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Wave breaking in the short-pulse equation
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ABSTRACT. Sufficient conditions for wave breaking are found for the short-
pulse equation describing wave packets of few cycles on the ultra-short pulse
scale. The analysis relies on the method of characteristics and conserved quan-
tities of the short-pulse equation and holds both on an infinite line and in a
periodic domain. Numerical illustrations of the finite-time wave breaking are
given in a periodic domain.
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1. Introduction

The short-pulse equation,
1
(1.1) Uty = U+ 6(u3)m, t>0, zeR,
is a useful and simple approximation of nonlinear wave packets in dispersive media
in the limit of few cycles on the ultra-short pulse scale [1, 11]. This equation is a
dispersive generalization of the following advection equation
1
(1.2) Uy = §u2um, t>0, zeR.

According to the method of characteristics, the advection equation (1.2) ex-
hibits wave breaking in a finite time for any initial data u(x,0) = wug(x) on an
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infinite line if ug(x) is continuously differentiable and there is a point zp € R such
that wug(zo)ug(zo) > 0. This follows from the implicit solution
1
u({,t) :u0(§)7 .’L'(g,t) =§—§U%(§)f, t>07 §ER7
for any given ug(z) € C*(R). We say that the finite-time wave breaking occurs if
there exists a finite time T' € (0, c0) such that

(1.3) limsup u(z, t)uy(x,t) = oo, while limsup |u(x,t)|] < oco.
1T zeRr T zer

For the simple advection equation (1.2),
1
T=inf{ ———:  up(&)uy >0}.
ot e

In view of this result, we address the question if the dispersion term 9, *u in the
short-pulse equation (1.1) can stabilize global dynamics of the advection equation
(1.2) at least for small initial data. Local well-posedness of the short-pulse equation
on an infinite line was proven in [11].

THEOREM 1 (Schifer & Wayne, 2004). Let ug € H?(R). There exists a T > 0
such that the short-pulse equation (1.1) admits a unique solution

u(t) € C([0,T), H*(R)) N C*([0,T), H'(R))
satisfying u(0) = ug. Furthermore, the solution u(t) depends continuously on ug.

To extend local solutions into a global solution, Pelinovsky & Sakovich [9] used
the following conserved quantities of the short-pulse equation:

(14) Ey := /u2d:c,
R

2
u
15) B = / VIt -1 dxzfimd:c,
(L5) B R( ) R 1+ /112
2
u u
1.6 By = 1 219, | —2— - Y g
w6 Bo= [ ViTe (Fuuz) o= [ et

If u(t) is a local solution in Theorem 1, then Fy, Ej, and E5 are bounded and
constant in time for all ¢ € [0,T). Global well-posedness of the short-pulse equation
on an infinite line was proven in [9] for small initial data in H? satisfying

(1.7) 2B + Ep < |Jug| 2 + ug|Z: < 1.

The condition (1.7) can be sharpen using the scaling transformation for the short-
pulse equation (1.1). Let a € Ry be an arbitrary parameter. If u(x,t) is a solution
of (1.1), then @(%, ) is also a solution of (1.1) with

(1.8) F=ar, t=ao't, (1) = au(z,t).

The conserved quantities transform as follows:

B /R(Ml—i—ﬂ%—1>d:E=a/R(\/W—1)dx=aE1,

~2 2
P, — LT RS B B S N |
By, = /R(l_’_a%)dew—a /R(l—i—u%)f’ﬂdx a " Es.
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Finding the minimum of 2E1 + EQ = 2aF; + a1 E, in « gives a sharper sufficient
condition on global well-posedness [9].

THEOREM 2 (Pelinovsky & Sakovich, 2008). Let ug € H%(R) and 2+/2E1FE> <
1. Then the short-pulse equation (1.1) admits a unique global solution u(t) €
C(Ry, H*(R)) satisfying u(0) = ug.

Theorem 2 does not exclude wave breaking in a finite time for large initial
data and this paper gives a proof that the wave breaking may occur in the short-
pulse equation (1.1). Negating the sufficient condition for global well-posedness in
Theorem 2, a necessary condition for the wave breaking follows: the wave breaking
may occur in the short-pulse equation (1.1) with the initial data ug € H? only if
2v/2E1Fs > 1. We shall find a sufficient condition for the wave breaking in the
short-pulse equation (1.1).

Unlike the previous work in [9], we will not be using conserved quantity Eo but
will rely on the conservation of Ey, F7, and the energy

(1.9) B, ;:/R [(8;111)2 - %u‘l] da.

Here 0, 'u is defined from a local solution u by

oy tu :z/ w(x' t)dz' = —/ w(x' t)dz' = % (/ —/ ) u(x', t)dz’,

thanks to the zero-mass constraint [, u(z,t)dz = 0 for all t € (0,T). (Note that
the initial data ug does not have generally to satisfy the zero-mass constraint

Jg uo(z)dz = 0.)
Thanks to the Sobolev inequality, |u||z+ < C||u||z for some C' > 0, the quan-
tity E_; is bounded if u € H*(R) N H~1(R), where H~! is defined by its norm

lull -1 = 107 "l 2.

(Note that if uw € H?(R) N H~1(R), then Jpu(z)dz = 0 is satisfied.) Our main
result on the wave breaking on an infinite line is formulated as follows.

THEOREM 3. Let ug € H2(R) N H~Y(R) and T be the mazximal existence time
of Theorem 1. Let

1/2
o= (B2 + (sBoEx + EI)'?)

»—A%|)—l
[N}

1 1/2
FQ = — <E0 + E_l + EEOF12> ,

S

and assume that there exists xo € R such that ug(xo)ui(xo) > 0 and

F2 1/3
either lug(zo)| > (4_1*}'()) ,

1/2
1
el o) > Fi -+ (2Falilonl - 372)

/ Fl2 1/3 / 2
or [ug(wo)| < 1 s |uo(wo)||ug(zo)|” > Fi.
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Then T < oo, so that the solution u(t) € C([0,T), H*(R) N H~'(R)) of the short-
pulse equation (1.1) blows up in the sense of

li t t) = hile  li D) e < FY.
tﬁ?i‘éﬁu(x’ Juz(z,t) =00, while #TnTlH“(’ M= < F1

REMARK 1. The quantities Fy and Fy in Theorem 3 can be defined by

Fy:= sup |u(-,t)||p~, Fo:= sup Ha;lu(',t)HLoo.
te[0,T) te(0,T)

Note that the scaling transformation (1.8) gives

la(, Dl = alluC,t)llz~, 107 A, Dl = o®|07  ul, )] L,
so that the sufficient condition of Theorem 3 with new definitions of F1 and Fy 1is
invariant in «. We note, however, that, while the bound on Fy in Theorem 3 scales
correctly as Fy = aFy, the bound on Fy is not correctly scaled in o because

EO = OABE(), E,1 = OA5E71.
This is an artefact of using Sobolev embedding in Lemma 3 below.

To prove Theorem 3, we shall adopt the method of characteristics and proceed
with apriori differential estimates. Our results remain valid in a periodic domain,
where Theorem 3 is replaced by Theorem 4 below. The technique of characteristics
and apriori differential estimates has been applied for wave breaking in other non-
linear wave equations, see [2, 3, 4, 5, 6, 7, 12] for an incomplete list of references.

We emphasize that, unlike the previous work in [9], we avoid using a trans-
formation between the short-pulse equation (1.1) and the integrable sine-Gordon
equation in characteristic coordinates. Our proof of the wave breaking for the short-
pulse equation (1.1) does not suggest that there exists a similar wave breaking for
the sine-Gordon equation, it is rather the breaking of the coordinate transforma-
tion between the two equations. On a similar note, we do not use the integrability
properties of the short-pulse equation (1.1) such as the Lax pair, the inverse scatter-
ing transform method, the bi-Hamiltonian formulation, and the existence of exact
soliton solutions.

The article is constructed as follows. The proof of Theorem 3 is given in Section
2. Section 3 reports extension of Theorem 3 to a periodic domain. Section 4 contains
numerical evidences of the finite-time wave breaking in a periodic domain.

Acknowledgement. The work of Y. Liu is partially supported by the NSF
grant DMS-0906099. The work of D. Pelinovsky is supported by the NSERC grant
RGPIN238931-06. The work of A. Sakovich is supported by the McMaster graduate
scholarship.

2. Wave breaking on an infinite line

Let us rewrite the Cauchy problem for the short-pulse equation on an infinite
line in the form

_ 1,2 —1
(2.1) up = su Uy + 0, 'u, TER, t>0
’UJ(.’,E,O) = UO(x)v T e Ra
where 0, 'u := [ _w(a’,t)da’. In what follows, we use both notations u(t) and

u(z, t) for the same solution of the Cauchy problem (2.1). Local existence of solu-
tions with the conservation of E_; and Ej is described by the following result.
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LEMMA 1. Let ug € H*(R) N H-'(R), s > 2. There exist a mazimal time
T =T(up) > 0 and a unique solution u(x,t) to the Cauchy problem (2.1) such that

u(t) € C([0,T), H*(R)n H~Y(R)) N C*([0,T), H*~(R))

satisfying u(0) = ug. Moreover, the solution u(t) depends continuously on the initial
data ug and the values of E_1, Ey, and Ey in (1.4), (1.5), and (1.9) are constant
on [0,T).

PROOF. If ug € H*(R) N H~*(R), s > 2, then d;'ug € H**'(R), so that
Jg uo(z)dz = 0. By the theorem of Schéfer & Wayne [11], there exists a solution

u(t) € C([0,T), H*(R)) N C*((0,T), H*}(R))
of the short-pulse equation (1.1), so that

0 tu(t) == uy — %uQUz € C((0,7), H* 1(R)).

Therefore, u(t) € C([0,T), H*(R) N H~'(R)) in view of boundness of ||uol| -1
Because f € H*(R), s > 1 implies lim|;|_o f(2) = 0, the zero-mass constraint
holds in the form

(2.2) /Ru(x,t)d:r =0, te€l[0,T).

Let us define )
-2 — (a1 3
9, *u(t) == (8; u)t —gY-
By the zero-mass constraint (2.2) and uniqueness of the solution u(t) for any ¢ €
[0,T"), we obtain

lim 9, %u(x,t) =0, tel0,T).

|| —o0
Using balance equations for the densities of E_1, Fy, and E;, we write
1

Ol I L

(), = (@ +qut) |
(viTa-), = L(eviTe)

Integrating the balance equation in « € R for any ¢ € [0,T), we complete the proof
that E_1, Ep, and E; are bounded and constant on [0, 7). O

x

REMARK 2. The mazimal existence time T > 0 in Lemma 1 is independent of
s > 2 in the following sense. If ug € H*(R) N H* (R) N H~Y(R) for s,s' > 2 and
s # s, then

u(t) € C([0,7), H*(R)n H ' (R)) nC*([0,T), H*"'(R))
and
u(t) € C([0,7), H* (R) N H~'(R)) n C*([0,T"), H~*(R))
with the same T' =T. See Yin [12] for standard arguments.

By using the local well-posedness result in Lemma 1 and energy estimates, we
obtain a precise blow-up scenario of the solutions to the Cauchy problem (2.1).
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LEMMA 2. Let ug € H2(R) N H Y(R) and u(t) be a solution of the Cauchy
problem (2.1) in Lemma 1. The solution blows up in a finite time T € (0,00) in
the sense of limyyp ||u(-, t)|| gz = oo if and only if

lim sup u(z, t)uy(x,t) = +00.
imsup u(a s v, )

ProoOF. We only need to prove the necessary condition, since the singularity
in u(z, t)uy(z,t) as t T T implies the singularity in ||u(-,t)|| g2 as t 7 T. Assume a
finite maximal existence time T € (0,00) and suppose, by the contradiction, that
there is M > 0 such that
(2.3) sup u(z, thug(z,t) <M < oo, Vtel[0,T).

T€R

Applying density arguments, we approximate the initial value ug € H?(R) by func-
tions uf € H3(R), n > 1, so that lim, . uf} = ug. Furthermore, write u"(t) for
the solution of the Cauchy problem (2.1) with initial data u{. Using the regularity
result proved in Lemma 1 for s = 3, it follows from Sobolev’s embedding that, if
u™(t) € C([0,T), H3(R) N H~'(R)), then u"(z,t) is a twice continuously differen-
tiable function of  on R for any ¢ € [0,T). It is then deduced from the short-pulse
equation (1.1) that

d

— (u;)de:/u"(u;)?’dng/(u;)de
dt Jg R R

and p
— [ (u,)dx = 5/ uu” (u,) de < 5M/(u21)2d:c.
dt Jg R R

The Gronwall inequality yields for all ¢t € [0,T),
n n M n n 5
lug Gtz < N(ug) lee ™, Jlufa (o t)llce < ll(ug)” || L2 ™.

Since ||ug|| g2 converges to |jug|| g2 as n — oo, we infer from the continuous depen-
dence of the local solution u(t) on initial data ug that |u(-,t)| g2 remains bounded
on [0, T) for the solution u(t) in Lemma 1. Therefore, the contradiction is obtained
and either T is not a maximal existence time or the bound (2.3) is not valid on
[0,7). O

We also show that the blow-up of Lemma 2 is the wave breaking in the sense of
condition (1.3). In other words, both ||u(-,t)|| L= and [|0;  u(-,t)||L~ are uniformly
bounded for all ¢ € [0,T).

LEMMA 3. Let ug € H2(R)NH~Y(R) and T > 0 be the mazimal existence time
of the solution u(x,t) in Lemma 1. Then,

(2'4) Hu('at)HL“’ < F17 ”az_lu('vt)HL“’ < F07 te [OvT)v
where
1 1/2\1/2
(2.5) B s (B EE B
1 1 , 1/2
2.6 Fy = —\|Ey+E_ —FEyF .
(2.6) 0 \/5< o+ L1+ 270 1>
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PRrROOF. For all ¢ € [0,T) and the solution u(x,t), we have

u?(z,t) = ‘/ uuzda:—/ Uy dx

< /—'u”%' V1+V/1+uZde
Ry 1+ /1+u2
1/2
< Eﬁ/z<jfzﬂ(24—\/14-ug-—1)dx)
R
1/2
< EV?(2Bo+ By fu(-1)|2)"?.

As a result, we obtain
[u(, 1)z < 2B0B1 + B flu(-, )12,

so that bound (2.5) is found from the quadratic equation on ||u(-,t)[|2.. On the
other hand, we have

107 "l )17

u(-, )72 + 110 'ul-, 1) 7
1

— Bot+ Bt Sl
12
1

< Ey+E_ 1+ EEOHU('J)H%W

Using the Sobolev inequality |0, 'ul| =~ < \/iﬁ |0, 1ul| g+ and bound (2.5), we obtain
bound (2.6). O

Let us introduce a continuous family of characteristics for solutions of the
Cauchy problem (2.1). Let £ € R, ¢ € [0,T), where T is the maximal existence
time in Lemma 1, and denote

(2.7) r=X( 1), ule,t) =UE), 0 u(e 1) =GED),
so that

X(t) = 107, U(t) =G,
(2.8) { X(0) = 572 { U(0) = uo(§),

where dots denote derivatives with respect to time ¢ on a particular characteristics
x = X (&) for a fixed £ € R. Applying classical results in the theory of ordinary
differential equations, we obtain the following useful result about the solutions of
the initial-value problem (2.8). Conserved quantities E_; and Fy of the Cauchy
problem (2.1) are used to control values of U and G on the family of characteristics.

LEMMA 4. Let ug € H*(R)N H Y (R) and T > 0 be the mazximal existence
time of the solution u(t) in Lemma 1. Then there exists a unique solution X (&,t) €
CL(Rx[0,T)) to the initial-value problem (2.8). Moreover, the map X (-,t) : R — R
is an increasing diffeomorphism for any t € [0,T) with

0: X (€,t) = exp (—/O u(X({,s),s)ux(X(g,s),s)ds) >0, t€[0,T), £€R.
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PROOF. Existence and uniqueness of X (&,t) € CH(R,[0,T)) follows from the
integral equation

Tt
X(§,t):§—§/OU(§,s)ds, te[0,T), €€R,

since U(&,t) € C(R,[0,T)) for the solution u(¢) in Lemma 1. Using the chain rule,
we obtain

an(gvt) = _W(§7 t)agX(f, t) = 85X(§7 t) = exp <_/O W(§7 S)d8> )

where W (£, 1) = w(X (&, 1), t)uy(X (€, 1),t) € C(R,[0,T)). Therefore, ¢ X (£,t) > 0
forallt € [0,T) and £ € R. O

Let
V(1) = ue(X(&,8),8),  W(E 1) = u(X(&,1), ua (X (1), 1) = U(E1)V(E, 1)
and compute their rate of changes along the family of characteristics

{ V = VW+U,

(2.9) W = W24+VG+ U

Let Fy, F1 > 0 be fixed in terms of conserved quantities F_1, Fy, and E; as in
Lemma 3 and assume that there exists & € R such that W (&p,0) > 0 and

F12 1/3
either [V (£0,0)| > (E) )

1/2
V& 0W(6.0) > B+ (2RlV 0 - 372)

2\ 13
o W@l (1) V@0IWE.0 > A
0

Because of the invariance of system (2.9) with respect to
G—--G, U—--U V-V, W->W,

it is sufficient to consider the case with V(£y,0) > 0. We will prove that, under
the conditions above, V(&p,t) and W (&, t) remain positive and monotonically in-
creasing functions for all ¢ > 0, for which they are bounded, so that V(&,t) and
W (o, t) satisfy the apriori differential estimates

Vo> VW-FR
2.1 . '
(2.10) {W > W2 VE,.
In what follows, we use V' (t) and W (t) instead of V(§y,t) and W (&, t) for a par-

ticular £y € R. The following lemma establishes sufficient conditions on the initial
point (V(0),W(0)) that ensure that a lower solution satisfying

vV o= VW-F,
(2.11) {W _ we_vnm,

goes to infinity in a finite time.
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LEMMA 5. Assume that the initial data for system (2.11) satisfy

F12 1/3
ith V(0 —
either 0) > (4F0> ,

1/2
1

(2.12) memn>m+<ﬂwﬁm—§ﬁ) :
L
4F,
Then the trajectory of system (2.11) blows up in a finite time t. € (0,00) such that
V(t) and W (t) are positive and monotonically increasing for all t € [0,t,) and there
is C' > 0 such that

(2.14) llTItn V(t) =00, limW(t) =00, and lim(t.—t)V(t)=C.

U1t 1t

1/3
(2.13) or 0<V(0)< ( ) . V(O)W(0) > F.

Moreover, t. is bounded by

V() |
Imn{VmL(Vﬂm)—zﬂw@m)+%ﬂﬂlm}

(2.15) t, <

PROOF. Let us first consider the homogeneous version of system (2.11) for
Fy =0, that is

vV o= VW,
(2.16) {W = W2-VE.

Of course, Fj is never zero, otherwise E; = 0. This case is used merely for illus-
tration, since explicit solutions can be obtained for F; = 0, whereas qualitative
analysis has to be developed for Fy # 0. System (2.16) is integrable since

v d (v : )
W_V = E<W>__FO = V=VC - Fyt),

where C = W(0)/V(0). Integrating the last equation for V(t), we obtain the
explicit solution of the truncated system,

_ V(o)

11— CV(0)t+ LE V(02
The solution reaches infinity in a finite time ¢, € (0,00) if V(0) > 0 and C?V(0) >
2F). Note that these conditions coincide with condition (2.12) for F; = 0. Also

note that ¢, is the first positive root of 1 — CV(0)t + $FoV(0)t*> = 0 so that
U(t,) = C — Fot, > 0 and
W) - VW0) —2RV(0) _
e FyV(0) N
2V (0) V(0)
< .
V(0) + /V2(0) — 20V3(0)  4/V2(0) — 2B V3(0)
Consider now the full system (2.11). Let
1
v==, w="Y
x x

V(t) W(t) = (C — Fot)V(t).
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and rewrite the system in the form

S le2 - Y
2.17 .
( ) { y = Foy — Fo.
Expressing y from the system, we can rewrite it in the scalar form
(2.18) y=Fa*—i = i=f(z)+3Fat,

where f(z) = Fo— F223. The only critical point of equation (2.18) is (z, %) = (29, 0)
where o = (Fo/F2)'/? is the root of f(x).

We need to show that there is a domain D C R? in the phase plane (z, ), so
that all initial data in D generate trajectories in D that cross the vertical line x = 0
in a finite time. To do so, we construct a Lyapunov function for equation (2.18) in
the form

1 1
E(xz,z) = §i2 — Fox + ZFfaj4.
The function E(z,4) has a global minimum at (zg,0). For any solution z(¢), we
have
d
EE(x,x) =3Fxi? >0 for x>0.
The zero level of the Lyapunov function E(x, ) = 0 passes through the points (0, 0)
and (z4,0), where x, = 4325 > z¢ (see Figure 1). It is clear that E(x,#) > 0 in
the domain
D={(z,z): x>0, &<o(x)},
where

o(z)={ (2Fox — %fo‘l)l/z, x € (0,2.),
0, T € [Ty, 00).

We note that the condition (x,#) € D is equivalent to the condition

0 <z < Ty, y>F1x2+(2F03:—%F123:4)1/2,
T > Ty, y > Fla?,

which is nothing but the set of conditions (2.12) and (2.13) at ¢ = 0. By continuity,
if (x,2) € D at t =0, then (z, %) remains in D for some time ¢ > 0.

No critical points of system (2.18) are located in D and z(t) is decreasing
function for any ¢ > 0 as long as the trajectory stays in D. Recall that E(z,2) > 0
and £ E(z,&) > 0 for any (z,4) € D. A trajectory in D can not cross & = o(x)
because E(x,0(z)) = 0 for z € (0,z,) and & = f(z) + 3Fizz < 0 for > z, and
& < 0. Therefore, the trajectory either reaches z = 0 in a finite time ¢, € (0, 00) or
escapes to £ = —oo for £ > 0. To eliminate the last possibility, we note that

d (. 3F
i (17 - 7332) = f(=),

@(t) > (0) — %ﬂx2(0) +tf(x(0)) > —o0

so that

for any finite time interval. Moreover, & is bounded from zero in D by the level
curve FE(z,4) = E(x(0),%(0)), which is a convex curve in D. Therefore,

#(t) < max{#(0),p}, t>0, aslongas =z >0,



WAVE BREAKING 301

FIGURE 1. Domain D in the phase plane (z, ) of equation (2.18).

where p < 0 is uniquely found from E(0, p) = E(z(0), ¢(0)), that is from the point
of intersection of the level curve of E(z, &) = E(x2(0),4(0)) with the negative z-axis.
Therefore,

x(t) < z(0) + t max{z(0), p},
so that x(t) reaches x = 0 in a finite time ¢, € (0,00) for any trajectory in D.
Moreover, finding p explicitly gives the bound on the blow-up time

< z(0)
= (42(0)—2Fox(0)+1 FZ224(0))1/2°

0<z<zy, [

z(0
< o
which becomes bound (2.15) after the return back to variable V'(¢).

Since V=271, W = yz~!, and y = F12%> — & > 0, we have lim;;, V(t) = oo
and limgy,, W(t) = oo for any trajectories in D. Since © < 0 for the trajectory in
D, we also have x(t) ~ (t. —t) as t — t. so that there exists C' > 0 such that
limy e, (84 —t)V(t) = C. It remains to show that V'(¢) and W (¢) are monotonically
increasing functions on [0,t.). To do so, we write

T > Ty, [

Vo= VW-F =,
T

W= WQ—FOV:g(I—’QI),
X

where
g(x, &) = i? — 2F 2%% — o f (z).
For any trajectory in D, @(t) < 0 so that V(t) > 0. Furthermore, since g(z,) is
zero at a curve outside the domain D, because
1
g(x,0(x)) = Fox + §F12x4 +2F 2?0 (x)] >0, =€ (0,2,

then W (t) > 0 for any trajectory in D. O

Recalling that W = UV in system (2.9) and using the bound (2.4), we obtain

the upper bound for any solution at the family of characteristics
(2.19) V=UV’+U<RV?*+F.

We can now show that any upper solution with V(0) > 0 goes to infinity in a finite
time.
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LEMMA 6. Consider
(2.20) V(t)=FRVi+ R

with V(0) > 0. There exists t, € (0,00) such that V(t) is positive, monotonically
increasing for all t € [0,t.) and there exists C' > 0 such that

]?ITItr:(t* -tV (t) =C.
Moreover, t, < 1/W(0).

PROOF. Since V > 0 for any V € R, V(t) is monotonically increasing function.
To show that V(¢) reaches oo in a finite time, one can integrate the separable
equation (2.20) explicitly and obtain

V(t) = tan(arctan V (0) + Fit),

so that
/2 — arctan V' (0) 1 1

ty = < < R

Fy - F1V(O) - W(O)

since sup,cg, zcot™ ' (z) < 1. O

Applying results of Lemmas 5 and 6, we conclude the proof of Theorem 3.
Proof of Theorem 3. Let (V, W) satisfy system (2.9) corresponding to the charac-
teristics with &. Let (V,WV) be the lower solution of system (2.11) in Lemma 5
with V(0) = V(0) and W(0) = W(0). Let V be the upper solution of equation
(2.20) in Lemma 6 with V(0) = V(0). Let ¢, be the blow-up time of the lower
solution and %, be the blow-up time of the upper solution.

The upper bound for the solution of system (2.9) follows from the comparison
principle for the differential equations since

VW 4+U|=(V2+ 1)U <(VP+1) R

which implies that V() < V(¢) for all ¢ € [0,%,), for which V(¢) remains bounded.
To obtain the lower bound, we note that

V>VW-FR>VW-F =V,
W+ FEV>W2>W2=W + F)V.

Let V= [V,W]T, V = [V, W], and
0 0
=[5 o]

be a nilpotent matrix of order one, so that et = I +¢L. Thus, we write

V2V, W=>W = {

V>V W>W = i(etLV)>i(efLy).

dt —dt
Integrating this equation in ¢ > 0, we infer that
etV () 2 etV (1),
is invertible for any ¢ € R, we conclude that
V() = V(t), W(t)=W(t),

), for which (V, W) remain finite. Therefore, (V, W) become
€ [ts,t.]. O

and since el

forallt € [0,T) C [0,¢,
infinite as t T T and T
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REMARK 3. The bounds on t, and T, in Lemmas 5 and 6 are inconclusive to
compare T with the exact time of blow-up Ty := ﬁ along a particular character-

istic of the dispersionless advection equation (1.2).

3. Wave breaking in a periodic domain

Consider now the Cauchy problem for the short-pulse equation (1.1) in a peri-
odic domain

2

(3.1) ug = sulu, + 0 ', reS, t>0,
' u(z,0) = uo(x), x €S,

where S is a unit circle equipped with periodic boundary conditions and 9, ! is the
mean-zero anti-derivative in the form

oy tu ::/ u(x/,t)da:'—// w(a' t)dx'dx.
0 sJo

Local well-posedness and useful conserved quantities for the Cauchy problem
(3.1) in a periodic domain are obtained in the following lemma.

LEMMA 7. Assume that ug € H*(S), s > 2 and [suo(z)dx = 0. Then there
exist a mazimal time T > 0 such that the Cauchy problem (3.1) admits a unique
solution

u(t) € C([0,T), H*(S)) n C ([0, T), H*~1(S))

satisfying u(x,0) = ug(x) and [gu(x,t)dx = 0 for all t € [0,T). Moreover, the
solution u(t) depends continuously on the initial data uy and the quantities

Eoz/u2d:c, Elz/\/l—ku%d:c
S S

are constant for all t € [0,T).

PrOOF. Existence of the solution u(z,t) and continuous dependence on uy is
proved on S similarly to what is done in Lemma 1 on R. To prove the zero-mass
constraint, we note

w(t) € C((0,T), H7H(S)),  u’uy(t) € C([0,T), H*7H(S)),
so that for all ¢ € (0,T), we have

/u(x,t) dx = /utz dx + l/(u2uz)z dx = 0.
S S 2 Js

Initial values of Ey and E; are bounded if ug € H*(S), s > 2. Conservation of E
and E; on [0,T) follows from the balance equations

(), = (@t 3t) |
(viwad), - (yeviTa) .

x

thanks to the continuity and the periodic boundary conditions for 9;'u(t) €
C((0,T), HSF(S)), u(t) € C((0,T), H*(S)), and u,(t) € C((0,T), H*71(S)) in z
on S if s > 2. O
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REMARK 4. The assumption [;uo(x)dz = 0 on the initial data wuo in the
periodic domain S is necessary as it follows from the following apriori estimate

ngom_é%@mx

Note that [ju(z,t)dr = 0, for all t € (0,T) and u(t) € C([0,T), H*(S)), s > 2.
Hence the above estimate implies that fS uo(x)dxr = 0. Note that no zero-mass
constraint is necessary on an infinite line in Theorem 1.

< lu(t) —wuollz2sy, YVt e (0,T).

The blow-up scenario for the solutions to the Cauchy problem (3.1) coincides
with the one in Lemma 2 after the change of R by S. The main result of this section
is the proof of the finite-time wave breaking in a periodic domain, according to the
following theorem.

THEOREM 4. Let ug € H*(S) and [juo(z)dr = 0. Assume that there exists
xo € R such that ug(zo)us(xo) > 0 and

1/3

E2

. ’ 1
either |u0(:vo)|><w> ’

1 1/2
el > B+ (28] o) - 552)

B

1/3
—75 , uo(@o)||ug(zo)|* > En.
4E3/2> ’

or |ug(wo)| < (
Then there exists a finite time T € (0, 00) such that the solution u(t) € C([0,T), H*(S))
of the Cauchy problem (3.1) blows up with the property

li t t) = hile 1 D) e < E4.
tﬁl%li‘ég“(x’ Juz(z,t) = 400, while tlTnTlllu(, M= < By

PROOF. Let T' > 0 be the maximal time of existence of the solution u(t) €
C([0,T),H*(S)) to the Cauchy problem (3.1) constructed in Lemma 7. Since
Jsu(z, t)dz = 0, for each t € [0,T) there is a & € [0,1] such that u(&,t) = 0.
Then for € S and ¢ € [0,T), we have

|u(z,t)| = ’/j ug(z,t) da

< /|uw(x,t)|dx < Fj.
s
Since 9, 'u(t) € C([0,T), H3(S)) is the mean-zero periodic function of z for each

t € [0,T), there exists another & € [0,1] such that 9, 'u(&;,t) = 0. Then for z € S
and ¢ € [0,T), we have

|0, tu(z, )| = '/: u(z,t) de

< /|u(3:,t)|d:c </ Ey.
s
Therefore, bounds (2.4) are rewritten with

F() = \/Eo, Fl = E1
The rest of the proof follows the proof of Theorem 3. O



WAVE BREAKING 305

4. Numerical evidence of wave breaking

The goal of this section is to complement the analytic results by several exam-
ples and numerical computations. More specifically, we first show that the sufficient
condition for wave breaking in Theorem 3 is not satisfied for the exact modu-
lated pulse solution to the short-pulse equation which is known to remain globally
bounded in space and time. Then we consider the interplay between global well-
posedness and wave breaking of Theorems 2 and 3 for a class of decaying data on
an infinite line. Finally, we perform numerical simulations in a periodic domain for
a simple harmonic initial data and thus give illustrations to the sufficient condition
for wave breaking in Theorem 4.

Theorem 3 gives a sufficient condition for formation of shocks in the short-pulse
equation (1.1) on the infinite line. Let us show that this condition is not satisfied
for exact modulated pulse solutions obtained in [8, 10]. The simplest one-pulse
solution is given in the parametric form

u(z,t) =U(y,t), ==X(y,1),
where
m sin ¢ sinh ¢ + n cos ¢ cosh ¢
Ul(y,t) = 4mn 3 5 5
m?sin” 1 + n? cosh” ¢
(4.1) (y,t) € R,
m sin 2¢p — n sinh 2¢
X(yut):y+2mn 2 i 2 2 2
m?sin” ¢ 4+ n? cosh” ¢

)

m € (0,1) is an arbitrary parameter, n = V1 —m2, and
p=my+t), ¢=n(y—1).
The pulse solution enjoys the periodicity property
Uly,t)=U (y— Z,t+ Z),
{Xmﬂ=X(—%¢+ﬁ+%

and an exponential decay in any direction transverse to the anti-diagonal on the

(y,t) € R%.

(y,t)-plane.
Since
X 8m?2n? sin’ ¢ cosh? ¢ msiny
—=1- — 5 =cos | 4arctan ——— | ,
y (m? sin® ¢ + n? cosh” ¢)? n cosh ¢

the function x = X (y,t) is invertible in y for all t € R if

m sin ¢ T
<tan- =

— <t
n cosh ¢ 8 =l

3|3

T
87

that is for all m € (0,m,,), where m.,. = sin ¥ ~ 0.383. For these values of m,
the pulse solution u(x,t) is analytic in variables (z,t) € R, has the space-time

periodicity
™ 0
u(z,t) :u(:z:— —,t+ —) , (z,t) e R,
m m
and the exponential decay in the transverse direction to the anti-diagonal in the

(z,t)-plane. The graph of a nonsingular pulse solution for m = 0.32 is shown on
Figure 2 (left).
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REMARK 5. Coordinate y in the exact solution (4.1) is different from coordinate
& in the method of characteristics because X (y,0) # y. Nevertheless, X (y,t) and
U(y,t) satisfy the same set of equations
0X 1, ou 1
W = _§U (yvt)u E = am u|m:X(y,t)u

so that & and y are uniquely related by the representation & = X(y,0). If y is
found as a function of &, the initial data of the Cauchy problem (2.1) is found from

uo(§) = U(y, 0).

Since u(x,t) is analytic in € R for any fixed ¢ € R and decays to zero
exponentially fast at infinity, it is clear that u(-,¢) € H?(R). Furthermore, since
97 'u = uy — 2uPuy, it also follows that u(-,t) € H~!(R). We compute numerically
bounds Fy and Fj using the exact solution (4.1) and new definitions

Fy = sup|lu(,t)||pe, Fo:=sup||d; u(-,t)| L.
teR teR

It follows from Remark 1 that bounds F; and Fy defined above preserve the sufficient
condition of Theorem 3 with respect to the scaling transformation (1.8).
Let us define

fr = sup [luo(@)[Jug(x)]* — F1],

xely
(4.2) 1 1/2
o sup [|uo<w>||ua<w>|2 - Fi - (2Rl - 37 ] ,
where
F2 1/3
L = {:v ER : |uj(z)| < <ﬁ> , up(x)ug(z) >0, },
0
F2 1/3
I, = {I eER : |uy(z)| > <ﬁ> , uo(z)ug(x) >0, }
0

According to Theorem 3, wave breaking occurs if either f; or fs is positive. For the
exact modulated pulse solution (4.1) at ¢ = 0, the numerical calculations show that
the set I is empty and the quantity fi is strictly negative for any m € (0, me),
see Figure 2 (right). Therefore, the sufficient condition for the wave breaking in
Theorem 3 is not satisfied, which corresponds to our understanding that the exact
modulated pulse solutions (4.1) remain bounded for all (z,t) € R%?. We note,
however, that the sufficient condition for the global well-posedness in Theorem 2 is
satisfied only for pulses with m € (O, %), since 2v/2F7 Fs = 32m. This computation
shows that the sufficient condition of Theorem 2 is not sharp.

Next we compare the sufficient conditions for the global well-posedness and
wave breaking in Theorems 2 and 3 for a class of initial data

(4.3) up(z) = a(l — 2ba%)e ", a>0, b>0,

where parameters a and b determine the amplitude and steepness of uy. Note that
the zero-mass constraint (2.2) is satisfied by ug and it is clear that ug € H?(R) N
H~1(R). The conserved quantities E_; and Ey can be computed analytically,

a?\/7 (2562 — 51a?b) g _ 30Vl
204857 CN T Ve

E_ =
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m

FIGURE 2. The exact modulated pulse solution (4.1) of the short-
pulse equation (1.1) for m = 0.32 (left). The quantity f; is negative
for any m € (0, m,) (right).

* wave breaking
25 + well-posedness|

0 015 1 1:5 2

a
FIGURE 3. Boundaries of the global well-posedness and the wave
breaking in the Cauchy problem (2.1) with initial data (4.3): the

global well-posedness occurs below the lower curve and the wave
breaking occurs above the upper curve.

whereas the conserved quantities £ and E; are not expressed in a closed form.
Using numerical approximations of the integrals, we determine the boundary of the
well-posedness region in the (a,b)-plane by finding the parameters a and b from
the condition 2v/2F; F>, = 1. We also compute the boundary of the wave breaking
region in the (a,b)-plane by computing f; and fy in (4.2). Unlike the case of
modulated pulses, we find that the set I; is empty and fo may change the sign
along the curve on the (a,b)-plane. The two boundaries are shown on Figure 3,
where we can see that the two regions of global well-posedness and wave breaking
are disjoint.

Finally, we perform numerical simulations of the periodic Cauchy problem (3.1)
with the 1-periodic initial data

(4.4) uo(x) = acos2mx, a > 0.
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FIGURE 4. Solution surface u(z,t) (left) and the supremum norm
W (t) (right) for a = 0.2 (top) and a = 0.5 (bottom). The dashed
curve on the bottom right picture shows the linear regression with
C =1.072, T = 1.356.
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1
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FIGURE 5. Time of wave breaking T versus a (left). Constant C
of the linear regression versus a (right).

The two conserved quantities Fy and E7 in Lemma 7 are computed analytically as

1 2
Ey = =a*, E; = -E(2rai),
2 T
where E stands for a complete elliptic integral. Using the above conserved quantities
we find out that the sufficient condition for the wave breaking in Theorem 4 is
satisfied for a > 1.053.
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To illustrate the behaviour of a solution u(z,t) to the Cauchy problem (3.1),
we perform numerical simulations using a pseudospectral method. When the pa-
rameter g is sufficiently small, the value of

W(t) := S;gs) u(z, t)uy (z,t)

remains bounded as shown on the top panel of Figure 4 for a = 0.2. On the other
hand, when a becomes larger, the wave breaking occurs, as on the bottom panel
of Figure 4 for a = 0.5. On the bottom right panel of Figure 4 we show using the
linear regression that the curve W~1(¢) is fitted well with the straight line A + Bt
for some coefficients (A, B). Thus, we make a conclusion that

C

where C = —B~! and T = —AB~'. Using the linear regression, we also obtain

pairs (T, C) for different values of a. The results are shown on Figure 5. Note that

the constant C approach 1 as a gets larger. This observation is consistent with the
1

exact blow-up law W (t) = 7= obtained for the advection equation (1.2) using the

method of characteristics.
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