, and its
Fréchet derivative acting on an arbitrary y ∈ H , denoted by vy

ελ := Duελ[y], solves
the initial value problem (in the P-a.s. sense)

(23)
d

dt
vy

ελ + (Aελ)′(uελ)vy
ελ = 0, vy

ελ(0, x) = y.

A computation based on Itô’s lemma for the square of the norm and the mono-
tonicity of Aελ reveals that x 7→ uελ(·, x) ∈ Ċ0,1(H → H2(T )) for all T ≥ 0,
and

∣

∣x 7→ uελ(t, x)
∣

∣

Ċ0,1(H→H)
≤ 1 ∀t ≥ 0.

This immediately implies that |vy
ελ| ≤ |y| for all y ∈ H , as the operator norm of the

Fréchet derivative of a Lipschitz continuous function cannot exceed its Lipschitz
constant. Moreover, since (Aελ)′(ξ) ∈ C0

b (H → H) for all ξ ∈ H , from (23) we
infer that x 7→ uελ(t, x) is continuously differentiable P-a.s. for all t ≥ 0 (e.g. by
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[11, §X.8]). Applying the chain rule for Fréchet derivatives (see e.g. [2, Prop. 1.4])

in (22), taking into account that ϕ ∈ C1,1
b (H) and uελ is Fréchet differentiable with

|Duελ(t)| bounded uniformly over t, we get

(24) Dfελ(x)[y] = E

∫ ∞

0

e−αtDϕ(uελ(t, x))vy
ελ(t, x) dt

for all y ∈ H , which also immediately yields

(25)
∣

∣Dfελ(x)[y]
∣

∣ . |y| ∀y ∈ H,

that is fελ ∈ C1
b (H). In order to conclude that fελ ∈ C1,1

b (H) we thus have to

prove that Dfελ ∈ Ċ0,1(H → H). Let us observe that we can write
∣

∣Dfελ(x)[y] − Dfελ(x)[z]
∣

∣

≤ E

∫ ∞

0

e−αt
∣

∣Dϕ(uελ(t, x))vy
ελ(t, x) − Dϕ(uελ(t, z))vy

ελ(t, z)
∣

∣ dt

≤ E

∫ ∞

0

e−αt
∣

∣Dϕ(uελ(t, x))vy
ελ(t, x) − Dϕ(uελ(t, x))vy

ελ(t, z)
∣

∣ dt

+ E

∫ ∞

0

e−αt
∣

∣Dϕ(uελ(t, x))vy
ελ(t, z) − Dϕ(uελ(t, z))vy

ελ(t, z)
∣

∣ dt,

where, recalling that x 7→ uελ(t, x) and vελ(t) are respectively Lipschitz and bounded

uniformly over ε, λ and t, and that ϕ ∈ C1,1
b (H),

∣

∣Dϕ(uελ(t, x))vy
ελ(t, z) − Dϕ(uελ(t, z))vy

ελ(t, z)
∣

∣

≤ |Dϕ|Ċ0,1(H→H)|uελ(t, x) − uελ(t, z)| |vy
ελ(t, z)|

. |x − z| |y|.

Moreover, we also have
∣

∣Dϕ(uελ(t, x))vy
ελ(t, x) − Dϕ(uελ(t, x))vy

ελ(t, z)
∣

∣ ≤ |Dϕ|C0(H→H)|v
y
ελ(t, x) − vy

ελ(t, z)|,

from which it follows that in order to show that Dfελ is Lipschitz on H it suffices
to prove that x 7→ vελ(t, x) is Lipschitz on H . We have

d

dt

(

vy
ελ(t, x) − vy

ελ(t, z)
)

+ (Aελ)′(uελ(t, x))vy
ελ(t, x) − (Aελ)′(uελ(t, z))vy

ελ(t, z) = 0,

hence, taking scalar products with vy
ελ(t, x) − vy

ελ(t, z),

1

2

d

dt

∣

∣vy
ελ(t, x) − vy

ελ(t, z)
∣

∣

2
+ I = 0,

where I ≡ I(ε, λ, t, x, z, y) satisfies

I =
〈

(Aελ)′(uελ(t, x))
(

vy
ελ(t, x) − vy

ελ(t, z)
)

, vy
ελ(t, x) − vy

ελ(t, z)
〉

+
〈

(Aελ)′(uελ(t, x))vy
ελ(t, z) − (Aελ)′(uελ(t, z))vy

ελ(t, z), vy
ελ(t, x) − vy

ελ(t, z)
〉

≥
〈

(Aελ)′(uελ(t, x))vy
ελ(t, z) − (Aελ)′(uελ(t, z))vy

ελ(t, z), vy
ελ(t, x) − vy

ελ(t, z)
〉

,

once one takes into account that (Aελ)′(uελ(t, x)) is a positive linear operator,
because Aελ : H → H is monotone and differentiable. Then we also get, recalling
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that |vy
ελ(t, z)| ≤ |y|,

−I ≤
1

2

∣

∣

(

(Aελ)′(uελ(t, x)) − (Aελ)′(uελ(t, z))
)

vy
ελ(t, z)

∣

∣

2

+
1

2

∣

∣vy
ελ(t, x) − vy

ελ(t, z)
∣

∣

2

≤
1

2
|y|2 [(Aελ)′]21

∣

∣uελ(t, x) − uελ(t, z)
∣

∣

2
+

1

2

∣

∣vy
ελ(t, x) − vy

ελ(t, z)
∣

∣

2

. |y|2 |x − z|2 +
∣

∣vy
ελ(t, x) − vy

ελ(t, z)
∣

∣

2
.

In the last step we have used that (Aελ)′ ∈ C∞
b (H → L(H → H) and that x 7→

uελ(t, x) is Lipschitz. Gronwall’s inequality then yields
∣

∣vελ(t, x) − vελ(t, z)
∣

∣ . |x − z|,

thus concluding the proof that fελ ∈ C1,1
b (H).

Let us now prove that fελ ∈ C1
b (V ′): in view of (24), it is enough to prove that

|vy
ελ(x)|V ′ ≤ |y|V ′ . Here we regard ϕ as a function from V ′ to R and x 7→ uελ(t, x)

as a map from V ′ to itself, so that vελ(t, x) ∈ L(V ′ → V ′) and vy
ελ(t, x) ∈ V ′. Let

J : V ′ → V ′′ ≃ V denote the duality map between V ′ and V (or equivalently, let
J = F−1, with F the duality map between V and V ′). Multiplying both sides
of (23) by J(vy

ελ(t, x)), in the sense of the duality pairing between V ′ and V , we

obtain, taking into account that (Aελ)′ is positive, |vy
ελ(x)|V ′ ≤ |y|V ′ . We have thus

proved that fελ ∈ D(L). This in turn implies that fελ satisfies

αfελ(x) + V ′

〈

Aελx, Dfελ(x)
〉

V

−

∫

Z

[

fελ(x + G(z)) − fελ(x) − 〈Dfελ(x), G(z)〉
]

m(dz) = ϕ(x), x ∈ H,

hence also

αfελ(x) + 〈Ax, Dfελ(x)〉 − Ifελ(x) = ϕ(x) + 〈Ax − Aελx, Dfελ(x)〉,

and
∣

∣αfελ + 〈Ax, Dfελ〉 − Ifελ

∣

∣

L1(H,ν)
≤ |ϕ|L1(H,ν) +

∣

∣〈Ax − Aελx, Dfελ〉
∣

∣

L1(H,ν)
.

Note that |Dfελ(x)|V . 1 thanks to the above bound on |vελ(x)|V ′ , so that
∫

H

∣

∣〈Ax − Aελx, Dfελ(x)〉
∣

∣ ν(dx)

.

∫

H

|Ax − Aεx|V ′ ν(dx) +

∫

H

|Aεx − Aελx|V ′ ν(dx)

which converges to 0 as λ → 0 and ε → 0 by the dominated convergence theorem. In
fact, thanks to the hypotheses on A and Aε, we have |Ax−Aεx|V ′ . |x|pV +1 for all
x ∈ V , and ν is concentrated on V by (19). Moreover, since H →֒ V ′ is continuous
and |Aελx| ≤ |Aεx| for all x ∈ H , we have |Aεx − Aελx|V ′ | . |x|H + 1 ∈ L1(H, ν),
because of (19). We have thus shown that

lim
ε→0

lim
λ→0

(

αfελ + 〈Ax, Dfελ〉 − Ifελ

)

= ϕ

in L1(H, ν), i.e. that R(αI − L) is dense in L1(H, ν), because D(L) is dense in
L1(H, ν). Since L is also dissipative, we immediately infer that L̄ is m-dissipative
in L1(H, ν).
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Let us denote the strongly continuous semigroup of contractions on L1(H, ν)
with generator L̄ by Tt. Let us now prove that Tt is Markovian: for this it is enough
to show that

∫

H

L̄f 1{f>1} dν ≤ 0 ∀f ∈ D(L̄)

(see e.g. [26, p. 109]). Let γε ∈ C2(R) be a convex function such that γ′
ε ∈ C1

b (R)
is a smooth approximation of x 7→ 1]1,+∞[(x). Then, proceeding as in the proof of

the previous lemma, we obtain the claim for all f ∈ D(L) first, and for all f ∈ D(L̄)
by density.

In order to prove that ν is an invariant measure for Tt, let us observe that one
has, by definition of infinitesimal invariance and by a density argument,

∫

H

L̄f dν = 0 ∀f ∈ D(L̄).

Since Ttf ∈ D(L̄) for all t ≥ 0 if f ∈ D(L̄), we have, by the infinitesimal invariance
of ν,

∫

H

Ttf dν =

∫

H

f dν +

∫ t

0

∫

H

L̄Tsf dν ds =

∫

H

f dν

for all f ∈ D(L̄), thus also for all f ∈ L1(H, ν) by density. �

Remark 3.3. The theorem implies that if ν is an invariant measure to the
stochastic equation (1) satisfying the integrability condition (19), then for all f ∈
Bb(H), one has that Ttf is a ν-version of Ptf for all t ≥ 0.

Remark 3.4. The dissipativity of L in L2(H, ν) is easier to prove: in fact, for
f ∈ D(L), we have

L(f2) = 2fLf + Γ(f, f),

where

Γ(f, f) =

∫

Z

|f(x + G(z)) − f(x)|2 m(dz) ≥ 0

is the so-called carré du champ operator associated to I, which is defined as

Γ(f, g) := I(fg) − fIg − gIf

and takes the form

Γ(f, g) =

∫

Z

(

f(x + G(z)) − f(x)
)(

g(x + G(z)) − g(x)
)

m(dz).

In particular one has the integration by parts formula
∫

f Lf dν = −
1

2

∫

Γ(f, f) dν.

However, as one might expect, one needs stronger integrability assumptions on ν
to prove the essential m-dissipativity of L, e.g. (roughly) of the type x 7→ |Ax|2 ∈
L1(H, ν). Such an assumption would in turn require the data of the problem to be
much more regular.
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4. Applications

4.1. SDEs with monotone drift. If V = H = R
d, so that (1) reduces to

an ordinary stochastic differential equation with monotone drift, our results on
ergodicity can be recovered applying [13, Thm. 2], which provides existence and
uniqueness of strong solutions (even in a more general situation than that treated
here), and [25, Thm. I.25], which establishes boundedness in probability for the
solution by a Lyapunov-type criterion. In our case one can choose as Lyapunov
function simply V (x) = |x|2.

4.2. Stochastic equations with drift in divergence form. Let D ⊂ R
d

be a bounded domain with smooth boundary, and set H := L2(D), V = W̊ 1
p (D),

V ′ = W−1
q (D), with p > 2, p−1 + q−1 = 1. Here W̊ 1

p (D), p ∈ [1,∞[, stands for
the closure of C∞

c (D), the set of real-valued functions on D with compact support,
with respect to the norm

|φ|W 1
p (D) := |φ|Lp(D) + |∇φ|Lp(D)

(see e.g. [16, §8.0]). Note that V →֒ H is compact by a Sobolev embedding theorem
(see e.g. [2, Thm. 0.4]). Consider the operator A : V → V ′ defined by

Au := − div
(

a(∇u)
)

,

which must be interpreted, as usual, as

〈Au, v〉 =

∫

D

〈a(∇u(ξ)),∇v(ξ)〉Rd dξ ∀v ∈ V.

Here a ∈ C0(Rd → R
d) is a monotone function satisfying the polynomial growth

condition |a(x)| . |x|p−1 + 1 and the coercivity condition xa(x) & |x|p − 1. Note
that the p-Laplacian is a special case of this example obtained taking a(x) = |x|p−2x
(see e.g. [24, §4.1] for a related example).

Let ãε ∈ Ċ0,1(Rd → R
d), ãε(x) := ε−1(x− (I + εa)−1x) be the Yosida approxi-

mation of a, so that, in particular ãε is monotone and Lipschitz continuous for each
ε > 0 with Lipschitz constant 2/ε (see e.g. [4, §2.1]). Set aε = ãε ∗ ζε, where {ζε}
is a standard sequence of mollifiers (in particular aε ∈ C∞, a′

ε ∈ C∞
b ), and define

the operator Aε on smooth functions as

Aεu = −(I − ε∆)−1 div
(

aε(∇(I − ε∆)−1u)
)

,

where ∆ stands for the Dirichlet Laplacian on D. We are going to show that Aε

satisfies the assumptions of the previous section. For this we shall need some elliptic
regularity results, which we recall here (see e.g. [16, §8.5] for details).

Lemma 4.1. Let f ∈ Lp(D), p ≥ 2. Then there exists ε1 such that, for all

ε < ε1, there exists a unique solution u ∈ W̊ 1
p to the equation

u − ε∆u = f

on D with Dirichlet boundary conditions. Moreover u satisfies the estimate

|u|Lp(D) + ε1/2|u|W 1
p (D) ≤ N |f |Lp(D),

where N does not depend on ε.
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Let us first show that Aε is well-defined both as an operator from H to itself,
as well as from V to V ′. Using the notation

v(ε) = (I − ε∆)−1v,

we may write

(26) 〈Aεu, v〉 =

∫

D

〈aε(∇u(ε)),∇v(ε)〉Rd dξ.

Note that if v ∈ H , then v(ε) ∈ W̊ 1
2 and

|∇v(ε)|H ≤ |v(ε)|W 1
2 (D) .ε |v|H .

Moreover, since aε is Lipschitz continuous, we have

|aε(∇u(ε))| ≤ |aε(∇u(ε)) − aε(0)| + |aε(0)| .ε |∇u(ε)|H + |aε(0)|,

thus also
∣

∣〈Aεu, v〉
∣

∣ ≤ |aε(∇u(ε))|H |∇v(ε)|H .ε (|u|H + aε(0))|v|H ,

which shows that Aε is well-defined from H to itself. Similarly, if u, v ∈ V =
W̊ 1

p (D), we have, by Hölder’s inequality,
∣

∣〈Aεu, v〉
∣

∣ ≤ |aε(∇u(ε))|Lq(D) |∇v(ε)|Lp(D) . (|u|V + 1)|v|V ,

where we have used again Lemma 4.1 and ‖ · ‖Lq(D) . ‖ · ‖Lp(D) for p > q and D
bounded. We have thus shown that Aε is well-defined from V to V ′.

The monotonicity of Aε, both as an operator from H to itself and from V to
V ′ is immediate by (26) and the monotonicity of aε.

Let us now show that Aε is Lipschitz continuous on H . In fact, taking into
account Lemma 4.1, we have

∣

∣〈Aεu − Aεv, w〉
∣

∣ =
∣

∣

〈

aε(∇u(ε)) − aε(∇v(ε)),∇w(ε)
〉∣

∣

.ε |∇(v(ε) − w(ε))| |∇w(ε)| .ε |u − v|H |w|H .

Since aε ∈ C1, a direct computation yields that Aε is Gâteaux differentiable from
V to V ′ with Gâteaux differential

(27)
〈

(Aε)′(u)[v], w
〉

=

∫

D

〈

a′
ε(∇u(ε))∇v(ε),∇w(ε)

〉

Rd dξ

for all u, v, w ∈ V . Note that the integral is well defined because |a′
ε(x)| . 1 for

all x ∈ R
d, since aε is Lipschitz continuous. By a well-known criterion, we can

conclude that Aε ∈ C1(V → V ′) if we show that (Aε)′ in (27) is continuous as

a map V → L(V → V ′). Let un → u in W̊ 1
p (D) as n → ∞: applying Hölder’s

inequality and Lemma 4.1 repeatedly, we obtain

sup
|v|V ≤1

sup
|w|V ≤1

〈

(Aε)′(un)[v] − (Aε)′(u)[v], w
〉

≤ |∇w(ε)|Lp(D)

∣

∣

(

a′
ε(∇u(ε)

n ) − a′
ε(∇u(ε))

)

∇v(ε)
∣

∣

Lp/(p−1)(D)

. |∇v(ε)|Lp(D)

∣

∣a′
ε(∇u(ε)

n ) − a′
ε(∇u(ε))

∣

∣

Lp/(p−2)(D)

.
∣

∣a′
ε(∇u(ε)

n ) − a′
ε(∇u(ε))

∣

∣

Lp/(p−2)(D)

n→∞
−−−−→ 0.

In fact, since a′
ε is Lipschitz, it follows that |a′

ε(x)| . |x|p−2 +1, and ∇u
(ε)
n → ∇u(ε)

in Lp implies convergence a.e. on a subsequence, from which we can conclude by



20 CARLO MARINELLI AND GIACOMO ZIGLIO

the dominated convergence theorem (see e.g. [2, Thm. 1.2.6] for complete details
in a similar situation). We have thus proved that Aε ∈ C1(V → V ′).

We conclude proving that

lim
ε→0

|Aεu − Au|V ′ = 0 ∀u ∈ V.

By (26) we have
∫

D

∣

∣

〈

aε(∇u(ε)),∇w(ε)
〉

−
〈

a(∇u),∇w
〉
∣

∣ dξ

≤

∫

D

∣

∣

〈

aε(∇u(ε)) − a(∇u),∇w
〉∣

∣ dξ +

∫

D

∣

∣

〈

aε(∇u(ε)),∇w(ε) −∇w
〉∣

∣ dξ.

Since |aε(x)| ≤ N(|x|p−1 + 1) with N independent of ε, the second term on the
right-hand side can be majorized by

∣

∣aε(∇u(ε))
∣

∣

Lq

∣

∣∇w(ε) −∇w
∣

∣

Lp
.

(∣

∣∇u
∣

∣

p−1

Lp
+ 1

) ∣

∣∇w(ε) −∇w
∣

∣

Lp

ε→0
−−−→ 0,

where we have used once again Lemma 4.1. Since ∇u(ε) → ∇u in Lp as ε → 0,
we can upgrade the convergence to a.e. convergence, passing to a subsequence,
still denoted by ε. By Egorov’s theorem, there exists Dδ ⊂ D, |D \ Dδ| ≤ δ, such
that ∇u(ε) → ∇u uniformly on Dδ as ε → 0. Since aε and its limit function a are
continuous on R

d, we have

lim
ε→0

lim
η→0

aε(∇u(η)) = lim
η→0

lim
ε→0

aε(∇u(η)) = a(∇u)

pointwise on Dδ, hence by a diagonal extraction argument, there exists a further
subsequence of ε, still denoted by ε, such that, by the dominated convergence
theorem,

∣

∣aε(∇u(ε)) − a(∇u)
∣

∣

Lq(Dδ)

ε→0
−−−→ 0.

On the other hand, we have

∣

∣aε(∇u(ε)) − a(∇u)
∣

∣

Lq(D\Dδ)
.

∫

D\Dδ

(

|∇u|p + 1
)

dξ

. |D \ Dδ|
(

|∇u|Lp + 1
)

≤ δ
(

|∇u|Lp + 1
)

.

Since δ is arbitrary, we conclude that the integral above converges to zero as ε → 0,
thus finishing the proof.

4.3. Stochastic porous media equations. Existence and uniqueness of in-
variant measures, their ergodicity, and Kolmogorov equations for stochastic porous
media equations perturbed by a Wiener noise have been considered in several recent
papers – see e.g. [7, 10] and references therein. Here we show how our abstract
results can be applied to a class of porous media equations perturbed by general
additive noise obtained as integral with respect to a compensated Poisson measure.

Let D, ∆, p, q, and {ζε} be defined as in the previous subsection. Set V =
Lp(D), H = W−1

2 (D), V ′ = ∆(Lq(D)), so that V →֒ H compactly by a Sobolev

embedding theorem (see e.g. [27, Prop. 4.6]). The norm in W−1
2 (D) will be denoted

by | · |−1. Consider the operator

A : V → V ′

u 7→ −∆β(u),
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where β ∈ C0(R) is increasing and satisfies

xβ(x) & |x|p − 1, |β(x)| . |x|p−1 + 1

for all x ∈ R. Note that these conditions on β imply that A is well-defined (see e.g.
[24, §4.1] for details). Set

βε(x) = β̃ε ∗ ζε, β̃ε = −ε−1 ∨ β(x) ∧ ε−1,

so that βε ∈ C∞
b , and define the operator

Aεu := −∆(I − ε∆)−1βε

(

(I − ε∆)−1u
)

on smooth functions. Then Aε is well-defined as an operator from H to itself, since

〈Aεu, w〉−1 =

∫

D

βε(u
(ε))w(ε) dξ ≤

∣

∣w(ε)
∣

∣

L2(D)

∣

∣βε(u
(ε))

∣

∣

L2(D)
.ε |w|−1

(

|u|−1 + 1
)

for all u, w ∈ W−1
2 (D), because βε is Lipschitz and |u(ε)|L2(D) . |u|−1 (see e.g. [5,

Thm. 3.3.1]). A completely analogous computation also shows that Aε ∈ Ċ0,1(H →
H). Let us also show that Aε is well-defined as an operator from V to V ′: for u,
w ∈ Lp(D), Hölder’s inequality yields

〈Aεu, w〉 =

∫

D

βε(u
(ε))w(ε) dξ ≤

∣

∣w(ε)
∣

∣

Lp(D)

∣

∣βε(u
(ε))

∣

∣

Lq(D)
. |w|Lp(D)

(

|u|Lp(D) + 1
)

,

where we have used Lemma 4.1 and the estimate |βε(x)| ≤ |β(x)| . |x|p−1 +1. The

latter also immediately implies that |Aεx|V ′ ≤ N(|x|p−1
V + 1), with N independent

of ε.
As in the previous subsection, it is not difficult to see that Aε is Gâteaux

differentiable from V to V ′, with Gâteaux differential

〈

(Aε)′u[v], w
〉

=

∫

D

β′
ε(u

(ε))v(ε)w(ε) dξ, u, v, w ∈ Lp(D).

The continuity of the Gâteaux differential (hence the Fréchet differentiability of
Aε : V → V ′) follows by an argument similar to the one used in the previous
subsection, and we shall be more concise here: for un → u in Lp(D), we have
〈

(Aε)′(un)[v] − (Aε)′(u)[v], w
〉

≤
∣

∣w(ε)
∣

∣

Lp(D)

∣

∣[β′
ε(u

(ε)
n ) − β′

ε(u
(ε))]v(ε)

∣

∣

Lp/(p−1)(D)

. |v|Lp(D) |w|Lp(D)

∣

∣β′
ε(u

(ε)
n ) − β′

ε(u
(ε))

∣

∣

Lp/(p−2)(D)
.

We proceed now as above: since u
(ε)
n → u(ε) a.e. along a subsequence, we can appeal

to the dominated convergence theorem, in view of the obvious bound |β′
ε(x)| .

|x|p−2 + 1.
The proof that Aεu → Au in V ′ for all u ∈ V as ε → 0 is completely similar to

the corresponding proof in the previous subsection, hence omitted.
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10. G. Da Prato, M. Röckner, B. L. Rozovskii, and Feng-Yu Wang, Strong solutions of stochastic
generalized porous media equations: existence, uniqueness, and ergodicity, Comm. Partial
Differential Equations 31 (2006), no. 1-3, 277–291. MR MR2209754 (2007b:60153)
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