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ABSTRACT. In this paper, we consider the viscoelastic Euler-Bernoulli type
equation

¢
ugt + A2u — M(||Vul|?)Au — / g(t — 7)A2u(r)dr + p(x,ur) = 0.
0

This work is devoted to prove the existence of global solutions and decay for
the energy of solutions of the Euler-Bernoulli type equation with nonlinear
localized dissipation term.
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1. Introduction

In this paper, we are concerned with global existence and decay for the energy
of solutions of viscoelastic Euler-Bernoulli type equation with a localized damping
term:

(1.1)
uge + A%u — M(||Vul||*)Au — fgg(t — )A%u(T)dr + p(z,us) =0 in Q2 xRy,
u=%=0 on T xRy,
u(z,0) = uo(x), ' (x,0)=ui(z), z€Q,
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where 0 C R" is an bounded domain, n > 1, with boundary I' = I'yUT'; of class C?,
where T’y and T'; are closed and disjoint and M € C*(Ry). g(s) is a bounded C?
function and p(z, s) is almost everywhere differentiable and nondecreasing function
in s. We shall denote by v the unit outward normal vector to I'. A and V stand
for the Laplacian and gradian with respect to the spatial variables respectively, ’
denotes the derivative with respect to time ¢, and Ry = [0, 00).

The problem of proving existence of solutions has been studied from old times.
There are many methods to solve existence of solutions, but recently many authors
use the Galerkin’s method. This paper is used Galerkin’s method solving existence
of solutions, too.

The problem of stabilization of partial differential equation has recently at-
tracted a lot of attention and various results are available (see [1], [2], [4], [8],
[9], [10], [18], [19], [20], [21]). When p = 0, the problem has been treated many
authors (cf. [8], [9], [10], [20] and a list of references therein). However, this paper
put great emphasis on p(z,u:) term.

For the case of wave equation, Zuazua [22] had treat the linear case p(z,v) =
a(x)v with a(z) vanishing somewhere on Q. Zuazua proved that any energy finite
solution u(t) satisfies the exponential decay

E(t) <CE(0)e ™

for some A > 0. For the nonlinear case of p(x,v) like p(z,v) = a(x)|v|"v, Nakao
has many treated (cf. [14], [15], [16]). In this case, the energy of solutions goes to
zero, as t — 0o, with a polynomial rate of decay.

For the case of Euler-Bernoulli type equation, Tucsnak [21] studied the linear
case p(x,v) = a(x)v. By using appropriate Lyapounov functional, Tucsnak [21]
found the result like Zuazua [22]. For the nonlinear case, Cavalcanti et al. [3]
considered the following problem

t
uge + APy — / gt —7)A%u(r)dr +a(t)us =0 in  Qx (0,00),
0

where a(t) is a nonlocal nonlinearity type function. In this case, M = 0 in (1.1).
Using the perturbed energy method by constructing a suitable Liapunov functional,
[3] proved the exponential energy of the Euler-Bernoulli equation with a nonlocal
dissipation in general domains. And Chardo et al. [4] considered

g + A%y — oz(fQ |Vu|2d3:) Au+ p(z,uy) =0 in  Q x(0,00),
u:g—Z:O, on I x(0,00),

where « is a positive constant and p(z,u;) is a localized damping term. In this
case, M is a constant and g = 0 in (1.1). By using the Nakao’s lemma, it was
proved that polynomial decay rate of solution.

This paper leads to special difference inequalities for the energy of solutions
and allows to apply the method developed in [4] and [14]. However, method of
[14] produces some lower order terms that we manage with compactness. In order
to obtain some identities, [4] and [14] were used the multiplier technique but the
multiplier method is not suitable when dealing with the memory term fg g(t —
7)A%u(7)dr. To overcome this point we use well-known inequalities and Sobolev
imbedding theorem properly. The problem is then reduced to showing that the
unique solution of (1.1) such that u = 0 in w x R4 is the trivial one, which requires
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the application of a unique continuation result in [7]. At this point, we observe that
the unique continuation result in [7] applies only when w is neighborhood of the
whole boundary, which leads us to require such assumption in our present proofs.
In other words, the decay of solutions of (1.1) is obtained localizing the damping
function in a neighborhood of the whole boundary.

To prove the decay rats of the energy

(1.2) E(t):l/ |u'|2dx+3/ | Aul2dz + ~ NI(|[Vul[2),
2 /o 2 Jo 2
where .
M(t):/ M (s)ds
0

we need to define a modified energy function. Indeed, a formal computation gives

E(t) = — (ol ') o) + / o(t — 7)(Au(r), A/ (1) dr,

which shows that we do not have any information about the sign of E’(¢). To solve
this problem we use an argument from Dafermos [5] to define a new energy function
e(t) such that €'(t) < 0 and E(t) < Ce(t) for some positive constant C'. This will
be discussed in section 4.

This paper is organized as follows : In section 2, we recall the notation and
hypotheses and introduce our main results and lemma to prove our main results.
In section 3, using the Galerkin’s method we prove the existence and uniqueness
of regular and weak solutions to problem (1.1). In section 4, we estimates some
identities and inequalities and then using lemmas, we prove the energy decay.

2. Notations and main results

We begin this section introducing some notations and our main results. Through-
out this paper we define V = {v € H2(Q);v = % = 0 on I'} equipped with the norm
l[v]lv = ||Av||, where ||-|| is a L2-norm, W = {v € V; A%v € L?*(Q)} equipped with
the norm||w||w = |Jw||v +||A%w|| and (u,v) = [, u(z)v(z)dz. From the Poincare’s
inequality, it follows that || - ||y and || - ||ware equivalent to the standard norms of
H?(Q) and H*(Q2), respectively. Now we give the hypotheses for the main results.

(H1) Hypotheses on Q.

Let © C R™ be an bounded domain, n > 1, with boundary I' = I'g UT'; of
class C2. Here I'y and I'; are closed and disjoint, I'y # 0, satisfying the following
condition:

m-v>6>0only, m-v<0on Ty,

(2.1) m(z) =2 —2°@2° € R") and R = max|m(z)],
€N

where v represents the unit outward normal vector to T'.
(H2) Hypotheses on M.
We consider M is a real-valued nondecreasing function satisfying the conditions

(2.2) MecC'Ry) and M(s)>sp>0 forall s>0.

(H3) Hypotheses on g.
We assume the g : R, — R, is a bounded C? function satisfying

(2.3) 1- /OO g(s)ds=1¢>0
0
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and such that
(2.4) —c1g(t) < g'(t) < —cag(t),

(2.5) 0<g"(t) < esg(t),
where ¢y, co and cg are positive constants.

(H4) Hypotheses on p.

Let p(z, s) is almost everywhere differentiable and nondecreasing function in s
and satisfies

caa(@)|s|"* < |p(x, 5)| < csa(x)(|sH +[s]), if  [s| <1
(2.6) and
coa(@)|sPH < |p(w, 5)| < crax)([sPF +s]), i s[> 1,
wherecy, cs5, cg and ¢y are positive constants, —1 < r < oo, -1 <p < % ifn>3
(-l<p<ooifn=12). Also a(x) € L>(9) satisfies
a(z) >ay >0 on w,

where w is a neighborhood of T'.
In addition, we assume that

p(x,5)s >0 and 6;)5;0, ) >0, forall (z,5)€QxR;
(2.7) 90(-.5) 5
p(-,8) and pa,s € C(Q).
s

A typical example of p(z, s) is

a(x)L=""Ys|"s if |s| <L
p(z,s) = o1 .
a(x)L~ P s|Ps if  |s| > L

with L > 0 (cf. [14]).

Now, we are in a position to state our main results.

Theorem 2.1. Let the initial data {ug(z),u1(x)} belong to V x L*(Q) and
assume that (Hy) — (Hy) hold. Then problem (1.1) admits an unique weak solution
u having the reqularity

u € C(Ry; V) NCHRy; LA(Q)).

If we show Theorem 2.1, then we can assume the following hypothesis.

(Hs)

Let u is a solution of (1.1) and for any ® € WhH(Ry), ¥ € L®(R), o € Ry,
the only function v € L?(Q x R, ) satisfies the conditions

v + A% — D(H) Av — aA?u — fot U(t—7)A%u(r)dr =0 in QxRy,
v=2=0 on TI'xRy,
v=0 in wxRy,
thenu=v=01in Q x Ry.
Remark 2.1. For ® € WH*(Ry) and ¥ € L*(Ry), (Hs) holds true at least

if T1 = T (which can be true for star-shaped domains), according to [7], [21].
Moreover, if Q is an interval of the real line (Hy) holds for any open subset w C

(cf- [6]).



STABILIZATION OF THE EULER-BERNOULLI TYPE EQUATION 339

In order to state another main result, we define the associated energy of problem
(1.1) by

1 1 1~
E(t):—/ |u’|2da:+—/ |Au|2d:c+—M(||Vu||2),
2 Jq 2 Ja 2
where

M(t) = /0 M (s)ds.

Theorem 2.2. Let (ug(z),ui(z)) € V x L*(Q2) and R > 0 such that
[I(uo(2), ur(@))llvxL2(2) < R
. Then the energy E(t) associated with the solutions of (1.1) has the decay property
EM)<CA+)™, (i=1,234),

where C' = C(R, E(0)) is a positive constant and the decay rate n is given as follows
corresponding to the cases;

case 1

Ifr>0and 0 <p< %, thenm:%.

case 2

Ifr >0 and -1 <p <0, then

. 2 1
=mind ——, —— ;.
" r+2 p+2
case 3

If-1<r<o0 andOSpgi then

n—27

. 1 —r
=ming ——, — ,.
s r+1"2(r+1)
case 4

If -1 <r<0and -1 <p <0, then

. 1 —r 1
= min .
G r+1'20r+1) p+1

In order to prove of above theorem, we need the following lemmas.

Lemma 2.1. (Gagliardo-Nirenberg). Let 1 < r < p < o0, 1 < q < p and
0 <m. Then,
-6
1ollwrs < Cllol[fymallvl| L
forv e W™P(Q) N L"(Q), Q CRY, where C is a positive constant and

g (k1 1\ (m 1 1\
\N r pJ\N r g
provided that 0 < 0 < 1.
Lemma 2.2. (Nakao [13]) Let ¢(t) be a nonnegative function on Ry satisfying

sup 6(s)" 7 < w(n){(t) - 6t + 1)}

t<s<t+T

with T > 0, v > 0 and (t) a nondecreasing continuous function. Then ¢(t) has
the decay property

o(t) < {sb(O)7 +/Tt1/)(8)1618}Tl for t=T.
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If v =0 in the above we have
6(t) < Cp(0)e™

for some A > 0.

3. Existence of solutions

In this section we prove the existence and uniqueness of regular and weak
solutions to problem (1.1). Firstly we consider regular solutions and then, using
density arguments we extend the same results for weak solutions.

Let us solve the variational problem associated with (1.1), which is given by:
find u(t) € W such that

(uge(t), w) + (Au(t), Aw) + M(||Vul|[?)(Vu(t), Vw)

_ / gt = 7)(Du(r), Aw)dr + (p(us(t)), w) = 0

for all w € V. Let {w’} be a complete orthogonal system of W. For each m € N,
let V;,, be the subspace generated by {w!,w?,--- w™}. We search for a function

u™(t) =Y 65, (thu
j=1
satisfying the approximate equation
(B.1)  (uff(t), w) + (Au™(t), Aw) + M(||[Vu™[|*)(Vu™(t), V)
t
= [ st = r)dum ), Aw)dr + (o 1), w) = 0

0

with initial data

(3.2) u™(0)=ul' —ug in W and u*(0)=u*—u; in V.

By standard methods in differential equation, we prove the existence of solutions
to the approximate equation (3.1) on some interval [0, ¢,,). Then, this solution can
be extended to the whole interval [0, T], where T' = oo, by using the following first
estimate.

3.1. The first estimate. Replacing w by u}*(¢) in equation (3.1) we obtain

1d

2dt
d t

=— (/ gt — 7)(Au™ (1), Aum(t))dT)
dt \ Jo

(Il @1 + 1A @)]|2 + ([ 7um @)%

(3.3)
—/0 g (t — 7)(Au™ (1), Au™(t))dT

— 9O Au™@)I1* = (plug™ (1)), uf" (1))
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Considering the Cauchy-Schwartz inequality and taking hypotheses of g into ac-
count, we deduce

/0 g (t — 7)(Au™ (1), Au™(t))dT

—~
w
=

~—
A

< IIAum(lf)ll/0 lg'(t = )| Au™(7)]|dT

IN

c? m 1 ¢ m
FIA O + 5ol | ot = 7)1A0 ()]
From (2.2), (2.7), (3.3) and (3.4), we deduce by integration over (0,t)

%(Ilu?(lt)ll2 + [ Au™ ()] + so[Vu™ (1))

(35) < (IIUE”||2+|IAUZ?II2+M(|IVUB"II2)+/Og(t—T)(Aum(T),Aum(t))dT

2 [t m 1 K m
+ 5 [l1awm©IPds + gl [ 180 Pds
0 0

On the other hand, using the inequality ab < ;-a” + €b?, we have
t
(3.6) / gt — 7)(Au™(7), Au™(t))dT
0

< dlau O + glllliro s 9l [ 180" Par

Replacing (3.6) in (3.5) with € > 0 sufficiently small and employing Gronwall’s
lemma we obtain the first estimate

(3.7) [lug* (@) + [[Au™ @) + [[Vu™ (#)]]* < C1,

where C] is a positive constant. Therefore, the approximate solution u™(t) can be
extended to the whole interval [0, T], where T' = co.

3.2. The second estimate. Preliminary to the second estimate, we introduce
the useful lemma. The following lemma (with ¢ = 0) will be used to estimate
[fufz (]]-

Lemma 3.1. (¢f [17]) ||p(-,ui*(t))|| < C with C = C(ug,u1) a positive
constant (independent of t, m).
In order to estimate ||uf}(t)||?, we need to estimate ||ul}(0)]|.

First of all, we are estimating u7}(0) in the L?norm. Considering ¢t = 0 and
w = uj}(0) in (3.1), we obtain

[|uft (0)]] < (IIAQUB”II + M(|[Vug'[[) || Aug' || + IIP(UT)II)IIU?Z(O)II-
From the previous lemma and hypotheses on the initial data, it follows that

(3.8) |[uf?(0)|] < Cy  forall me€N,

where Cs is a positive constant.
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Now we are going to obtain an estimate for u}} and Au}* in L?-norm. Finally,
differentiating (3.1) with respect to ¢ and substituting w = uy}(t), we have

5 (k1P + 12wz o))
= F2M ([ (0)1?) (Vo™ (), W (1)) (™ (1) (1)
+ M(IT O) (™ (6) uf (1)
+9(0) (A (1), Mug' (1)) — g(0))| A ()
(3.9)

+ %</0 gt —7)(Au™ (1), Au;”(t))dT)
—/O 9" (t = T)(Au™ (1), Aui" (t))dT — ¢’ (0)(Au™ (), Auy" (1))

(25 0y g 1))

Since M € C*(Ry) and (3.7), using the Young’s inequality and Sobolev imbedding
theorem we get
(3.10)

20 (|7 (1)) (T (1), T () (A (8), gt (1)) < a (8w @)1+ (0],

where d; is a positive constant. Similarly, we can easily check that
m m m m 1 m
(B.11)  [MUITe O @0 @), u (1) < da(elldu @] + -l O,

where ds is a positive constant.
On the other hand, from (2.5), we easily obtain as similar calculation of (3.4)

(3.12) /0 g"(t — 1) (Au™ (1), Auj*(t))dT

t

CQ m m
< 28w @1 +llllzrioney [ ot = l|Au" (0)]Pdr

Replacing (3.10) - (3.12) in (3.9) and using the positivity of % (cf. (2.7)), and
then integrating (3.9) over (0,t) we have

S (g + 1 1P
1 1 ’
< SO+ gl P +dy [ (i) + |13 ()]s
da ' m 2 ' m 2 m m
B13)  + [ P+ doe [ 180 0) s+ g(0) (A0 0). A7)
g [ m 2 2 ! m 2
+ 2 [ 18w @Fds + gl [ 118070 Pds

—l—/o g’(t—T)(Aum(T),Au;”(t))dT—/0 g (0)(Au™(s), Au*(s))ds.
We note that
it oo, aue)] < S5 A @) + i o)

4e



STABILIZATION OF THE EULER-BERNOULLI TYPE EQUATION 343

t
(3.15) / §(t — ) (Du™ (7), Aul (1) )dr
0
2 i ! 2
< A OIF + HHsllzr 0. l9llm0m | A0 () dr
and

/ ™(s), Au(s))ds

(3.16) < (g / [|Au™( ||2ds—|——/ [|Auf™(s)||*ds.

Substituting (3.14) - (3.16) in (3.13) with € > 0 sufficiently small and taking into
account (3.2), (3.7) and (3.8), from Gronwall’s lemma we obtain the second estimate

(3.17) [lugi I + [|Au™ (1)]]* < Ca,

where Cs is a positive constant.
By estimates (3.8) and (3.17), we obtain

(u™) is bounded in  L*(0,T;V),
(u*)  is bounded in  L*°(0,T; L*(R2)),
(u*)  is bounded in  L°°(0,T;V),

(uf?)  is bounded in  L*(0,T; L*(2)).

Therefore, we get a subsequence of (u™), which from now on will be represented
by the same notation, such that

(3.18) u™ —wu  weak starin  L%°(0,T;V),
(3.19) ul® — u;  weak star in - L™(0,T; L*(Q)),
(3.20) uy® — up  weak star in - L°°(0,T;V),
(3.21) ut — uy  weak starin - L>(0,T; L*(Q)).

From Aubin-Lions lemma, we deduce that

(3.22) u™ —wu  strongly in  C([0,T];V),

(3.23) u —wu;  strongly in - C([0,T]; L*(Q)).

The above convergences (3.18) - (3.23) and the fact that (p(z, ui™),v) — (p(z,ut),v)
in D'(0,T), for all v € V(cf. Lemma 4.4. in [17]) are enough to pass to the limit
n (3.1). Then it is a matter of routine to conclude the existence of global solutions
in [0, 7).
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3.3. Uniqueness. Let u! and u! be two solutions to problem (1.1). Then,

z = ul — u! verifies

(3.24)  (zue(t), w) + (Az(t), Aw) + (plu (1)), w) = (p(uf (1)), w)
= /0 g(t — 7)(Az(T), Aw)dr + M(||Vul||2) (Vul (1), Vw)
= M (17 ?) (V' (1), V)
for all w € V. Replacing w = z,(t) in (3.24) and adding the term
M (|[9u!|[2) (Ve (1), Vi (8)
both sides of (3.24), it follows that

| =

329) 55 (IO +1as01?) + 2 (11967|2) (93(0), V(0)
(o (1)) = plut (). (1)
- /0 ot — 7Y (D=(r), Az (1)) dr+
(a1 (19 2) = M (I191) ) @ 0,000,
On the other hand, we note that

& (i) ivsore]

= 2M'(||Vu'|12) (V! (1), Fuf (0)I[V2 (]2 + 2M (V! |[2) (V2(8), T(8)).
Replacing above equality in (3.25), we get

o (||zt<t>||2 1Az + M(||Vuf||2)||w<t>||2)

(oLt (1)) = o (1), (1)
(5.26) = [ st =@t azorar + (3 (vt )

N | =
Y

- 2191 )t 0, 2(0)

+ M (|19l |12) (Tu (8), Vaf )V 2(0)| 12

We observe that
(3.27) / ot — 7)(Ax(r), Az (8))dr
0
= —9(0)||Az(8)[]> - /0 9'(t = 7)(Az(1), Az(t))dr+

%(/Otg(t — 7)(Az(7), Az(t))d7>,
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y(Ive?) —M(||W||2)

(3.28) ‘/ T s)ds

Vull|?

< ds| ||Vl [P = [[Vu|?] < da[V2(0)I,

and
(329) M (IVu'|2)(Val (), T () IV=(0]2 < ds|[Tul () IV=(0)] I,

where d3, d4 and ds are positive constants.
By continuity of p(-, s) and % and the mean value theorem for vector-valued dif-
ferential functions, we conclude that

op(s
(3.30) (ot 1) — el 1) 2)) = (2222, 0) 2 ),
for some 3 in the line between u} and u.
Replacing (3.27)-(3.30) in (3.26) and using the positivity of % and the first
and second estimate, we arrive that

o (@1 + 1ol + 2 (917) 192001

2 1 ¢
331 < 51||A»2‘(f)||2 + §||9||L1<o,oo>/0 g(t = )| Az(7)|[Pdr

+ %</ olt - ﬂ(m(ﬂ,m(t»m) + dol 2D + da| V(1)1

where dg and d; are positive constants.
Now, integrating (3.31) over (0,¢) and noting that

¢ t
| stt=n@(r). 2x0)r < A0+ Lllalls 0 lslli=0. [ 1820
Then, we conclude by choosing ¢ > 0 sufficiently small and employing Gronwall’s
lemma ||z (t)|| = [[Vz(8)[| = [|Az(#)]| = 0.

3.4. Weak solutions. Let us {ug,u1} € V x L?*(Q). Then, by density, there
exists {ug’,u*} C W x V such that
(3.32) ul' wug in V. ooand u* —wu; in  L*Q).

Therefore, for each m € N, there exists ™, smooth solution of problem (1.1)
verifying

(3.33)
uft + A2u™ — M(||Vu™|*)Au™ fo (t — 7)A2u™(7)dT + p(x,u*) =0
w™(0) = ug',  ui"(0) = uf".

Repeating the same argument used in the first estimate, we obtain
(3.34) [l @11 + [|Au™ (@)1 + [[Vu™ @O)|* < Cs,

where C5 is a positive constant.

Let z™! = u™ — u! with m,l € N, where 4™ and u! are regula solutions of
(3.33). Then following the same already used in the uniqueness of regular solutions
and taking the (3.32) into account, we deduce that there exists u such that

(3.35) u™ —wu  strongly in  C([0,T]; V),
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(3.36) u — wu;  strongly in - C([0,T]; L*(Q)).

From (3.34) - (3.36), we can pass to the limit using standard arguments in order to
obtain

t
(337)  uw + A% — M(|Vu|[?)Au — / g(t = YA u(r)dr + p(w,ur) = 0
0

in L2(0,00, V"), where V' is a dual space of V. The uniqueness of weak solutions
can be also obtained by same argument of subsection 3.3.

4. Energy decay

In this section we prove the energy decay rate to problem (1.1) using the lemma
2.2. It is enough to consider ug € WNV, u; € V and then to use a density argument.
We define the energy E(t) of the problem (1.1) by

(4.1) E(t):l/ |u’|2dx+l/ |Au|2dx+1M(||vu||2).
2 Jo 2 Jq 2

Then the derivative of the energy is given by

E'(t) = —(p(x, '), u) +/0 g(t = 7)(Au(r), Au'(t))dr
Defining
(90Aw)(t) —/O gt = )| Au(r) — Au(t)|]*dr.

A direct computation shows that
t
/ g(t — 7)(Au(r), Au'(t))dr =
0
1d ([ o1 1 )
+35d [ ot = narliauP | - Saiaul

We define the modified energy by

elt) = /| Pz + 1—/ (t—T)dT)/Q|Au|2dx+
(12) VI(Vull?) + 4 (6000 (1),
Then
(1) = ~(plar, o), o) + 5 (g'Ddu) 1) — Lg(0)]|Aul”

We observe that in view of assumption (2.3) we have e(t) > 0, and according to
hypotheses on g we deduce that e’(¢) < 0. Moreover,

E(t) <t te(t) forall t>0.

Therefore, it is enough to obtain the decay for the modified energy e(t).
Firstly, in order to prove the decay of e(t) we introduce useful properties.
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4.1. Some identities and the basic inequalities. Let u be the solution of
(1.1) and T > 0 fixed.
Firstly, multiplying the equation by u' and integrating over [t,¢ + T| x §, we

have
4T 1 [T
/ /p(z,u’)u/d:cds——/ (¢'0Au)(s)ds
t Q 2 Ji

t+T
(4.3) +%/t g(s)||Aul|?ds = e(t) — e(t + T).

Second, multiplying the equation by u and integrating we have

t+T t+T
[ [ wr v susds+ [ MAulP)valPas
t Q t
t+T s
(4.4) - /t /0 g(s — 7)(Au(T), Au(s))drds
4T
—/t /Qp(ac, u udzds + (u'(t),u(t)) — (' (t +T),u(t +T)).

Third, multiplying the equation by m(x) - Vu we have

n [T [T
—/ / |u/|2dxds + (2 - —) / / |Au|?dzds
2 Ji Q 27 ) Q

F(1-2) [T P pas

) /t o /0 " g(s — 7)(Du(r), Au(s))drds
[ st = osuteme @uoinas

+ / - / (s — ) /F (m - ) Au(r)Au(s)dTdrds

t+T
/ / (z,u’) ) - Vu)dzds

"(8),m(x) - Vu(t)) = (u'(t +T),m(x) - Vu(t + T))
t+T
/ / m - v)|Au|*dTds.
Next, take a function ¢ € W2°°(Q) such that % and % are bounded and

(4.6) 0<((z)<1 in Q, (=1 in @ and (=0 in Q\w,
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where @ is an open set in Q with Ty C @ C w C Q (cf. [11]). Then, multiplying
the equation (u and integrating we have

t+T
[ [ cau? = avulPy ) dods
= /(). ult)) ~ (/ (1 + ), Cult + 7))

t+T
— / A (AuACu + 2Au(V( - Vu)) dzxds

t+T
(4.7) - M(||Vu||2)/ﬂu(Vu -V C)dads

- / " /Qp(a:,u’)(uda:ds
/t+T/ (s — 7)(Au(T), Alu(s)

+2V( - Vu(s) + CAu(s))drds.
Finally, take a vector field h = (h', h2,---  A") : Q — R"™ of C? class such that
(4.8) h=v on T'y, h-v>0 on T and h=0 in Q\&,

where & is and open set in R™ with Ty C @ N Q C w (cf. [11]). Then, multiplying
the equation by h - Vu and integrating we have

1 t+T
—/ /(h -v)|Aul?dlds
2.y r

1 t+T
_ —/ / divh (' | Auf? — M(|[Vu]?)[Vu]? ) dds
2 t Q

t+T
+ / (Ah - Vu)Audzds
Q
t+T n 8h,J 90 Ou
+2/t QAuiZ 6_961(6_:@8_%)““
Oh? du Ou
/ MUVl / Z dx; Ox; Ox; Bz, s
t+T
- / / g(s — 7)(Au(r), Ah - Vu(s))drds

/HT/ (s —71) /Au i ( ))dxdes

Oz; Ox;j
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+ /:JFT /OS g(s—1) /F(h -v)Au(r)Au(s)dldrds

t+T s
- /t /0 g(s — 7)(Au(T), Vh - Au(s))drds

t+T s
(4.9) _/ /g(S_T)(Au(T),h-V(Au(S)))des

+ @ (t+T),h-Vu(t+T))— (u'(t),h-Vu(t))

4T
/ / x,u')(h - Vu)dxds.
Q

Now, our basic inequalities read as follows. And in the section the symbol C
indicates positive constants, which may be different.

Proposition 4.1. There ezists a fired T > 0 such that the modified energy e(t)
satisfies

t+T
(4.10) e(t)gC{e(t)—e(t—i—T)—i—/t /Q|p(x,u')|(|u|+|Vu|)dxds
t+7T
+/t /(|u'|2+|u|2+|Vu|2)dxds},

PROOF. Let 8 be a positive number such that %ﬁ —1>0. If n >4, we also
take B such that (n — 2)3 < 2. Then multiplying (4.5) by § and adding (4.4) we

for all t > 0.

have
(n—f —1 /tHT/ [/ [*dwds + (5(2— g) +1> /tt+T/Q|Au|2dxds
+ (5(1 - 5) + 1) tHT M(||Vu||?)||Vul|2ds
—(26+1) /:JFT /OS g(s — 7)(Au(r), Au(s))drds
=1
. —6/t o /Osg(s—T)(Au(T),m~V(Au(s)))d7’ds

-5
+ 5/t+T/ (s—7) / m - v)Au(r)Au(s)dldrds
(1))

= (u'(t), B(m(x) - Vu(t)) + u(t))
- (u (t+T) B(m(x) - Vu(t+T)) +ult+1T))
/HT/ - Vu) + ulp(z,u')dzds

ﬁ t+T
+= / /(m -v)|Auf*dT'ds.
2 Ji r

Now we will estimate I; and Is.
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Estimates for I := —(26+ 1) t+T Iy 9(s = 7)(Au(r), Au(s))drds ;
Similarly to (3.7) and using Young S 1nequahty, we have

| ats = rdutr) Sutyar
- /Osg(s ) (Au(r) — Auls), dT+/O g(s—7 dT/ |Auf’de

1
/ |Au|2d:c—|——||g||L1 (0,00) (900Au) (s —|—/ gls—1 dT/ |Aul*d.
0

| /\

Hence, we obtain
t+T s
—(268+ 1)/ / g(s — 7)(Au(r), Au(s))drds

(2ﬁ+1){ /t+T/ |Au|?dzds

t+T
+ gl / (90Aw) (s)ds

t+T
/ / (s—7 dT/ |Au|2dacds}
Q

Estimates for I := —ﬁft+T Js 9(s = T)(Au(r),m - V(Au(s)))drds ;
Similarly to I, we have

(4.12)

/OS g9(s — 7)(Au(r),m - V(Au(s)))dr

= /05 g(s — 7)(Au(r) — Au(s),m - V(Au(s)))dr
+ /0 g(s — 7)(Au(s),m - V(Au(s)))dr

<e A [V (Au)|*da + C()l|g]|1 (0,00) (90AU)(s)

—l—l/ g(s—T)dT/(m-l/)|Au|2d1"—ﬁ/ g(s—T)dT/ |Au|?dz.
2Jo r 2 Jo Q

Hence,taking € > 0 sufficiently small, we obtain
t+T s
— 6/ / g9(s — 7)(Au(1),m - V(Au(s)))drds
t 0

1 t+T s
> —ﬁ{—/ / g(s — T)dT/(m -v)|Aul*dlds
2 )i 0 r
n t+T s
- —/ / g(s —T)dT/ |Au|*dads
2 Ji 0 Q

t+T
+ Cllgll 21 (0,00) / (gDAu)(s)ds}.
t

(4.13)
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Replacing (4.12) and (4.13) in (4.11) and nondecreasing property of M, we get

(n_f -1 /tJrT/Q |u’|2d;vd8 + ((1 — g)5+ %)
t
/tHT/Q(l - /OSQ(S - T)dT) |Au|?dzds

n . t+T

+ (= 5B+ ) NATuR) + Flallirone) [ GO0 (s)ds
< ((1), Bm(z) - V() + u(t)

— (W't +T),8m(z) Vult+T))+ult+1T))

t+T
/ /Q - Vu) + ulp(z,u')dzds
- 5/t+T/ g(s—1) /F(m -v)Au(r)Au(s)dldrds
+ (? +C + )||g||L1(0 o) /tJrT(gDAu)(S)dS

t+T
+ 5/ (m - v)|Aul*dT'ds.
t r,

Choosing v = min{2("—f - ),2((1 -

inequality, we arrive that
t+T
”y/ e(s)ds
t
t+T
< C(e(t)+e(t—|—T))—|—/ /(ﬁR|Vu|+ ful) o, | deds
t Q

- /t o /0 T a(s—7) /F (m - v)Au(r)Au(s)dldrds

=13

2)8+ %), ||g||L1(O,oo)} and using Poincare’s

(4.14)

3 t+T
H(Z ot ) lalvom [ @Oa0E

=14

t+T
+ 5/ (m - v)|Au|*dTds.
t r,

Using Young’s inequality and from the fact m - v > 0 on I'y, we obtain
/ g(s—1) / (m - v)Au(r)Au(s)dldr
0 r

< Re/ g(s—1) |Au(7)|*dTdr
0 r,

+ Cl(e) /Osg(s—T)dT/F (m - v)|Au|?dT.
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Hence,

t+T s
|I5] < eRﬁ/ / g(s — 7')/ |Au(7)|*dUdrds
t 0 Iy

t+7T
(4.15) +C(e)ﬁ(1—€)/t [ (m-v)laufaras.

By definition of e(t), we can easily check that

where C' is a positive constant that depend on 3, ||g||1(0,00) and 7.
Replacing (4.15) and (4.16) in (4.14) with € > 0 sufficiently small, we get
(4.17)

t+T
’y/t e(s)ds < C(e(t)+e(t+T))+/t

t+T
/ (BRIVul + [ul)|p(e, o' )|dads
Q

t+T
+ C/ (m - v)|Aul*dT'ds.
t I

Next, we shall estimate the last term in (4.17). Since (4.8) and (4.9), the
following holds.

1 t+T 1 t+T
—/ |Au|?dTds < —/ /(h-u)|Au|2dFds
2 t Iy 2 t r

=@ t+T),h-Vu(t+T)) = (W (t),h- Vu(t))
4T
/ / S—T)/(h v)Au(t)Au(s)dldrds

T
/ / z,u')(h - Vu)dzds
(4.18)

t+T
+3 / / divh |u'|2 —|Auf? - M(||Vu||2)|Vu|2)d:cds
t Q

t+T
+/ /(Ah - Vu)Audzds

+T a du
/ /A Z 81:1 8xz 8xj)dxds
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Oh? Ou Ou
/ M(||Vul)?) /Z . axlaxjd:cds
t+T
- / / g(s — 7)(Au(r), Ah - Vu(s))drds
i ahJ d Ou(s)
/ / s=7) /Au 83:1 (8:131 Oz )dngTdS

t+T s
- /t /0 g(s — 7)(Au(r), Vh - Au(s))drds

t+T s
— /t /0 g(s — 7)(Au(7), h - V(Au(s)))drds

=W ({t+T),h-Vult+T))— (u(t),h-Vu(t))
+Is+Is+Ir+ Is+ Io + 1o — 11 — 12 — 13 — L14.
Since h € C%(Q) and h = 0 in Q \ &, we have

t+T s t+T
(4.19) |I4| §6/ / g(s—T)/ |Au(7)|2dFdes+C(e)/ / | AuPdads,
t 0 r t »nQ

(4.20) |/ (t+T),h-Vut+T)) — (@ (1), h-Vut))| < Cle(t) + et + T)),

4T 4T
(4.21) | = p(z,u')(h - Vu)dzds| < C/ / lp(z,u)||Vu|dzds
t Q
and
1 T
| = ‘5/ / divh(|u/? ~ | Auf? — M(|Vul[?)|Vul? ) drds
(4.22) ¢ ©

4T
= C/ / PP+ | Au? 4+ M(||Vul|?) | Vul|*deds.
a0)

Also using Hoélder’s and Poincare’s inequalities, we obtain

t+T t+T
(4.23) |Is] = (Ah - Vu)Audzds| < C / / |Au|*dxds,
Q
t+T ] t+T
(4.24) |Iy| = / /A ‘% 0 6u>dxd <C/ / | Aul2dzds
8x1 ax] wNQ
and

Ohi Ou Ou
|T10| = ‘/ M(||Vul]?) / ——duxds
Z 8961 8:10Z Oz

t+7T
(4.25) < c/ / M(||Vu|]?)|Vul2deds.
t wn
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Similarly to I; and Is and by hypotheses of g, we have
/ g9(s — 7)(Au(r), Ah - Vu(s))dr
0
1 9 1
<5 | 18h- Fulde -+ 5ol 0 ) (9EA)()
+ / g(s —71)dr [ Au(s)Ah - Vu(s)dx
0 Q

1
<c / Al + Slgll s 0.0 (90U (5).
ond 2

Hence,

t+T s
|[I11] = /t ; g(s — 7)(Au(T), Ah - Vu(s))drds

(4.26) t+T 1 t+T
< C/ / |Au|2d:vds + —||g||L1(07m)/ (g0Au)(s)ds.
t wnQ 2 t

By same method of I1;, we easily check that
e " 9hi ;9 Ouls)
Lol = - A dzdrd
12| /t /0 g(s T)/Q u(T) iZZI oz, ((%Z_ o2, ) zdrds
(4.27) J
t+T 1 t+T
< C/ / |Aul*dzds + §||g||L1(07OO)/ (g0Aw)(s)ds,
t iale) t

t+T s
|I13| = / / g9(s — 7)(Au(7), Vh - Au(s))drds
¢ 0
(4.28) o 1 o
< C'/ / |Au|2d:17ds + —||g||L1(O)Oo) / (gOAwu)(s)ds
t wNQ 2 t
and
t+T s
Bal=| [ [ gl = )(Bu(r). b T (u(s))irds
t 0
t+T 1 t+T
(4.29) <e / /Q V(&) Pdrds + 1gl1z2 0,000 C (0 / (g0Aw)(s)ds
t t

4T
+C/ / |Au|*dxds.
t lale)

Replacing (4.19) - (4.29) in (4.18) with € > 0 sufficiently small and again calculating
14, we obtain that

1 t+T
E / | Auf2dT'ds
2 t Iy

t+T
(4.30) sc{e<t>+e<t+T>+ / ' [ 1ot Fuldzs

T T
+/ / |/ [Pdzds —I—/ / |Au)? —|—M(||Vu||2)|Vu|2d:cds}.
t ond t ond
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In the sequel we will find boundedness for the last term of the right-hand side of
(4.30). First, we use (4.7) with (4.6), then we can write that

t+T
[ cu oo asis
t+T
</ / |u’ |2d:cds (W (1), Cu(t)) — (' (¢ +T), Cu(t +T))

t+T
/ / (2, u")Cudxds
Q

t+T
- M(||Vu||2)/ u(Vu - VQ)dxds
(4.31) ' ¢

t+T
- / / (AuACu +2Au(V( - Vu))dacds
t w

t+T s
+/t /0 g(s — 7)(Au(r), Alu(s) + 2V - Vu(s)
+ CAu(s))drds

t+T
::/t / |u'|2dxds + (u'(t), Cu(t))
— (W' (t+T),Cu(t+T)) = I1is — i — Iy + Lis.

Similarly to (4.20), we get
(4.32) |(u/(t), Cu(t)) — (W' (t 4+ T), Cu(t + T))| < Cle(t) + et + T)).

Assumption on ¢ (see (4.6)) and using Holer’s and Poincare’s inequalities, we obtain

t+7T
<[ [ Iotwanljuldzas
t Q

t+T

(4.33) |I15] = p(z,u)Cudzds

t+T
16| = ’/t M(||Vu||2)/9u(Vu-VC)d:vds
t+T 1
4.34 2 x],12 219 12
(4.34) s/t M|Vl )[/f l d:c—i—/w4<*|Vu| V¢l d:v]ds

t+T 1 t+T
< C/ /|u|2dxds+ Z/ /M(||Vu||2)C|Vu|2dxds
t w t Q
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and
t+T
|I17| = (AuACu—FZAu(VC Vu))da:ds
t+T
/ [\ aisciuayfS o
(4.35) + oIV G /2 Al s

7

t+T t+T
gg*/ /|u|2d:vds+2§*/ /|Vu|2dxds
t w t w

3 t+T
+ —/ C|Aul*dxds,
4 Ji Q

where (* = max{supmeg % SUP,co %}
Similarly to I; and I;7 and using ab < a® + %b2 we have

t+T
|ls| =

g(s — 7)(Au(T), ACu(s) + 2V( - Vu(s) + CAu(s))drds
(436) < (2¢"+1) /t " 0B (s)ds + (¢ + & / - / lu[?dads

t+T t+T
+(2¢" + 1)/ / |Vul?dzds —|—/ / C|Au)*dxds.
t w t Q

Replacing (4.32) - (4.36) in (4.31) and again calculating I, we obtain that

t+T
/ /C(|Au|2+M(||Vu||2)|Vu|2)d:vds
t Q
t+T
C T ! dxd
< {e<t>+e<t+ >+/t /Q|p<x,u>||u|xs

4T
—|—/ / W)+ ul? + |Vu|2d:1:ds}.
t w

Moreover, since 0 < ((x) < 1, it follows that

t+T
/ / | Auf? 4 M|Vl )|V deds
t wNQ

4T
(4.37) < C’{e(t) +e(t+T)+ /t /Q |p(x,u")||u|dzds

T
+/ / [u/|? + |ul* + |Vu|2d:cds}.
t w
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Finally, noting that & N Q C w, replacing (4.37) in (4.30) we get

1 t+T
- / / |Au|*dTds
2 t I

t+T
(4.38) < C’{e(t) +e(t+T)+ /t /Q lp(x,u")|(Ju| + |Vul)dzds

4T
+/ / [u/|? + |ul® + |Vu|2d:cds}.
t w

Thus we replace (4.38) in (4.17) and take T > % + 1, then the proof of
Proposition 4.1 is completed. ([l

Proposition 4.2. Let u be the solution of (1.1) and Ae be given by
Ae=ce(t)—elt+T).

Then, for T > 0 given in Proposition 4.1, the followings hold :
case 1

Ifr>0,0<p< % and n > 3, then
t+T 1 p+1

/ / oz, w')|(Ju] + [Vul)dzds < C(Ae)™7 \/e(t) + C(Ae) 2 y/e(t).
t Q

When n = 2, this estimate holds for the case r > 0 and p > 0.
case 2

Ifr>0, -1<p<0andn > 2, then

t+T 1 1
/t /Q lp(z, u))|(Ju] + |Vu|)dzds < C(Ae)7™2\/e(t) + C(Ae) 2@ \/e(t).

case 3
If—1<r<0,0§p§%andn23, then

T +1 pt1
/t /Q|p(x,u’)|(|u|+|Vu|)d:cds§O(Ae):_+2\/e(t)+C(Ae)W 0.

When n = 2, this estimate holds for the case —1 <r < 0 and p > 0.
case 4

If -1<r<0,-1<p<0andn>2, then

t+T 41 1
/t /Q (e, )| (Ju] + [Vul)dzds < C(Ae) 53 \/ell) + C(Ae) 7577\ /e(d).

For n =1 the above estimates are the same as for the case n = 2.

Proor. By the hypotheses on p, we have
t+T
[ [ oty l(ul + Vul)dads
t Q
t+T )
< csa(@)(|u/ " + ') (Ju| + [Vul)dwds
(4.39) /t /91

t+T
+/ / cra(@)(|u' [P + |u'[)(Ju| + [Vul)dzds
t Qo
= Iig + Iz,
where Q1 = {(z,t) € QA x Ry : [u/| <1} and Q3 = Q\ 5.
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Now, we will estimate I19 and Iog.
(i) Estimating I19 for » > 0 and n > 2.
In this case we see, by Poincare’s inequality, Sobolev imbedding theorem,(2.6)

and (4.3),

t+T
fo < 26slVa@lle=@ [ [ VaG@h'|(ul + [Vuldods
t 1

of [ a(x)|u'|2d:cds% s
L ) (

1

t+T 3z
C(/ / a(x)|u/|r+2da:ds> e(t)
t (951
t+T t
=(J
t
C(Ae) ™

/Q lp(a:,u’)u’d:rds)m e(t)
< C(Ae)™2 \/e(t).

IN

(4.40)

IN

(ii) Estimating ;9 for —1 <r <0 and n > 2.
Similarly to (i) and using L? < L™2 we have

4T
Iy < 205/ / a(z)|u' " (Ju] + |Vu|)dzds
t Q1

4T ==
< C(/ / a(x)|u’|r+2d:vds>
t Q1

1

t+T 2
(/ / (Jul + |Vu|)T+2dxds)
(4.41) t o

1

t+T 2
< C(/ / p(:v,u’)u'dxds)
t Q1
t+T 3
(/ / (Jul + |Vu|)2d:vds>
t Q1

41

< C(Ae)™2+/e(t).

(iii) Estimating Iy, for 0 < p < % and n > 3.
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By Holder’s inequality and Sobolev imbedding theorem, we get

t+T
<2 [ [ a)lu Pl + Val)dads
t Qo

+1

t+T ™
< C(/ / a(:v)|u’|p+2dacds>
t Qo
t+T s
(4.42) (/ / (Jul + |Vu|)p+2dacds>
t Qo
t+T ==
< C(/ / a(:v)|u’|p+2dacds>
t Qo
t+T 42
(/ / |Vu|p+2d:vds> .
t Q

Now we use the Lemma 2.1, then

IVullzr+2(@) < ClIVullfn o)l Vull 2 )

< CllAu G Vet < € (2e)F (Ze0) T < OV,

S0

Replacing above inequality in (4.42), it follows that

t+T o+l
(4.43) Iy < C(/ / p(x,u’)u’dxds) ’ Ve(t) < C(Ae)z_i; e(t).
t Qo
If n = 2, then we can obtain same result for p > 0.

(iv) Estimating Iy, for —1 <p <0 and n > 2.
By Holder’s and Poincare’s inequalities, we have

4T
Iy < 207/ / a(x)|u'|(Ju] + |Vu|)dzds
t Qo

t+T 3 t+T 3
C(/ / a(:v)|u’|2dxds) (/ / |Vu|2dacds>
t Qo t Qo

+1

t+T 2
C</ / |u/|g_ﬁd:17ds>
(4.44) Q
t+T ) t+T 3
</ / |u’|p+2d:1:ds> </ e(s)ds>
Qs
t+T B
< C</ / (z,u")u d:cds) e(t)
Q0

< C(Ae)@ ST e(t)

IN

IN

because u' € L®(0, 00; H(Q)) < L®(0, 00; L#+1 ().
Therefore, replacing (4.40), (4.41), (4.43) and (4.44) in (4.39) we conclude the
proof of Proposition 4.2. O

Using Young’s inequality and Propositions 4.1, 4.2, we obtain the next result.
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Proposition 4.3. Let u be the solution of (1.1). Then for T > 0 given in
Proposition 4.1, the modified energy associated with (1.1) satisfies

(4.45) e(t) < C{Ai(t)2+/tt+T/w(|u’|2+|u|2+|Vu|2)dxds}

Jori=1,2.3,4, where
case 1
IfrZOandOﬁpﬁ% (0<p<ooifn=2),

2(p+1)

A1(£)% = Ae+ (Ae) ™7 + (Ae) 777 .

case 2
If r > 0and —1 <p <0,

As(t)? = Ae + (Ae)

2 4 (Ae) 7.
case 3
If-1<r<0 andOSpS% (0<p<ooifn=2),

2(r+1) 2(p+1)

Az(t)? = Ae + (Ae) 2 + (Ae) w72

case 4
If -1<r<0and -1<p<0,

2(r41)

Ay(£)? = Ae+ (Ae) 2 + (Ae)wim.

To arrive at the desired difference inequality on e(t) we must estimate further
the last two terms in (4.45). Concerning the last two terms of the right hand side
in (4.45) we show :

Proposition 4.4. According to each A;(t)? given in Proposition 4.3 there exists
a constant C > 0 such that

t+T t+T
(4.46) / /(|u|2 + |Vul?)dzds < C{Ai(t)2 +/ / |u’|2d:vds}.
t Q t w

Before the proof of Proposition 4.4, we shall show the following result.

Lemma 4.1. Consider ¢ € WH(0,T), ¢ > 0. Then if the function
v e Wh>(0,T; L*(Q)) N L>(0,T; V)
satisfies the conditions
v + A% — p(H)Av — [} g(t — T)A>(T)dT =0 in Qx (0,T),
(447) (v=922=0 on T x(0,7),
v=0 in wx(0,T),
we have that v =0 in Q x (0,T).

PRrROOF. If p(t) = po(constant), for any ¢ € [0,T], by taking the derivative of
(4.47) with respect to t we obtain that w = v; satisfies (in the distributions sense)
the equation

Wy + A%w — poAw — g(0)A% — [ ¢/(t — T)A%u(7)dr =0 in Qx (0,T),
v =0 on T x(0,7),
w=0 in wx(0,7).

w =
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By (Hs) we have that v, = w =0 in Q x (0,7). From (4.47) it follows that

A% — poAv — fgg(t —7)A%0(r)dr =0 in  Qx(0,7),
U:%:O on I'x(0,7).

By the fact v; = 0, (2.3) and standard elliptic uniqueness result, it follows that the
above equation imply the conclusion of the Lemma.

Now let us suppose that ¢.(t) # 0 for ¢ varying in a subset of strictly positive
measure of [0,7]. By (4.47) and the fact that v(z,t) = v(z) if z € w we get

(1 - fotg(t - T)dT) A% —p(t)Av=0 in  wx(0,7T),
{v_%_o on T x(0,7).
Applying to (2.3), and then deriving above equation with respect to ¢, we have
Av=0 in w,
since ¢¢(t) # 0. Hence by Holmgren’s uniqueness theorem, we obtain that
v=0 in w.
We can use (Hs) again with & = 0 to obtain that
v=0 in Q.
O

Proof of Proposition 4.4. We prove (4.46) by contradiction. If (4.46) was false,
there exist a sequence {t,,} C R and let {u,(0),u],(0)} be a sequence of initial data
where the corresponding solutions {u,} of (1.1) with F,,(0) uniform bounded in n,
verifies

tn+T
ST Jo(lun? + [ Vun|?)dzds
(4.48) lim - —
e Ai(ta)? + [ [ lun 2dads

Setting

tn+T

a2 :/ /(|un|2 |V ?)dads

tn Q

and
n(t +1tn
on(t) = 2 (;’ ) o<t<r

Then, we get

1 b AT
(4.49) Q? = )\—Q{Ai(tn)2 —I—/ / |u;1|2d:17ds} —0 as n—oox
t w

and

T
(4.50) / /(|Un|2+ (Vo |?)dads = 1.
0 Q
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Thus, we have from (4.49), (4.50) and Proposition 4.3,

efwa (1)) = e(“2EIY = Lo (14 1)) < relun(tn)

C tn+T tn+T
< A—Q{Ai(tn)%/ /|u;|2dxds+/ /(|un|2—|— |Vun|2)dxds}
n tn w t Q

T

_C{Qi+/ /(|vn|2+|an|2)d:cds}
0 Q

<C.

Therefore,
[onll, [V onll, [|Aval] < C.

Furthermore, using Poincare’s inequality we obtain

1
[ tontede = [ Sluatest+ )P
Q Q Mn

1
<C A /\—%|Vun(x,t +t,)Pde = C/Q |Vo(z, t)[*de < C.
Combining the above estimates, we deduce that
(4.51) {v,} is bounded in  W°(0,T; L*(Q2)) N L>=(0,T; V).

In order to take the limit of {v,} we shall first check that

(4.52) lim ——p(a,a/(t+,)) =0 i L'([0,T] x Q).

n— oo /\n

Indeed, we consider in four cases (This divided cases is the same cases as Proposition

4.3).
ForthecaserZOandO§p§%ifn>2and0§p<ooifn:1,2,by

Proposition 4.2 (see case 1) and the definition of A;(t), we easily check that

t+T 1 p+1
/t /Q |p(z, )| dzds < C((Ae)m + (Ae)m) < C(A1(t) + A1 (t)) = 2C A1 (1).

Hence,

1 tn+T
—/ / lp(z,ul)|dzds <C <CQ, —0 as n— oo.
An Ji, Q

The remaining cases are treated similarly. We have proved that

/\ip(:b,u’(t+tn))—>0 i LN0,T] x Q).

n

Therefore, (4.52) is proved.
Now, using (4.51) and the Aubin-Lion’s Lemma, there exists a function v and
a subsequence, still denoted by {v,}, such that

v, — v in L*(0,T; HY()),
and by (4.50), we have

(4.53) vl L2 0,750 () = 1.
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Furthermore, from (4.49) we get

T
/ / |v'|?dxds = 0.
0 w

Then according to the previous analysis, the limit function v satisfies
(4.54)

v e W (0,T;L*(Q)) N L>(0,T; V),
v + A% — M(||Vul2)Av — [ g(t — 7)A20(T)dr =0 in  Qx (0,T),
v=252=0 on I x(0,7),
ve=0 in wx(0,T).
So, by Lemma 4.1 we have v = 0 in Q x (0,7). This is a contradiction to (4.53).
We complete the proof of Proposition 4.4.

d

4.2. Proof of the Theorem 2.2. Combining Proposition 4.3 and 4.4, we
have

(4.55) e(t) gC{Ai(t)z+/:+T/w|u’|2d:vds},

where A;(t), i = 1,2,3,4, are given in Proposition 4.3.
Finally, we shall estimate the last term in (4.55) and derive the decay estimates
stated in Theorem.

case 1: rz0,0SpS% andn>2(0<p<oifn=172).
By hypothesis on a(z), it follows that (see (4.40))

4T
/ / |u'[2dads
t
1 t+T
§ — / x)|u'|*dxds
4T 4T
< C{/ / z) |/ |*deds +/ / x)|u |2da:ds}
Ql Q2

t+T t+T

C{ / / x)|u’ |T+2da:ds / / z)|u’ |p+2d:17ds}
951 Q3

4T 2 4T

C{ / / p(z, u’)u'dxds +/ / p(x,u')u’d:vds}
t Q1 t QQ

< C((ae) e + Ac).

IN

IN

Hence, we have from (4.55) and the definition of A;(t)?

2(p+1)

e(t) < C{Ae 1 (Ae)77 + (Ae) 772 } < C(Ae)™

_ 2 24D | _ 2
where k1 = m1n{r+2, 13 (= ri3 Therefore,

(4.56) sup 6(8)"_11 < Cle(t) —e(t+1T)).
t<s<t+T



364 TAE GAB HA AND JONG YEOUL PARK

Applying Lemma 2.2 to (4.56) we conclude
(4.57) e(t) <C+t)™

With?]l:—
case 2: r>0and -1 <p<0.

4T
/ /|u’|2dacds
t w

t+T t+T
< C’{/ / a(x)|*dxds —l—/ a(z)|u’ |2d:cds}

Q Qs
“r t+T .
C{ / / x)|u’ |T+2dxds / / x)|u |p+2dxds> }
Ql QZ

<c((ae) e + (ae)7i).

Hence, we have from (4.55) and the definition of As(t)?

e(t) < C{Ae + (Ae)7i2 + (Ae)p—iz} < C(Ae)™

where ko = min{ el p+2} Therefore,

(4.58) sup e(s)% < Cle(t) —e(t+1T)).
t<s<t+T

Applying Lemma 2.2 to (4.58) we conclude

(4.59) e(t) <C1+t)™™

with ngzmin{%,pﬁ}.
case 3: —1<r<0,0<p<2sandn>2(0<p<ocifn=2).

4T
/ / |u'|2dxds
t w
4T 4T
< C{/ / a(x)u|*dzds +/ / a(x)|u'|2dacds}
t Q4 t Q3
t+T 1 t+T
C{(/ / a(x)|u'|r+2dacds) o —|—/ / a(:v)|u’|p+2dacds}
t Q1 t Q2

< C((Ae)rlﬁ + (Ae)).

IN

Hence, we have from (4.55) and the definition of A3(t)?

2(r+1) 2(p+1)

+ (Ae) F2 + (Ae) P2 } < C(Ae)™s

e(t) < C{Ae + (Ae)72

i 1 2(r+1)
where k3 = mln{ 3 ria (- Therefore,

(4.60) sup e(s)% < Cle(t) —e(t+1T)).
t<s<t+T
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Applying Lemma 2.2 to (4.60) we conclude
(4.61) e(t) <C(l+1t)”

1 —r
m’2(r+1)}'
case 4: —1<r<0and -1 <p<0.

t+T
/ /|u’|2d:17ds
t w
t+T t+T
< C{/ / a(x)|u’|2d:vds+/ a(x )|u’|2dxds}
o Q2
t+T t+T
< { / / |u’|r+2d:cds / / |u/|p+2d:cds) }
Ql Q2

< C((Ae) g (Ae)m).

with n3 = min{

Hence, we have from (4.55) and the definition of A4(t)?

2(r41)

e(t) < O{Ae + (Ae)™7 + (Ae) 72 4 (Ae)piz} < C(Ae)r

where k4 = min{ 1 20+l L} Therefore,

(4.62) sup e(s)ﬁ < Cle(t) —e(t+1T)).
t<s<t+T

Applying Lemma 2.2 to (4.62) we conclude
(4.63) e(t) <C(l+1t)”

—r 1
r417 2(7‘+1) p+1

Now, the proof of the Theorem 2.2 is complete.

with ny = min{
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