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Abstract. Consider the Navier-Stokes equations with the initial data a ∈

L2
σ

`

R
d

´

. Let u and v be two weak solutions with the same initial value a. If

∇u ∈ L
2

2−r

“

(0, T ) ;
.

Xr(Rd)d
”

where
.

Xr(Rd) is the multiplier space (see the

definition in the text), then we have u = v.
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1. Introduction

Consider the Navier-Stokes equations in (0, T )×R
d with 0 < T < ∞ and d ≥ 3

∂tu + (u.∇)u − ∆u + ∇p = 0, (x, t) ∈ R
d × (0,∞),

∇.u = 0, (x, t) ∈ R
d × (0,∞),(1.1)

u(x, 0) = a(x), x ∈ R
d,

where u = u(x, t) is the velocity field, p = p(x, t) is the scalar pressure and a(x)
with div a = 0 in the sense of distribution is the initial velocity field. For simplicity,
we assume that the external force has a scalar potential and is included into the
pressure gradient.

In their famous paper, Leray [8] and Hopf [3] constructed a weak solution u of
(1.1) for arbitrary a ∈ L2

σ. The solution is called the Leray-Hopf weak solution. In
the general case the problem on uniqueness of Leray-Hopf’ s weak solutions is still
open question. Masuda [9] extended Serrin’ s class for uniqueness of weak solutions

1991 Mathematics Subject Classification. 35, 76.
Key words and phrases. Navier-Stokes equations, weak solution, multiplier space.

c©2009 International Press

385



386 SADEK GALA

and made it clear that the class L∞
(
(0, T ); Ld

(
R

d
))

plays an important role for
uniqueness of weak solutions. Kozono-Sohr [5] showed that the uniqueness holds
in L∞

(
(0, T ); Ld

)
.

Foias [1] and Serrin [10] introduced the class Lα ((0,∞); Lq) and showed that
under the additional assumption

u ∈ Lα ((0,∞); Lq) for
2

α
+

d

q
= 1 with q > d,

u is the only weak solution.
The purpose of this note is to improve the criterion on uniqueness of weak solu-

tions to in the class L
2

2−r

(
(0, T ) ;

.

Xr(R
d)d
)
. We know that for every a ∈ L2

σ

(
R

d
)
,

there is at least one weak solution u of (1.1) satisfying the energy inequality. Here

we mean by the weak solution a function u in u ∈ L∞
(
(0, T ) ; L2

σ

)
∩L2

(
(0, T ) ;

.

H
1

σ

)

satisfying (1.1) in the sense of distributions (Definition 2). For more facts concern-
ing uniqueness of weak solutions, we refer to a celebrated paper of Kozono and Sohr
[5] (see also [2]).

Now, we give a description of the multiplier space
.

Xr introduced recently by

P.G. Lemarié-Rieusset in his work [6] (see also [7]). The space
.

Xr of pointwise

multipliers which map L2 into
.

H
−r

is defined in the following way

Definition 1. For 0 ≤ r < d
2 , we define the homogeneous space

.

Xr by
.

Xr =
{
f ∈ L2

loc : ∀g ∈
.

H
r

fg ∈ L2
}

where we denote by
.

H
r (

R
d
)

the completion of the space D
(
R

d
)

with respect to the

norm ‖u‖ .

H
r =

∥∥∥(−∆)
r
2 u
∥∥∥

L2

.

The norm of
.

Xr is given by the operator norm of pointwise multiplication

‖f‖ .

Xr
= sup

‖g‖ .
H

r≤1

‖fg‖L2

We have the homogeneity properties : ∀x0 ∈ R
d

‖f(. + x0)‖ .

Xr
= ‖f‖ .

Xr

‖f(λ.)‖ .

Xr
=

1

λr
‖f‖ .

Xr
, λ > 0.

Additionally, for 0 ≤ r < d
2 , we have the following inclusion relations :

L
d
r

(
R

d
)
⊂ L

d
r

,∞
(
R

d
)
⊂

.

Xr

(
R

d
)
.

where Lp,∞ denotes the usual Lorentz (weak Lp) space. For the definition and basic
properties of Lorentz spaces Lp,q we refer to [11].

2. Uniqueness theorem

Before turning our attention to uniqueness issues, we start with some prereq-
uisites for our main result. Let

C∞
0,σ

(
R

d
)

=
{
ϕ ∈

(
C∞

0

(
R

d
))d

: div ϕ = 0
}
⊆
(
C∞

0

(
R

d
))d

.
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The subspace

L2
σ

(
R

d
)

= C∞
0,σ (Rd)

‖.‖
L2

=
{

u ∈ L2
(
R

d
)d

: div u = 0
}

obtained as the closure of C∞
0,σ with respect to L2-norm ‖.‖L2 . Hr

σ denotes the
closure of C∞

0,σ with respect to the norm

‖u‖Hr = ‖u‖L2 +
∥∥∥(1 − ∆)

r
2 u
∥∥∥

L2

, for r ≥ 0.

Our definition of Leray-Hopf weak solutions (see e.g. [5]) now reads :

Definition 2 (weak solutions). Let a ∈ L2
σ and T > 0. A measurable function

u is called a weak solution of (1.1) on (0, T ) if u satisfies the following properties

(1): u ∈ L∞
(
(0, T ) ; L2

σ

)
∩ L2

(
(0, T ) ;

.

H
1

σ

)
for all T > 0;

(2): u(t) is continuous in time in the weak topology of L2
σ with

〈u(t), φ〉 → 〈a, φ〉 as t → 0+

for all φ ∈ L2
σ;

(3): for any 0 ≤ s ≤ t ≤ T , u satisfies the identity

(2.1)

∫ t

s

{− 〈u, ∂τφ〉 + 〈u.∇u, φ〉 + 〈∇u,∇φ〉} dτ = −〈u(t), φ(t)〉 + 〈u(s), φ(s)〉 ,

for all φ ∈ H1
(
(s, t) ; H1

σ

)
. Here 〈., .〉 denotes the scalar product and ‖.‖L2

denotes the norm in L2
(
R

d
)d

.

Remark 1. For u and φ as above, the integral
∫ T

0

〈u.∇u, φ〉 dτ

is well defined since we have by the Sobolev inequality

‖u‖
L

2d
d−2

≤ C ‖∇u‖L2

that ∣∣∣∣∣

∫ T

0

〈u.∇u, φ〉 dτ

∣∣∣∣∣ ≤

∫ T

0

‖u‖
L

2d
d−2

‖∇u‖L2 ‖φ‖Ld dτ

≤ C sup
0<t<T

‖φ‖Ld

∫ T

0

‖∇u‖
2
L2 dτ

Existence of weak solutions has been established by Leray in [8] for initial
velocity in L2

σ

(
R

d
)
. The result is the following

Theorem 1 (Leray - Hopf). Let T > 0. Then, for any given a ∈ L2
σ

(
R

d
)
,

there exits at least one weak solution u to (1.1) on (0, T ) such that

(2.2) ‖u(t)‖
2
L2 + 2

∫ t

0

‖∇u(s)‖
2
L2 ds ≤ ‖a‖

2
L2 , 0 ≤ t < T.

and

‖u(t) − a‖L2 → 0 as t → +0.
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Let us introduced the class Ls ((0, T ) ; Lγ) with the norm ‖.‖Ls((0,T );Lγ)

‖u‖Ls((0,T );Lγ) =

(∫ T

0

‖u(t)‖s

Lγ dt

) 1

s

.

The classical result on uniqueness of weak solutions in the class Ls ((0, T ) ; Lγ) was
given by Foias, Serrin and Masuda [1], [10], [9].

Theorem 2 (Foias-Serrin-Masuda). Let a ∈ L2
σ

(
R

d
)
. Let u and v are two

weak solutions of (1.1) on (0, T ). Suppose that u satisfies

(2.3) u ∈ Ls ((0, T ) ; Lγ) for
2

s
+

d

γ
= 1 with d < γ < ∞.

Assume that v fulfills the energy inequality (2.2) for 0 ≤ t < T . Then we have
u = v on [0, T ).

Remark 2. In Theorem 2, v not need belong to the class (2.3). On the other
hand, every weak solution u with (2.3) fulfills the energy identity

(2.4) ‖u(t)‖
2
L2 + 2

∫ t

0

‖∇u(s)‖
2
L2 ds = ‖a‖

2
L2 , 0 ≤ t ≤ T.

It seems to be an interesting question whether every weak solution satisfies the
energy inequality (2.2).

Remark 3. The class (2.3) is important from the view point of scaling invari-
ance for the Navier-Stokes equations. It can be easily seen that if is a pair of the
solution to (1.1) on R

d × (0, T ), then so is the family {uλ, pλ}λ>0 where

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2u(λx, λ2t).

Scaling invariance means that there holds

‖uλ‖Ls((0,∞);Lγ) =
(
λ1−( 2

s
+ d

γ ) ‖u‖Ls((0,∞);Lγ)

)
= ‖u‖Ls((0,∞);Lγ) for all λ > 0

if and only if

2

s
+

d

γ
= 1.

We shall next deal with the critical case with s = ∞ and γ = d in (2.3).

Theorem 3 (Masuda [9], Kozono-Sohr [5]). Let a ∈ L2
σ

(
R

d
)
. Let u and v be

two weak solutions of (1.1) on (0, T ). Suppose that

(2.5) u ∈ L∞
(
(0, T ) ; Ld

)

and that v fulfills the energy inequality (2.2) for all 0 ≤ t < T . Then we have u = v

on [0, T ).

Remark 4. Masuda [9] proved that if u ∈ L∞
(
(0, T ) ; Ld

)
is continuous from

the right on [0, T ) in the norm of Ld, then there holds u = v on [0, T ). Later on,
Kozono-Sohr [5] showed that every weak solution in L∞

(
(0, T ) ; Ld

)
of (1.1) on

(0, T ) becomes necessarily continuous from the right in the norm of Ld.
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The same result holds when, for γ = +∞, we replace the assumption

u ∈ L2 ((0, T ) ; L∞)

by the weaker assumption

∇u ∈ L2
(
(0, T ) ;

.

X1

(
R

d
)d)

.

The replacement of hypothesis u ∈ L2 ((0, T ) ; L∞) by ∇u ∈ L2
(
(0, T ) ;

.

X1

(
R

d
)d)

was recently discussed in a similar context by Gala [2]. Moreover, we have

Theorem 4 (Gala). Let a ∈ L2
σ

(
R

d
)

and let u, v be two weak solutions of
(1.1) on (0, T ). Suppose that

(2.6) ∇u ∈ L2
(
(0, T ) ;

.

X1

(
R

d
)d)

and that v fulfills the energy inequality (2.2) for 0 ≤ t < T . Then we have u = v

on [0, T ].

Remark 5. By Theorem 2, every weak solution in L2 ((0, T ) ; L∞) is unique.

Our result on uniqueness of the weak solution now reads :

Theorem 5. Let a ∈ L2
(
R

d
)d

with ∇.a = 0 Assume that there exists a solution

u for the Navier-Stokes equations on (0, T )×R
d (for some T ∈ (0, +∞] with some

initial data a so that

u ∈ L∞
(
(0, T ) ; L2

σ

(
R

d
)d)

∩ L2

(
(0, T ) ;

.

H
1

σ

(
R

d
)d
)

,

and

∇u ∈ L
2

2−r

(
(0, T ) ;

.

Xr(R
d)d
)

for all 0 ≤ r ≤ 1.

Then, u is the unique Leray-Hopf solution associated with a on [0, T ).

The following corollary, which is an immediate consequence of Theorem 5 gives
a simpler sufficient condition in term of Lorentz spaces.

Corollary 1. Let a ∈ L2
(
R

d
)d

with ∇.a = 0 Assume that there exists a

solution u for the Navier-Stokes equations on (0, T ) × R
d (for some T ∈ (0, +∞]

with some initial data a so that

u ∈ L∞
(
(0, T ) ; L2

σ

(
R

d
)d)

∩ L2

(
(0, T ) ;

.

H
1

σ

(
R

d
)d
)

,

and

∇u ∈ L
2

2−r

(
(0, T ) ; L

d
r

,∞
(
R

d
)d)

,

where Lp,∞ denotes the usual Lorentz (weak Lp) space. Then, u is the unique
Leray-Hopf solution associated with a on [0, T ).

The same result again holds when the assumption

∇u ∈ L
2

2−r

(
(0, T ) ; L

d
r

,∞(Rd)d
)

is replaced by

u ∈ L
2

2−r

(
(0, T ) ; L

d
r

(
R

d
)d)

.

We are now in a position to proof the main result.



390 SADEK GALA

Proof. Let v be another weak solution of (1.1) associated to a on (0, T ) (with
associated pressure p) such that

v ∈ L∞
(
(0, T ) ; L2

σ

(
R

d
)d)

∩ L2

(
(0, T ) ;

.

H
1

σ

(
R

d
)d
)

and

∇u ∈ L
2

2−r

(
(0, T ) ;

.

Xr(R
d)d
)

.

We consider the difference w = u − v and we obtain

‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(s)‖2
L2 ds ≤ ‖a‖2

L2 ,

‖v(t)‖2
L2 + 2

∫ t

0

‖∇v(s)‖2
L2 ds ≤ ‖a‖2

L2 .

On the other hand, we have

〈u(t), v(t)〉 + 2

∫ t

0

〈∇u(s),∇v(s)〉 ds = ‖a‖
2
L2 +

∫ t

0

〈w.∇u, w〉 (s)ds

for all 0 ≤ t < T . Combining the above inequalities, we obtain

‖w(t)‖2
L2 + 2

∫ t

0

‖∇w(s)‖2
L2 ds

= ‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(s)‖2
L2 ds + ‖v(t)‖2

L2

+2

∫ t

0

‖∇v(s)‖
2
L2 ds − 2 〈u(t), v(t)〉 − 4

∫ t

0

〈∇u(s),∇v(s)〉 ds

≤ −2

∫ t

0

〈w.∇u, w〉 ds.(2.7)

We thus observe that by Young inequality
(
aαb1−α ≤ αa + (1 − α)b ≤ a + b with a, b ≥ 0 and 0 ≤ α ≤ 1

)
,

it follows that
∣∣∣∣
∫ t

0

〈w.∇u, w〉

∣∣∣∣ ds ≤

∫ t

0

‖w.∇u(s)‖L2 ‖w(s)‖L2 ds

≤

∫ t

0

‖w(s)‖ .

H
r ‖∇u(s)‖ .

Xr
‖w(s)‖L2 ds

≤

∫ t

0

‖w(s)‖
1−r

L2 ‖∇w(s)‖
r

L2 ‖∇u‖ .

Xr
‖w(s)‖L2 ds

≤

∫ t

0

(
‖w(s)‖

2
L2 ‖∇u‖

2

2−r
.

Xr

) 2−r
2 (

‖∇w(s)‖
2
L2

) r
2

ds

≤
1

2

∫ t

0

‖∇w‖
2
L2(Rd) ds +

C

2

∫ t

0

‖w‖
2
L2(Rd)d ‖∇u‖

2

2−r
.

Xr(Rd)
ds.

where we used the following ones (0 ≤ r ≤ 1)

‖ω‖ .

H
r =

1

(2π)
d
2

‖|ξ|r ω̂‖L2 ≤ ‖ω‖1−r

L2 ‖∇ω‖r

L2 .
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Hence by (2.7) there holds

‖w(t)‖2
L2 +

∫ t

0

‖∇w‖2
L2 dτ ≤ C

∫ t

0

‖w‖2
L2(Rd)d ‖∇v‖

2

2−r
.

Xr(Rd)
dτ

for all t > 0. Since ∇u ∈ L
2

2−r

(
(0, T ) ;

.

Xr(R
d)d
)

and since w(0) = 0, it follows

from the Gronwall inequality that

‖w(t)‖
2
L2 ≤ ‖w(0)‖

2
L2 exp

(
C

∫ t

0

‖∇u‖
2

2−r
.

Xr(Rd)
ds

)
,

and thus
‖w(t)‖2

L2 = 0, 0 ≤ t < T

and implies uniqueness of weak solutions. �
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