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Global solution to the Cauchy problem of the nonlinear

double dispersive wave equation with strong damping

C. Song and Z. Yang

Communicated by Y. Charles Li, received November 2, 2008.

Abstract. This paper concerns with the global classical solution to the Cauchy
problem of the nonlinear double dispersive wave equation with strong damping

utt − ∆u − ∆utt + ∆2u − c∆ut = d

N
X

i=1

∂

∂xi

σi(uxi
),

where c and d are positive constants. By the contraction mapping principle
and priori estimates, we prove that the Cauchy problem admits a unique global
classical solution, and by the concavity method, we give the sufficient condi-
tions on the blowup of the global solution of the Cauchy problem. Finally, as
an application, an example is also given.
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1. Introduction

In 1872, J. Boussinesq [1] derived model equation

utt − uxx + αuxxxx = β(u2)xx(1.1)
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to describe the propagation of long waves on the surface of shallow water, where
u(x, t) is an elevation of the free surface of fluid, subscripts denote partial deriva-
tives, and α > 0 and β are real numbers depending on the depth of fluid and the
characteristic speed of long waves. For the equation (1.1) and its various general-
ized forms, there have been a lot of impressive works from both local and global
well-posedness to the blowup of solutions [see, for example, 3-4, 6-7, 10, 13-14].
Since equation (1.1) is a nonlinear evolution equation describing wave motion in
a medium with dissipation , it is interesting to take into account the effects of
viscosity. V. Varlamov [2] studied the damped Boussinesq equation

utt − uxx + αuxxxx − 2buxxt = β(u2)xx(1.2)

and proved the local in time existence and uniqueness of smooth solutions of the
Cauchy problem, where 2buxxt represents the internal strong damping. The equa-
tion of (1.2)-type with weak damping ut and a linear feed-back term (u − [u]) on
a periodic domain has been examined in [5] from the point of view of establishing
the global well-posedness.

In the classical paper [1], Boussinesq also derived an approximate equation from
the Euler equation for surface wave in irrotational motion

utt − uxx − ε

2
uxxtt +

ε

6
uxxxx − 3εuxuxx = 0,(1.3)

where ε > 0 is parameter. By virtue of a priori estimate and the successive ap-
proximation, T. Kano and T. Nishida [8] investigated the global existence of the
Cauchy problem for the revised version of equation (1.3)

utt − uxx − ε

2
uxxtt +

ε

6
uxxxx + 2εuxuxt + εutuxx = 0.(1.4)

Since equation (1.3) includes two dispersive terms, we call it double dispersive wave

equation. Its generalized form of (1.3) is as follows

utt − uxx − auxxtt + buxxxx = dσ(ux)x,(1.5)

where a, b and d are positive constants, σ is a given nonlinear function. The equa-
tions (1.3) and (1.5) take into account the effects of dispersion and nonlinearity,
but in real processes, if we also consider the effects of the strong internal damping
[2, 15], then the double dispersion wave equation with strong damping is as follows

utt − uxx − auxxtt + buxxxx − cuxxt = dσ(ux)x.(1.6)

The N dimension model of (1.6) is

utt −△u − a△utt + b△2u − c△ut = d

N∑

i=1

∂

∂xi
σi(ux).(1.7)

We can assume that the dispersion coefficient a = b = 1 by the scaling transfor-
mation u(x, t) −→ u(

√
ax, a√

b
t). Also, we can assume that σi(0) = 0, otherwise, we

can replace σi(s) by σi(s) − σi(0). Thus, without loss of generality, we study the
following Cauchy problem

utt −△u −△utt + △2u − c△ut = d

N∑

i=1

∂

∂xi
σi(uxi

), x ∈ RN , t > 0,(1.8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN ,(1.9)
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where c and d are positive constants, u0(x) and u1(x) are given initial functions
and σi(s) (i = 1, · · · , N) are given nonlinear functions.

One of the methods of studying Cauchy problems for high-order nonlinear evo-
lution equations is the inverse scattering transform [11]. However, this technique
does not work for a wide class of dissipative equation which are not completely in-
tegrable. Another approach has been proposed by Naumkin and Shishmarev [12],
By means of using both the spectral and perturbation theories they have succeeded
in constructing the exact solutions of the Cauchy problem. In 1996, Varlamov [2]
developed the method to investigate that of the damped Boussinesq equation and
proved the local in time existence and uniqueness of smooth solution. Since the
equation (1.8) includes the dispersive term △utt, this approach can not be em-
ployed. In the present paper, we first reduce the Cauchy problem (1.8)-(1.9) to an
equivalent Cauchy problem for a differential integral equation by the fundamental
solution of a second-order partial differential equation, and then prove the exis-
tence and uniqueness of the local solution of the equivalent Cauchy problem by
the contraction mapping principle, namely, the Cauchy problem (1.8)-(1.9) admits
a unique local solution. Finally we prove the existence and uniqueness of global
solution of the Cauchy problem (1.8)-(1.9) by priori estimates.

The paper is organized as follows. In Section 2, some notations, Lemmas and
the main results are stated. The existence and uniqueness of local solution of the
problem (1.8)-(1.9) are studied by the contraction principle in Section 3. The exis-
tence and uniqueness of global solution of the problem (1.8)-(1.9) are investigated
by the priori estimates in Section 4. The sufficient conditions on the blowup of the
global solution of the problem (1.8)-(1.9) is discussed by the concavity method in
Section 5, and an application is given in the last section.

2. Main results

We use the following abbreviations: ‖ · ‖p = ‖ · ‖Lp(RN ) (1 ≤ p ≤ +∞) denotes
usual Lp norm, ‖ · ‖ = ‖ · ‖L2(RN ), (· , ·) denotes the L2-inner product, and equip

the Sobolev space Hr(RN ) with the norm

‖f‖Hr = ‖(I −△)r/2f‖
for each real number r, where I denotes an unitary operator. Throughout this
paper, u ∗ v is the convolution defined by

u ∗ v(x) =

∫

R

u(y)v(x − y)dy.

We need the following lemmas,
Lemma 2.1[9]. Assume that g(u) ∈ Cm(R) (m ≥ 1) and g(0) = 0. Then for

u ∈ Hm ∩ L∞, we have

‖g(u)‖Hm ≤ M0(‖u‖∞)‖u‖Hm ,

where M0(‖u‖∞) is a constant dependent on ‖u‖∞.
Lemma 2.2[9] (Sobolev multiplier lemma). Assume that m1, m2 ≥ m > N

2 .
Then for u ∈ Hm1 , v ∈ Hm2 , we have

‖uv‖Hm ≤ C‖u‖Hm1 ‖v‖Hm2 ,

where C is a positive constant independent of u and v.
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Lemma 2.3 [18] (Sobolev imbedding theorem). For m > k + N
2 , k ≥ 0 is an

integer, then

Hm ⊂ Ck(RN ) ∩ L∞.

Lemma 2.4[16]. Assume that F ∈ C2(R), F (t) ≥ 0, t ≥ 0 and F (0) > 0 ,
F ′(0) > 0, and

F ′′(t)F (t) − (γ + 1)[F ′(t)]2 ≥ 0,

where γ > 0 is a real number. Then there is a t1 ≤ t2 = F (0)/γF ′(0) such that
F (t) → ∞ as t → t1.

In the following, we state the main results.
Theorem 2.1. Assume that m > 1 + N

2 , u0 ∈ Hm+3, u1 ∈ Hm+2, σi(s) ∈
Cm+2, i = 1, · · · , N . Then the Cauchy problem (1.8)-(1.9) admits a unique local
solution u(x, t) with

u ∈ C([0, T 0); Hm+3) ∩ C1([0, T 0); Hm+2) ∩ C2([0, T 0); Hm+1),

where [0, T 0) is the maximal existence interval, T 0 > 0. Moreover, if

sup
0≤t<T 0

[‖u(t)‖2
Hm+3 + ‖ut(t)‖2

Hm+2 + ‖utt(t)‖2
Hm+1 ] < +∞,(2.1)

then T 0 = +∞.
Theorem 2.2. Assume that m > 1 + N

2 , u0 ∈ Hm+3, u1 ∈ Hm+2, σi(s) ∈
Cm+2, σ′(s) is bounded below, namely, there exists a constant Ci such that

σ′
i(s) ≥ Ci, s ∈ R, i = 1, · · · , N.

Then the Cauchy problem (1.8)-(1.9) admits a unique global classical solution
u(x, t) with

u ∈ C([0,∞); C4) ∩ C1([0,∞); C3) ∩ C2([0,∞); C2).

Theorem 2.3. Assume that
(1) The assumptions of Theorem 2.1 hold, Γi(u0xi

) ∈ L1(R
N ), where Γi(s) =∫ s

0
σi(τ)dτ, i = 1, · · · , N .
(2) There exists a constant γ > 0 such that

dσi(s)s + c2s2 ≤ (3 + 4γ)dΓi(s), s ∈ R, i = 1, · · · , N.(2.2)

(3) One of the following conditions holds

(i) E(0) = ‖u1‖2 + ‖∇u0‖2 + ‖∇u1‖2 + ‖△u0‖2 +
∑N

i=1

∫
RN Γi(u0xi

)dx < 0;
(ii) E(0) = 0 and (u0, u1) + (∇u0,∇u1) > 0;

(iii) E(0) > 0 and (u0, u1) + (∇u0,∇u1) >
√

2(1+γ)
1+2γ E(0)(‖u0‖2 + ‖∇u0‖2).

Then the solution u = u(x, t) of the Cauchy problem (1.8)-(1.9) must blow up in a
finite time.

Remark. The conditions of Theorem 2.3 can be reduced if we only consider
the nonexistence of global solutions of the Cauchy problem (1.8)-(1.9). We can
assume that u0 ∈ H2, u1 ∈ H1, Γi(u0xi

) ∈ L1(R
N ), conditions (2) and (3) of

Theorem 2.3 hold. Then the global solutions of Cauchy problem (1.8)-(1.9) cease
to exist in a finite time.
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3. Existence and uniqueness of the local solution

Let P (x) be a fundamental solution of the partial differential equation

y(x) −△y(x) = 0.

By virtue of Fourier transform, we get

P (x) =
1

(4π)N/2

∫ ∞

0

e−( |x|2

4τ
+τ)τ−N/2dτ, x ∈ RN ,

and we can prove that P (x) satisfies the following properties:
Lemma 3.1. (i) P (x) is defined and continuous on RN , P (x) ∈ Lp(R

N ) and

‖P‖1 = 1, where 1 ≤ p ≤ ∞ if N = 1, 1 ≤ p < ∞ if N = 2, 1 ≤ p < N
N−2 if N ≥ 3.

(ii) P (x) satisfies the equation

P (x) −△P (x) = δ(x),

where δ(x) is the Dirac function;
(iii) ‖P ∗ u‖Hm = ‖u‖Hm−2 .
Proof. (i). By virtue of the Minkowski inequality we have

‖P‖p ≤ 1

(4π)N/2

∫ ∞

0

e−ττ−N/2
(∫

RN

e−
p

4τ
|x|2dx

)1/p

dτ

=
1

(4π)N/2

∫ ∞

0

(4τπ/p)N/2pe−ττ−N/2dτ

= (4π)
N(1−p)

2p

∫ ∞

0

e−ττ

(
N
2p

−N
2 +1

)
−1

dτ

= (4π)
N(1−p)

2p Γ(
N

2p
− N

2
+ 1),

where Γ(·) denotes the Gamma function. By the definition of Gamma function we
know that (i) holds.

(ii). The proof of (ii) can be seen in [19].
(iii). Since

u = P ∗ (I −△)u = (I −△)(P ∗ u), P ∗ u = (I −△)−1u,

‖P ∗ u‖Hm = ‖(I −△)m/2(P ∗ u)‖ = ‖(I −△)m/2(I −△)−1u‖
= ‖u‖Hm−2 .

(iii) is proved.
Observe that equation (1.8) can be written as

(I −△)(utt −△u + cut) = d

N∑

i=1

∂

∂xi
σi(uxi

) + cut.(3.1)

Set

w = (I −△)u,

therefore, equation (3.1) is equivalent to the following differential-integral equation

wtt −△w = d

N∑

i=1

∂

∂xi
σi(P ∗ wxi

) + cP ∗ wt − cwt.(3.2)
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And hence the Cauchy problem (1.8)-(1.9) is equivalent to the Cauchy problem for
the equation (3.2) with initial data

w(x, 0) = (I −△)u0(x) = w0(x), wt(x, 0) = (I −△)u1(x) = w1(x).(3.3)

In the following, we prove that the Cauchy problem (3.2)-(3.3) admits a unique
local solution by the contraction mapping principle, for this goal, we first consider
the Cauchy problem for linear wave equation

wtt −△w = f(x, t), x ∈ RN , t > 0(3.4)

with initial data (3.3), we quote the following lemma.
Lemma 3.2[17]. Assume that w0 ∈ Hm+1, w1 ∈ Hm, m ≥ 0 is an integer;

for any T > 0, f ∈ L2(0, T ; Hm) ∩ C([0, T ]; Hm−1), then the Cauchy problem
(3.4)-(3.3) admits a unique solution satisfying

‖w(t)‖2
Hm+1 + ‖wt(t)‖2

Hm + ‖wtt(t)‖2
Hm−1

≤ 6e3T
(
‖w0‖2

Hm+1 + ‖w1‖2
Hm +

∫ t

0

‖f(τ)‖2
Hmdτ

)

+2 sup
0≤t≤T

‖f(t)‖2
Hm−1 , 0 ≤ t ≤ T,(3.5)

In order to prove Theorem 2.1, we first prove the following Lemma.
Lemma 3.3. Assume that m > 1+ N

2 , w0 ∈ Hm+1, w1 ∈ Hm, σi(s) ∈ Cm+2,
then the Cauchy problem (3.2)-(3.3) admits a unique local solution w(x, t) with

w ∈ C([0, T 0); Hm+1) ∩ C1([0, T 0); Hm) ∩ C2([0, T 0); Hm−1),

where [0, T 0) is the maximal existence interval, T 0 > 0. Moreover, if

sup
0≤t<T 0

[‖w(t)‖2
Hm+1 + ‖wt(t)‖2

Hm + ‖wtt(t)‖2
Hm−1 ] < +∞,(3.6)

then T 0 = +∞.
proof. Construct the space

B(K, T ) =
{
v|v ∈ C([0, T ]; Hm+1) ∩ C1([0, T ]; Hm) ∩ C2([0, T ]; Hm−1),

v(x, 0) = w0, vt(x, 0) = w1,

sup
0≤t≤T

[‖v(t)‖2
Hm+1 + ‖vt(t)‖2

Hm + ‖vtt(t)‖2
Hm−1 ] ≤ K2

}
,(3.7)

where K, T > 0, w0 ∈ Hm+1, w1 ∈ Hm. Define the norm as follows

‖v‖B = sup
0≤t≤T

[‖v(t)‖2
Hm+1 + ‖vt(t)‖2

Hm + ‖vtt(t)‖2
Hm−1 ]1/2.(3.8)

Obviously, B(K, T ) is a nonempty complete metric space. For v ∈ B(K, T ), we
consider the Cauchy problem for the linear equation

wtt −△w = h(x, t),(3.9)

with the initial data (3.3), where

h(x, t) = d
N∑

i=1

∂

∂xi
σi(P ∗ vxi

) + cP ∗ vt − cvt.

Let A denote the mapping which carries v into the unique solution to the linear
problem (3.9)-(3.3). Now we employ the contraction mapping principle to show A
has a unique fixed point in B(K, T ).
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In the following, we divide the proofs into three steps.
Step 1. We prove that A maps B(K, T ) into B(K, T ).
For any v ∈ B(K, T ), by the Sobolev embedding theorem and Lemma 3.1 we

have

P ∗ vxi
∈ C([0, T ]× RN ), i = 1, · · · , N.

And (3.7) implies

sup
(x,t)∈RN×[0,T ]

|P ∗ vxi
| ≤ K, v ∈ B(K, T ), i = 1, · · · , N.(3.10)

In the following we show that the linear problem (3.9)-(3.3) satisfies the con-
ditions of Lemma 3.2. By Lemma 2.1 and Lemma 2.2 we obtain

∫ t

0

‖h(τ)‖2
Hmdτ

≤ 3

∫ t

0

[
d2

N∑

i=1

‖σi(P ∗ vxi
)‖2

Hm+1

+c2(‖P ∗ vt(τ)‖2
Hm + ‖vt(τ)‖2

Hm )
]
dτ

≤ 3

∫ t

0

[
d2M0(K)2‖P ∗ ∇v(τ)‖2

Hm+1

+c2(‖P ∗ vt(τ)‖2
Hm + ‖vt(τ)‖2

Hm )
]
dτ

≤ 3[d2M0(K)2 + 2c2]K2T.(3.11)

‖ht(t)‖Hm−1

≤ d

N∑

i=1

‖σ′
i(P ∗ vxi

)(P ∗ vxit)‖Hm

+c(‖P ∗ vtt(t)‖Hm−1 + ‖vtt(t)‖Hm−1)

≤ dCM0(K)K2 + 2cK,(3.12)

and hence it follows from (3.12) that

sup
0≤t≤T

‖h(t)‖Hm−1 = sup
0≤t≤T

∥∥∥h(0) +

∫ t

0

ht(τ)dτ
∥∥∥

Hm−1

≤ sup
0≤t≤T

[
‖h(0)‖Hm−1 +

∫ t

0

‖ht(τ)‖Hm−1dτ
]

≤ d
N∑

i=1

‖σi(P ∗ w0xi
)‖Hm + c(‖P ∗ w1‖Hm−1 + ‖w1‖Hm−1)

+[dCM0(K)K2 + 2cK]T.(3.13)

From (3.11) and (3.13) we know that

h ∈ L2([0, T ]; Hm) ∩ C([0, T ]; Hm−1),
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therefore, by Lemma 3.2 we have

‖w(t)‖2
Hm+1 + ‖wt(t)‖2

Hm + ‖wtt(t)‖2
Hm−1

≤ 6e3T (‖w0‖2
Hm+1 + ‖w1‖2

Hm) + 18e3T [d2M0(K)2 + 2c2]K2T

+4
[
d

N∑

i=1

‖σi(P ∗ w0xi
)‖Hm + c(‖P ∗ w1‖Hm−1 + ‖w1‖Hm−1)

]2

+4[dCM0(K)K2 + 2K]2T 2.(3.14)

Take K big enough such that

K2 ≥ 12e3(‖w0‖2
Hm+1 + ‖w1‖2

Hm)

+8
[
d

N∑

i=1

‖σ(P ∗ w0xi
)‖Hm + c(‖P ∗ w1‖Hm−1 + ‖w1‖Hm−1)

]2

,(3.15)

for the above K, we choose T such that

T ≤ min{1, [36e3(d2M0(K)2 + 2c2) + 8(dCM0(K)K + 2)]−1}.(3.16)

Hence by (3.14), (3.15) and (3.16) we deduce that A maps B(K, T ) into B(K, T ).
Step 2. We prove that the mapping A : B(K, T ) −→ B(K, T ) is strictly

contractive.
In fact, for any v, v̄ ∈ B(K, T ), let w = Av, w̄ = Av̄, W = w − w̄, V = v − v̄,

so W satisfies the following Cauchy problem

Wtt −△W = G(x, t), (x, t) ∈ RN × [0, T ],(3.17)

W (x, 0) = 0, Wt(x, 0) = 0, x ∈ RN ,(3.18)

where

G(x, t) = d

N∑

i=1

∂

∂xi

[
σi(P ∗ vxi

) − σi(P ∗ v̄xi
)
]

+ cP ∗ Vt − cVt.(3.19)

From Lemma 2.1, Lemma 2.2 and (3.19) we get

∫ t

0

‖G(τ)‖2
Hmdτ

≤ 3

∫ t

0

[
d2

N∑

i=1

∥∥∥σ′
i

(
P ∗ (θ1vxi

+ (1 − θ1)v̄xi
)
)
(P ∗ Vxi

)
∥∥∥

2

Hm+1

+c2
(
‖P ∗ Vt(τ)‖2

Hm + ‖Vt(τ)‖2
Hm

)]
dτ

≤ 3

∫ t

0

[
C2d2M0(N)2‖P ∗ (θ1∇v

+(1 − θ1)∇v̄)(τ)‖2
Hm+1‖P ∗ ∇V (τ)‖2

Hm+1

+c2(‖P ∗ Vt(τ)‖2
Hm + ‖Vt(τ)‖2

Hm )
]
dτ

≤ 3T [C2d2M0(K)2K2 + 2c2] sup
0≤t≤T

[
‖V (t)‖2

Hm+1 + ‖Vt(t)‖2
Hm

]
,(3.20)
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where 0 < θ1 < 1 is a constant. Noting that the fact G(x, 0) = 0 we have

sup
0≤t≤T

‖G(t)‖2
Hm−1 = sup

0≤t≤T

∥∥∥G(0) +

∫ t

0

Gt(τ)dτ
∥∥∥

2

Hm−1

≤ sup
0≤t≤T

(∫ t

0

{
d

N∑

i=1

[∥∥∥
∫ 1

0

σ′′
ixi

(P ∗ (θvxi

+(1 − θ)v̄xi
))dθ · (P ∗ Vxi

)(P ∗ vxit)
∥∥∥

Hm−1

+‖σ′
ixi

(P ∗ v̄xi
)(P ∗ Vxit)‖Hm−1

]

+c(‖P ∗ Vtt(τ)‖Hm−1 + ‖Vtt(τ)‖Hm−1 )
}

dτ
)2

≤ 3T 2
[
C2d2M0(K)2(K4 + K2) sup

0≤t≤T
(‖V (t)‖2

Hm+1 + ‖Vt(t)‖2
Hm )

+4c2 sup
0≤t≤T

‖Vtt(t)‖2
Hm−1

]
.(3.21)

Therefore, by Lemma 3.1 we have

‖W (t)‖2
Hm+1 + ‖Wt(t)‖2

Hm + ‖Wtt(t)‖2
Hm−1

≤ 18Te3T [C2d2M0(K)2K2 + 2c2] sup
0≤t≤T

(‖V (t)‖2
Hm+1 + ‖Vt(t)‖2

Hm)

+6T 2
[
C2d2M0(K)2(K4 + K2) sup

0≤t≤T
(‖V (t)‖2

Hm+1 + ‖Vt(t)‖2
Hm)

+4c2 sup
0≤t≤T

‖Vtt(t)‖2
Hm−1

]

≤ 18(T + T 2)e3T [C2d2M0(K)2(K4 + K2) + 6c2] sup
0≤t≤T

[
‖V (t)‖2

Hm+1

+‖Vt(t)‖2
Hm + ‖Vtt(t)‖2

Hm−1

]
.(3.22)

If K, T satisfy (3.15) and (3.16) respectively, and

T ≤ min
{
1, [72e3C2d2M0(K)2(K4 + K2) + 6c2]−1

}
,(3.23)

thus, A is strictly contractive.
Step 3. By the contraction mapping principle, we deduce that A has a unique

fixed point w(x, t)(∈ B(K, T )) which is a solution to the problem (3.2)-(3.3). By
virtue of integral estimates and the Gronwall inequality we know that problem
(3.2)-(3.3) has at most a solution belonging to Y (T ′) for each T ′ > 0, where
Y (T ′) = C([0, T ′); Hm+1) ∩ C1([0, T ′); Hm) ∩ C2([0, T ′); Hm−1). Therefore, the
Cauchy problem (3.2)-(3.3) admits a unique local solution w(x, t) with

w ∈ C([0, T 0); Hm+1) ∩ C1([0, T 0); Hm) ∩ C2([0, T 0); Hm−1),

where [0, T 0) is the maximal existence interval, T 0 > 0.
Now we prove that if (3.6) holds, then T0 = +∞.
In fact, assume that (3.6) holds and T0 < +∞. For any T ′ ∈ [0, T0), we consider

the following Cauchy problem

w̃tt −△w̃ = k1σ(P ∗ w̃x)x − P ∗ w̃ + w̃,(3.24)

w̃(x, 0) = w(x, T ′), w̃t(x, 0) = wt(x, T ′).(3.25)
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Observe that

‖w(t)‖2
Hm+1 + ‖wt(t)‖2

Hm + ‖wtt(t)‖2
Hm−1

is uniformly bounded about T ′ ∈ [0, T0), and thus we choose T̃ ∈ (0, T0) such
that for each T ′ ∈ [0, T0), the Cauchy problem (3.24)-(3.25) has a unique solution

w̃ ∈ Y (T̃ ). The existence of such a T̃ can be obtained by the contraction mapping

principle. Particularly, (3.16) and (3.23) imply that T̃ can be chosen independently

of T ′ ∈ [0, T0). Set T ′ = T0 − T̃ /2, Let w̃ denote the corresponding solution to the
Cauchy problem (3.24)-(3.25), and define ŵ(x, t) by

ŵ(x, t) =

{
w(x, t), t ∈ [0, T ′],

w̃(x, t − T ′), t ∈
[
T ′, T0 +

eT
2

]
.

(3.26)

By the construction of ŵ(x, t), ŵ(x, t) is a solution to the Cauchy problem (3.2)-

(3.3) on [0, T0 +
eT
2 ], and by the local uniqueness, ŵ extends w, which contradict

the fact that the maximal time of existence is [0, T0). Hence, if (3.6) holds, then
T0 = +∞. Lemma 3.3 is proved.

Proof of Theorem 2.1. By Lemma 3.3, Lemma 3.1 and the equivalence
relation between the Cauchy problem (1.8)-(1.9) and (3.2)-(3.3), we immediately
obtain Theorem 2.1. Theorem 2.1 is proved.

4. Existence and uniqueness of the global classical solution

Proof of Theorem 2.2. Let φi(s) = σi(s)−σi(0)−kis, where ki = min{0, Ci},
then φi(s) is a monotonically increasing function and φi(0) = 0, and hence

∫ s

0

φi(τ)dτ ≥ 0

.
Rewrite the equation (1.8) as follows

utt −△u −△utt + △2u − c△ut = d

N∑

i=1

[ ∂

∂xi
φi(uxi

) + ki
∂2u

∂x2
i

]
.(4.1)

Multiplying both sides of (4.1) by ut and integrating the resulting expression
over (−∞, +∞), adding (u, ut) to the both sides and using the Cauchy inequality
we get

d

dt

(
‖u(t)‖2 + ‖∇u(t)‖2 + ‖ut(t)‖2 + ‖∇ut(t)‖2 + ‖△u(t)‖2

+2d

N∑

i=1

∫

RN

∫ uxi

0

φi(s)dsdx
)

+ 2c‖∇ut(t)‖2

≤ d
N∑

i=1

|ki|(‖uxi
(t)‖2 + ‖uxit(t)‖2) + ‖u(t)‖2 + ‖ut(t)‖2

≤ dJ(‖∇u(t)‖2 + ‖∇ut(t)‖2) + ‖u(t)‖2 + ‖ut(t)‖2,(4.2)

where J = max1≤i≤N{|ki|}. Making use of the Gronwall inequality we obtain

‖u(t)‖2 + ‖∇u(t)‖2 + ‖ut(t)‖2 + ‖∇ut(t)‖2

+‖△u(t)‖2 ≤ C1(T ), t ∈ [0, T ],(4.3)

here and in the sequel Ci(T ) (i = 1, 2, 3, 4) denote constants depending on T .
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Multiplying both sides of equation (1.8) by ∇2m+2ut, integrating the resulting
expression over (−∞, +∞) and integrating by parts we get

d

dt

(
‖∇m+1ut(t)‖2 + ‖∇m+2u(t)‖2 + ‖∇m+2ut(t)‖2 + ‖∇m+3u(t)‖2

)

= −2d

N∑

i=1

∫

RN

∇mσixi
(uxi

)∇m+2utdx.(4.4)

From (4.3) and Sobolev imbedding theorem we know that ∇u ∈ L∞, thus by using
Lemma 2.1 and the Cauchy inequality we conclude that

∣∣∣
N∑

i=1

∫

RN

∇mσixi
(uxi

)∇m+2utdx
∣∣∣

≤ M0(‖∇u(t)‖∞)
(
‖∇u(t)‖ + ‖∇m+2u(t)‖

)
‖∇m+2ut(t)‖.(4.5)

Substituting (4.5) into (4.4) we have

d

dt

(
‖∇m+1ut(t)‖2 + ‖∇m+2ut(t)‖2 + ‖∇m+2u(t)‖2 + ‖∇m+3u(t)‖2

)

≤ 2dM1(C1(T ))
[
‖∇m+1ut(t)‖2 + ‖∇m+2u(t)‖2

+‖∇m+2ut(t)‖2 + ‖∇m+3u(t)‖2
]
,(4.6)

(4.7)

where M1(C1(T )) are constants depending on C1(T ). Applying the Growall in-
equality to (4.6) we get

‖∇m+1ut(t)‖2 + ‖∇m+2ut(t)‖2 + ‖∇m+3u(t)‖2 ≤ C2(T ), t ∈ [0, T ].(4.8)

Therefore, it follows from (4.3) and (4.7) that

‖u(t)‖2
Hm+3 + ‖ut(t)‖2

Hm+2 ≤ C3(T ), t ∈ [0, T ).(4.9)

From equation (3.1) we obtain

utt = P ∗
[
d

N∑

i=1

∂

∂xi
σi(uxi

) + cut

]
+ △u − cut.(4.10)

By Lemma 3.1, Lemma 2.1 and (4.9) we get

‖utt(t)‖Hm+1 ≤ dM0(C1(T ))‖∇u(t)‖Hm

+‖△u(t)‖Hm+1 + 2c‖ut(t)‖Hm+1 .(4.11)

And hence by (4.8) we have

‖u(t)‖2
Hm+3 + ‖ut(t)‖2

Hm+2 + ‖utt(t)‖2
Hm+1 ≤ C4(T ), t ∈ [0, T ),(4.12)

i.e.

sup
0≤t<T

[‖u(t)‖2
Hm+3 + ‖ut(t)‖2

Hm+2 + ‖utt(t)‖2
Hm+1 ] < +∞,(4.13)

by Theorem 2.1, we get T = +∞, namely, the Cauchy problem (1.8)-(1.9) admits
a unique global generalized solution

u ∈ C([0,∞); Hm+3) ∩ C1([0,∞); Hm+2) ∩ C2([0,∞); Hm+1).
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Furthermore, by using the imbedding theorem (m > 1 + N
2 ), we obtain that the

Cauchy problem (1.8)-(1.9) admits a unique global classical solution

u ∈ C([0,∞); C4(RN )) ∩ C1([0,∞); C3(RN )) ∩ C2([0,∞); C2(RN )).

Theorem 2.2 is proved.

5. Blow up of solutions for the Cauchy problem (1.8)-(1.9)

Proof of Theorem 2.3. By the assumptions of Theorem 2.3 we know that the
Cauchy problem (1.8)-(1.9) admits a unique local solution. If Cauchy problem (1.8)-
(1.9) admits a global generalized solution, then multiplying both sides of equation
(1.8) by ut and integrating the resulting expression over RN we get

d

dt

(
‖ut(t)‖2 + ‖∇u(t)‖2 + ‖∇ut(t)‖2 + ‖△u(t)‖2

+2d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx
)

+ 2c‖∇ut(t)‖ = 0,

integrating both sides over (0, t), we obtain the energy identity,

E(t) = ‖ut(t)‖2 + ‖∇u(t)‖2 + ‖∇ut(t)‖2 + ‖△u(t)‖2

+2d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx + 2c

∫ t

0

‖∇ut(τ)‖dτ = E(0),

where

(5.1) E(0) = ‖u1‖2 + ‖∇u0‖2 + ‖∇u1‖2 + ‖△u0‖2 + 2d
N∑

i=1

∫

RN

∫ u0xi

0

σi(s)dsdx.

Let

F (t) = ‖u(t)‖2 + ‖∇u(t)‖2 + β(t + η)2,(5.2)

where β and η are nonnegative real numbers to be given later. Then

F ′(t) = 2[(u, ut) + (∇u,∇ut) + β(t + η)].(5.3)

It follows from (5.3) and the Schwartz inequality that

F ′(t)2 ≤ 4
[
‖u(t)‖‖ut(t)‖ + ‖∇u(t)‖‖∇ut(t)‖ +

√
β
√

β(t + η)
]2

≤ 4F (t)
[
‖ut(t)‖2 + ‖∇ut(t)‖2 + β

]
.(5.4)

By (5.3) and equation (1.8) we have

F ′′(t) = 2[‖ut(t)‖2 + (u, utt) + ‖∇ut(t)‖2 + (∇u,∇utt) + β]

= 2
[
‖ut(t)‖2 − ‖∇u(t)‖2 − c(∇u,∇ut) − d

N∑

i=1

(σi(uxi
), uxi

)

−‖△u(t)‖2 + ‖∇ut(t)‖2 + β
]
.(5.5)
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Hence by (5.4) and (5.5) we get

F (t)F ′′(t) − (1 + γ)F ′(t)2

≥ 2F (t)
{[

‖ut(t)‖2 − ‖∇u(t)‖2 − c(∇u,∇ut) − d
N∑

i=1

(σi(uxi
), uxi

)

−‖△u(t)‖2 + ‖∇ut(t)‖2 + β
]
− 2(1 + γ)

[
‖ut(t)‖2 + ‖∇ut(t)‖2 + β

]}

= 2F (t)F1(t),(5.6)

where

F1(t) = −(1 + 2γ)
[
‖ut(t)‖2 + ‖∇ut(t)‖2 + β

]
− d

N∑

i=1

(σi(uxi
), uxi

)

−‖∇ut(t)‖2 − ‖△u(t)‖2 − c(∇u,∇ut).(5.7)

By (5.7) and equation (1.8) we obtain

F ′
1(t) = −2(1 + 2γ)[(ut, utt) − (ut,△utt)] −

d

dt

[
d

N∑

i=1

(σi(uxi
), uxi

) + ‖△u(t)‖2

+‖∇u(t)‖2 + c(∇u,∇ut)
]

= (1 + 2γ)
[ d

dt

(
‖∇u(t)‖2 + ‖△u(t)‖2 + 2d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx
)

+2c‖∇ut(t)‖2
]
− d

dt

[
d

N∑

i=1

(σi(uxi
), uxi

) + ‖△u(t)‖2

+‖∇u(t)‖2 + c(∇u,∇ut)
]
.(5.8)

Observe that

c(∇u,∇ut) ≤ c2‖∇u(t)‖2 + ‖∇ut(t)‖2

≤ c2
N∑

i=1

∫

RN

u2
xi

dx + E(0) − d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx,
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from (5.8) and condition (2) of Theorem 2.3 we have

F1(t) = (1 + 2γ)
[
‖∇u(t)‖2 + ‖△u(t)‖2

+2d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx + 2c

∫ t

0

‖∇ut(τ)‖2dτ
]

−
[
d

N∑

i=1

(σi(uxi
), uxi

) + ‖△u(t)‖2 + ‖∇u(t)‖2 + c(∇u,∇ut)
]

+F1(0) − (1 + 2γ)
[
‖∇u0‖2 + ‖△u0‖2

+2d

N∑

i=1

∫

RN

∫ uxi

0

σi(s)dsdx
]

+
[
d

N∑

i=1

(σi(u0xi
), u0xi

) + ‖△u0‖2 + ‖∇u0‖2 + c(∇u0,∇u1)
]

≥ −(1 + 2γ)
[
‖u1‖2 + ‖∇u1‖2 + ‖∇u0‖2 + ‖△u0‖2

+2d

N∑

i=1

∫

RN

Γi(u0xi
)dx + β

]

+
N∑

i=1

∫

RN

[
(3 + 4γ)dΓi(uxi

) − dσi(uxi
)uxi

− c2u2
xi

]
dx − E(0)

≥ −2(1 + γ)E(0) − (1 + 2γ)β.(5.9)

(1) If E(0) < 0, choosing β = − 2(1+γ)
1+2γ E(0), then

F (t)F ′′(t) − (1 + γ)F ′(t)2 ≥ 0,

and F (0) > 0, F ′(0) > 0 if η is large enough, by Lemma 2.3 ,we obtain that
F (t) → +∞ as t → t1 ≤ t2 = F (0)/γF ′(0) = (‖u0‖2 +‖∇u0‖2 +βη2)/2γ[(u0, u1)+
(∇u0,∇u1) + βη)], and hence ‖u(t)‖2 + ‖∇u(t)‖2 → +∞ as t → t1.

(2) If E(0) = 0, choosing β = 0, then

F (t)F ′′(t) − (1 + γ)F ′(t)2 ≥ 0,

and F ′(0) > 0 by assumption (u0, u1) + (∇u0,∇u1) > 0, by lemma 2.3, we obtain
that F (t) → +∞ as t → t1 ≤ t2 = F (0)/γF ′(0) = (‖u0‖2 + ‖∇u0‖2)/2γ[(u0, u1) +
(∇u0,∇u1)], and hence ‖u(t)‖2 + ‖∇u(t)‖2 → +∞ as t → t1.

(3) If E(0) > 0, choosing β = 0, from (5.6) and (5.9) we have

F (t)F ′′(t) − (1 + γ)F ′(t)2 ≥ −4(1 + γ)E(0)F (t).(5.10)

Let H(t) = F−γ(t), then

H ′(t) = −γF−γ−1(t)F ′(t)

H ′′(t) = −γ(−γ − 1)F−γ−2(t)F ′(t)2 − γF−γ−1(t)F ′′(t)

= −γF−γ−2(t)[F (t)F ′′(t) − (1 + γ)F ′(t)2]

≤ 4(1 + γ)γE(0)F−γ−1(t).(5.11)
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By the assumption (iii) of theorem 2.3 we know that

H ′(0) = −γF−γ−1(0)F ′(0) < 0.

Let

T = sup{τ |H ′(τ) < 0, τ ∈ [0, t)},(5.12)

by the continuity of H ′(t), we get T > 0. Multiplying (5.11) by 2H ′(t) yields

d

dt
H ′(t)2 ≥ −8γ2(1 + γ)E(0)F−2γ−2(t)F ′(t)

=
8γ2(1 + γ)

1 + 2γ
E(0)[F−2γ−1(t)]′, t ∈ [0, T ).(5.13)

Integrating both sides of (5.13) over [0, T ) we obtain

H ′(t)2 ≥ H ′(0)2 +

8γ2(1 + γ)

1 + 2γ
E(0)[F−2γ−1(t) − F−2γ−1(0)], t ∈ [0, T ).(5.14)

It follows from the condition (iii) of theorem 2.3 that

H ′(0)2 − 8γ2(1 + γ)

1 + 2γ
E(0)F−2γ−1(0) > 0.(5.15)

So by the continuity of H ′(t), (5.14) and (5.15) we conclude that

(5.16) H ′(t) ≤ −
[
H ′(0)2 − 8γ2(1 + γ)

1 + 2γ
E(0)F−2γ−1(0)

]1/2

, t ∈ [0, T ),

by the definition of T , (5.16) holds for all t ≥ 0. Therefore

H(t) ≤ H(0) −
[
H ′(0)2 − 8γ2(1 + γ)

1 + 2γ
E(0)F−2γ−1(0)

]1/2

t, t > 0,(5.17)

and hence H(T1) = 0 for some T1, and 0 < T1 ≤ T0, with

T0 = H(0)
[
H ′(0)2 − 8γ2(1 + γ)

1 + 2γ
E(0)F−2γ−1(0)

]−1/2

.

So F (t) → +∞ as t → T1 ≤ T0, namely, ‖u(t)‖2 + ‖ux(t)‖2 → ∞ as t → T1.
Therefore, if the conditions of Theorem 2.3 holds, then ‖u(t)‖2 + ‖ux(t)‖2

becomes infinite at a finite time. Theorem 2.3 is proved.
An example. We take N = 1, σi(s) = a0s

p + s, where a0 6= 0 is a constant
and p is a positive integer. And take initial data

u0(x) = u1(x) =

{
k0

d
dxe

1
x2−1 , |x| < 1,

0, |x| ≥ 1,
(5.18)

where k0 6= 0 is a constant. Obviously u0, u1 ∈ C∞
0 (R1).

(1) When a0 > 0 and p is an odd number, a simple verification shows that
all assumptions of the Theorem 2.2 are satisfied, then by Theorem 2.2 we obtain
that the Cauchy problem (1.8)-(1.9) admits a unique global classical solution u(x, t)
with

u ∈ C([0,∞); C4) ∩ C1([0,∞); C3) ∩ C2([0,∞); C2).
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(2) When a0 > 0 and p > 2 is an even number, c = d = 1, a simple calculation
shows that condition (2) of Theorem 2.3 is satisfied, with Γi(s) = a0s

p+1/(p + 1)+
s2/2, γ = (p − 2)/4. Taking |k0| suitable large such that

2da0

p + 1
kP+1
0

∫

|x|<1

( d2

dx2
e

1
x2−1

)p+1

dx < 0

and

E(0) = ‖u1‖2 + ‖u0x‖2 + ‖u1x‖2 + ‖u0xx‖2 + 2d

∫

R1

∫ u0x

0

σ(s)dsdx

≤ k2
0

[ ∫

|x|<1

( d

dx
e

1
x2−1 )2dx + (2 + d)

∫

|x|<1

( d2

dx2
e

1
x2−1

)2

dx

+

∫

|x|<1

( d3

dx3
e

1
x2−1

)2

dx
]

+
2da0

p + 1
kP+1
0

∫

|x|<1

( d2

dx2
e

1
x2−1

)p+1

dx < 0.(5.19)

Therefore, by Theorem 2.3, the solution of the Cauchy problem (1.8)-(1.9) must
blow up at a finite time.

(3) When a0 < 0 and p is an odd number, c = d = 1, a simple computation
shows that condition (2) of Theorem 2.3 is satisfied, with Γ(s) = a0s

p+1/(p + 1) +
s2/2, γ = (p − 2)/4. Taking k0 > 0 suitable large such that E(0) < 0, then the
solution of the Cauchy problem (1.8)-(1.9) must blow up at a finite time.
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