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Explicit multipeakon solutions of Novikov’s cubically
nonlinear integrable Camassa—Holm type equation
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AsTrACT. Recently Vladimir Novikov found a new integrable analogue of
the Camassa—Holm equation which has nonlinear terms that are cubic, rather
than quadratic, and which admits peaked soliton solutions (peakons). In this
paper, the explicit formulas for multipeakon solutions of Novikov’s cubically
nonlinear equation are calculated, using the matrix Lax pair found by Hone
and Wang. By a transformation of Liouville type, the associated spectral
problem is related to a cubic string equation, which is dual to the cubic string
that was previously found in the work of Lundmark and Szmigielski on the
multipeakons of the Degasperis Procesi equation.
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1. Introduction

Integrable PDEs with nonsmooth solutions have attracted much attention in
recent years, since the discovery of the Camassa—Holm shallow water wave equa-
tion and its peak-shaped soliton solutions called peakons [9]. Another equation
with similar properties is the Degasperis Procesi equation [19, 18]. Our purpose
in this paper is to explicitly compute the multipeakon solutions of a new inte-
grable PDE, equation (3.1) below, which is of the Camassa Holm form u; — t,.t =
F(u, Uz, Ugg,...), but has cubically nonlinear terms instead of quadratic. This
equation was found by Vladimir Novikov [48], and first published in a recent paper
by Hone and Wang [32].

There are several reasons why peakons are interesting. In water wave theory,
the Camassa Holm and Degasperis Procesi equations combine two desired features,
namely soliton interactions and wave breaking [13], and the peakons are also remi-
niscent of Stokes waves — peaked waves of largest amplitude that are exact solutions
of the governing equations for water waves [50, 12, 14]. (See [34, 15] for more
information about the role of these equations in water wave theory.) They are also
interesting from the point of view of general analysis of PDEs, since they provide
many subtle and challenging problems concerning existence, uniqueness, stability
and breakdown of solutions. (The literature on this is too large to be surveyed
here, but we will mention a few references relevant to our work in due course.)
In studying such questions, it is useful to have access to explicit exact solutions,
and this is provided by peakons. In addition, the mathematics of peakons is very
beautiful in itself, with connections to classical topics such as Sturm Liouville the-
ory, orthogonal polynomials, and continued fractions of Stieltjes type [1, 2], and
generalizations thereof [43, 44, 37, 3, 5].

We also mention the important fact that peakons are orbitally stable, in the
sense that a solution that initially is close to a peakon solution is also close to
some peakon solution at a later time; see [17, 21, 39] for precise results concerning
Camassa—Holm peakons, and [40] for the Degasperis—Procesi case.

The n-peakon solution of Novikov’s equation will be computed by inverse spec-
tral methods. The spatial equation in the Lax pair for Novikov’s equation turns out
to be equivalent to what we call the dual cubic string, a spectral problem closely
related to the cubic string that was used for finding the multipeakon solutions to
the Degasperis Procesi equation [43, 44, 37]. Once this relation is established,
the Novikov peakon solution can be derived in a straightforward way using the re-
sults obtained in [37]. The constants of motion have a more complicated structure
than in the Camassa Holm and Degasperis Procesi cases, and the study of this
gives as an interesting by-product a combinatorial identity concerning the sum of
all minors in a symmetric matrix, which we have dubbed the Canada Day Theorem
(Theorem 4.1, proved in Appendix A).

The peakon problem for Novikov’s equation presents in addition one important
challenge. Unlike its Camassa—Holm or Degasperis—Procesi counterparts, the Lax
pair for the Novikov equation is originally ill-defined in the peakon sector. The
problem is caused by terms which involve multiplication of a singular measure by a
discontinuous function. We prove in Appendix B that there exists a regularization
of the Lax pair which preserves integrability of the peakon sector, thus allowing us
to use spectral and inverse spectral methods to obtain the multipeakon solutions to
the Novikov equation. This regularization problem has a subtle but nevertheless real
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impact on the formulas. In general, the use of Lax pairs to construct distributional
solutions to nonlinear equations which are Lax integrable in the smooth sector but
may not be so in the whole non-smooth sector is relatively uncharted territory, and
the case of Novikov’s equation may provide some relevant insight in this regard.

2. Background
The main example of a PDE admitting peaked solitons is the family
(2.1) U — Uggt + (b + Dy = Duptizy + Ulggs,
often written as
(2.2) my + mgu + bmu, = 0, m=1u— Uz,

which was introduced by Degasperis, Holm and Hone [18], and is Hamiltonian for
all values of b [28]. It includes the Camassa Holm equation as the case b = 2,
and another integrable PDE called the Degasperis Procesi equation [19, 18] as the
case b = 3. These are the only values of b for which the equation is integrable,
according to a variety of integrability tests [19, 46, 31, 33]. (However, we note
that the case b = 0 is excluded from the aforementioned integrability tests; yet this
case provides a regularization of the inviscid Burgers equation that is Hamiltonian
and has classical solutions globally in time [6]. See also [29, 30] for studies of (2.1)
for various values of b.) Multipeakons are weak solutions of the form

(2.3) u(z,t) = Zn: m;(t) e~ 2= O]

formed through superposition of n peakons (peaked solitons of the shape e~I*]).
This ansatz satisfies the PDE (2.2) if and only if the positions (z1,...,x,) and

momenta (mq, ..., my) of the peakons obey the following system of 2n ODEs:
(24) @1 = Zmi e~len—ail my = (b— 1) my Zmi sgn(zy — ;) e 7ol
i=1 i=1

Here, sgn x denotes the signum function, which is +1, —1 or 0 depending on whether
 is positive, negative or zero. In shorthand notation, with (f(z)) denoting the
average of the left and right limits,

(2.5) (f)) =

the ODEs can be written as

(f(@7) + f(=T)),

N =

(2.6) jfk = u(:z:k), mk = —(b - 1) my <uz(xk)>
In the Camassa Holm case b = 2, this is a canonical Hamiltonian system generated
by h = % Z?k:l m; my e~1Ti—=kl  Explicit formulas for the n-peakon solution

of the Camassa—Holm equation were derived by Beals, Sattinger and Szmigielski
[1, 2] using inverse spectral methods, and the same thing for the Degasperis—Procesi
equation was accomplished by Lundmark and Szmigielski [43, 44].

It requires some care to specify the exact sense in which the peakon solutions
satisfy the PDE. The formulation (2.2) suffers from the problem that the product
muy is ill-defined in the peakon case, since the quantity m = u—ug, = 2 Z?:l M O,
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is a discrete measure, and it is multiplied by a function w, which has jump discon-
tinuities exactly at the points x; where the Dirac deltas in the measure m are
situated. To avoid this problem, one can instead rewrite (2.1) as

(2.7) (1—8§)ut+(b+1—8§)8z (% u2) + Oy (37—17 ui) =0.

Then a function u(z,t) is said to be a solution if

o u(,t) € WE3(R) for each fixed ¢, which means that u(-,#)% and u,(-,t)?
are locally integrable functions, and therefore define distributions of class
D'(R) (i.e., continuous linear functionals acting on compactly supported
C® test functions on the real line R),

e the time derivative u(+,t), defined as the limit of a difference quotient,
exists as a distribution in D’'(R) for all ¢,

e equation (2.7), with 9, taken to mean the usual distributional derivative,
is satisfied for all ¢ in the sense of distributions in D’'(R).

It is worth mentioning that functions in the space Wéf (R) are continuous, by the
Sobolev embedding theorem. However, the term u2 is absent from equation (2.7)
if b = 3, so in that particular case one requires only that u(-,t) € L _(R); this
means that the Degasperis Procesi can admit solutions w that are not continuous
[10, 11, 42].

It is often appropriate to rewrite equation (2.7) as a nonlocal evolution equa-
tion for u by inverting the operator (1 — 92), as was done in [13, 16| for the
Camassa Holm equation. However, the distributional formulation used here is very

convenient when working with peakon solution.

3. Novikov’s equation

The new integrable equation found by Vladimir Novikov is
(3.1) U — Ugapt + AUy = SUlUzULe + UWoUpes,
which can be written as
(3.2) my + (myu + 3muy,) u =0, m=1uU— Ugg,
to highlight the similarity in form to the Degasperis—Procesi equation, or as
(3.3) (1—=02)us+(4—092) 0, (34°) +0x (Buu2) + 3ud =0

in order to rigorously define weak solutions as above, except that here one requires
that u(-,t) € W52 (R) for all , so that u® and u3 are locally integrable and therefore
define distributions in D/(R); it then follows from Hdélder’s inequality with the
conjugate indices 3 and 3/2 that uu? is locally integrable as well, and (3.3) can thus
be interpreted as a distributional equation. Since functions in Wi)’cp(R) with p > 1
are automatically continuous, Novikov’s equation is similar to the Camassa—Holm
equation in that it only admits continuous distributional solutions (as opposed to
the Degasperis Procesi equation, which has discontinuous solutions as well).

Like the equations in the b-family (2.1), Novikov’s equation admits (in the
weak sense just defined) multipeakon solutions of the form (2.3), but in this case
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the ODEs for the positions and momenta are

n 2
3 2 —|zy—x;
Tr = u(xg)” = E e ] ,
i=1

(3.4) tig = —mg u(zr) (U (1))

n n
= my ( g m; ex’“x”) g m; sgn(xy — ;) e~ lwE—w;
=1 j=1

These equations were stated in [32], where it was also shown that they constitute a
Hamiltonian system & = {xg, h}, i = {myg, h}, generated by the same Hamilton-
ian h = % Z;k:l m;my e~ lzi—=xl a3 the Camassa—Holm peakons, but with respect
to a different, non-canonical, Poisson structure given by

{zj,zr} = sgn(z; — z) (1 — EJQ,C),
(35) {'rjvmk} = mkE?k"
—lzj -zl

{mj,my} = sgn(z; — z) mjmkEJZk, where Ej, = e

As will be shown below, (3.4) is a Liouville integrable system (Theorem 4.7); in
fact, it is even explicitly solvable in terms of elementary functions (Theorem 9.1).

4. Forward spectral problem

In order to integrate the Novikov peakon ODEs, we are going to make use of the
matrix Lax pair found by Hone and Wang [32], specified by the following matrix
linear system:

B (o 0 zm 1 (0
(41) 8_ 1/)2 = 0 0 zZm 1/)2 )
T\ 10 0/ \¢s
o U —UlUy UpzTt —uimz ug U1
(4.2) — || = | uzt —z72 —ugz b —ulmz o
ot 3 —u? uz"t Ul 3

(Compared with reference [32] we have added a constant multiple of the identity to
the matrix on the right hand side of (4.2), and used z in place of \.) In the peakon
case, when u = Y., m; e~ 17—l the quantity m = u — ugy = 23 1 mily, is a
discrete measure. We assume that x; < x9 < --- < x,, (which at least remains true
for a while if it is true for ¢ = 0). These points divide the x axis into n+ 1 intervals
which we number from 0 to n, so that the kth interval runs from xj to zp41, with
the convention that zop = —oo and z,41 = +00. Since m vanishes between the
point masses, equation (4.1) reduces to 9,11 = 3, 012 = 0 and 9y3 = 1 in
each interval, so that in the kth interval we have

U1 Ape® + 22 Cre @
(4.3) Vo | = 2z By, for ) < & < Tg1,
Y3 Ape* —22Cre™®

where the factors containing z have been inserted for later convenience. These
piecewise solutions are then glued together at the points zy. The proper interpre-
tation of (4.1) at these points turns out to be that 15 must be continuous, while
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11 and 1o are allowed to have jump discontinuities; moreover, in the term zmas,
one should take 9)2(x)d;, to mean <¢2(zk)>5mk. This point is fully explained in
Appendix B. This leads to

Ay, 1-— )\mi —2 mpe T —)\2 m% e~ 2%k Ap_q
By | = my, eTF 1 Amy e Tk Bi_1
(4.4) Cy, mi ek 2my, e’k 1+ /\mi Cr_1
Ap—1
=S¢\ | Br—1 |,  where A = —22
Cr—1

We impose the boundary condition (A, Bg, Co) = (1,0,0), which is consistent with
the time evolution given by (4.2) for < x;. Then all (A, By, Ck) are determined
by successive application of the jump matrices Si(\) as in (4.4). For x > x,,
equation (4.2) implies that (A4, B, C) := (A4, By, Cy) evolves as

(45) Ao poBoAM. . 2M,(B-AM,)
N - ) - A ) - A )

where M, = Egzl my e, Thus A is invariant. It is the (1,1) entry of the total
jump matrix

(4.6) S(A) = Sn(A) ... S2(N)S1(N),

and therefore it is a polynomial in A of degree n,

(4.7) AN = ;:Hk(—x)k = (1 — %) (1 - %) ,

where Hy =1 (since S(0) = I, the identity matrix), and where the other coefficients
Hiq, ..., H, are Poisson commuting constants of motion (see Theorems 4.2 and 4.7
below).

The first linear equation (4.1), together with the boundary conditions expressed
by the requirements that By = Cyp = 0 and A,(\) = 0, is a spectral problem
which has the zeros Aq,..., A, of A(\) as its eigenvalues. (To be precise, one
should perhaps say that it is the corresponding values of z = 4+1/—X that are the
eigenvalues, but we will soon show that the )y are positive, at least in the pure
peakon case, and therefore more convenient to work with than the purely imaginary
values of z; see (4.19) below.)

Elimination of v from (4.1) gives 0,19 = zmapz and (92 — 1) 3 = zmabs,
and the boundary conditions above imply that (2,13) — (0,0) as z — —oo and
Y3 — 0 as  — +o0o. Using the Green’s function —e~1#/2 for the operator 92 — 1
with vanishing boundary conditions, we can rephrase the problem as a system of
integral equations,

(@) =z [ aly) dm(y),
(4.8) /* *

vale) = == [ e Ea(y) dty),

with integrals taken with respect to the discrete measure m = 2>""" | m; d,,. Here,
there is again the problem of Dirac deltas multiplying a function v, with jump
discontinuities, and we take w(z)d;, to mean the average <1/’2(33k)>5zk: in full
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agreement with the earlier definition of the singular term appearing in the spectral
problem. Then

(Ya(zy)) = 2 <221/)3(117k)mk +1/13($j)mj> ,
pr

VY3(zj) = —Zzeflzrxkl@/fz(ﬂ?k» M,

k=1

(4.9)

which can be written in block matrix notation as

(4.10) (<§§>) = (gp T0P> (%?)

where
\113 = (’lﬁg(,@l), ce 7’(/J3(5L'n))t,
<‘112> = (<1/}2($1)>7 AR <¢2($n)>)t7
(4.11) P = diag(my,...,my),

E = (Ej)jkey,  where Ej = e 157 ml,
T = (Tjr)j =1, where Tj, = 1+ sgn(j — k).

(In words, T is the lower triangular n x n matrix that has 1 on the main diagonal
and 2 everywhere below it.) In terms of <\I/2> alone, we have

(4.12) (V) = —2*TPEP(¥,),

so the eigenvalues are given by 0 = det(I + 22T PEP) = det(I — A\TPEP), where
of course I denotes the n x n identity matrix. Since the eigenvalues are the zeros
of A(N), and since A(0) = 1, it follows that

(4.13) A()) = det(I — \TPEP).

This gives us a fairly concrete representation of the constants of motion Hy, which
by definition are the coefficients of A(\) (see (4.7)), and it can be made even more
explicit thanks to the curious combinatorial result in Theorem 4.1. We remind the
reader that a k X k minor of an n X n matrix X is, by definition, the determinant
of a submatrix X;; = (Xj;)icr, ses whose rows and columns are selected among
those of X by two index sets I, J C {1,...,n} with &k elements each, and a principal
minor is one for which I = J. Compare the result of the theorem with the well-
known fact that the coefficient of s* in det(I + sX) equals the sum of all principal
k x k minors of X, regardless of whether X is symmetric or not.

THEOREM 4.1 (“The Canada Day Theorem”). Let the matriz T be defined as
in (4.11) above. Then, for any symmetric n x n matriz X, the coefficient of s*
in the polynomial det(I + sTX) equals the sum of all k x k minors (principal and
non-principal) of X.

PrOOF. The proof is presented in Appendix A. It relies on the Cauchy Binet
formula, Lindstrom’s Lemma, and some rather intricate dependencies among the
minors of X due to the symmetry of the matrix. O

Theorem 4.1 is named after the date when we started trying to prove it: July 1,
2008, Canada’s national day. (It turned out that the proof was more difficult than
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we expected, so we didn’t finish it until a few days later.) Summarizing the results
so far, we now have the following description of the constants of motion:

THEOREM 4.2. The Novikov peakon ODEs (3.4) admit n constants of motion
Hy,...,H,, where Hy equals the sum of all k x k minors (principal and non-
principal) of the n x n symmetric matriz PEP = (m;myEji)7 ;. (See (4.11) for
notation. )

ProoF. This follows at once from (4.7), (4.13), and Theorem 4.1. O

3

ExXAMPLE 4.3. The sum of all 1 x 1 minors of PEP is of course just the sum
of all entries,

n n
(4.14) Hy = Z mymy Ej, = Z mmy, e~ 1Tkl
Jik=1 Jik=1
and the Hamiltonian of the peakon ODEs (3.4) is h = 1 Hy. Higher order minors of
PEP are easily computed using Lindstrom’s Lemma, as explained in Section A.3
in the appendix. In particular, the constant of motion of highest degree in the my
is

n—1 n
(4.15) H, = det(PEP) = [[(1 - E} ;41) [[ m3-
j=1 j=1

EXAMPLE 4.4. Written out in full, the constants of motion in the case n = 3
are

H, = m% + m% + mg + 2mimaoFEqs + 2mimsE13 + 2moms Eog,
Hy = (1 — Efy)mim3 + (1 — Ef3)mim3 + (1 — E3) m3m3
+ 2(E23 — E19E13) m3 mams + 2(E1g — E13Fa3) my mams3,

Hs = (1 = Ey)(1 = E33) mim3m3.

(4.16)

From now on we mainly restrict ourselves to the pure peakon case when my > 0
for all k& (no antipeakons). Our first reason for this is that we can then use the
positivity of H; and H, to show global existence of peakon solutions.

THEOREM 4.5. Let
(4.17) P={x1 < - <y, al my >0}

be the phase space for the Novikov peakon system (3.4) in the pure peakon case. If
the initial data are in P, then the solution (x(t),m(t)) ezists for all t € R, and
remains in P.

PROOF. Local existence in P is automatic in view of the smoothness of the
ODE:s there. By (4.14) and (4.15), both H; and H,, are strictly positive on P. Since
mi < Hy, all my remain bounded from above. The positivity of H, ensures that
the my are bounded away from zero, and that the positions remain ordered. The
velocities @y are all bounded by (3 my)?, hence 0 < i, < C for some constant C,
and the positions zy(t) are therefore finite for all ¢ € R. Since neither xj, nor my
can blow up in finite time, the solution exists globally in time. ([l

REMARK 4.6. The peakon ODEs (3.4) are invariant under the transformation
(my,...,my) — (—=mq,...,—my), so the analogous result holds also when all my
are negative.
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THEOREM 4.7. The constants of motion Hy, ..., H, of Theorem 4.2 are func-
tionally independent and commute with respect to the Poisson bracket (3.5), so the
Nowvikov peakon system (3.4) is Liouville integrable on the phase space P.

PRroor. To prove functional independence, one should check that J := dH; A
dHs A ... N dH, does not vanish on any open set in P. Since J is rational in the
variables {my, e"*}}_,, it vanishes identically if it vanishes on an open set, so it is
sufficient to show that J is not identically zero. To see this, note that

(4.18) Hy = ex(mi,...,m7) + O(Eypy),

where e, denotes the kth elementary symmetric function in n variables, and O(E,,)
denotes terms involving exponentials of the positions z;. It is well known that
the first n elementary symmetric functions are independent (they provide a basis
for symmetric functions of n variables [45]), and therefore the leading part of J
(neglecting the O(E,q) terms) does not vanish. Since the O(E,,) terms can be
made arbitrarily small by taking the x; far apart, we see that there is a region in
P where J does not vanish, and we are done.

To prove that the quantities Hy Poisson commute with respect to the bracket
(3.5), it is convenient to adapt some arguments of Moser that he applied to the
scattering of particles in the Toda lattice and the rational Calogero Moser system
[47]. The Poisson bracket of two constants of motion is itself a constant of motion,
so {H;, Hy} is independent of time. Consider now this bracket at a fixed point

(x°,m°) = (29,25, ...,22, m%,m9,..m2) e P

which we consider as an initial condition for the peakon flow (x(¢), m(¢)), which
exists globally in time by Theorem 4.5. Theorem 9.4, which will be proved later
without using what we are proving here, shows that the peakons scatter as t — —o0;
more precisely, m} tends to 1/, while the ;, move apart, so that the terms O(E,,)
tend to zero. (It should also be possible to prove these scattering properties directly
from the peakon ODEs, along the lines of what was done for the Degasperis Procesi
equation in [44, Theorem 2.4], but we have not done that.) Thus, from (4.18),

{va Hk}(xov mO) = {Hj7 Hk}(x(t)v m(t))
— lim {Hy, H}(x)m(0) = lim_{e. exh(x(t), m(1)).

Now the Poisson brackets of these symmetric functions are given by linear combi-
nations of the Poisson brackets {m;, my} with coefficients dependent only on the
amplitudes. However, from (3.5) it is clear that {m;, my}(x(¢), m(t)) = O(E,q) —
0, from which it follows that {e;,ex}(x(t),m(t)) — 0 as t — —oo, and hence
{H;, Hi,}(x°,m°) = 0 as required. O

REMARK 4.8. Since the vanishing of the Poisson bracket is a purely algebraic
relation, the Hj, Poisson commute at each point of R2", not just in the region P.

The A, which are defined as the zeros of A()), are the eigenvalues of the
inverse of the matrix TPEP, since A(\) = det(I — A\TPEP). Another reason why
we restrict our attention to the case with all my > 0 is that the matrix TPEP can
then be shown to be oscillatory (see Section A.2 in the appendix), which implies
that its eigenvalues are positive and simple. Consequently, the Ay are also positive
and simple, and for definiteness we will number them such that

(4.19) 0< A <o < A
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(For another proof that the spectrum is positive and simple, see Theorem 6.1.)

Turning now to B = S(\)2; and C' = S(\)31, we find from (4.6) and (4.4) that
they are polynomials in X of degree n — 1, with B(0) = M and C(0) = M2, where
M, = Zﬁ;l my, e”* as before. This means that the two Weyl functions

BV e

4.20 A)=——= d A)=——+~5
(4.20) w(}) a0) o 90y A0
are rational functions of order O(1/)) as A\ — oo, having poles at the eigenvalues .
Let bx and ¢ denote the residues,

n b]g n ch
4.21 A) = A) = .
(1.21) G =Y =Y
k=1 k=1
The time evolution of (4, B,C), given by (4.5), translates into
) w(A) —w(0 : )
(4.22) o = 2O ) = ).
Comparing residues on both sides in (4.22) gives
; by ) by S
4.2 by = — =— — = .
(423 T VD WY
This at once implies by (t) = bx(0) e!/**, and integrating ¢, (1) from 7 = —oo (as-
suming that cj vanishes there) to 7 = ¢ then gives
" bby,
4.24 = _—
(4.24) ok mz::1 Am + Ak

A purely algebraic proof of this relation between the Weyl functions, not relying on
time dependence and integration, will be given below; see Theorem 6.1. We note
the identities > cx/Ae = (307 bi/Ae)? and Yo7 Aece = (307 bi)?

The multipeakon solution is obtained as follows. The initial data x(0), mx(0)
(for k = 1,...,n) determine initial spectral data A, (0), bx(0), which after time ¢
have evolved to A (t) = A (0), br(t) = bi(0)e/** (since the Ay are the zeros of
the time-invariant polynomial A()\), and since the by satisfy (4.23)). Solving the
inverse spectral problem for these spectral data at time ¢ gives the solution x(¢),
myg(t). The remainder of the paper is devoted to this inverse spectral problem.

5. The dual cubic string

Just like for the Camassa—Holm and Degasperis—Procesi equations, some terms
in the Lax pair’s spatial equation (equation (4.1) in this case, repeated as (5.1) be-
low) can be removed by a change of both dependent and independent variables. We
refer to this as a Liouville transformation, since it is reminiscent of the transforma-
tion used for bringing a second-order Sturm Liouville operator to a simple normal
form. This simplification reveals an interesting connection between the Novikov
equation and the Degasperis—Procesi equation, and allows us to solve the inverse
spectral problem by making use of the tools developed in the study of the latter.

THEOREM 5.1. The spectral problem

(5.1) — || =10 0 zm(x) g
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on the real line x € R, with boundary conditions

Yo(xz) — 0, asx — —oo,
(5.2) e“P3(x) = 0, asxz — —o0,
e 3(x) — 0, asx— +o0,

is equivalent (for z #0), under the change of variables

y = tanhx,

d1(y) = 1 (x) coshx — ¥3(x) sinh z,
P2(y) = 2z ¥a(x),
(
(

(5.3) b3(y) = 2% 1b3(z)/ cosh z,
g(y) = m(x) cosh® z,

A= —z2,

to the “dual cubic string” problem
o (! 0 g(y) 0 $1

(5.4) E Sl B O 9(W) | | ¢2

®3 -A 0 0 ®3
on the finite interval —1 < y < 1, with boundary conditions
(5.5) $2(=1) =¢3(-1) =0 ¢3(1) =0.

In the discrete case m =2 ., my 8y, , the relation between the measures m and
g should be interpreted as

(5.6) gly) = ngdyk, yr = tanh zy, gk = 2my, cosh .
k=1

ProOOF. Straightforward computation using the chain rule and, for the discrete
case, 0y, = %(xk)dyk. O

REMARK 5.2. The cubic string equation, which plays a crucial role in the
derivation of the Degasperis Procesi multipeakon solution [44], is

(5.7) Byd = —Ago,

which can be written as a system by letting ® = (¢1, ¢2, ¢3) = (@, Py, Pyy):
o (! 0 10 o}

(5.8) sl = 0 0 1) (e
Y \¢3 ~Ag(y) 0 0/ \¢s

The duality between (5.4) and (5.8) manifests itself in the discrete case as an
interchange of the roles of masses g, and distances I = yr+1 — Yi; see Section 6.
When the mass distribution is given by a continuous function g(y) > 0, the systems
are instead related via the change of variables defined by

dy 1

dy B

where y and ¢(y) refer to the primal cubic string (5.8), and g and §(g) to the dual
cubic string (5.4) (or the other way around; the transformation (5.9) is obviously
symmetric in y and ¢, so that the dual of the dual is the original cubic string again).

(5.9)
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REMARK 5.3. The concept of a dual string figures prominently in the work of
Krein on the ordinary string equation 85(;5 = —\g¢ (as opposed to the cubic string).
For a comprehensive account of Krein’s theory, see [20].

REMARK 5.4. As a motivation for the transformation (5.3), we note that one
can eliminate ¢; from (5.1), which gives 9,12 = zmas, (02 — 1) = zmas.
From the study of Camassa Holm peakons [2] it is known that the transformation
y = tanhx, ¢(y) = 1(x)/ cosh z takes the expression (92 —1) 1 to a multiple of ¢y,
so it is not far-fetched to try something similar on 13 while leaving 19 essentially
unchanged.

From now on we concentrate on the discrete case. The Liouville transformation
maps the piecewise defined (1,2, 13) given by (4.3) to

$1 Ar(N) = ACr(N)
(5.10) po | = —2X Bi () for yp <y < Yk41-
3 “AAA) (L +y) =N Ce(V) (1 —y)

The initial values (Ag, Bo, Co) = (1,0,0) thus correspond to ®(—1; ) = (1,0,0)?,
where ®(y; \) = ((bl, P2, ¢3)t, and at the right endpoint y = 1 we have

An(A) = ACR(N)
(5.11) (LN = |  —22B.(\)
—2X A, (\)

In particular, the condition A4,,(\) = 0 defining the spectrum corresponds to ¢s(1; \) =
0, except that the latter condition gives an additional eigenvalue Ao = 0 which is
only present on the finite interval. (This is not a contradiction, since the Liouville
transformation from the line to the interval is not invertible when z = —\? = 0.)

The component ¢3 is continuous and piecewise linear, while ¢; and ¢o are
piecewise constant with jumps at the points y; where the measure g is supported.
More precisely, at point mass number k we have

o1(yh) — 1y, ) = gr{d2(ur)),
P2(yi) — d2(yi ) = gr d3(yr),

and in interval number k, with length I = yr11 — Yk,

(5.12)

(5.13) D3(Uipr) — S3(Ui) = 1 Oyda(yf) = =Nk dr (yy))-
In terms of the vector ® these relations take the form
1 g 393
(5.14) Sy =(0 1 g | ®y),
0 O 1
and
1 0 0
(5.15) D(y,)=1| 0 1 0]y,
A 0 1
respectively. If we introduce the notation
1 00 122

1
(5.16) GazN=| 0 1 0], L@=|[o0
—Az 0 1 0

o =8
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it follows immediately that
(5.17)  @(1;X) = Glln, ) Lign) -~ Gllz, \) L(g2) Gll, \) Lig1) Gllo, V) ()
We define the Weyl functions W and Z of the dual cubic string to be

1; A 1; A
¢2( 3 )’ Z(A):—¢1( ) )
¢3(1; ) ¢3(1; A)
It is clear from (5.11) that they are related to the Weyl functions w and ¢ previously
defined on the real line (see (4.20)) as follows:

(5.18) W) =—

_ B,(\) = b
o W()‘)__An(/\)_w()\)_;)\—)\k’
5.19 -
AN =GN 1 J
N=—mny W=y Z::

6. Relation to the Neumann-like cubic string

Kohlenberg, Lundmark and Szmigielski [37] studied the discrete cubic string
with Neumann-like boundary conditions. We will briefly recall some results from
that paper, with notation and sign conventions slightly altered to suit our needs
here. The spectral problem in question is

byyy(y) = —Ag(y)d(y) for y € R,
¢U(_OO) = (buy(_oo) =0, (byy(oo) =0

where g = 3}, gk 0y, is a discrete measure with n 4 1 point masses go, ..., gn at
positions yp < y1 < --- < ypn; between these points are n finite intervals of length
li,..., b, (where Iy = yr — yx—1). Since ¢y, = 0 away from the point masses, the
boundary conditions can equally well be written as

by(Yo ) = byy(yo ) =0, ¢yy(y:) =0.

Using the normalization ¢(—c0) = 1 (or ¢(y;) = 1) and the notation & =
(¢7 (by; ¢yy>t, one ﬁnds

(6:2) B(y:3) = Glgn, V) L(la) - Gloz. ) Lll) Glgr.A) L(lr) Glao. V) (§)

with matrices G and L as in (5.16) above. Under the assumption that all g5 > 0,
the zeros of ¢y, (y;"; \), which constitute the spectrum, are

(6.1)

0:)\0<)\1<"'<)\n;

and the Weyl functions are

W) = - Zoltit ZA o

¢yy(yn )
(6.3) " N
yn ;
ZAN)= -2 "7 — = ,
< ¢yy(yna 7)‘ Z A= )‘ ! lg)gk

with all by, > 0. They satisfy the identity
(6.4) ZA)+ Z(=N)+ W)W (=N =0,



266 ANDREW N. W. HONE, HANS LUNDMARK, AND JACEK SZMIGIELSKI

from which it follows, by taking the residue at A = Ay, that

n

b
(65) =Y Lmbe
o Am + Ak

Thus Z(\) is uniquely determined by the function W(\) and the constant ~.

Now note that (6.2) is exactly the same kind of relation as (5.17), except that
the roles of g and I are interchanged, and the right endpoint is called y = y;'
instead of y = 1. The definitions of the Weyl functions (6.3) also correspond
perfectly to the Weyl functions (5.18) for the dual cubic string. Therefore, all the
results above are also true in the setting of the dual cubic string. The assumption
that the n distances [ and the n+1 point masses gy, are all positive for the Neumann
cubic string corresponds of course to the requirement that the n point masses g
and the n + 1 distances l; are positive for the dual cubic string. The constant
Y =Y p_o9k in the term 1/yX in (6.3) corresponds to the constant 2 in the term
1/2X in (5.19), since >, _,lx = 2 is the length of the interval —1 < y < 1. In
summary:

THEOREM 6.1. Assume that all point masses gy are positive. Then the dis-
crete dual cubic string of Theorem 5.1 has nonnegative and simple spectrum, with
eigenvalues 0 = A\g < A1 < -+ < A, and its Weyl functions (5.18) have positive
residues and satisfy (6.4) and (6.5). In particular, the second Weyl function Z(\)
is uniquely determined by the first Weyl function W ().

7. Inverse spectral problem

The inverse spectral problem for the discrete dual cubic string consists in re-
covering the positions and masses {yx, gr},_, given the spectral data consisting of
eigenvalues and residues {\y, by };_, (or, equivalently, given the first Weyl function
W(A)). The corresponding problem for the Neumann-like cubic string was solved
in [37], and we need only translate the results, as in Section 6. See also [44] for
more information about inverse problems of this kind, [3, 5] for the underlying the-
ory of Cauchy biorthogonal polynomials, and [4] for applications to random matrix
models.

To begin with, we state the result in terms of the bimoment determinants
D,(ﬁb) and D), defined below. Things will become more explicit in the next section
(Corollary 8.4), where the determinants are expressed directly in terms of the A
and bg.

DEFINITION 7.1. Suppose p is a measure on Ry (the positive part of the real
line) such that its moments,

(7.1) Ba = /Fu“ dp(k),

and its bimoments with respect to the Cauchy kernel K (x,y) = 1/(z + y),

K& b
(72) Iy = Iy = // IQ _:\)\ d,u(li) d/ﬁ(}\),
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are finite. For m > 1, let D( Y denote the determinant of the m x m bimoment
matrix which starts Wlth I, in the upper left corner:

Iab Ia,b+1 e Ia,b+m71
Tov1p Tovip+1 .- o1 p+m—1
(7.3) Dab) — Togop Toyoprr oo layopim—1 | = pba)
Ia+m71,b Ia+m71,b+1 .. Ia+m71,b+m71

Let D(()ab) =1, and D) — () for m < 0.
Similarly, for m > 2, let D/, denote the m x m determinant

Bo T T ... Tim—o
B1 Iog 121 ... Ippmo

(74) D;n = 62 130 I31 e 13,m72 ,
677171 ImO Iml s Im,m72

and define D] = By and D), = 0 for m < 1.

THEOREM 7.2. Given constants 0 < A\y < --- < Ap and by, ..., b, > 0, define
the spectral measure

i=1

and let 1, be its bimoments,

(7.6) = [ 525 du) aut) = ii&%& b

Then the unique discrete dual cubic string (with positive masses gx ) having the Weyl

function
Z dp(k)
A— )\k A—K
is given by
(00) (11) (00) | 1.5(11)
D, ) D, 4+ 35D
(7.7) Yir —7917 e = Qw,
D(OO) + 1D(11) Dk
where k' =n+1—k for k=0,...,n+ 1. The distances between the masses are
given by
2
()
(78) lklfl = yk/ — yklfl =

00 11 00 1)\’
(o o) (o - 1)
PrOOF. For 0 < k < n, let a(®**Y()) be the product of the first 2k + 1 factors

n (5.17),

(7.9) a®** V(X)) = G, \) L(gn) Gln1,)\) L(gn-1) - .-
-Gl A) Lgr) G(lkr—1, ),
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where ¥’ = n+ 1 — k. By Lemma 4.1 and Theorem 4.2 in [37], the entries in the
first column of a = a®*+1)()\)

ail P
an | = | P,
as1 Q

satisfy what in [37] was called a “Type I” approximation problem. This means that
(P(N), P(N\),Q(N)) are polynomials in A of degree k, k, k+ 1, respectively, satisfying
the normalization conditions

PO) =1, PO)=0, Q(0)=0,
the approximation conditions
QW) +P(N) =0(1),  QNZM\)+PRX) =001, asl— o,
and the symmetry condition
QN Z(=A) = POW(=A) — PA\) =0A"* 1),  as A — .

According to Theorem 4.15 in [37], this determines (ﬁ, P, Q) uniquely; in particular,

the coefficients of a:(flkﬂ)(/\) =Q\) = Efill ¢;\" are given by the nonsingular

linear system

Ioo+3 Ion -+ ok G 1

Iio FEE RN 7 q2 0

(7.10) I Ion oo Dok a3 [ =_]0
Ixo Ipw oo Iy Qr+1 0

From (7.9) one finds that

ag21k+1)(>\) =(=Np+lpa+ - Flw—1)+...

2 2 2
+ (=Rt (%ﬂ% . %znzn,1 N .zk,l) ,

(7.11)

and the lowest and highest coefficients are then extracted from (7.10) using Cramer’s
rule:

—Q1=W= lj=1—yp_1,
(7.12) D+ 1D A
’ 10 n 9
(—1)F gy = L = H % I —1
00 11 -1
DY+ 4D\ 2

The first equation gives a formula for y;_; right away, and of course also for yy
(with 1 < k < n + 1) after renumbering. This formula (7.7) for yi holds also for

k = 0, since it gives yo = yn+1 = +1 because of the way D,(ﬁb) is defined for m < 0.
(That it indeed gives Y, 41y = Yo = —1 when k = n + 1 is not as obvious; this

depends on ngﬂ being zero when the measure p is supported on only n points. See

[37, Appendix B].) Subtraction gives a formula for l;_; which simplifies to (7.8)
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with the help of “Lewis Carroll’s identity” [38, Prop. 10] applied to the determinant

00
Dl(c-rz:
s DD = DD DV D)

Finally, the second formula in (7.12), divided by the corresponding formula with k
replaced by k — 1, gives an expression for %g,%, l}r—1 from which one obtains

o) , 1 a1 2
Ik = (Dk + _Dk—1> 10).~(10) °
2P

The formula for gi presented in (7.7) now follows from the identity (D})? =
2D,(€10)D,(ioi and the positivity of Dj,, which are immediate consequences of (8.6)
below. (The determinant identity can also be proved directly by expanding D,
along the first column, squaring, and using 3;6; = Liy1; + Li j+1-) O

REMARK 7.3. We take this opportunity to correct a couple of mistakes in
[37]: the formula in Corollary 4.17 should read [Qsgi2] = (—1)*T1Dy/ Ass1, and
2

consequently it should be m,_j, = in (4.54).

Dk
2Ak 1 Ak
8. Evaluation of bimoment determinants

The aim of this section is just to state some formulas for the bimoment deter-
minants ’D,(f;b) and D/, taken from |44, Lemma 4.10] and |37, Appendix B]|. Quite

a lot of notation is needed.

DEFINITION 8.1. For k> 1, let

_ 1 [ A()? dpt(a)
fr = E/Rk INz) xix2...2%
)2

(8.1) w=g [ AP(U) d (z),

v = %/Rk Al_‘((?) T1T2 ... Tk d,uk(:zr),
where

Az) = Azq, ... x5) = 1_[(:10Z xj),
(8.2) =

D(x) =T(x1,...,2x) = 1_[(:10Z + z;).

(When £ = 0 or 1, let A(z) = T'(z) = 1.) Also let tg = up = v9 = 1, and
tr =ur = v =0 for k < 0.

When p = Zzzl by 0, , the integrals ti, ux, vy reduce to the sums Ty, Uy, Vi
below.

DEFINITION 8.2. For k£ > 0, let ([1,;"]) denote the set of k-element subsets
I ={i; <--- <ig} of the integer interval [1,n] = {1,...,n}. For I € ([1,;"]), let

(8.3) Ar =AM, N, ), Tr=TW\, s \i)s
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with the special cases Ag = T'g = Ay = I'y;; = 1. Furthermore, let

A= br =[] b
i€l icl
A2
with A\p = by = 1. Using the abbreviation ¥; = I‘_I’ let

I
Ub
(8.4) Ty = Z ){ L Uy = Z Wrby, Vie = Z WrArbr,
Ie([ll,cn]) I Ie([ll,cn]) IG([l;cn])
and
U, Vi—

Wy = Ukarl {C/kl = UV — Ugt+1Vi—1,
(8.5) U

Zy = Tkj—l []};1 =TyUr — Tk 1Ug—1-

(To be explicit, Uy =Vo =Ty =1, and Uy, =V}, =T, =0 for kK <0 or k > n.)
We can now finally state the promised formulas for the bimoment determinants.
LEMMA 8.3. For all m,

Um Um—1
Um+1 Um

DO0) _ ‘tmﬂ Ym 1 pan) _

(8.6) m o T
p0) _ (“m)2 D= U U —1
mo om m om—1

n
In the discrete case when p = Zbk Oz, , this reduces to
k=1

2
(8.7) DO — pan) _ Wi p10) _ (Un)

2m’ m 2m’ m om )

D/ UmUmfl

m = 2m71

COROLLARY 8.4. The solution to the inverse spectral problem for the discrete
dual cubic string (Theorem 7.2) can be expressed as

(8.8) o = Ly — Wi g = L+ Wi
’ Zy +Wi_1' UrUk—1
2 (Up)*
(89) lk:’—l = yk’ — yk’—l = ( k)

(Zk + Wi1)(Zgyr + Wi)

The expression Wy, can be evaluated explicitly in terms of Ax and by, although
the formula is somewhat involved [44, Lemma 2.20]:

(8.10)
A4
W, = Z FI)\IbQ
Ie(“’"]) !

ATAT NG
+ beJ gmHl_-_J 77 L,J AZ A2 I'el'p s
’m,zl ;l] { 1—‘[ FIUJ L;—J o
Ie(i7)) |C|=|D]=m
JG([l "]> min(C')<min(D)
INJ=0
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where A7 ; = H (A; — A;)?. The corresponding formula for Zj, is obtained by
iel,jet
replacing b; with b;/\; everywhere.

9. The multipeakon solution

In order to obtain the solution to the inverse spectral problem on the real line,
which provides the multipeakon solution, we merely have to map the formulas for
the interval (Corollary 8.4) back to the line via the Liouville transformation (5.6).

We remind the reader that in this paper we primarily study the pure peakon
case where it is assumed that all m; > 0 and also that z; < --- < x,,. This assump-
tion guarantees that the solutions are globally defined in time (Theorem 4.5) and,
regarding the spectral data, that all by > 0 and 0 < \; < --- < A, (Theorem 6.1).
Details regarding mixed peakon-antipeakon solutions are left for future research, but
we point out that since the velocity iy = u(xy)? is always nonnegative, Novikov
antipeakons move to the right just like peakons (unlike the b-family (2.1), where
pure peakons move to the right and antipeakons to the left, if they are sufficiently
far apart). Nevertheless, peakons and antipeakons may collide after finite time also
for the Novikov equation, causing division by zero in the solution formula for my
in (9.1) below, and this breakdown leads to the usual subtle questions regarding
continuation of the solution beyond the collision. (The corresponding problem for
the Camassa—Holm equation is rather well understood by now [2, 7, 8, 26, 27|,
and some results are known for the Degasperis—Procesi equation [42].)

THEOREM 9.1. In the notation of Section 8, the n-peakon solution of Novikov’s
equation s given by

1 Z, ZkWi—1
91 5= —1 =
o) oo =gt m = YL
where k' =n+1—k for k=1,...,n, and where the time evolution is given by
(9.2) bi(t) = br(0) et/ e,

PRrROOF. The inverse of the coordinate transformation (5.6) is

1.1 V1 —y?
op =tV = BV T U
1—yk 2

which upon inserting (8.8) gives (9.1) at once. The evolution of by comes from
equation (4.23). O
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ExampLE 9.2. The two-peakon solution is

(Al _>A2)4 b2b2
bl 21 (A1 4 X2)2h N 12
1= = = —
2 W UDIPY
! A D2+ A b2+ pvgn /\2b1b2
1.z 1 b2 b2 4
RS R T <A1+A2+A1+A2”’
/\24b2b2( , s AN )]1/2
A b2 4 A b2+ bib
o5 m \/zzwlz[mrxz% RS I VNIV
(9:3) U.U, (A1 — X2)? b1bo (br + by)
A1+ Ao ! 2
A Mo 1/2
A b2 4 Ao b2 bb
(11+22+/\+)\212)

VA1 (b1 + bg)
»2 b2 4 >1/2
Ap2 4% b
vV Z1Wo (/\1 X A tA P

"0, by + by ’
where the simpler of the two expressions for m; is obtained under the assumption
that all spectral data are positive, and therefore only can be trusted in the pure
peakon case. This way of writing the solution is simpler and more explicit than that
found in [32]. In order to translate (9.3) to the notation used there, write (g, px)

instead of (zx,my), ¢k instead of 1/\g, and to instead of (A\;' — A\;1)~'1 z;gg;;

then tanh T = (by — by)/(b1 + bz) and cosh 2T = 4biby/(by + bo)?, where T =
1
5(61 — 02)(t — to).
ExampLE 9.3. The ‘rhree—peakon solution is
Z Z 1. 7y

"Wy "w BT

V Z3Wa N Z2Wy VW

U, 0 2T T, T T,

(9.4)

my =

where Uy = Wy =1,
Uy = by +ba + b3,

(9.5) Uz = W12 b1b2 + Vi3 b1b3 + Va3 babs,
Us = U123 b1b2bs,

Wi = A\ b + Ao b3 + A3 b3
40 413 4 XoAs3

+ biba + b1bs +
PV VD VINID Vi D VI W

(9.6) Wa = W3y A\ Ao bib3 + Wis A\j A3 b3b3 + W35 Ao A3 b33
4 W 13Wo3 A1 A2 A3 9 4oz A 23
— = bbb+ ————"

A1+ Ag 1727 A1+ Az

4T 12W13 A1 A3 4
— = " b7bod
Ao + A3 17273

b2b37

b1b3bs
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b? b3 b3 4 4 4
i=—+-=+= b1b —b1b —bob
! )\1+)\2+)\3+)\ + A2 12+)\ + A3 13+)\2+)\3 2
P2 P2 P2
Z2 — 12 b2b2 13 b2b2 _—23 b2b2
(9.7) )\)\4\11 v s 2\11)\ \J 4 U0
13Wa3 2 12Va3 2 12¥13 o
——————— bbb + ——— b1b5bs + ——————— b7babs,
1+ A)As 28 T+ A)Ae 2T g A P
P2
Z . 123 b2b2b2
5T XA
and
Vo = Aa =) Wig = Aa =) Was = (e —Xa)?
(98) AL+ Ao ’ A1+ As ’ Ao+ As ’
' Uy = (A1 — A2)2(A1 — A3)2(\2 — A3)?

()\1 + )\2)()\1 + /\3)(/\2 + /\3)

THEOREM 9.4 (Asymptotics). Let the eigenvalues be numbered so that 0 <
A< - < A,. Then

t - (i =)
g (t) ~ )\—k—l—logbk( ——ln/\k—l— ;11 SR as t — —o0,

(9.9) . e
:Ek,(t)m/\—k—i—logbk( ——ln)\k—i—ZI )\ +)\k as t — 400,

where K =n+1— k. Moreover,

(9.10) lim m(t) = —— = lim mp(t).

t——o00 ﬁ/)\k t——400

In words: asymptotically as t — +oo, the kth fastest peakon has velocity 1/, and

amplitude 1/+/ .

ProOF. This is just a matter of identifying the dominant terms; by(t) =
b1(0) et/ grows much faster as t — 4oo than by(t), which in turn grows much
faster than bs(t), etc., and as t — —oo it is the other way around. Thus, for ex-
ample, Uy ~ Wio kb1bo...br as t — +o0o. A similar analysis of Wy and Zj leads
quickly to the stated formulas. ([

The only difference compared to the xj; asymptotics for Degasperis—Procesi
peakons [44, Theorem 2.25] is that (9.9) contains an additional term —3In\g.
Since this term cancels in the subtraction, the phase shifts for Novikov peakons are
exactly the same as for Degasperis Procesi peakons [44, Theorem 2.26]:

(9.11)  lim (xk/(t) - Aik) ~ lim_ <xk(t) _ Aik) _

(N — Me)? )
log
)\ + M)A ;rl )\ +/\k))\

H'M?’“
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Appendix A. Combinatorial results

This appendix contains some material related to the combinatorial structure
of the constants of motion Hy, ..., H, of the Novikov peakon ODEs; see Section 4,
and in particular Theorem 4.2. Recall that

AN =1—=AH; + -+ (=\)"H,, = det(I — \TPEP),

where [ is the n x n identity matrix, and T, F, P are n x n matrices defined by
Tjr = 1 +sgn(j — k), Ejr, = e"1#~#I and P = diag(my,...,m,). The first thing
to prove is that the matrix TPEP is oscillatory if all m; > 0, which shows that
the zeros of A()) are positive and simple. Then we show how to easily compute the
minors of PEP, and finally we prove the “Canada Day Theorem” (Theorem 4.1)
which implies that Hy equals the sum of all k¥ x & minors of PEP.

A.1. Preliminaries. In this section we have collected some facts about total
positivity [35, 24, 22] that will be used below.

DEFINITION A.1. If X is a matrix and I and J are index sets, the submatrix
(Xij)ier jes will be denoted by X; (or sometimes X7 ;). The set of k-element
subsets of the integer interval [1,n] = {1,2,...,n} will be denoted ([1,’6”]), and
elements of such a subset I will always be assumed to be numbered in ascending
order iq < --- < ip.

DEFINITION A.2. A square matrix is said to be totally positive if all its minors
of all orders are positive. It is called totally nonnegative if all its minors are non-
negative. A matrix is oscillatory if it is totally nonnegative and some power of it
is totally positive.

THEOREM A.3. All eigenvalues of a totally positive matriz are positive and of
algebraic multiplicity one, and likewise for oscillatory matrices. All eigenvalues of a
totally nonnegative matriz are nonnegative, but in general of arbitrary multiplicity.

THEOREM A.4. The product of an oscillatory matriz and a nonsingular totally
nonnegative matrix is oscillatory.

DEFINITION A.5. A planar network (I',w) of order n is an acyclic planar di-
rected graph I' with arrows going from left to right, with n sources (vertices with
outgoing arrows only) on the left side, and with n sinks (vertices with incoming
arrows only) on the right side. The sources and sinks are numbered 1 to n, from
bottom to top, say. All other vertices have at least one arrow coming in and at least
one arrow going out. Each edge e of the graph I is assigned a scalar weight w(e).
The weight of a directed path in I' is the product of all the weights of the edges of
that path. The weighted path matriz Q(T',w) is the n X n matrix whose (i, j) entry
Q;; is the sum of the weights of the possible paths from source i to sink j.

The following theorem was discovered by Lindstrom [41] and made famous by
Gessel and Viennot [25]. A similar theorem also appeared earlier in the work of
Karlin and McGregor on birth and death processes [36].

THEOREM A.6 (Lindstrom’s Lemma). Let I and J be subsets of {1,...,n}
with the same cardinality. The minor det Qy; of the weighted path matriz Q(T,w)
of a planar network is equal to the sum of the weights of all possible families of
nonintersecting paths (i.e., paths having no vertices in common) connecting the
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sources labelled by I to the sinks labelled by J. (The weight of a family of paths is
defined as the product of the weights of the individual paths.)

COROLLARY A.7. If all weights w(e) are nonnegative, then the weighted path
matriz is totally nonnegative.

REMARK A.8. Beware that having positive weights does not in general imply
total positivity of the path matrix €2, since some minors det {2;; may be zero due
to absence of nonintersecting path families from I to J, in which case €2 is only
totally nonnegative.

A.2. Proof that TPEP is oscillatory. The matrix T is the path matrix of
the planar network whose structure is illustrated below for the case n = 4 (with all
edges, and therefore all paths and families of paths, having unit weight):

®

Indeed, there is clearly one path from source ¢ to sink j if ¢+ = j, two paths if ¢ > 7,
and none if ¢ < j, and this agrees with

L 1=y,
0, 72<j.
Similarly one can check that the matrix PEP is the weighted path matrix of the

planar network illustrated below for the case n = 5 (we are assuming that z; <
o < Ty, S0 that FgFo3 = ™1 77272778 = [15. etc.):

2
ms 1—-Ejs ms

o
ma E45\* 1-E2, o/f'?zxs my
E34\A 1 - E%, /2734 ms
o
Mo EZAO 1—-E2% 0/4E23 Mo
mq Elk«o/éw my

By Corollary A.7, both T' and PEP are totally nonnegative (if all my > 0).
Furthermore, (PEP)" is the weighted path matrix of the planar network obtain
by connecting N copies of the network for PEP in series, and if N is large enough,
there is clearly enough wiggle room in this network to find a nonintersecting path
family from any source set I to any sink set J with |I| = |J|. Thus (PEP)" is
totally positive for sufficiently large N; in other words, PEP is oscillatory. (Another

CNONONORC)
g
CNONONORC)



276 ANDREW N. W. HONE, HANS LUNDMARK, AND JACEK SZMIGIELSKI

way to see this is to use a criterion [24, Chapter II, Theorem 10] which says that
a totally nonnegative matrix X is oscillatory if and only if it is nonsingular and
Xi; > 0 for |i — j| = 1.) Since T is nonsingular, Theorem A.4 implies that TPEP
is oscillatory, which was the first thing we wanted to prove.

A.3. Minors of PEP. Having a planar network for PEP makes it easy to
compute its minors using Lindstréom’s Lemma.

ExaMPLE A.9. Consider the constant of motion Hj in the case n = 6.

For sources I = {1,2,3} and sinks J = {1,2,3} there is only one family of
nonintersecting paths, namely the paths going straight across. The weights of
these paths are myms, ma(1 — E%)ma and m3(1 — E3;)ms, and the total weight
of that family is therefore (1 — E%,)(1 — E2;) m3m3m3, which will be the first term
in H3.

A similar term results whenever I = J. For instance, when I = J = {1, 2,4}
the paths starting at sources 1 and 2 must go straight across, while the path from
source 4 to to sink 4 can go straight across, or down to line 3 and up again. The
contributions from these two possible nonintersecting path families add up to

mimsy - m2(1 — E122)m2 . (m4(1 — E32,4)m4 =+ m4E34(1 — E223)E34m4>

= (1= Ef)(1 = E3y) mimamy.

From I = {1,2,3} to J = {1, 2,4} there is one nonintersecting path family, and
there is another one with the same weight from I = {1,2,4} to J = {1, 2, 3}; the
two add up to the term 2(1 — E%)(1 — E2;)Eay mim3mamy.

Continuing like this, one finds that the types of terms that appear in Hs are
Hs = (1 — E%)(1 — EZ)m2mim? + ...

+2(1 — EL)(1 — E23)Esy mimamamy + . ..
+ 4(1 — E122)(1 — E324)E23E45 mfm2m3m4m5 + ...

+8 (1 - Egg)(l - Ez5)E12E34E56 m1moMmsmnmqmsme.

(A1)

The last term comes from the 8 possible nonintersecting path families from I =
{i17i27i3} to J = {j17j27j3} where (ilujl) = (172) or (271)7 (i27j2) = (374) or
(4,3), and (i3,73) = (5,6) or (6,5).

REMARK A.10. Alternatively, the my can be factored out from any minor of
PEP, leaving the corresponding minor of F, which can be computed using a result
from Gantmacher and Krein [24, Section 11.3.5], since the matrix F is what they
call a single-pair matriz. This means a symmetric n X n matrix X with entries

1 X ZS .a
(A.2) Xij = viXs =
¢3Xu 1 Zj

The k x k minors of a single-pair matrix are given by the following rule: det X;; = 0,
unless I,J € ([1];"]) satisfy the condition

(A.3) (i1,71) < (i2,42) < -+ < (ik, Jk),
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where the notation means that both numbers in one pair must be less than both
numbers in the following pair; in this case,

A4 det X1 = o XB1  Xaz| [XB2 Xoas XBr-1 Xay 7
( ) 1= ' wﬁl d]az wﬁz was wﬁk—l ¢ak X8y
where

(A.5) (), Brn) = (min(im,jm),max(im,jm)).

In the case of E we have 1; = e® and y; = e~ % (assuming as usual that xz; <
<+- < xp), and (A.4) becomes

(A6) detEry=(1—-E3,.,)1—-E3,..) .-(1—E3 _ . )Eap Faspy - Eayp,-
A.4. Proof of the “Canada Day Theorem”. The result to be proved (The-

orem 4.1) is that for any symmetric n x n matrix X, the coefficient of s* in the
polynomial det(I + sTX) equals the sum of all k x k minors of X:

(A7) det(T+sTX)=1+> | Y Y detXy |s"
=1\ re (1) ge (i)

We start from the elementary fact that for any matrix Y, the coefficients in its
characteristic polynomial are given by the sums of the principal minors,

det(I+sY) =1+ | > detYy, |s"
k=1 \ ge(U)

Applying this to Y = T'X and computing the minors of T'X using the Cauchy Binet
formula [23, Ch. I, § 2]

(A.8) det(TX)ap = Z det Tas det X;p,  for A, B € (M),
re(")

we find that

det(I+sTX)=1+ zn: Z Z det Ty det X7y | s*.
=1 \re() o)
Comparing this to (A.7), it is clear that what we need to show is that, for any k,
(A.9) Z Z det Ty det X757 = Z Z det Xp;.
re(") e(Mi) re(") e("i)
The first thing to do is calculate the minors det 7 .

DEFINITION A.11. Given I,J € ([1;@"1), the set [ is said to interlace with the
set J, denoted I < J, if
(A.10) i1 < g1 <idp < g <.l < < e
If all the inequalities are strict, then I is said to strictly interlace with J, in which

case we write [ < J. If I < J, then I’ and J’ denote the strictly interlacing subsets
(possibly empty)

(A.11) I'=1\(InJ), J=J\({InJ),
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whose cardinality (possibly zero) will be denoted by
(A.12) p(I, ) = 1| = 7.
LeMMA A12. For I, J € ([1;6”]), the corresponding k X k minor of T is

op(LT) - f T <,

0, otherwise.

(A13) detTH = {

ProOF. We will use Lindstrom’s Lemma (Theorem A.6) on the planar network
for T given in Section A.2 above; the minor detT;; equals the total number of
families of nonintersecting paths connecting the source nodes (on the left) indexed
by J to the sink nodes (on the right) indexed by I.

The proof proceeds by induction on the size n of T. The claim is trivially
true for n = 1. Consider an arbitrary n > 1, and suppose the claim is true for
size n — 1. If neither I nor J contain n, the claim follows immediately from the
induction hypothesis, and likewise if I and J both contain n, because there is only
one path connecting source n to sink n. If I contains n but J does not, then
det Ty; = 0 because there are no paths going upward; this agrees with the claim,
since in this case I does not interlace with J.

The only remaining case is therefore J = Jy U {n}, I = I; U {iy}, with ix < n.
But then

2, if Jh—1 < g,
detTyr =det Ty, x 1, if jp_1 =i,
0, if jr_1 > i,

depending on whether the path connecting source n with sink i; has to cross the
Jr—1 level; if it does not, there are two available paths, if it does, there is only one
available path provided ji_1 = %,, otherwise the path intersects the path coming
from source jr_1. In the last instance, I does not interlace with .J, while in the
other two I < J if and only if I; < Jj, thus proving the claim. O

According to this lemma, the structure of (A.9) (which is what we want to
prove) is

(A.14) > 2D det Xy = ) detXap,
1,7e(M) A,Be(mM)
I<J

and we must show that those terms det X;; that occur more than once on the
left-hand side exactly compensate for those that are absent. This will follow from
another technical lemma:

LemMA A.13 (Relations between k x k minors of a symmetric matrix). Suppose
I,Je ([1;6”]) and I < J. Then, for any symmetric n X n matriz X,

(A].5) Z detXAB = 2;0(1,J) detXU.
A,Be("))
ANB=INJ

Before proving Lemma A.13, we will use it to finish the proof of the main
theorem. The two lemmas above show that the sum on the left-hand side of (A.14)
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equals

(A.16) o oD det Xy = > > detXag |,

1,7e() rae(Ur \ aBe('y)
1<J 1<J ANB=INJ

which in turn equals the sum on the right-hand side of (A.14)

(A.17) > det Xas.
A,Be(m)

Thus (A.14) holds, and the theorem is proved. The final step from (A.16) to (A.17)
is justified by the observation that any given pair (A, B) of the type summed over
in (A.17) appears exactly once in the right-hand side of (A.16), namely for the sets
I and J defined as follows. Let M = ANB, A" = A\M, B’= B\ M, and let p > 0
be the cardinality of the disjoint sets A’ and B’ (they are empty sets if p = 0).
Then define I’ and J’' by enumerating the 2p elements of A’ U B’ in the strictly
interlacing order I’ < J/, and let I = M UI' and J = M UJ'. Conversely, no other
terms than these appear in the right hand side of (A.16), and it is therefore indeed
equal to (A.17).

PROOF OF LEMMA A.13. The sets I < J and I’ < J’ (as in Definition A.11)

with

Il =|Jl=k  |I'|=|T]=p{,J)=0p,
will be fixed throughout the proof, and for convenience we also introduce M = INJ
and U = TU J, with |[M| =k —p and |U| = k 4+ p. We can assume that p > 0,
since the case p = 0 is trivial; it occurs when I = J, and then both sides of (A.15)
simply equal det X;;.

The set U \ M consists of the 2p numbers which belong alternatingly to I’
and to J’. The sum (A.15) runs over all pairs of sets (A, B) obtained by splitting
these 2p numbers into two disjoint p-sets A’ and B’ in an arbitrary way and letting
A= MUA and B = M U B’. Write Q for this set; that is, @ denotes the set
of pairs (4, B) € ([117:]) X ([117:]) such that AUB = U and AN B = M. After
expanding det X 45, we can then write the left-hand side of (A.15) as

(A.18) > (1) Xayb, 1, Xasboa) - - - Xarbo s
((A,B),0)€QXSy,

where S, is the group of permutations of {1,2,...,k}, and (—1)? denotes the sign
of the permutation o.

For each ((A,B),0) € Q x Sk, welet A’ = A\ M and B’ = B\ M, and set
up a (o-dependent) bijection between A" and B’ as follows: a’ € A’ is paired up
with ¥ € B’ if and only if the product Xa1byy Xasbyay - - - Xagbyqy CONtains either
the factor X, or a sequence of factors X/, Xys, ..., Xy where r,s,...,t € M.
Let us say that o’ and b’ are linked if they are paired up in this manner. A linked
pair (a/,b’) € A’ x B’ will be called hostile if (a’,b") belongs to I' x I' or J' x .J',
and friendly if (a’,b) belongs to I’ x J' or J' x I'. To each term in the sum (A.18)
there will thus correspond p such linked pairs, and what we will show is that the
terms containing at least one hostile pair will cancel out, and that the remaining
terms (with all friendly pairs) will add up to the right-hand side of (A.15).
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Next we define what we mean by flipping a linked pair (a’,’). This means that,
in the product Xa1b<,<1)Xa2b<,<2) .. 'Xakb(r(k)7 those factors X,/ X,s ... Xy that link
a’ to b are replaced by Xy ... X Xpq, with all the indices in reversed order.
(When the linking involves just a single factor X, flipping means replacing it
by Xpas.) Since the matrix X is symmetric, this does not change the value of the
product, but it changes the way it is indexed. The number a’ which used to be in
the first slot (in X,,-) is now in the second slot (in X,/), and vice versa for b’. The
connecting indices 7, s,...,t € M do not contribute to any change in the indexing
sets, since, for example, the r in X,/ is moved from the second slot to the first,
while the other r in X, is moved from the first to the second. The new product
(the result of the flipping) is therefore indexed by the sets

(A\{a’}) U= A={a; < <ag
and
(B\{b'}) U{d} = B={b < <by}

respectively, and after reordering the factors so that the first indices come in as-
cending order, it can be written

_ = X - Lo X5
a1bz (1) az2bz(2) arbz (k)

for some uniquely determined permutation o € Si. Flipping a given pair thus
takes ((A, B),o) to ((A, B),&). This operation is invertible, with inverse given by
simply flipping the same pair again, now viewed as a pair (/,a’) € ((/Nl)’, (E)’)
linked via the indices ¢,...,s,7. Because of the symmetry of the matrix X, the
term in (A.18) corresponding to ((A, B),&) is equal to the term corresponding to
((A, B),0), except possibly for a difference in sign, depending on whether the signs
of o0 and & come out equal or not:

g . ~ ~ _ _ g
(D7 Xm0 X+ Ko, = ED Xty Kozt - Xavbogs -

We will show below that the permutation o has the same sign as o when a friendly
pair is flipped, and the opposite sign when a hostile pair is flipped. Taking this for
granted for the moment, divide the set Q x S into the two sets (Q X Sk)nostiles
consisting of those ((4,B),o) for which at least one linked pair is hostile, and
(Q X Sk)friendly, consisting of those ((A4, B),o) for which all p linked pairs are
friendly. The mapping “flip that out of all hostile pairs (a’, ') for which min(a’,d’)
is smallest” is an involution on (Q X Sk)nostile that pairs up each term with a
partner term that is equal except for having the opposite sign (since it is a hostile
pair that is flipped). Consequently these terms cancel out, and the contribution
from (Q X Sk)nostile to (A.18) is zero. The sum therefore reduces to

(A.19) > (1) Xayb, 1) Xasboa) - - - Xanboge -
((A’B)vg)e(gxsk)friendly

Now equip the set (Q X Sk)iriendly With an equivalence relation; ((g, E),E) and
((A, B),0) are equivalent if one can go from one to another by flipping friendly
pairs. Each equivalence class contains 2P elements, since each of the p friendly
pairs can belong to either I’ x J’' or J' x I'. Moreover, the terms corresponding to
the elements in one equivalence class are all equal (including the sign, since only
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3

linked pairs belonging to I’ x J’,
(17X

friendly pairs are flipped), and each class has a “canonical” representative with all

X; X

1o (1) <M i2J0(2) *°* NMikJo(k)
where the permutation ¢ is uniquely determined by the equivalence class (and vice

versa). Thus (A.19) becomes

(AQO) 2p Z (_1)0Xi1jg(1)Xigja(2) .. 'Xikjg(k) = 2P det X]J,
oeSy
which is what we wanted to prove.

To finish the proof, it now remains to demonstrate the rule that o has the same
(opposite) sign as o when a friendly (hostile) pair is flipped. To this end, we will
represent ((A, B),o) with a bipartite graph, with the numbers in U = AU B (in
increasing order) as nodes both on the left and on the right, and the left nodes
a; € A connected by edges to the corresponding right nodes b,(;) € B. The sign of
o will then be equal to (—1)¢, where ¢ is the crossing number of the graph. As an
aid in explaining the ideas we will use the following example with U = [1, 8], where
the nodes in M = AN B are marked with diamonds, and the nodes in A’ and B’
are marked with circles:

<

O
O
%/ O

7 ®
& O

A=1{2,3,4,5,6,8} B={1,2,4,5,7,8}
={2,4,5,8} U {3,6} ={2,4,5,8} U{L,7}
=MUA =MUDB

Clearly, A UB = {3,6}U{1,7} = {1,3,6,7} = {i] < j1 < i) < jb}, so that
I' = {i},i%} = {1,6} and J" = {j1,75} = {3,7}. Consequently, I = M UI =
{1,2,4,5,6,8} and J = M U J = {2,3,4,5,6,7}. The chosen permutation is
0(123456) = 632415, where the notation means that o(1) = 6, o(2) = 3, etc.; for
example, the latter equality comes from the second smallest number as in A being
connected to the third smallest number b3 in B. There are 9 crossings, so o is an odd
permutation, and this graph therefore represents the term — Xog X34 X490 X55 X61 Xs7,
appearing with a minus sign in the sum (A.18). The linked pairs (a/,0’) € A’ x B’
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are (6,1) (directly linked) and (3, 7) (linked via 4,2,8 € M). Both pairs are hostile,
since (6,1) € I' x I and (3,7) € J' x J'.

We will illustrate in detail what happens when the pair (3,7) is flipped. The
flip is effected by replacing the factors X34 X142 X258 Xg7 by X758 Xg2 X024 X3 and sort-
ing the resulting product so that the first indices come in ascending order; this
giVGS X24X43X55X61X78X82. Thus A = {2, 4, 5, 6, 7, 8}/ B = {1, 2, 3, 4, 5, 8}, and
0(123456) = 435162 (an even permutation). In terms of the graph, the nodes that
are involved in the flip are, on both sides, {2, 3,4, 7,8} (the two nodes in the pair be-
ing flipped, plus the nodes linking them), and the edges involved are {34, 42, 28, 87},
which get changed into {43, 24,82, 78}. In other words, the flip corresponds to this
active subgraph being mirror reflected across the central vertical line. To under-
stand how the process of reflection affects the crossing number, it can be broken
down into two steps, as follows.

On the left, node 7 is unoccupied to begin with, so we can change the edge 87
to 77. This frees node 8 on the left, so that we can change the edge 28 to 88, which
frees node 2 on the left. (Think of this edge as a rubber band connected at one
end to node 8 on the right; we're disconnecting its other end from node 2 on the
left and sliding it past all the other nodes down to node 8 on the left. Obviously
the crossing number increases or decreases by one every time we slide past a node
that has an edge attached to it.) Continuing like this, we get the result illustrated
in Step 1 below; the edges changed are 87 — 77, 28 — 88, 42 — 22, 34 — 44.

Intermediate stage (after Step 1) Result of the flip (after Step 2)

In Step 2, we work similarly on the right-hand side: node 3 is unoccupied to
begin with, so we can change edge 44 to 43, and so on. The list of edge moves
is 44 — 43, 22 — 24, 88 — 82, 77 — 78. (In the graph on the right we see
that the crossing number after the flip is 8, verifying the claim that o is an even
permutation.)

We need to keep track of the changes in the crossing number caused by sliding
active edges past nodes that have edges attached to them. This is most easily done
by following the dotted lines in the figures, and counting whether the nodes that are



EXPLICIT MULTIPEAKON SOLUTIONS OF NOVIKOV’S EQUATION 283

marked (with circles and diamonds) are passed an even or an odd number of times.
However, since the active subgraph simply gets reflected, the crossings among its
edges will be the same before and after the flip, so we need in fact only count how
many times we pass a passive marked node. (The passive nodes in the example are
{1,5,6}.)

If a passive node belonging to M is passed in Step 1, then it is passed the same
number of times in Step 2 as well, since the nodes in M are marked both on the left
and on the right. Therefore they do not affect the parity of the crossing number
either, and we can ignore the nodes marked with diamonds, and only look at the
passive circled nodes (all the nodes in A’ and B’ except for the two active nodes
that are being flipped).

Passive nodes belonging to A’ are counted only in Step 1 and passive nodes
in B’ only in Step 2; they get counted an odd number of times if they lie between the
two flipped nodes (like node 6 in the example, counted once), and an even number
of times otherwise (like node 1, never counted). Consequently, what determines
whether the parity of the crossing number changes is the number of nodes between
the flipped ones that belong to A’ U B’ = I’ UJ’. And for a friendly pair, this
number is even, while for a hostile pair, it is odd.

This shows that the crossing number keeps its parity (so that (—=1)7 = (—=1)7)
when a friendly pair is flipped, and the opposite when a hostile pair is flipped. The
proof is finally complete. ]

Appendix B. Verification of the Lax pair for peakons

The purpose of this appendix is to carefully verify that the Lax pair formulation
(4.1)—(4.2) of the Novikov equation really is valid for the class of distributional
solutions that we are considering. This is not at all obvious, as should be clear
from the computations below.

B.1. Preliminaries. We will need to be more precise regarding the notation
here than in the main text. A word of warning right away: our notation for deriva-
tives here will differ from that used in the rest of the paper (where subscripts should
be interpreted as distributional derivatives).

To begin with, given n smooth functions = x(¢) such that z1(t) < --- <
Xn(t), let zo(t) = —oo and 2,11 (t) = 400, and let Q. (for k =0,...,n) denote the
region x(t) < ¢ < zg4+1(¢) in the (x,t) plane.

Our computations will deal with a class that we denote PC°°, consisting of
piecewise smooth functions f(x,t) such that the restriction of f to each region
Qy, is (the restriction to € of) a smooth function f®*)(x t) defined on an open
neighbourhood of Qj (so that f*) and its partial derivatives make sense on the
curves x = x(t)). For each fixed ¢, the function f(-,¢) defines a regular distribution
Ty in the class D'(R), depending parametrically on ¢ (and written T;(¢) where
needed). After having made clear exactly what is meant, we will mostly be less
strict, and write f instead of Ty for simplicity.

The values of f on the curves x = z(¢) need not be defined; the function defines
the same distribution Ty no matter what values are assigned to f(zx(¢),t). But our
assumptions imply that the left and right limits of f exist, and (suppressing the time
dependence) they will be denoted by f(z;) := f* =V (x;) and f(z]) = f®) (z),
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respectively. The jump and the average of f at x; will be denoted by

+ _
(B.1)  [flaw)] = f(&) = flz)) and  (f(zx)) = M
respectively. They satisfy the product rules

(B-2) [f9] = (Dal + [11a). {f9) = (/){9) + 3[/]]g]-

We will use subscripts to denote partial derivatives in the classical sense, so
that (for example) f, denotes the piecewise smooth function whose restriction to
Qy is given by 9f*) /0z (and whose values at x = () are in general undefined).
On the other hand, D, will denote the distributional derivative, which in addition
picks up Dirac delta contributions from jump discontinuities of f at the curves
x = xi(t). Thatis, DyTy =Ty, + > p_, [f(2k)] 6z, or, in less strict notation,

(B.3) Dacf = fz + Z[f(zk)] 59%

k=1

The time derivative D; is defined as a limit in D'(R),

(B.4) D/Ty(t) = lim Ty(t + hf)L — Tf(t)7

and it commutes with D, by the continuity of D, on D'(R). For our class PC* of
piecewise smooth functions, we have DTy =Ty, — > 1_ @ [f(:tk)} dz,, or simply

(B.5) Dif = fi =Y n[f(wr)]0ay,
k=1

where @, = day,/dt. We also note that 4 (T (1), 1) = fo(xF (1), 1) x () +filziE (2),1),
which gives

(B.6) e [F@)] = [alon)] d + ()],
’ d
dat

(f(zr)) = (fulzn)) @r + (fi(zr))-

B.2. The problem of multiplication. If the function f is continuous at
r = xg, then the Dirac delta at xj can be multiplied by the corresponding distri-
bution T according to the well-known formula

(B.7) Tt o, = flxg) Oy,

But below we will have to consider this product for functions in the class PC*
described above, where the value f(xj) is not defined. It will turn out that in
the present context, the right thing to do is to use the average value of f at the
jump, and thus define T 4§, = <f(:1:k)>5mk However, since we want this to be
a consequence of the analysis, rather than an a priori assumption, we will, to
begin with, just assign a hypothetical value f(x;) and use that value in (B.7).
This assignment is justified in the present context, as we will see below. However,
we are not claiming that this addresses any of the deeper issues; for example, this
assignment does not respect the product structure of piecewise continuous functions.
See [49, Ch. 5] for more information about the structural problems associated with
any attempt to define a product of distributions in D’(R).
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B.3. Distributional Lax pair. Peakon solutions
(B.8) u(z,t) = Z my(t) e~ lz=2R @l
k=1

belong to the piecewise smooth class PC*°. They are continuous and satisfy

n
Dou=u, = E my sgn(xg — x) ef|mfx’“|,
k=1

D?u = D,(uy) = U + Z[um(xk)} Or, = u+ Z(—ka) Oy s
k=1 k=1
which implies
(B.9) m::u—Diu:2ka5zk.

k=1

The Lax pair (4.1) (4.2) will involve the functions v and D, u, as well as the purely
singular distribution m. We will take 11, 12, 13 to be functions in PC*°, and
separate the regular (function) part from the singular (Dirac delta) part. The
formulation obtained in this way reads

(B.10) D, U =L¥, D,V =AU,
where ¥ = (¢1a¢27¢3)t=

R n 0 0 1 01 0
(B.11) L=L+22<ka5mk>N, L=l0 0 0], N=[0 0 1],
k=1 100 0 0 0
and
R n —UUy uz/z ui
(B.12) A—A—2Z<kau(xk)25zk>N, A= u/z —-1/22 —uy/z
k=1 —u?  u/z Uty

Note that (B.10) involves multiplying N¥ = (¢2,3,0) by 6,,, and some value
1o (x)) must be assigned in order for this to be well-defined (we will soon see that
13 must be continuous and therefore it is only v that presents any problems).

THEOREM B.1. Provided that the product ma)s is defined using the average
value Yo (xy) = <¢2(33k)> at the jumps,

(B.13) mpy = 2ka (Va(Tk)) Oy,

k=1
the following statement holds. With u and m given by (B.8) (B.9), and with ¥ €
PC®, the Lax pair (B.10)—(B.12) satisfies the compatibility condition D:D,V =
D, DV if and only if the peakon ODEs (3.4) are satisfied: i) = u(xy)? and ry =
—mmu, w(@k) (ug (1) )-
Proor. For simplicity, we will write just ) instead of Y ;_,. Identifying

coefficients of §,, in the two Lax equations (B.10) immediately gives [U¥(z))] =
22mp N (2x) and —i [V (zy)] = —22 mpu(2r) >N U (2), respectively. Thus, [1h3(z)] =
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0 (in other words, 93 is continuous) and iy = u(zy)?. Next we compute the deriva-
tives of (B.10):
Dy(D,¥) = Dy(LV + 22 (Z mi 5mk) NO)
= L(AD) + 22N Y L (mp¥(2x)) 0, — 22N> U ()i,
Do (Dy¥) = D, (A — 22 (Z i u(:z:k)25zk) NO)
= (AY), + Z[Aql(zk)]émk - QZNka‘IJ(Ik)U(Ik)Q(S;k.
The regular part of (B.10) gives ¥, = LU, so that (AV), = A, ¥ + ALY, and
it is easily verified that LA = A, + AL holds identically (since ug, = u). This
implies that the regular parts of the two expressions above are equal, and the
terms involving d;, are also equal since i = u(xy)?. Therefore the compatibility

condition Dy(D,V) = D,(D;¥) reduces to an equality between the coefficients
of 6,,

(B.14) —2zmpu(z) LNV (zy) + 22N £ (mp¥(zy)) = [AT(zy)].

Using the product rule (B.2), the expression for [¥(z))] above, and [ug(zx)] =

—2my,, we find that the right-hand side of (B.14) equals

(B.15)  (A(wk)) 22 mp NV (xp) + [A(we) | (P (2x)) =

0 —ufug Uy ) /2 w—1/z —2Cuy
2z my, (O u</z > <—1/>z2 ) \I/(.Ik) + 2my, (0 B/ 21</z >> <‘IJ(Ik)>
0 —u? w/z z, 0o 0 —u zk

The (3,2) entry —u? in the matrix in the first term will cancel against the whole
first term on the left-hand side of (B.14), since the only nonzero entry of LN is
(LN)32 = 1. Thus (B.14) is equivalent to

(B.16) 1iu, N (xy) + my, N £ (zy,) =

(0 —u<uI> <um>/z>
Mg\ o w/z —1/22

0 0 u/z

k

u/z —1/22 —2<uz>/z
V(xg) + my < ) 1/22
N 0 0 —u/z .
To make it clear how the assumption (B.13) enters the proof, we want to avoid
assigning a value to ¥s(xy) for as long as possible. Therefore we can’t compute
4 §(ry) quite yet. But (U(xr)) is well-defined, and its time derivative can be

di
computed using ¥, = LV and ¥, = AV in (B.6):

N5 (U (1)) = N(LU(xy)) dr + N(AY(z1))
= N (Lu(wi)? + (Alwg)) ) (Wlan)) + N3 [A)] [ ()]

u/z  ulug
—_————

_ <ug 1)z —<um>/z> (W(xx)) + L N [Aw)] N 22 my® ().
0 0 0 Tk ~
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A bit of manipulation using this result, as well as <7,/13>(33k) = ¢3(xk), shows that
the compatibility condition (B.16) can be written as

(B.17) myN4 (W(wk) - <\If(xk)>> + (m;.C + mku(;vk)<um(xk)>)N\I/(:E)

= (8=0) (Wlon) - (¥@))

000
The third row is zero, and the first two rows say that

(e + i) oo () oo ) = = () = (Va(an)).
(mk + mku($k)<um($k)>)7/}3($k) = tmyu(zy) (1/12(11%) - <1/)2($k)>)-

At this point we choose to assign ¥a(zx) = (¥2)(ax), and then it is clear that
(B.17) is satisfied if and only if

i = —miu(zr)(ug (1))
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