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Abstract. Roughly speaking a solitary wave is a solution of a field equation
whose energy travels as a localised packet and which preserves this localisa-
tion in time. A soliton is a solitary wave which exhibits some strong form of
stability so that it has a particle-like behaviour. In this paper we show a new
mechanism which might produce solitary waves and solitons for a large class
of equations, such as the nonlinear Klein-Gordon equation. We show that the
existence of these kind of solitons, that we have called hylomorphic solitons,
depends on a suitable energy/charge ratio. We show a variational method that
allows to prove the existence of hylomorphic solitons and that turns out to be
very useful for numerical applications. Moreover we introduce some classes of
nonlinearities which admit hylomorphic solitons of different shapes and with
different relations between charge, energy and frequency.
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1. Introduction

Roughly speaking a solitary wave is a solution of a field equation whose energy
travels as a localised packet and which preserves this localisation in time.

A soliton is a solitary wave which exhibits some strong form of stability so that
it has a particle-like behaviour.
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Today, we know (at least) three mechanism which might produce solitary waves
and solitons:

• Complete integrability; e.g. Korteweg-de Vries equation

(KdV) ut + uxxx + 6uux = 0

• Topological constraints: e.g. Sine-Gordon equation

(SGE) utt − uxx + sinu = 0

• Ratio energy/charge: e.g. the following nonlinear Klein-Gordon equation

(NKG) ψtt − ∆ψ +
ψ

1 + |ψ| = 0 ψ ∈ C

This paper is devoted to the third type of solitons which will be called hylo-
morphic solitons. This class of solitons that are characterised by a suitable en-
ergy/charge ratio includes the Q-balls, spherically symmetric solutions of NKG, as
well as solitary waves which occur in the nonlinear Schrödinger equation (see e.g.
[10], [4]) and in gauge theories (see e.g. [6], [7], [8]). We have chosen the name
hylomorphic, which comes from the Greek words “hyle”=“matter”=“set of parti-
cles” and “morphe”=“form”, with the meaning of solitons “giving a suitable form
to condensed matter” (see Section 2.2 for definitions and details).

The aims of this paper are the following:

• to give the definition of hylomorphic solitons and to set this notion in the
literature on non-topological solitons;

• to describe a new variational approach that allows to prove the existence
of hylomorphic solitons for a large class of nonlinearities for NKG. This
variational method turns out to be very useful for numerical simulations;

• to classify the nonlinearities which give hylomorphic solitons: this classi-
fication is based on the different shapes of the solitons and the different
relations between charge, energy and frequency. We obtain four classes
of nonlinearities and we prove necessary conditions for the nonlinear term
to belong to a given class. Numerical simulations show the different be-
haviour of these classes quantitatively.

2. The abstract theory

2.1. An abstract definition of soliton. We consider dynamical systems
with phase space X described by one or more fields, which mathematically are
represented by a function

Ψ : R
n → V, n ≥ 2

where V is a vector space with norm ‖·‖V which is called the internal parameters
space. We assume the system to be deterministic, and denote by U : R×X → X the
time evolution map, which is assumed to be defined for all t ∈ R. The dynamical
system is denoted by (X,U). If Ψ0(x) ∈ X is the initial condition, the evolution of
the system is described by

Ψ (t, x) = UtΨ0(x)

We assume that X ⊂ L2(Rn, V ), namely
∫

‖Ψ (x)‖2
V dx < +∞ for every Ψ ∈ X .

Moreover for states Ψ ∈ X which satisfy
∫

|x| ‖Ψ (x)‖2
V dx < +∞, it is possible to
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give the notion of barycenter of the state as follows

(2.1) q(t) = qΨ(t) =

∫

x ‖Ψ (t, x)‖2
V dx

∫

‖Ψ (t, x)‖2
V dx

The term solitary wave is usually used for solutions of field equations whose en-
ergy is localised and the localisation of the energy packet is preserved under the
evolution. Using the notion of barycenter, we give a formal definition of solitary
wave.

Definition 2.1. A state Ψ ∈ X is called solitary wave if for any ε > 0 there
exists a radius R > 0 such that for all t ∈ R

∫

‖UtΨ (x)‖2
V dx−

∫

BR(qΨ(t))

‖UtΨ (x)‖2
V dx < ε

where BR(qΨ(t)) denotes the ball in R
n of radius R and centre in qΨ(t).

The solitons are solitary waves characterised by some form of stability. To
define them at this level of abstractness, we need to recall some well known notions
in the theory of dynamical systems.

Definition 2.2. LetX be a metric space and let (X,U) be a dynamical system.
An invariant set Γ ⊂ X is called stable, if for any ε > 0 there exists δ > 0 such that
if d(Ψ,Γ) < δ then d(UtΨ,Γ) < ε for all t ∈ R.

Definition 2.3. A state Ψ0 is called orbitally stable if there exists a finite
dimensional manifold Γ ⊂ X with Ψ0 ∈ Γ, such that Γ is invariant and stable for
the dynamical system (X,U).

The above definition needs some explanation. Since Γ is invariant, UtΨ0 is in
Γ for all t. Thus, since Γ is finite dimensional, the evolution of Ψ0 is described by a
finite number of parameters.Thus the dynamical system (Γ, U) behaves as a point in
a finite dimensional phase space. By the stability of Γ, the evolution UtΨε of a small
perturbation Ψε of Ψ0 might become very different from UtΨ0, but UtΨε remains
close to Γ. Thus, the perturbed system appears as a finite dimensional system with
a small perturbation which depends on an infinite number of parameters.

Definition 2.4. A state Ψ0 ∈ X ,Ψ0 6= 0, is called soliton if it is a orbitally
stable solitary wave.

According to this definition a soliton is a state in which the mass is “concen-
trated” around the barycenter q(t) ∈ Rn. In general, dim (Γ) > n and hence, the
“state” of a soliton is described by n parameters which define its position and other
parameters which define its “internal states”.

2.2. Definition of hylomorphic solitons. In this section we will expose a
general method to prove the existence of non-topological solitons. This method
leads in a natural way to the definition of hylomorphic solitons.

We make the following assumptions: (i) there are at least two integrals of
motion, the energy E and the hylomorphic charge H; (ii) the system is invariant
for space translations. In some models the hylomorphic charge is just the “usual”
charge and this fact justifies this name. We add the attribute hylomorphic just to
recall that H might not be a charge (as in the case of the nonlinear Schrödinger
equation). Moreover, in many models in quantum field theory, H represents the
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expected number of particles, hence for charged particles it is proportional to the
electric charge.

Now, given the set

Mσ = {Ψ ∈ X : H(Ψ) = σ}
In order to prove the existence of solitary waves and solitons, we follow a method
based on the following steps:

• (S-1) prove that the energy E has a minimum Ψ0 on Mσ;
• (S-2) prove that the barycenter qΨ (see (2.1)) is well defined and that for

any ε > 0 there exists R > 0 such that
∫

‖Ψ (x)‖2
V dx−

∫

BR(qΨ)

‖Ψ (x)‖2
V dx < ε ∀Ψ ∈ Γ

where Γ is the set of minimisers;
• (S-3) prove that Γ is finite dimensional;
• (S-4) prove that Γ is stable.

These steps will be explained in details for the nonlinear Klein-Gordon equation
in Section 4.2.

The integrals of motion are used in the definition of hylomorphic solitons. Set-
ting

(2.2) m0 = lim
ε→0

inf
Ψ∈Xε

E (Ψ)

|H (Ψ)|
where

(2.3) Xε =
{

Ψ ∈ X : ‖Ψ‖L∞(Rn,V ) < ε
}

and assuming that m0 > 0, we introduce the hylomorphy ratio Λ (Ψ) of a state
Ψ ∈ X , defined as

(2.4) Λ (Ψ) :=
E (Ψ)

m0 |H (Ψ)|
The hylomorphy ratio of a state turns out to be a dimensionless invariant of the
motion and an important quantity for the characterisation of solitons.

Definition 2.5. A soliton Ψ0 is called hylomorphic if

(2.5) Λ (Ψ0) < 1

In the following we will refer to (2.5) as the hylomorphy condition. In the study
of hylomorphic solitons, the hylomorphy ratio plays a very important role and it is
related to a density function which we call binding energy density.

We assume E and H to be local quantities, namely, given Ψ ∈ X there exist
density functions ρE,Ψ (x) and ρH,Ψ (x) ∈ L1(Rn) such that

E (Ψ) =

∫

ρE,Ψ (x) dx(2.6)

H (Ψ) =

∫

ρH,Ψ (x) dx(2.7)

Then we introduce the binding energy density defined as

(2.8) ρB(x) = ρB,Ψ(x) := [m0 |ρH,Ψ(x)| − ρE,Ψ(x)]
+
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The support of ρB,Ψ(x)

(2.9) Σ (Ψ) = {x : ρB,Ψ(x) 6= 0}.
is called the condensed matter region since in these points the binding forces prevail,
and the quantity

(2.10)

∫

Σ(Ψ)

ρE,Ψ(x)dx

will be called the condensed matter. The next proposition justifies the choice of the
name “hylomorphic”, since it shows that hylomorphic solitons “contain condensed
matter”.

Proposition 2.6. If Λ (Ψ0) < 1 then for all t ∈ R the support Σ(UtΨ0) of
ρB,UtΨ(x) is not empty.

Proof. It follows by the simple relations
∫

ρB,UtΨ(x) =

∫

[m0 |ρH,UtΨ(x)| − ρE,UtΨ(x)]+ ≥

≥ m0|H (UtΨ) | − E (UtΨ) = m0|H (Ψ) | − E (Ψ) =

= m0|H (Ψ) | (1 − Λ (Ψ)) > 0

�

If Ψ(x) is a finite energy field usually it disperses as time goes on, namely

lim
t→∞

‖UtΨ(x)‖L∞(Rn,V ) = 0

However, if Λ (Ψ) < 1 this is not the case.

Proposition 2.7. If Λ (Ψ) < 1 then

lim inf
t→∞

‖UtΨ‖L∞(Rn,V ) = δ > 0

Proof. Let Λ (Ψ) = 1− a for a given a > 0. We argue indirectly and assume that,
for every ε > 0, there exists t̄ such that

‖Ut̄Ψ‖L∞(Rn,V ) < ε

namely, Ut̄Ψ ∈ Xε where Xε is defined as in (2.3). Then, by (2.2), if ε is sufficiently
small

E (Ut̄Ψ)

|H (Ut̄Ψ)| ≥ m0 −
am0

2

and hence

Λ (Ut̄Ψ) ≥ 1 − a

2
> 1 − a

Since Λ (Ut̄Ψ) = Λ (Ψ) we get a contradiction. �

Thus if Λ (Ψ) < 1, by the above propositions the field Ψ and the condensed
matter will not disperse, but will form bumps of matter which eventually might
lead to the formation of one or more hylomorphic solitons.
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3. The Nonlinear Klein-Gordon equation

The nonlinear Klein-Gordon equation (NKG) is given by

(NKG) �ψ +W ′(ψ) = 0

where � = ∂2
t − ∆, ψ(t, x) : R × R

n → C and W : C → R satisfies

W (ψ) = F (|ψ|)
for some smooth function F : R+ → R. Also we have used the notation

W ′(ψ) = F ′(|ψ|) ψ|ψ| .

From now on, we always assume that

W (0) = W ′(0) = 0

Under very mild assumptions on W , the (NKG) admits spherical solitons. In this
section, we recall some general facts about (NKG) and study the hylomorphic prop-
erties of solitons. In the next section we study the problem of existence and stability
of solitons, and give a classification of the nonlinear terms in (NKG) according to
the properties of the solutions it admits.

We recall the pioneering paper of Rosen [18] and [11], [21], [9]. In Physics, the
spherically symmetric solitary waves have been called Q-balls by Coleman in [12]
and this is the name used in the Physics literature.

3.1. General features of NKG. In this case, the fields are functions Ψ =
(ψ, ψt) with values in V = C2 and equation (NKG) is the Euler-Lagrange equation
of the action functional

(3.1) S =

∫

L (ψt,∇ψ, ψ) dxdt

where the Lagrangian density is given by

(3.2) L =
1

2
|ψt|2 −

1

2
|∇ψ|2 −W (ψ).

Moreover the nonlinear Klein-Gordon equation admits a formulation as an infinite
dimensional Hamiltonian dynamical system. The phase space is given by X =
H1(Rn,C)×L2(Rn,C) and the state of the system at the time t is then defined by
a point Ψ = (ψ, ψt) ∈ X , where ψ(t, x) is an admissible function for the functional
(3.1) and ψt := ∂tψ. Equation (NKG) written as a first order system on X takes
the form

∂Ψ

∂t
= AΨ −G(Ψ)

where

A =

(

0 1

△ 0

)

G(Ψ) =

(

0

W ′(ψ)

)

.

Hence, looking at ψt as the variable conjugate to ψ, the dynamics onX is an infinite
dimensional Hamiltonian system with the Hamiltonian function given by

H(Ψ) =
1

2
|ψt|2 +

1

2
|∇ψ|2 +W (ψ).

The nonlinear Klein-Gordon equation is the simplest equation invariant for the
Poincaré group and the action of S1 on X given by

(3.3) S1 ×X ∋ (θ,Ψ) 7→ Tθ (Ψ) =
(

eiθψ, eiθψt
)

∈ X
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By Noether theorem the existence of conservation laws implies the existence of
integrals of motion. In particular, the time invariance of the Lagrangian implies
the preservation of the energy E given by

E(ψ, ψt) =

∫
[

1

2
|ψt|2 +

1

2
|∇ψ|2 +W (ψ)

]

dx

whereas the invariance with respect to the S1-action (3.3) implies the preservation
of the hylomorphic charge H given by

H(ψ, ψt) =

∫

Im
(

ψt ψ
)

dx

In the analysis of the behaviour of solutions of (NKG), it turns useful to write
ψ in polar form, namely

(3.4) ψ(t, x) = u(t, x)eiS(t,x)

where u(t, x) ∈ R+ and S(t, x) ∈ R/(2πZ). Letting ut := ∂tu, k(t, x) := ∇S(t, x)
and ω(t, x) := −∂tS(t, x), a state Ψ ∈ X is uniquely determined by the quadruple
(u, ut, ω, k). Using these variables, the action (3.1) takes the form

S(u, ut, ω, k) =
1

2

∫

[

u2
t − |∇u|2 +

(

ω2 − |k|2
)

u2
]

dx dt −
∫

W (u) dx dt

and equation (NKG) becomes

(3.5) �u+
(

|k|2 − ω2
)

u+W ′(u) = 0

(3.6) ∂t
(

ωu2
)

+ ∇ ·
(

ku2
)

= 0

In this form, energy and hylomorphic charge become

(3.7) E(u, ut, ω, k) =

∫
[

1

2
u2
t +

1

2
|∇u|2 +

1

2

(

ω2 + |k|2
)

u2 +W (u)

]

dx

(3.8) H(u, ut, ω, k) = −
∫

ω u2dx

We now describe a possible interpretation of the hylomorphic quantities such as
the hylomorphic charge, the hylomorphy ratio etc. The equation (NKG) describes
how the density of hylomorphic charge moves with the dynamics. Indeed, looking
at (NKG) in polar form, one notices that (3.6) is the continuity equation for the
density ρH,ψ of the hylomorphic charge H (see (2.7) and (3.8)). When ρH,ψ is
negative, it can be interpreted as the density of “antiparticles”. ¿From this point of
view, equation (3.6) describes the conservative transport of the hylomorphic charge
by a particle field and the quantity m0 defined in (2.2) can be considered as the
rest energy of each particle.

In this interpretation, H (Ψ) represents the total number of particles counted

algebraically (particles minus antiparticles), E(Ψ)
|H(Ψ)| represents the average energy

of each particle, and the hylomorphy ratio Λ (Ψ) defined in (2.4) is a dimensionless
quantity which normalise the average energy for particle with respect to the rest
energy m0. If Λ (Ψ) > 1, the average energy of each particle is larger than the
rest energy; if Λ (Ψ) < 1, the opposite occurs and this fact means that particles
interact with one another by an attractive force. In this interpretation, the volume
occupied by the condensed matter defined in (2.9) consists of particles tied together.
Moreover the quantity ρB,Ψ defined in (2.8), has the dimension of the energy and
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represents the binding energy of the particles. In fact, consider for example the
case of identical particles. When the particles are free and at rest, their energy is
given by the number of particles times the energy of a particle, namely m0|H (Ψ) |,
whereas the energy of the configuration Ψ is given by E (Ψ). Thus the energy
necessary to “free” the particles is m0|H| − E . Moreover

∫

ρB,Ψ(x)dx represents
the portion of the binding energy which is localised in the support Σ(Ψ).

Next we will compute the hylomorphy ratio Λ for (NKG).

Theorem 3.1. For (NKG) with W of class C2 the hylomorphy ratio defined in
(2.4) takes the form

Λ (Ψ) =
E (Ψ)

|H (Ψ)|
√

W ′′(0)

Proof. Let us write

(3.9) W (s) =
1

2
m2s2 +N(s) s ∈ R

+

where m2 = W ′′(0). We have to prove that the term m0 defined in (2.2) satisfies
m0 = m.

Using the polar form (3.4) for Ψ and (3.7), (3.8) and (3.9), we get

E (Ψ)

|H (Ψ)| =

∫

[

1
2u

2
t + 1

2 |∇u|
2 + 1

2

(

ω2 + |k|2
)

u2 +W (u)
]

dx
∣

∣

∫

ω u2dx
∣

∣

≥

≥
∫ [

1
2ω

2u2 + 1
2m

2u2 +N(u)
]

dx
∫

|ω| u2dx

Since by the classical Cauchy-Schwarz inequality

∫

|ω| u2dx ≤
(
∫

ω2 u2dx

)1/2

·
(
∫

u2dx

)1/2

=

=
1

m

(
∫

ω2 u2dx

)1/2

·
(
∫

m2u2dx

)1/2

≤

≤ 1

2m

[
∫

ω2u2dx+

∫

m2u2dx

]

=

=
1

2m

∫

(

ω2 +m2
)

u2dx

we have that

E (Ψ)

|H (Ψ)| ≥
∫ [

1
2ω

2u2 + 1
2m

2u2 +N(u)
]

dx
1

2m

∫

(ω2 +m2)u2dx
= m+

∫

N(u)dx
1

2m

∫

(ω2 +m2)u2dx

Then since N(u) = o(u2) for u→ 0, it follows that

m0 = lim
ε→0

inf
Ψ∈Xε

E (Ψ)

|H (Ψ)| ≥ m
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In order to prove the opposite inequality, consider the family of states Ψδ,R =
(δuR,−imδuR), where

uR(x) =











1 if |x| ≤ R

0 if |x| ≥ R+ 1

1 +R− |x| if R ≤ |x| ≤ R+ 1

Then

inf
Ψ∈Xε

E (Ψ)

|H (Ψ)| ≤ E (Ψε,R)

|H (Ψε,R)| =
ε2
∫

[

1
2 |∇uR|

2
+ m2

2 u
2
R + 1

ε2W (εuR)
]

dx

ε2m
∫

u2
Rdx

=

=

∫

[

1
2 |∇uR|

2
+m2u2

R + 1
ε2N(εuR)

]

dx

m
∫

u2
Rdx

≤

≤ m+
1

2m

∫

|∇uR|2 dx
∫

u2
Rdx

+

∫

N(εuR)dx

ε2m
∫

u2
Rdx

=

= m+O

(

1

R

)

+ o (ε) .

where we have again used N(u) = o(u2) for u→ 0. �

4. Q-balls

This section is devoted to the existence of Q-balls and to the study of their
structure.

4.1. Solitary waves for NKG. The easiest way to produce solitary waves
of (NKG) consists in solving the static equation

(4.1) −∆u+W ′(u) = 0

and making a change of the frame of reference to give a velocity to the wave, setting
for example

(4.2) ψv(t, x) = ψv(t, x1, . . . , xn) = u

(

x1 − vt√
1 − v2

, . . . , xn

)

which is a solution of (NKG) which represents a bump travelling in the x1-direction
with speed v (we consider a normalisation of units of measure so that the speed of
light c is equal to 1).

Unfortunately Derrick, in the very well known paper [13], has proved that the
request W (u) ≥ 0 (which is necessary if we want the energy to be a non-negative
invariant) implies that equation (4.1) has only the trivial solution. His proof is
based on the Derrick-Pohozaev identity, which for (4.1) is given by

(

1

n
− 1

2

)
∫

|∇u|2 dx =

∫

W (u) dx

and holds for any finite energy solution u of equation (4.1) (for details see also [5]).
Clearly the above equality for n ≥ 3 and W (u) ≥ 0 implies that u ≡ 0.
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However, we can try to prove the existence of solitons for (NKG) exploiting the
possible existence of standing waves, namely finite energy solution of (NKG) of the
form

(4.3) ψ0(t, x) = u0(x)e
−iω0t, u0 ≥ 0.

Substituting (4.3) in (NKG), one finds that u0(x) is a solution of

(4.4) −∆u+W ′(u) = ω2
0u

and the existence of non-trivial solutions of (4.4) is not prevented by the Derrick-
Pohozaev identity, which in this case reads

(4.5)

(

1

n
− 1

2

)
∫

|∇u|2 dx =

∫
(

W (u) − 1

2
ω2

0u
2

)

dx

Since the Lagrangian (3.2) is invariant for the Lorentz group, we can obtain
other solutions ψv(t, x) just making a Lorentz transformation on it. Namely for
n = 3, if we take the velocity v = (v, 0, 0), |v| < 1, and set

t′ = γ (t− vx1) , x
′
1 = γ (x1 − vt) , x′2 = x2, x

′
3 = x3

with

γ =
1√

1 − v2
,

it turns out that

ψv(t, x) := ψ(t′, x′)

is a solution of (NKG).
In particular, given a standing wave ψ0(t, x) = u0(x)e

−iω0t, the function ψv(t, x) =
ψ0(t

′, x′) is a solitary wave which travels with velocity v. Thus, if for example
v = (v, 0, 0) and u(x) = u(x1, x2, x3) is any solution of equation (4.4), then

(4.6) ψv(t, x1, x2, x3) = u (γ (x1 − vt) , x2, x3) e
i(k·x−ωt),

is a solution of (NKG) provided that

ω = γω0 and k = γω0v

Notice that (4.2) is a particular case of (4.6) when ω0 = 0.
Finally we remark that if u is a solution of equation (4.4), then by a well known

result on elliptic equations [14] it has necessarily spherical symmetry. Coleman
called the spherically symmetric solitary waves of (NKG) Q-balls ([12]) and this is
the name generally used in the Physics literature.

In order to prove the existence of solitons for (NKG), we are now led to study
the existence of orbitally stable standing waves. Hence in particular we study
existence results of couples (u0, ω0) which satisfy equation (4.4) under some general
assumptions on the function W .

4.2. Existence results for Q-balls. From now on we make the following
assumptions on W :

• (W-i) (Positivity) W (s) ≥ 0;
• (W-ii) (Normalisation) W (0) = W ′(0) = 0; W ′′(0) = 1;

• (W-iii) (Hylomorphy) λ0 := inf
s∈R+

W (s)
1
2
s2

< 1.
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Let us make some remarks on these assumptions.

(W-i) implies that the energy is positive for any state. Some aspects of the
theory remain true weakening this assumption. In particular there are results in
the case n ≥ 3 also for

(4.7) W (s) =
1

2
s2 − 1

p
sp, 2 < p <

2n

n− 2
,

since they are easier to prove with variational methods. However assumption (W-i)
is required by most of the physical models and it simplifies some theorems.

(W-ii) is a normalisation condition. In order to have solitary waves it is neces-
sary that W ′′(0) ≥ 0. There are results also in the null-mass case W ′′(0) = 0 (see
e.g. [9] and [2]). However the most interesting situations occur when W ′′(0) > 0.
In the latter case, re-scaling the independent variables (t, x), we may assume that
W ′′(0) = 1.

(W-iii) is the crucial assumption. As we will see this assumption is necessary to
have states Ψ with Λ (Ψ) < 1, hence hylomorphic solitons according to Definition
2.5.

Under the previous assumptions, we can write W as

(4.8) W (s) =
1

2
s2 +N(s), s ∈ R

+

and the hylomorphy condition can be stated by saying that there exists s0 ∈ R+

such that N(s0) < 0. Actually, by our interpretation of (NKG) (see Section 3.1),
N is the nonlinear term which, when negative, produces an “attractive interaction”
among the particles.

In [3] we prove that

Theorem 4.1 ([3]). If (W-i), (W-ii) and (W-iii) hold then (NKG) in Rn, with
n ≥ 2, admits hylomorphic solitons of the form (4.4).

This result is recent in the form given here. In fact only recently it has been
proved the orbital stability of the standing waves (4.3) with respect to the standard
topology of X = H1(Rn,C) × L2(Rn,C) and for all the W which satisfy (W-ii),
(W-iii) and a condition weaker than (W-i). Nevertheless Theorem 4.1 has a very
long history starting with the pioneering paper of Rosen [18]. Coleman [11] and
Strauss [21] gave the first rigourous proofs of existence of solutions of the type (4.3)
for some particular W , and later necessary and sufficient existence conditions have
been found by Berestycki and Lions [9].

The first orbital stability results for (NKG) are due to Shatah, Grillakis and
Strauss [19], [15]. Namely, they consider the real function

ω 7→ d(ω) := E(uω, ω) + ω|H(uω, ω)|
where uω is the ground state solution of (4.4) for a fixed ω, and E(uω, ω) and
H(uω, ω) are the energy and the hylomorphic charge of the standing wave ψω(t, x) =
uω(x)e−iωt. They prove that a necessary and sufficient condition for the orbital sta-
bility of the standing wave ψω0

is the convexity of the map d(ω) in ω0. It is difficult
to verify theoretically this condition for a generalW since d(ω) cannot be computed
explicitly. In some particular cases the properties of d(ω) can be investigated, see
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for instance [20] where the authors give exact ranges of the frequency ω for which
they obtain stability and instability of the respective standing waves for the non-
linear wave equation with W (ψ) as in (4.7). Moreover the computation of d(ω) in
a neighbourhood of a chosen ω0 can be extremely difficult due to the fact that the
knowledge of uω is required.

The proof of Theorem 4.1 follows from some interesting preliminary results,
which give the idea of the proof. We now sketch the main steps, following the
general method exposed in Section 2.2, referring to [3] for details.

The first step is to define the following set

Y := H1(Rn,R+) × R

which corresponds to a subset of X through the identification

Y ∋ (u(x), ω) 7−→ (u(x),−iωu(x)) ∈ X = H1(Rn,C) × L2(Rn,C)

Notice that the standing waves are contained in Y .
We introduce the functionals energy and charge on the space Y which with

abuse of notation we still denote by E and H. They take the form

(4.9) E(u, ω) =

∫
[

1

2
|∇u|2 +

1

2
ω2u2 +W (u)

]

dx

(4.10) H(u, ω) = −ω
∫

u2 dx

Without loss of generality we restrict ourselves to the case H < 0 and ω > 0. The
relationship between the (NKG) equation and the energy E on the space Y is given
by the following proposition

Proposition 4.2 ([3]). The function ψ(t, x) = u(x)e−iωt is a standing wave
for (NKG) if and only if (u, ω) is a critical point (with u 6= 0) of the functional
E(u, ω) constrained to the manifold

Mσ = {(u, ω) ∈ Y : |H (u, ω) | = σ} , σ 6= 0

Proof. A point (u, ω) ∈ Y is critical for E(u, ω) constrained to the manifold Mσ if
and only if there exists λ such that

(4.11)

∂E(u,ω)
∂u = λ ∂H(u,ω)

∂u

∂E(u,ω)
∂ω = λ ∂H(u,ω)

∂ω

By definition of energy and charge (equations (4.9) and (4.10)), equation (4.11) can
be written as

−∆u+W ′(u) + ω2u = −2λω u

∫

ω u2dx = −λ
∫

u2dx.

Since σ 6= 0, from the second equation λ = −ω, and the first becomes equation
(4.4). �

This result gives a simple criterion to obtain standing waves for (NKG). More-
over we are interested in standing waves which are orbitally stable (see Definition
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2.3), and to this aim we look for points of minimum of E on Mσ. To this aim we
use the notion of hylomorphy ratio, which on Y takes the form

(4.12) Λ(u, ω) =
E(u, ω)

|H(u, ω)| =
1

2
ω +

1

2ω
α(u)

where

(4.13) α(u) :=

∫ (

1
2 |∇u|2 +W (u)

)

dx
∫

1
2u

2 dx
.

One immediately gets

(4.14) inf
ω∈R+

Λ(u, ω) =
√

α(u)

and if λ0 is defined as in (W-iii), then it is proved in [3] that

(4.15) λ0 = inf
u∈H1

α(u)

To prove the existence of point of minimum for the energy we use

Proposition 4.3 ([3]). If there exists (ū, ω̄) ∈ Y such that Λ(ū, ω̄) < 1, there
exist points of minimum of the energy E(u, ω) constrained to the manifold Mσ with
σ = |H(ū, ω̄)|.

Equations (4.14) and (4.15) imply that assumption (W-iii) is sufficient for the
existence of (u, ω) with Λ(u, ω) < 1. Hence step (S-1) of Section 2.2 is completed.

A point of minimum (u0, ω0) ∈ Y corresponds to the standing wave ψ0(t, x) =
u0(x)e

−iω0t, with u0(x) a spherically symmetric function. Steps (S-2) and (S-3)
follow from the fact that for isolated points of minimum the set of minimisers Γ
consists of the set

Γ :=
n“

u0(x + a) e
iθ

,−iω0u0(x + a) e
iθ

”o

a∈Rn, θ∈R

⊂ X

which has dimension n + 1. In the following we restrict ourselves to the case of
isolated points of minimum, which is “generic” in the family of (NKG) equations.

To finish the proof of Theorem 4.1 it remains to prove step (S-4), that is the
stability of the set Γ. In [3] we prove that the function

V (Ψ) :=

(

E(Ψ) − min
Mσ

E
)2

+ (H(Ψ) − σ)
2

is a Lyapunov function on X . This implies that

Theorem 4.4 ([3]). If (u0, ω0) is a point of local minimum of the functional
E(u, ω) constrained to the manifold Mσ with σ = |H(u0, ω0)|, then ψ0(t, x) =
u0(x)e

−iω0t is an orbitally stable standing wave.

Theorem 4.1 is a pure existence result and gives no information on the charge
and frequency of the standing waves. In [3] we show that Proposition 4.3 implies
that, under the assumptions (W-i), (W-ii) and (W-iii), there exists a threshold
value σ0 > 0 such that for any σ ∈ (σ0,∞) there are hylomorphic solitons with
hylomorphic charge σ. The existence of hylomorphic solitons for all hylomorphic
charges can be obtained by a stronger version of assumption (W-iii). Let us consider
the condition

• (W-iv) (Behaviour at s = 0)N(s) ≤ −s2+ε with 0 < ε < 4
N for s small.

(N(s) is defined in (4.8)).
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Corollary 4.5 ([3]). If (W-i), (W-ii) and (W-iv) hold then for any σ 6= 0
there exists a hylomorphic soliton for (NKG) with hylomorphic charge |H| = σ.

We finish this section by giving a remark which is useful for the numerical
approach to the existence of hylomorphic solitons for (NKG). We have found solitons
as points of minimum for the energy E(u, ω) on the manifold with fixed hylomorphic
charge. Hence we are studying a minimisation problem in two variables with one
constraint. It is immediate that this problem can be translated into a minimisation
problem in one single variable with no constraints. We will use as independent
variable the functions u ∈ H1.

If (u0, ω0) is a minimiser of E (u, ω) constrained to Mσ with σ fixed, then it is
also a minimiser of Λ (u, ω) constrained to Mσ. Moreover if (u, ω) ∈ Mσ, then

(4.16) ω = ωσ (u) :=
σ

∫

u2 dx

Hence, letting

(4.17) Λσ (u) := Λ (u, ωσ (u)) =
1

σ

∫
[

1

2
|∇u|2 +W (u)

]

dx+
σ

2
∫

u2dx

we can state Theorem 4.4 in the form

Theorem 4.6. For any fixed σ ∈ R+, if u0(x) is a point of minimum for the
functional Λσ (u) defined in (4.17), then ψ0(t, x) = u0(x)e

−iωσ(u)t is an orbitally
stable standing wave of (NKG) with hylomorphic charge |H| = σ and ωσ(u) given
as in (4.16).

4.3. Numerical construction of Q-balls. In this section we provide basic
details of our numerical method for constructing hylomorphic solitons. The numer-
ical results are shown in the next section, where they illustrate a classification of
(NKG) equations originally introduced therein.

Theorem 4.6 is straightforwardly exploited for the numerical construction of
Q-balls: we fix a hylomorphic charge σ ∈ R+ and look for points of minimum
of the functional Λσ(u). Firstly, by the classical principle of symmetric criticality
(see [16]), we can restrict ourselves to the analysis of radially symmetric functions
u(x) = u (r (x)), with r(x) = |x| in Rn. We then consider the following evolutionary
problem:

(4.18)

{

∂tu(r, t) = −σ dΛσ = ∆u−W ′(u) + ω2u in [0, r̃) × R+

u(r, t) = 0 on {r = r̃} × R+

in which r̃ denotes a chosen upper bound for the r−domain (discussed below) and
ω = ωσ(u) as in (4.16). The evolution of u according to (4.18) is a gradient flow and
therefore a non-increasing trend for Λσ(t) := Λσ(u(r, t)) is obtained, well suited as
the sought minimisation process.

The problem (4.18) is then discretised by a classical line method; in particular,
2nd order and 1st order accurate finite differences have been respectively used for
space and time discretisation (see e.g. [17]). The chosen charge σ is directly en-
forced at the n-th time level (n = 0, 1, 2, . . . ), by evaluating the frequency ωn from
the corresponding numerical solution through the discrete counterpart of (4.16).
Moreover, time-advancing is stopped when |ωn+1−ωn|/ωn < eω, eω being a prede-
fined threshold (a relative error on Λσ has been considered as well). The proposed
method manages to efficiently converge by starting from several initial guesses: not
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Figure 1. (a) Surface plot of |Ψ| for a 2D Q-ball moving with
velocity v = (0.9, 0) on the (x1, x2) plane (recall that the units
of measure are scaled so that the speed of light is c = 1). W
given by (4.32), hylomorphic charge σ = 300. (b) Corresponding
contour plot (detail), highlighting the Lorentz contraction along
the direction of motion.

only from Gaussian (Q-ball like) profiles but also from discontinuous ones (e.g.
ū · χ (Dr), with Dr contained within the chosen r−domain and ū suitably set for
obtaining the desired σ). Finally, the domain extreme r̃ is chosen in such a way that
it does not affect the numerical results (an a-posteriori check might be necessary:
the chosen domain must be large enough to contain the soliton support, with some
margin).

We remark that we did not try to implement a shooting method, on purpose.
Indeed, sign-changing solutions are known to be unstable and, based on the given
definition of soliton (implying stability), such solutions are of no interest in the
present study. Conversely, the proposed numerical method guarantees to find a
soliton, due to Theorem 4.6.

It is worth remarking that, once defined u(r(x)) by means of the aforementioned
strategy, it is easy to build moving Q-balls through the transformation (4.6); a two-
dimensional (2D) example is shown in Figure 1.

4.4. Classification of the nonlinear terms. In this section we introduce
four classes of behaviour for the nonlinear term W , all classes admitting hylomor-
phic solitons. The classification is based on the existence and non-existence of
solitons with small charge H and with big L∞ norm for the (NKG) with W in
a fixed class. Moreover we state some general properties shared by hylomorphic
solitons. Without any loss of generality we consider the case H < 0 and ω > 0.

Theorem 4.7 (Admissible frequencies). Let (W-i), (W-ii) and (W-iii) hold
and ψ(x, t) = u(x)e−iωt be a hylomorphic soliton for (NKG) in Rn. Set

Γ(u) :=

∫

|∇u|2dx
∫

u2dx
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Figure 2. Frequency (a) and hylomorphy ratio (b) of 2D Q-
balls as a function of the hylomorphic charge H. W given
by (4.32); circles associated with the following charge values:
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}.

and

ω1 := max

{

1 −
√

1 − λ0,
1

2
− 1

2

√

1 − 4Γ(u)

n

}

where λ0 is defined as in (W-iii). Then Γ(u) < n
4 and there exists η > 0 such that

the frequency ω satisfies

ω ∈
(

ω1,
1

2
+

1

2

√

1 − 4Γ(u)

n

)

⊂
(

1

2
λ0, 1 − η

)

Proof. We first show that Γ < n
4 and ω < 1

2 + 1
2

√

1 − 4Γ
n .

We recall that if ψ(t, x) is a hylomorphic soliton for (NKG), then its radial part
u(x) satisfies equation (4.4). Hence using the Derrick-Pohozaev identity (4.5) for u
it follows that the energy (4.9) and the hylomorphy ratio (4.12) can be written as

E(u, ω) =

∫

1

n
|∇u|2 + ω2u2dx

Λ(u, ω) =
Γ(u)

nω
+ ω.

By imposing that Λ(u, ω) < 1, a simple computation implies the first part of the
theorem.

It remains to prove that ω > ω1. By Proposition 4.15 and (4.12) any hylomor-
phic soliton fulfils

Λ(u, ω) =
α(u)

2ω
+
ω

2
≥ λ0

2ω
+
ω

2
Again by imposing that λ0

2ω + ω
2 < 1 we obtain that ω > ω1. �

Figure 2 shows a “typical” behaviour of the frequency and the hylomorphy
ratio of a hylomorphic soliton as the hylomorphic charge varies. The frequency ω
and the hylomorphy ratio Λ are decreasing functions of the hylomorphic charge.
We remark that as expected we find Λ < 1 for all hylomorphic solitons.
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Definition 4.8. Let W satisfy (W-i), (W-ii) and (W-iii). We say that equation
(NKG) (or W) is of type (α) if there exists α0 > 0 such that any hylomorphic soliton
ψ(t, x) of the form (4.3) satisfies

‖ψ(t, ·)‖L∞(Rn) ≥ α0 ∀ t ∈ R

Theorem 4.9. Assume that W satisfies (W-i), (W-ii) and (W-iii), and write
it as in (4.8). If

N(s) > 0 ∀s ∈ (0, α0)

then equation (NKG) is of type (α).

Proof. Let ψ(t, x) = u(x)e−iωt be a hylomorphic soliton for (NKG) and let us
assume that there exists t0 such that ‖ψ(t0, ·)‖L∞(Rn) < α0. By the assumption on

N , this implies that N(ψ(t0, x)) > 0 for all x ∈ Rn.
However, by Proposition 2.6, it follows that hylomorphic solitons have non-

empty support of binding energy density at any time. That is, writing

ρE,ψ(t, x) =
1

2
|∇u|2 +

1

2

[

1 + ω2
]

u2 +N(u)

ρH,ψ(t, x) = −ω u2

see equations (2.8) and (2.7), for any t ∈ R there exists a positive measure set of
points x ∈ R

n such that the binding energy density fulfils

(4.19) ρB,ψ = ωu2 − 1

2
|∇u|2 − 1

2

[

1 + ω2
]

u2 −N(u) > 0

see (2.10) and Theorem 3.1 which implies m0 = 1. Moreover by equation (4.19) it
follows by simple computations that for all t ∈ R there exists a positive measure
set of points x ∈ Rn such that

0 < ρB,ψ(t, x) ≤
[

ω − 1

2
− 1

2
ω2

]

u2(x) −N(u(x)) ≤ −N(u(x))

Letting t = t0 in the previous inequality we get that N(ψ(t0, x)) < 0 for some x,
which is a contradiction. �

Definition 4.10. Let W satisfy (W-i), (W-ii) and (W-iii). We say that equa-
tion (NKG) (or W) is of type (non-α) if for any α0 > 0 there exists a hylomorphic
soliton ψ(t, x) of the form (4.3) for which

‖ψ(t, ·)‖L∞(Rn) ≤ α0 ∀ t ∈ R

Theorem 4.11. Assume that W satisfies (W-i), (W-ii) and (W-iv), and that
λ0 defined in (W-iii) is positive. Then equation (NKG) is of type (non-α).

Proof. By Corollary 4.5 if (W-i), (W-ii) and (W-iv) for W hold, there exist hylo-
morphic solitons of the form (4.3) for arbitrary small hylomorphic charges. More-
over by Theorem 4.7, if λ0 > 0 the admissible frequencies of the hylomorphic
solitons satisfy

ω ≥ 1 −
√

1 − λ0 > 0

Hence we can find a sequence of hylomorphic solitons ψk = uk(x)e
−iωkt for (NKG)

with hylomorphic charge vanishing and satisfying
∫

|∇uk|2 dx→ 0

∫

u2
k dx→ 0



328 J. BELLAZZINI, V. BENCI, C. BONANNO, AND E. SINIBALDI

We recall that the (uk) are radially symmetric functions, hence there exist positive
constants C and ρ, only depending on the dimension n, such that (see [9])

(4.20) |uk(x)| ≤ C
‖uk‖H1(Rn)

|x|n−1

2

∀ |x| ≥ ρ

Moreover the hylomorphic solitons ψk = uk(x)e
−iωkt satisfy the Dirichlet problems

(4.21)

{

−∆uk = ω2
kuk −W ′(uk) in B(0, ρ) = {x ∈ Rn : |x| ≤ ρ}

uk(x) = εk for x ∈ ∂B(0, ρ)

where by (4.20), (εk) are constants such that εk → 0 as k → ∞. Now, recalling
(4.8), without loss of generality (see Section 3 in [3]) we can assume that

(4.22) |N ′(s)| ≤ c1s
p + c2s

q with c1, c2 > 0 and 1 < p ≤ q < 2∗ − 1

where 2∗ = 2n
n−2 . Hence, since uk ∈ H1(B(0, ρ)) and by the assumptions ‖uk‖H1 →

0 as k → ∞, applying the classical Sobolev embedding theorems it follows that the
right hand side of (4.21) satisfies

(4.23) f(uk) := (ω2
k − 1)uk −N ′(uk) −→ 0 in Ls ∀ s ∈

(

1,
2∗

q

)

where q is given in (4.22). Moreover, the classical theory of elliptic regularity (see
for example [1]) implies that if the functions uk are solutions of (4.21) with f(uk)
in Ls for some s, then

(4.24) uk ∈W 2,s and ‖uk‖W 2,s ≤ const (‖fk‖Ls + εk)

where the constant only depends on the radius ρ. Now, a classical bootstrap ar-
gument applies, and it follows that equations (4.23) and (4.24) hold for bigger and
bigger values of s. We sketch the ideas of the first step of the bootstrap. From
(4.23) and (4.24) it follows that

lim
k→∞

‖uk‖W 2,s = 0 ∀ s ∈
(

1,
2∗

q

)

which implies that we can write (4.23) for s in an interval (1, q1) with q1 >
2∗

q , just

applying again the classical Sobolev estimates. But then f(uk) belongs to Ls for
all s ∈ (1, q1), then (4.24) hold for all s ∈ (1, q1). This argument can be repeated
over and over until equations (4.23) and (4.24) hold for all s > 1.

In particular it follows that (4.23) and (4.24) hold for s > n
2 , and the Sobolev

theorems imply that

(4.25) ‖uk‖L∞(B(0,ρ)) ≤ const ‖uk‖W 2,s(B(0,ρ)) ≤ const
(

‖fk‖Ls(B(0,ρ)) + εk
)

Hence, putting together (4.20) and (4.25) it follows that

lim
k→∞

‖uk‖L∞(Rn) = 0

and the theorem is proved. �

Definition 4.12. Let W satisfy (W-i), (W-ii) and (W-iii). We say that equa-
tion (NKG) (or W) is of type (β) if there exists β0 > 0 such that any hylomorphic
soliton ψ(t, x) of the form (4.3) satisfies

‖ψ(t, ·)‖L∞(Rn) ≤ β0 ∀ t ∈ R
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Theorem 4.13. Assume that W satisfies (W-i), (W-ii) and (W-iii), and write
it as in (4.8). If

N ′(s) ≥ 0 ∀ s ∈ (β0,+∞)

then equation NKG is of type (β).

Proof. Let ψ(t, x) = u(x)e−iωt be a hylomorphic soliton, then u is a solution
of (4.4). Setting u = β0 + v it is sufficient to prove that v(x) ≤ 0. Let Ω :=
{x : v (x) > 0}. Substituting in (4.4) we get

{

−∆v +W ′(β0 + v) = ω2(β0 + v) in Ω

v = 0 in ∂Ω

Multiplying both sides by v and integrating in Ω, we get

0 =

∫

Ω

[

|∇v|2 + (1 − ω2)(β0 + v)v +N ′(β0 + v)v − ω2v2
]

dx ≥
∫

Ω

(−ω2v2)dx

since ω2 < 1 by Theorem 4.7, and by assumption on N ′. This implies that v = 0
in Ω. �

Definition 4.14. Let W satisfy (W-i), (W-ii) and (W-iii). We say that equa-
tion (NKG) (or W) is of type (non-β) if for any β0 > 0 there exists a hylomorphic
soliton ψ(t, x) of the form (4.3) for which

‖ψ(t, ·)‖L∞(Rn) ≥ β0 ∀ t ∈ R

Theorem 4.15. Assume that W satisfies (W-i), (W-ii) and (W-iii), and that

lim
s→∞

W (s)

s2
= 0 and W (s) > 0, s 6= 0

Then equation (NKG) is of type (non-β).

Proof. The argument is by contradiction. Let us assume that there exists a
constant C such that all hylomorphic solitons have L∞ norm bounded by C. Then
we can choose a sequence of hylomorphic solitons (uk, ωk) with charges H(uk, ωk)
diverging and with the properties

∫

u2
k dx→ ∞(4.26)

‖uk(x)‖L∞(Rn) ≤ C(4.27)

Let us now consider the sequence of radially symmetric triangle shaped functions
vk defined by

(4.28) vk(r) =

{

−Mk

ρk
r +Mk if 0 ≤ r ≤ ρk

0 if |r| ≥ ρk

with parametersMk and ρk suitable to satisfy
∫

u2
kdx =

∫

v2
kdx. For these functions

it holds H(vk, ωk) = H(uk, ωk).
We now use (4.12) and (4.13) to obtain a contradiction. By the assumptions

on W and (4.26) and (4.27), the sequence (uk) satisfies

Λ(uk, ωk) ≥
1

2
ωk +

1

2

∫

W (uk) dx
∫

u2
k dx

%
1

2
ωk +

1

2

W (C)

C2

letting the functions uk converging to the constant function C.
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On the contrary, by (4.28) the functions vk satisfy

Λ(vk, ωk) =
1

2
ωk +

1

2

∫

(|∇vk|2 +W (vk)) dx
∫

v2
k dx

=
1

2
ωk +O

(

W (Mk)

M2
k

+
1

ρ2
k

)

Hence, letting Mk → ∞ and ρk → ∞ under the condition
∫

u2
kdx =

∫

v2
kdx, we get

that
Λ(vk, ωk) ≤ Λ(uk, ωk)

for k sufficiently large. Hence, since H(vk, ωk) = H(uk, ωk),

E(vk, ωk) ≤ E(uk, ωk)

for k sufficiently large, which contradicts the fact that (uk, ωk) are points of absolute
minimum for the energy. �

Given the definitions of “types”, we classify the nonlinear Klein-Gordon equa-
tions in terms of the following classes

• (α, β); if it is of type (α) and type (β)
• (α, non-β); if it is of type (α) and type (non-β)
• (non-α, β); if it is type (non-α) and of type (β)
• (γ); if it is of type (non-α) and of type (non-β)

In particular the equation (NKG) is of type (γ) if for every γ0 > 0 there exist
hylomorphic solitons ψs(t, x) and ψb(t, x) satisfying

‖ψs(t, ·)‖L∞(Rn) ≤ γ0 ≤ ‖ψb(t, ·)‖L∞(Rn) ∀ t ∈ R

We now give examples of nonlinear terms for all classes, presenting numerical
results obtained by means of the strategy discussed in Section 4.3. The numerical
investigation is carried out in a 2D context for simplicity.

In particular, in Figure 3 we have plotted the radial profiles u(r) of some Q-
balls associated to the (NKG) equations of the four classes. For each class, the
plotted profiles correspond to different values of hylomorphic charge. We remark
that for (NKG) equations of type (α), hylomorphic solitons with arbitrary small
hylomorphic charge do not exist. In particular, for the choice (4.29), the threshold
is approximately at σ = 25. In this case, if the charge is e.g. σ = 15, the numerical
algorithm leads to a radial profile which is not a solution of the Klein-Gordon
equation in the unbounded domain, but rather a solution of the Dirichlet problem
in the interval fixed for the numerical analysis. For what concerns hylomorphic
solitons with big charges, we point out the difference in the shape of the radial
profiles for (NKG) equations of type (β) or (non-β). In the first case, as expected,
there exists a bound for the L∞ norm of the radial profiles, whereas in the second
case the L∞ norms increase arbitrarily. Finally in Figure 4 we have plotted the
energy density (ρE,Ψ, solid), the hylomorphic charge density (ρH,Ψ, dashed) and
the corresponding binding energy density (ρB,Ψ, dashed-dotted) for some Q-balls
of all the four classes.

Example no. 1: W of type (α, β). The equation

ψtt − ∆ψ +
(

1 + |ψ| − a |ψ|2 + |ψ|3
)

ψ = 0

is of type (α, β) provided that a ∼= 2.5. Here

(4.29) W (ψ) =
1

2
|ψ|2 +

1

3
|ψ|3 − a

4
|ψ|4 +

1

5
|ψ|5
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We have α0
∼= 1 and β0

∼= 2.5.

Example no. 2: W of type (α, non-β). The equation

ψtt − ∆ψ +
ψ

1 − |ψ| + |ψ|2
= 0

is of type (α, non-β). Here

(4.30) W (ψ) =
1

2
log
(

1 − |ψ| + |ψ|2
)

+
1√
3

[

arctan

(

2 |ψ| − 1√
3

)

+
π

6

]

Example no. 3: W of type (non-α, β). The equation

ψtt − ∆ψ +
(

1 − a |ψ| + |ψ|2
)

ψ = 0

is of type (non-α, β) provided that a ∈ (0, 2). Here

(4.31) W (ψ) =
1

2
|ψ|2 − a

3
|ψ|3 +

1

4
|ψ|4

Example no. 4: W of type (γ). The equation

ψtt − ∆ψ +
ψ

1 + |ψ| = 0

is of type (γ). Here

(4.32) W (ψ) = |ψ| − log (1 + |ψ|) =
1

2
|ψ|2 − 1

3
|ψ|3 + o(|ψ|3)

We notice that W (s) fulfils the assumption (W-iv). The existence of hylomorphic
solitons with arbitrary charge is guaranteed by Corollary 4.5.
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Figure 4. Energy density (ρE,Ψ, solid), hylomorphic charge den-
sity (ρH,Ψ, dashed) and corresponding binding energy density
(ρB,Ψ, dashed-dotted) along the radial direction for 2D Q-balls
having a given hylomorphic charge H (specified in each figure).
The radial profile is also shown through circles, for reference. (a)
and (b) W of type (α, β), given by (4.29) with a = 2.5; (c) and
(d) W of type (α, non-β), given by (4.30); (e) and (f) W of type
(non-α,β), given by (4.31) with a = 1; (g) and (h) W of type (γ),
given by (4.32).
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