
Dynamics of PDE, Vol.6, No.3, 227-252, 2009

Regularity and blow up in a surface growth model

Dirk Blömker and Marco Romito
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Abstract. The paper contains several regularity results and blow-up criteria
for a surface growth model, which seems to have similar properties to the 3D
Navier-Stokes, although it is a scalar equation. As a starting point we focus
on energy methods and Lyapunov-functionals.
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1. Introduction

Throughout this paper we analyse a PDE originated by a model of surface
growth. Our main motivation is to carry over the program developed for 3D-
Navier-Stokes to this equation, in order to study the possible blow up of solutions.
This paper is the starting point focusing mainly on Hilbert space theory (although
the understanding of the Navier-Stokes equation has gone much further, see [13]
for results that are the actual state of the art).
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228 D. BLÖMKER AND M. ROMITO

Details on the model can be found in Raible et al. [19], [20] or Siegert and
Plischke [24]. In its simplest version, it is given by

(1.1) ∂th = −∂4
xh− ∂2

x(∂xh)2

subject to periodic boundary conditions on [0, L] and
∫ L

0
hdx = 0. Although the

surface is not periodic, these boundary conditions together with the assumption of
a moving frame are the standard conditions in models of this type. Sometimes the
model has been considered also on the whole real line without decay condition at
infinity, even though we do not examine this case here.

From a mathematical point of view Neumann or Dirichlet boundary conditions
are quite similar for the problem studied here. The key point ensured by any of
these boundary conditions is that there is a suitable cancellation in the non-linearity,
namely

(1.2)
∫ L

0

h (h2
x)xx dx = 0 ,

which is the main (and probably only) ingredient to derive useful a-priori estimates.
The main terms in the equation are the dominant linear operator, and the qua-

dratic non-linearity. Sometimes the equation is considered with a linear instability
−hxx, which leads to the formation of hills, and the Kuramoto-Sivashinsky-type
nonlinearity (hx)2 leading to a saturation in the coarsening of hills. Both terms
are neglected here. They are lower order terms not important for questions re-
garding regularity and blow up. Moreover, the presence of these terms complicates
calculations significantly (see [5]).

Furthermore, the equation is usually perturbed by space-time white noise (see
for instance [7]), which we also neglect here, although many results do hold for the
stochastic PDE also.

For general surveys on surface growth processes and molecular beam epitaxy
see Barabási and Stanley [1] or Halpin-Healy and Zhang [12].

1.1. Existence of solutions. There are two standard ways of treating the
existence of solutions. The first one relies on the spectral Galerkin method and
uses energy type estimates for the approximation, which by some compactness ar-
guments ensure the convergence of a subsequence. See [25], or for the stochastically
perturbed equation [4, 3, 7]. In all cases initial conditions in L2 ensure the exis-
tence, but not uniqueness, of global solutions.

The second way uses fixed point arguments to show local uniqueness and reg-
ularity using the mild formulation. An application of this method is given in [6],
although the optimal case is not treated. In Section 2 we give a local existence re-
sult, which is optimal in the sense that initial conditions are in a critical space (see
[10] for a detailed account on this topic for the Navier-Stokes equations). We also
establish uniqueness among mild solutions and, less trivially, among weak solutions.
For these smooth local solutions we can easily show energy estimates, and discuss
possible singularities and blow up.

Standard arguments assure uniqueness of global solutions using a fixed point
argument in C0([0, T ],H1) for sufficiently small regular data in H1. We can even go
below that for uniqueness of solutions in Hα for any α ≥ 1

2 . This improves results
of [6]. But we are still not able to prove uniqueness of global solutions without
a smallness condition on the initial data. Nevertheless, we can give easily several
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conditions that imply uniqueness of global solutions. All of them assume regularity
in critical spaces or more regularity (see Section 3).

In Section 4 we study possible singularities and blow up. Based on energy-type
estimates, we establish Leray type estimates for lower bounds on blow up in terms
of Hα-norms. Moreover, we study an upper bound on the Hausdorff-dimension of
the set of singularities in time, and show that a blow up to −∞ is more likely to
happen.

Remark 1.1. All results for regularity and Leray type estimates are based on
energy estimates. These are optimal in the sense that they also hold for complex
valued solutions. Furthermore, using the ideas of [15], [16], one should be able to
construct a complex valued solution with strictly positive Fourier coefficients that
actually blows up in finite time. This is the subject of a work in progress.

This would show that results based on energy-estimates are useful to describe
a possible blow up, but they alone will never be able to rule it out.

1.2. The energy inequality. We outline the standard idea for energy es-
timates, which is to our knowledge the only useful idea for this equation. If we
formally multiply the equation by h and integrate with respect to x, then we ob-
tain using (1.2),

(1.3) |h(t)|2L2 + 2
∫ t

0

|∂2
xh(s)|2L2 ds ≤ |h(0)|2L2 .

Thus, using the Poincare inequality,

|h(t)|L2 ≤ e−ct |h(0)|2L2 and
∫ ∞

0

|h(t)|2H2 dt ≤ |h(0)|2L2 .

As explained before this estimate is only valid for smooth local solutions, or one
could use spectral Galerkin approximation to verify it for global solutions. Note that
the regularity implied by this estimate is enough for proving existence of solutions,
but is lower than the critical regularity, that is, the minimal amount of regularity
that would ensure uniqueness.

1.3. A Lyapunov-type functional. We can prove another a-priori estimate
either for smooth local solutions or via spectral Galerkin approximations,

1
α2

d

dt

∫ L

0

eαh dx =
∫ L

0

eαh hxhxxx dx + 2
∫ L

0

eαh h2
xhxx dx

= −
∫ L

0

eαh h2
xx dx + (2− α)

∫ L

0

eαh h2
xhxx dx

= −
∫ L

0

eαh h2
xx dx− 1

3 (2− α)α
∫ L

0

eαh h4
x dx.

Thus, for α ∈ (0, 2),∫ L

0

eαh(t) dx ≤
∫ L

0

eαh(0) dx for all t > 0

and

(1.4) (2−α)
3 α3

∫ ∞

0

∫ L

0

eαh h4
x dx dt + α2

∫ ∞

0

∫ L

0

eαh h2
xx dx dt ≤

∫ L

0

eαh(0) dx.



230 D. BLÖMKER AND M. ROMITO

Figure 1. A snapshot of a numerical solution to the surface
growth equation with additional linear instability −30hxx. The
hills look like parabolas with sharp valleys in between.

With some more effort (see Stein and Winkler [25]) one can see that these terms
are bounded independently of h(0) for large t.

The positive part h+ = max{0, h} now has much more regularity than the
negative part h− = max{0, h}, so a possible blow up seems to be more likely to
−∞ than to +∞. We will illustrate this in Subsection 4.3. Unfortunately, this
regularity is still not sufficient for uniqueness of solutions.

2. Existence and uniqueness in a critical space

Prior to the details on some regularity criteria for equation (1.1), we introduce
the scaling heuristic which explains the formulae that relate the different exponents
in the results of the paper. An account on the scaling heuristic for the Navier-Stokes
equations can be found for example in Cannone [10], such argument are the basis
of the celebrated result on partial regularity for Navier-Stokes of Caffarelli, Kohn,
and Nirenberg [8].

The rationale behind the method is the following. First, notice that the equa-
tions are invariant for the scaling transformation

(2.1) h(t, x) −→ hλ(t, x) = h(λ4t, λx).

If X is a functional space for h (for example L∞(0, T ;L2(0, L))), we can consider
how the norm of X scales with respect to the transformation (2.1) above. Say the
following relation holds,

‖hλ‖X = λ−α‖h‖X .

We have the three cases
1. sub-critical case for α < 0,
2. critical case for α = 0,
3. super-critical case for α > 0.

The super-critical case corresponds to small-scales behaviour and is related to low
regularity, typically to topologies where possibly existence can be proved, but no
regularity or uniqueness. For example, one gets α = 1

2 (hence, super-critical) for
X = L∞(0,∞;L2) or X = L2(0, T ; Ḣ2), which are the spaces where existence of
global weak solutions can be proved.
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The general scheme is the following. Consider spaces X (depending on the
space variable) and YT (depending on both variables, with t up to T > 0), then
in order to have a regularity criterion based on YT , the following statements must
hold,

1. there is a unique local solution for every initial condition in X,
2. the unique local solution we have found is regular, and
3. the unique local solution can be continued up to time T , as long as its

norm in YT stays bounded.
The above analysis has been extensively carried out by a large number of au-

thors for the three dimensional Navier-Stokes equations (see for examples references
in Cannone [10]). The first paper dealing with such aims were Prodi [18] and Ser-
rin [23], see also Beale, Kato and Majda [2].

2.0.1. Function spaces. We shall mainly work in the hierarchy of Sobolev spaces
of Hilbert type. Since the equations are considered on [0, L] with periodic boundary
conditions and zero space average, we shall use the following homogeneous fractional
Sobolev spaces. For α > 0,

Ḣα =
{

u ∈ L2(0, L) : u(·+ L) = u(·), u0 = 0,
∑
k 6=0

k2α|uk|2 < ∞
}

,

where uk is the kth Fourier coefficient, and Ḣ−α = (Ḣα)′. We shall consider the
norm on Ḣα defined by

(2.2) |u|2α =
∑
k 6=0

k2α|uk|2,

which is equivalent to the norm of the Sobolev space Hα(0, L) on Ḣα.
We also use the space Lp with norm | · |Lp for the Lebesgue space of functions

with integrable p-th power, the space W k,p with norm | · |W k,p for the Sobolev
space, where the k-th derivative is in Lp, and the space Ck of k-time continuously
differentiable functions with the supremum-norm.

2.1. Existence and uniqueness in Ḣ
1
2 . This section is devoted to the proof

of existence and uniqueness in the critical space Ḣ
1
2 , which improves significantly

some results of Blömker and Gugg [6]. Here we shall follow the results of Fujita
and Kato [11] on the Navier-Stokes equations with initial conditions in the crit-
ical Sobolev Hilbert space. This is optimal in the sense that local existence and
uniqueness with lower regularity should imply uniqueness by rescaling.

Definition 2.1. Given T > 0, δ > 0 and α ∈ (0, 1
2 ), define the complete metric

space Sα = Sα(T ) as

Sα(T ) =
{

u ∈ C((0, T ]; Ḣ1+α) : sup
s∈(0,T ]

{s
2α+1

8 |u(s)|1+α} < ∞
}

,

with norm
‖u‖α,T = sup

s∈(0,T ]

{
s

2α+1
8 |u(s)|1+α

}
and the δ-ball

Sδ
α(T ) =

{
u ∈ Sα(T ) : ‖u‖α,T ≤ δ

}
.

Let us remark that for any h ∈ Sα(T ), α̃ ∈ (0, α) and δ > 0 one can find
T̃ ∈ (0, T ) such that h ∈ Sδeα(T̃ ).
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Theorem 2.2. Given an arbitrary initial condition h0 ∈ Ḣ
1
2 , there exists a

time T• > 0, depending only on h0, such that there is a unique solution h ∈
C([0, T•); Ḣ

1
2 ) to problem (1.1). Moreover,

1. h ∈ C∞((0, T•)× [0, L]),
2. the solution satisfies the energy equality

|h(t)|2L2 + 2
∫ t

0

|hxx|2L2 ds = |h(0)|2L2 ,

for all t < T•, and
3. there exists a• > 0 such that T• = +∞ if |h0| 1

2
≤ a•.

4. Either the solution blows up in Ḣβ for all β > 1
2 at T = T• or T• = ∞.

Remark 2.3. If the maximal time T• of a solution h is finite, we know that
‖h(t)‖β → ∞ as t ↑ T• for β > 1

2 . We cannot conclude that the same is true for
‖h(t)‖ 1

2
. Indeed, h can be discontinuous at the maximal time T•, so either ‖h(t)‖ 1

2

is unbounded, or is bounded and discontinuous in T•.
The reason behind this is that a solution in Ḣ

1
2 can be continued as long as

there is a control on the quantity K0 of the type (2.6), and this quantity is not
uniformly convergent to 0 on bounded subsets of Ḣ

1
2 . In different words, K0 can

be controlled as long as one can control the way the mass of h(0) is partitioned
among Fourier modes.

The proof of this theorem is developed in several steps, which we will prove in
the remainder of this section.

First, we prove existence and uniqueness (together with the global existence
statement). Then we prove an analogous result in Ḣβ , for all β > 1

2 . By a standard
bootstrap technique, this implies the smoothness of solutions.

Let A be the operator ∂4
x with domain Ḣ4. It is a standard result that A

generates an analytic semigroup. Using for example the Fourier series expansion,
it is easy to verify that

(2.3) ‖Aγ e−tA ‖L(Ḣβ) ≤ cγt−γ ,

for every t > 0, where γ ≥ 0 and β ∈ R. By L(Ḣβ) we denote the space of linear
bounded operators on Ḣβ . Moreover, it is easy to verify that the norm |A

β
4 · |L2 ,

which we use several times in the paper, coincides with the standard norm (2.2) on
Ḣβ .

Proposition A.4 implies that for α ∈ (0, 1
2 ),

(2.4) |A 1
8 (4α−5)(h2

x)xx|L2 ≤ cα|h|21+α

(just apply the proposition with α = β, γ = 1
2 − 2α and use the dual formulation

of the L2 norm).
Consider now the right hand side of the mild formulation,

(2.5) F(h)(t) = e−tA h0 +
∫ t

0

e−(t−s)A(h2
x)xx(s) ds,
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and define

K0(t) = sup
s∈(0,t]

(
s

1
8 (2α+1)| e−sA h0|1+α

)
, for h0 ∈ Ḣ

1
2 ,

K(t, h) = sup
s∈(0,t]

(
s

1
8 (2α+1)|h(s)|1+α

)
, for h ∈ Sα(T ), t ∈ [0, T ].

The triangle inequality easily implies that K(t, h + k) ≤ K(t, h) + K(t, k). The
following lemma analyses the term K0.

Lemma 2.4. If h0 ∈ Ḣ
1
2 , then

(2.6) K0(t) → 0 as t → 0.

Furthermore, for each β ∈ [ 12 , 1 + α] there is a constant cβ > 0 such that

(2.7) K0(t) ≤ cβt
1
8 (2β−1)|h0|β .

Proof. By assumption A
1
8 h0 ∈ L2, hence by Lemma C.1,

s
1
8 (2α+1)| e−sA h0|1+α = |s 1

8 (2α+1)A
1
8 (1+2α) e−sA A

1
8 h0|L2 −→ 0.

as s → 0. Since by (2.3),

K0(t) = sup
s∈(0,t]

s
1
8 (2α+1)|A 1

4 (1+α−β) e−sA A
β
4 h0|L2 ≤ cβt

1
8 (2β−1)|h0|β ,

the second claim follows. �

Now we proceed to find a solution to the equation h = F(h).

Lemma 2.5. There is a small number δ > 0 depending only on α such that the
following statement is true. For all h0 ∈ Ḣ

1
2 there exists a time T > 0 (sufficiently

small) such that the map F is a contraction on Sδ
α(T ).

Proof. First we show that F maps Sδ
α into itself for T and δ sufficiently small.

To be more precise, there is a number cα > 0 such that for all t ∈ [0, T ] and all
h ∈ Sδ

α

(2.8) K(t,F(h)) ≤ K0(t) + cαK(t, h)2 ≤ K0(T ) + cαδ2.

Thus for δ ≤ (2cα)−1 and T sufficiently small F maps Sδ
α into itself.

In order to prove (2.8) we consider

|F(h)(t)|1+α ≤ | e−tA h0|1+α +
∫ t

0

| e−(t−s)A(h2
x)xx|1+α ds = I0 + I1.

For the first term,

t
1
8 (2α+1)I0 = t

1
8 (2α+1)| e−tA h0|1+α ≤ K0(T ) → 0

as T → 0, by (2.6).
For the second term we use (2.4), as well as (2.3), to obtain

I1 =
∫ t

0

|A
5−4α

8 + 1+α
4 e−(t−s)A A

1
8 (4α−5)(h2

x)xx|L2 ds

≤ cK(t, h)2
∫ t

0

s−
1
4 (2α+1)(t− s)−

1
8 (7−2α) ds

= Cαt−
1
8 (1+2α)K(t, h)2,



234 D. BLÖMKER AND M. ROMITO

where Cα = cB( 1
4 (3−2α), 1

8 (1+2α)) and B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt is the Beta

function.
Now let us show that F is a contraction on Sα. If h, k ∈ Sα, then by following

essentially the above estimate of I1, one can derive the following estimate

K(T,F(h)−F(k)) ≤ CαK(T, h− k)K(T, h + k) ≤ 2δCαK(T, h− k)

Thus F is a contraction if δ ≤ (4Cα)−1. �

The following corollary is obvious, if we use (2.7) for β > 1
2 . The same conclu-

sion cannot be drawn in the case β = 1
2 (see Remark 2.3).

Corollary 2.6. If h0 ∈ Ḣβ for β > 1
2 , then the time T in the previous lemma

depends only on the quantity |h0|β.

Thus, as long as a solution is bounded in any Ḣβ with β > 1
2 , the interval of

existence can be extended by a fixed length T , which depends only on the bounding
constant.

The next lemma shows that the solution to the fixed point h = F(h) in Sα is
continuous with values in H1/2.

Lemma 2.7. If h ∈ Sα(T ), then F(h) ∈ C0((0, T ], Ḣ
1
2 ).

Proof. Obviously, it is enough to show that F(h) is continuous in t = 0. First,
e−tA h0 → h0 in Ḣ

1
2 by continuity of the semigroup. It remains to show that∫ t

0

e−(t−s)A(hx(s)2)xx ds −→ 0

in Ḣ
1
2 for t → 0. We know already by (2.4) that f(s) = s

1
4 (2α+1)A

1
8 (4α−5)(h2

x)xx is
bounded in L2 for s ∈ (0, T ] with |f(s)|L2 ≤ cK(s, h)2. Thus from Lemma C.1,∫ t

0

s−
1
4 (2α+1)A− 1

8 (4α−5)+ 1
8 e−(t−s)A f(s) ds −→ 0

in L2, as t → 0. �

Proposition 2.8. Given h0 ∈ Ḣ
1
2 and α ∈ (0, 1

2 ), there exist T0 > 0 and
δ0, depending only on α and h0, such that there is a unique solution in Sδ0

α (T0) to
problem (1.1) starting at h0.

Moreover, the solution is in C0([0, T0), Ḣ1/2) and there exists a0 > 0 small
enough such that, if |h0|1/2 ≤ a0, then T0 = ∞.

Proof. Most of the proof is already done. We only need to prove the last
statement of the proposition. By (2.7), K0(t) ≤ c0|h0| 1

2
, so that, if we choose

a0 ≤ (c0cα)−1 (where cα is the constant in formula (2.8)) and K = (2cα)−1(1 −√
1− c0cαa0), by (2.8) it follows that, for K(t, h) ≤ K,

K(t,F(h)) ≤ K0(t) + cαK(t, h)2 ≤ c0a0 + cαK2 ≤ K,

independently of t. Hence, T0 = ∞. �

Remark 2.9 (Criticality of Sα(T )). Following the same notation used in Sec-
tion 2, we have that if h ∈ Sα(T ), then hλ ∈ Sα(Tλ) and K(Tλ, hλ) scales as
λ

1
8 (1−6α)K(T, h). So, apparently, the ‖ · ‖α,T does not obey the scaling heuristic.

On the other hand, this information is of no use. Indeed, the scaling behaviour is
hidden, as it is shown by Lemma 2.13 below, where the boundedness in a space
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which is almost Sα implies boundedness in the critical space Lq(0, T ; Ḣ1+α), with
q = 8

1+2α .

Next, the case of more regular initial conditions is considered. The result is
stated for integer exponents only, since for showing regularity the present version is
sufficient (we already know that solutions with initial value in Ḣ

1
2 are continuous

in Ḣ1). It is easy to adapt the proposition to non-integer exponents, with some
slight changes.

Proposition 2.10. Let n ∈ N, n ≥ 1. Given an arbitrary h0 ∈ Ḣn, there
exist T > 0 and a solution h ∈ C([0, T ); Ḣn) ∩ L2

loc([0, T ); Ḣn+2) to problem (1.1),
with initial condition h0.

Proof. We only prove the core a-priori estimate for the Theorem. Existence
of a solution can be proven by means of Proposition 2.8 or by an approximation
procedure (such as finite-dimensional approximations).

Start by n = 1,
d

dt
|h|21 = 2〈h, ∂th〉1 = −2|h|23 − 2〈hxx, (h2

x)xx〉.

By integration by parts and Sobolev, interpolation and Young’s inequalities, we get

2〈hxx, (h2
x)xx〉 = −2〈hxxx, 2hxhxx〉

(by Hölder’s inequality) ≤ 2|hxxx|L2 |hx|L6 |hxx|L3

(by Sobolev embedding) ≤ c|h|3|h| 4
3
|h| 13

6

(by interpolation) ≤ c|h|
7
4
3 |h|

5
4
1

(by Young’s inequality) ≤ |h|23 + c|h|101 .

In conclusion, if we define ϕ(t) = |h(t)|21 +
∫ t

0
|h|23 ds, the above inequality reads

ϕ̇ =
d

dt
|h|21 + |h|23 ≤ c|h|101 ≤ cϕ5

and by solving the differential inequality, we have a time T such that h is bounded
in C([0, T ); Ḣ1) and in L2

loc([0, T ); Ḣ3).
The method is similar for n ≥ 2. By computing the derivative of |h(t)|2n, it

turns out that it is necessary to estimate the term originating from the nonlinear
part. By integration by parts and Leibniz formula,

2〈D2nh, (h2
x)xx〉 = 2〈Dn+2h, Dn(h2

x)〉

= 2
n∑

k=0

(
n

k

)
〈Dn+2h, (Dk+1h)(Dn+1−kh)〉.

By applying Hölder’s inequality and Sobolev embedding, the above sum can be
estimated as above. All terms |h|a with a ≤ n can be controlled by |h|n, while all
terms with a ∈ (n, n+2) can be controlled by |h|n and |h|n+2 by interpolation. We
finally get the estimate

d

dt
|h|2n + 2|h|2n+2 ≤ |h|2n+2 + cn|h|an

n ,

with suitable cn and an, depending only on n. By solving, as above, the implied
differential inequality, the solution h turns out to be bounded in C([0, T ); Ḣn) and
in L2

loc([0, T ); Ḣn+2). �
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Everything is now ready to carry on the proof of the main theorem of this
section.

Proof of Theorem 2.2. The existence of solutions with initial condition in
Ḣ1/2, as well as the T• = ∞ statement, follow from Proposition 2.8.

The regularity statement (1) follows from Proposition 2.10. Indeed, by Propo-
sition 2.8, a solution starting in Ḣ1/2 is continuous with values in Ḣ1. By applying
Proposition 2.10 on each h(t) ∈ Ḣ1, for t ≤ T•, it follows that the solution is in
C((0, T•); Ḣ1) and L2

loc((0, T•); Ḣ3). The last statement implies that h(t) ∈ Ḣ3,
for almost every t ∈ (0, T•) and so Proposition 2.10 can be used with n = 3, and
so on. By iterating the procedure, it follows that h ∈ C((0, T•); Ḣβ) for all β ≥ 1.
Time regularity now follows from this space regularity and the mild form (2.5).

The energy equality in (2) is now easy using the space-time regularity in (0, T•)
and the continuity at t = 0 in the L2 norm. �

2.2. Uniqueness among weak solutions. A weak solution to equation (1.1)
is a function h ∈ L∞loc([0,∞);L2)∩L2

loc([0,∞); Ḣ2) that satisfies the equation in dis-
tributions. Existence of such solutions for all initial data in L2 has been established
in [25] (or [5, 7]). The following theorem shows that the solutions provided by
Theorem 2.2 are unique in the class of all weak solutions h that satisfy the energy
inequality (1.3).

Theorem 2.11. Let h0 ∈ Ḣ
1
2 and let h ∈ C([0, T•); Ḣ

1
2 ) be the solution to (1.1)

provided by Theorem 2.2 and defined up to its maximal time T•. Then every weak
solution to (1.1) starting at h(0) coincides with h on [0, T•).

In order to prove the theorem, we shall proceed in several steps. We will essen-
tially prove that any solution in Sα(T ) with an additional integrability condition
is unique in the class of weak solutions (Proposition 2.12 below). Then we prove
that solutions in Sα(T ) satisfy the additional condition (Lemma 2.13 and 2.14).
It is worth remarking that the additional integrability condition (2.9) turns out to
correspond to the critical space L

8
1+2α (0, T ;H1+α) (see Section 3.1).

Proposition 2.12. Let h ∈ Sα(T ) be a solution to (1.1) and assume moreover
that

(2.9)
∫ T

0

|h(t)|
8

1+2α

1+α dt = ‖h‖
8

2α+1

L
8

2α+1 ([0,T ],H1+α)
< ∞.

Then h is the unique weak solution starting at h(0).

Proof. Let k be any weak solution starting at h(0). Since h ∈ C∞((0, T ] ×
[0, L]) and h is continuous in Ḣ

1
2 , it follows that

〈h(t), k(t)〉+ 2
∫ t

0

〈hxx, kxx〉 ds = |h(0)|2L2 −
∫ t

0

∫ L

0

(hxxk2
x + kxxh2

x) dx ds

which, together with the energy inequality for k and the energy equality (see The-
orem 2.2) for h implies that the difference w = h− k satisfies the following energy



SURFACE GROWTH BLOW UP 237

inequality,

|w(t)|2L2 + 2
∫ t

0

|wxx|2L2 ds ≤ 2
∫ t

0

∫ L

0

(hxxk2
x + kxxh2

x) dx ds

= 4
∫ t

0

∫ L

0

kxwxwxx dx dt

where we have used (1.2) since

hxxk2
x + kxxh2

x = 2kxwxwxx + wxxw2
x + hxxh2

x + kxxk2
x .

The conclusion now follows from the assumption (2.9) and Gronwall’s lemma, since∫ L

0

kxwxwxx dx ≤ |wxx|L2 |wx|
L

1
α
|kx|

L
2

1−2α

≤ c|w|2|wx| 1−2α
2
|kx|α

≤ c|w|2|k|1+α|w| 3−2α
2

≤ |w|22 + c|k|
8

1+2α

1+α |w|2L2 ,

where we have used Hölder’s inequality (with exponents 2, 1
α , and 2

1−2α ), the

Sobolev embeddings Hα ⊂ L
2

1−2α and H
1−2α

2 ⊂ L
1
α , interpolation of H

3−2α
2 be-

tween L2 and H2, and finally Young’s inequality. �

Since there seems to be no obvious way to prove property (2.9) for any arbitrary
element of Sα(T ), we are led to prove this additional regularity for solutions of (2.5).
To this end, define for T > 0 and α ∈ (0, 1

2 ),

(‖u‖?
α,T )2 =

∑
k 6=0

k2(1+α)
(

sup
s≤T

{s 1
8 (1+2α)|uk(s)|}

)2

and
S?

α(T ) = {u ∈ Sα(T ) : ‖u‖?
α,T < ∞}.

Assuming that S?
α(T ) ⊂ Sα(T ) is not restrictive, since it is easy to verify that

‖ · ‖α,T ≤ ‖ · ‖?
α,T .

Lemma 2.13. If h ∈ S?
α(T ), then F(h) satisfies (2.9) on [0, T ].

Proof. We write F(h)(t) = H0(t) + H1(t) where H0(t) = e−tA h(0) and H1

contains the nonlinearity. Now,

|H0(t)|21+α =
∑
k 6=0

k2(1+α) e−2ctk4
|hk(0)|2,

and so, if ϕ ∈ Lq(0, T ) with p = 4
1+2α and 1

p + 1
q = 1,∫ T

0

ϕ(t)|H0(t)|21+α dt =
∑
k 6=0

k2(1+α)|hk(0)|2
∫ T

0

ϕ(t) e−2ctk4
dt

≤ ‖ϕ‖Lq

∑
k 6=0

k2(1+α)|hk(0)|2
(∫ T

0

e−2ctpk4
dt

) 1
p

≤ cp‖ϕ‖Lq |h(0)|21
2
.
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By duality, the L
8

1+2α norm of |H0|1+α is finite. The second term is more delicate,
we shall proceed as in the proof of Proposition A.4,

|H1(t)|21+α =
∑
k 6=0

k2(1+α)
(∫ t

0

e−c(t−s)k4
[(h2

x)xx]k
)2

=
∑
k 6=0

k2(3+α)
( ∑

l+m=k

|lm|
∫ t

0

e−c(t−s)k4
|hl(s)hm(s)| ds

)2

≤
∑
k 6=0

k2(3+α)
( ∑

l+m=k

|lm|h?
l h

?
m

)2(∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

)2

,

where h?
k = sups≤T s

1+2α
8 |hk(s)|. Hence, for every ϕ ∈ Lq(0, T ),∫ T

0

ϕ(t)|H1(t)|1+α dt ≤

≤
∑
k 6=0

k2(3+α)
( ∑

l+m=k

|lm|h?
l h

?
m

)2
∫ T

0

ϕ(t)
(∫ t

0

e−c(t−s)k4
s−

1+2α
4

)2

dt.

Suppose that

(2.10)
∫ T

0

ϕ(t)
(∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

)2

dt ≤ c‖ϕ‖Lqk2α−7.

In this case we can proceed as in the proof of Proposition A.4 (where the h?
k replace

the Fourier components and γ = 1
2 − 2α) to obtain that∫ T

0

ϕ(t)|H1(t)|1+α dt ≤ c‖ϕ‖Lq (‖h‖?
α,T )2,

and, again by duality, boundedness of F(h).
So, everything boils down to proving (2.10). Using Hölder’s inequality and

(twice) a change of variables,∫ T

0

ϕ(t)
(∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

)2

dt ≤

≤ ‖ϕ‖Lq

[∫ T

0

(∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

)2p

dt
] 1

p

≤ ‖ϕ‖Lqk2α−7
[∫ k4T

0

(∫ t

0

e−c(t−s) s−
1+2α

4 ds
)2p

dt
] 1

p

.

It is elementary now to verify that the integral on the right-hand side is uniformly
bounded in k and T (by bounding the integral on [0, k4T ] with the same integral
on [0,∞)). Indeed, ∫ t

2

0

e−c(t−s) s−
1+2α

4 ds ≤ ct
3−2α

4 e−
c
2 t,

whose pth-power is integrable at ∞, as well as∫ t

t
2

e−c(t−s) s−
1+2α

4 ds ≤ ct−
2α+1

4 (1− e−
c
2 t) ≤ ct−

2α+1
4 ,

since t−2p 2α+1
4 = t−2. �
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The final step is to prove that solutions exist in the smaller space S?
α. This

coincides then with the unique weak solution and the solution given by Theorem 2.2.

Lemma 2.14. Let h0 ∈ Ḣ
1
2 and α ∈ (0, 1

2 ). Then there is T? > 0 such that
there exists a unique solution h in S?

α(T?).

Proof. The proof is essentially a fixed point argument, as in Proposition 2.8.
Let

H0(t) = e−tA h(0) and H1 = F(h)−H0,

then it is sufficient to show the following facts:
1. ‖H0‖?

α,T ≤ ‖h(0)‖ 1
2
,

2. ‖H0‖?
α,T −→ 0 as T → 0,

3. there is c > 0 (independent of T ) such that for all h ∈ S?
α(T ), ‖F(h)‖?

α,T ≤
‖H0‖?

α,T + c(‖h‖?
α,T )2, and

4. there is c > 0 (independent of T ) such that for all g, h ∈ S?
α(T ),

‖F(g)−F(h)‖?
α,T ≤ c‖g − h‖?

α,T ‖g + h‖?
α,T .

Notice that

sup
s≤T

s
1+2α

8 |[H0(t)]k| = |hk(0)| sup
s≤T

s
1+2α

8 e−csk4
≤ ck−

1+2α
2 |hk(0)|

and so
(‖H0‖?

α,T )2 ≤
∑
k 6=0

k2(1+α)|hk(0)|2ck−(1+2α) ≤ c‖h(0)‖2
1
2
.

In order to prove the second property, we have to refine the previous calculation.
Fix ε > 0 such that ε ≤ cα (where c4

α is the point where the function s
1+2α

8 e−s

attains its maximum), then

(‖H0‖?
α,T )2 =

( ∑
|k|≤εT−

1
4

+
∑

|k|>εT−
1
4

)
k2(1+α)|hk(0)|2 sup

s∈[0,T ]

{s
1+2α

4 e−2csk4
}

≤
∑

|k|≤εT−
1
4

(k4T )
1+2α

4 |k||hk(0)|2 +
∑

|k|>εT−
1
4

k|hk(0)|2

≤ ε1+2α‖h(0)‖2
1
2

+ c
∑

|k|>εT−
1
4

|k||hk(0)|2.

Now, lim supT→0 ‖H0‖?
α,T ≤ ε1+2α‖h(0)‖2

1
2

and, as ε ↓ 0, the conclusion follows.
In order to prove the last fact, we follow the proof of Lemma 2.13,

|(H1)k(t)| ≤ k2
∑

l+m=k

|lm|h?
l h

?
m ·

∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

and so

sup
t∈[0,T ]

{t
1+2α

8 |(H1)k(t)|} ≤ k2
∑

l+m=k

|lm|h?
l h

?
m sup

t∈[0,T ]

{
t

1+2α
8

∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

}
.

Assume that the supremum in the above formula is bounded by cαk−
7−2α

2 (we shall
prove this later), then, as in the proof of Proposition A.4,

(‖H1‖?
α,T )2 ≤ cα

∑
k 6=0

k6+2α
(
k−

7−2α
2

∑
l+m=k

|lm|h?
l h

?
m

)2

≤ c(‖h‖?
α,T )4.
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As it regards the remaining bound, we use e−c(t−s)k4 ≤ cα[k4(t−s)]−
7−2α

8 , in order
to get

sup
t∈[0,T ]

{
t

1+2α
8

∫ t

0

e−c(t−s)k4
s−

1+2α
4 ds

}
≤ cαB( 3−2α

4 , 1+2α
8 )k−

7−2α
2 ,

and B is the Beta function.
The proof of the last fact is similar. Indeed, if g, h ∈ S?

α(T ), then

|[F(g)(t)−F(h)(t)]k| ≤ k2

∫ t

0

e−c(t−s)k4
|[(g − h)x(g + h)x]k| ds

≤ k2
∑

l+m=k

|lm|
∫ t

0

e−c(t−s)k4
|(gl − hl)(gm + hm)| ds

and so, by proceeding as above, the last fact follows. �

Proof of Theorem 2.11. Given h(0) ∈ Ḣ
1
2 , let h ∈ C([0, T•); Ḣ

1
2 ) be the

solution provided by Theorem 2.2 and fix T < T•. By Lemma 2.14 we know that
h ∈ S?

α(T?), so Lemma 2.13 implies that h satisfies the integrability condition (2.9)
on [0, T?]. By property (1) of Theorem 2.2, h satisfies trivially (2.9) on [T?, T ]. So
Proposition 2.12 applies and the conclusion follows. �

3. Regularity

3.1. Criticality. In this section, we carry out the program described in the
beginning of the previous section. We will find spaces YT such that boundedness
in these spaces imply uniqueness for solutions starting in H1/2.

Let us first discuss regularity criteria in Lebesgue spaces. Set Tλ = λ−4T and
Lλ = λ−1L and consider the space X(λ) = Lq(0, Tλ;Lp(0, Lλ)), for some values of
p and q. Under the scaling (2.1) we have that

‖hλ‖X(λ) = λ−
4
q−

1
p ‖h‖X(1).

so that the space L∞((0, T )× (0, L)) turns out to be the only critical space in this
class. All other Lebesgue spaces are super-critical.

The conjecture now is that solutions in L∞(0, T ;L∞(0, L)) or C((0, T )×(0, L))
are unique and regular. We believe that with similar methods, as in the existence
for initial conditions in H1/2, one should be able to prove existence of unique local
solutions. But this is much more involved, especially results like Lemma C.1 are
hard to obtain in C0 instead of L2.

In order to consider Sobolev spaces, we set X(λ) = Lq(0, Tλ; Ẇ k,p(0, Lλ)) and

‖hλ‖X(λ) = λk− 4
q−

1
p ‖h‖X(1).

(this is easy for integer k and tricky for non-integer values, but it can be done).
Hence, the space is critical for

4
q

+
1
p

= k.

In the following subsection, we will give the corresponding criteria for p = 2, k ar-
bitrary and p = 4, k = 1. The extension to k = 1 and p arbitrary is straightforward
and not presented here.

Let us finally remark, that in the following, we also give regularity criteria for
L4(0, T, C1(0, L)), which is also a critical space.
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3.2. Regularity Criteria. In principle the following Meta-theorem should
hold: If a solution is bounded in a critical space, then it is unique, and does not
have a blow up. This means that the unique local solution exists as long as at
least one (hence all, as the solution is then proved to be regular) of the critical
norms is finite over the time horizon. The main obstruction to the application of
the meta-theorem is the boundedness of critical quantities. While there are cases
(the Navier-Stokes equations in dimension two, for instance) where the a-priori
estimates provide such bounds, this does not happen, as far as we know, in the
problem studied here.

For simplicity, in the rest of the section we focus only on some examples and
we consider solutions with sufficiently smooth initial condition, in order to have
energy type estimates for the H1-norm without any trouble at t = 0.

We just remark that energy estimates in any other Hs-space with s > 1
2 yield

exactly the same result.

Theorem 3.1. Let h0 ∈ Ḣ1, let h = h(·, h0) be the unique local solution started
at h0 and let τ(h0) be the maximal time of h. Then h is C∞ in space and time on
(0, τ(h0)) and for every α ∈ ( 1

2 , 9
2 ),∫ τ(h0)

0

‖h(s)‖
8

2α−1
Hα ds = ∞.

Moreover, ∫ τ(h0)

0

‖h(s)‖16/3
W 1,4 ds = ∞ and

∫ τ(h0)

0

‖h(s)‖4
C1 ds = ∞ .

Proof. We already know by Theorem 2.2 that there is a unique local solution
in C((0, τ); Ḣ1) for initial conditions in Ḣ1, which is actually smooth. Indeed
h ∈ C∞((0, τ)× (0, L)). Furthermore, the H1-norm blows up as t → τ .

Now fix α ∈ ( 1
2 , 9

2 ), then by integration by parts and the Sobolev embedding
H

1
6 ⊂ L3,

d

dt
|h|21 + 2|h|23 = −2〈h, (h2

x)xx〉1 = −2〈hx, (h2
x)xxx〉L2

= −4
∫ L

0

hxhxxhxxx dx = 2
∫ L

0

h3
xx dx(3.1)

≤ c|h|313
6

.

By interpolation, it is easy to see that

|h|313
6
≤ |h|

2α−1
4

1 |h|α|h|
9−2α

4
3 ,

and so using Young’s inequality,

d

dt
|h|21 + 2|h|23 ≤ |h|23 + c|h|

8
2α−1
α |h|21.

Finally, by Gronwall’s lemma, the proof of the first statement is complete.
Let us turn again to (3.1). The Sobolev embedding H

1
4 ⊂ L4 yields

d

dt
|h|21 + 2|h|23 ≤ C|h|W 1,4 |h|2+ 1

4
|h|3 .
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Again by interpolation and Young’s inequality

d

dt
|h|21 + 2|h|23 ≤ |h|23 + C|h|16/3

W 1,4 |h|21 ,

which yields the result using again Gronwall’s lemma.
The last claim follows similarly, using

d

dt
|h|21 + 2|h|23 ≤ C|h|C1 |h|2|h|3 .

�

3.3. H3-regularity. In this section we show that h ∈ Lp(0, T, H3) for some
small p > 0 (possibly less than 1). The idea is that we gain spatial regularity by
paying time regularity.

Theorem 3.2. Assume that a solution h satisfies h ∈ Lr(0, T, H1) for some
r ∈ (0, 8). Then h ∈ Lr/5(0, T, H3) and there is c > 0 such that∫ T

0

|hxxx|r/5 dt ≤ c

∫ T

0

(1 + |hx|r) dt.

Remark 3.3. It is easy to check that the space Lr/5(0, T, H3) is critical if and
only if Lr(0, T, H1) is critical. Thus this result respects the criticality heuristic. In
particular, the case r ≥ 8 is covered by Theorem 3.1 above (for α = 1).

Remark 3.4. If h ∈ L∞(0, T, H1/2) (critical) then by interpolation of H1/2

and H2 we obtain from the energy estimates that h ∈ L6(0, T, H1), hence h ∈
L6/5(0, T, H3). So by interpolation of H2 between H1/2 and H3 we recover h ∈
L2(0, T, H2). Thus this regularity result gives no improvement of the regularity
given by the energy estimate in Section 1.2. It respects the level of criticality of
the spaces.

Proof. Let p = 4− r
2 , then

d

dt

1
(1 + |hx|2L2)p

= −2p
〈hxt, hx〉L2

(1 + |hx|2L2)p+1
.

The fact that h satisfies the PDE and integration by parts yield

〈hxt, hx〉L2 = 1
2 |hxx|3L3 − |hxxx|2L2 ,

while by the embedding of H1/6 into L3, interpolation and Young’s inequality it
follows that

|hxx|3L3 ≤ C|h|313/6 ≤ C|hx|5/4
L2 |hxxx|7/4

L2 ≤ C|hx|10L2 + |hxxx|2L2 .

Combining both results with the computation above yields

|hxxx|2L2

(1 + |hx|2L2)p+1
≤ c

|hx|10L2

(1 + |hx|2L2)p+1
+

1
p

d

dt

1
(1 + |hx|2L2)p

.

Hence by the choice of p,∫ T

0

|hxxx|2L2

(1 + |hx|2L2)p+1
dt ≤ c

∫ T

0

(1 + |hx|rL2) dt.
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By Hölder’s inequality and the above estimate,∫ T

0

|hxxx|αL2 dt ≤
( ∫ T

0

|hxxx|2L2

(1 + |hx|2L2)p+1
dt

)α
2
(∫ T

0

(1 + |hx|2L2)
α

2−α (p+1) dt
)1−α

2

≤
( ∫ T

0

(1 + |hx|rL2) dt
)α

2
(∫ T

0

(1 + |hx|2L2)
α

2−α (p+1) dt
)1−α

2
,

and thus fixing the value α = r
5 yields the claim. �

3.4. Blow up below criticality. In this section we will study the blow up in
a space below criticality, i.e. in some Hs with s < 1

2 . This is a slight generalisation
of Theorem 3.1 and prepares the results of Leray type shown later.

For 1
4 ≤ δ ≤ 1 we obtain:

1
2

d

dt
|h|2δ ≤ −c|h|22+δ + 2

∫ L

0

(−∂2
x)δhx · hxhxx dx

≤ −c|h|22+δ + C|h|1+2δ|h| 9
4
|h| 5

4

(3.2)

where we have used the Sobolev embedding H
1
4 ⊂ L4.

Remark 3.5. As it is used several times in the proofs, we state the following
elementary interpolation inequality. For γ > α and β ∈ [α, γ],

|h|β ≤ C|h|
γ−β
γ−α
α |h|

β−α
γ−α
γ .

Fix γ ∈ ( 1
2 , 5

4 ]. If in formula (3.2) we use interpolation of Ḣ1+2δ, Ḣ5/4 and
Ḣ9/4 between Hγ and H2+δ, we get

1
2

d

dt
|h|2δ ≤ −c|h|22+δ + C|h|

3+2δ
4+2δ−2γ
γ |h|

9+4δ−6γ
4+2δ−2γ

2+δ .

Using Young’s inequality with exponents p = (8 + 4δ − 4γ)/(9 + 4δ − 6γ) and
q = (8 + 4δ − 4γ)/(2γ − 1) we derive

1
2

d

dt
|h|2δ ≤ C|h|

2(3+2δ)
2γ−1

γ .

This inequality implies the following result.

Theorem 3.6. Fix numbers γ ∈ ( 1
2 , 5

4 ] and δ ∈ [ 14 , 1] and let h ∈ C∞([0, t0)×
[0, L]) be a solution. If |h(t)|δ →∞ as t ↑ t0, then∫ t0

0

|h(t)|
2(3+2δ)
2γ−1

γ dt = ∞

Note that for a blow up below criticality with δ < 1
2 the Lp([0, T ],Hγ)-norm

in this theorem has a smaller p than assured by Theorem 3.1. The spaces in the
above theorem should always have the same level of criticality.

4. Blow up

In this section we discuss some properties of the blow up. First, at a possible
blow-up time, one expects that all norms with higher regularity than the critical
norm will blow up, in particular all Hs-norm with s > 1/2 should blow up. In
Subsection 4.2 we give a lower bound on the blow up in Hs-spaces, while in Sub-
section 4.4 we show a bound on the size of the set of singular times. We illustrate
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that a blow up to −∞ is more likely, but first we give some remarks on possible
shapes of a blow up.

4.1. Some remarks. Let us first give examples on which blow-up profiles
v = h(τ) are possible at the blow-up time τ .

• If v exhibits a jump like sign(x), then the Fourier-coefficients decay like
1/k, and thus v is in Hs if and only if s < 1

2 .
• If v exhibits a logarithmic pole like log(|x|), then the Fourier-coefficients

decay like 1/k, and thus v is in Hs if and only if s < 1
2 .

• If v exhibits a cusp like |x|α for α ∈ (0, 1), then the Fourier-coefficients
decay like |k|−(1+α), and thus v is in H1/2, and not a possible blow up.

4.1.1. Stationary solutions. The L2 estimates (1.3) show that the only station-
ary solution is h ≡ 0, as |h(t)|L2 → 0 for t ↑ ∞. On the other hand the problem is
one-dimensional, so it is worth trying to look for solutions directly. The equation
for stationary solutions is

hxxxx + (h2
x)xx = 0,

so there are constants A, B such that hxx+h2
x = Ax+B. By the periodic boundary

conditions, A = 0.
Case 1: B = 0. By direct computations, we get

h(x) = c1 + log |1 + c2x|,
and the only periodic solution corresponds to c2 = 0, a constant function. Notice
that, anyway, the solutions are singular with a log-like profile.

Case 2: B = b2. Again by direct computations,

h(x) = c1 + log | cosh bx +
c2

b
sinh bx|,

and there are no periodic solutions. We remark that again the singularity has a
log-like profile.

Case 3: B = −b2. By elementary computations,

h(x) = c1 + log |b cos bx + c2 sin bx|,
all solutions are periodic on [0, L] as long as b = 2π

L k, for some k ∈ N. If x0 is any
zero of b cos bx+c2 sin bx, we can write the solution as h(x) = c1+log | sin b(x−x0)|)
(with a different value of c1). Again, the stationary profile is log-like.

4.1.2. Self-similar solutions. By exploiting the scaling (2.1), we may look for
solutions of the following kind,

h(t, x) = ϕ(
x

4
√

T − t
),

where ϕ is a suitable function. The equation for h reads in terms of ϕ as

(4.1) ϕyyyy + (ϕ2
y)yy + yϕy = 0, y ∈ R,

and, by the regularity of weak solutions one shows easily that ϕ, ϕxx ∈ L2 and
hence ϕ ∈ H2(R). Here for simplicity we have neglected boundary conditions and
formulated the problem on the whole real line. The problem above can be recast
in weak form as∫

ϕηyyyy dy +
∫

ϕ2
yηyy dy −

∫
ϕη dy −

∫
yϕηy dy = 0, η ∈ C∞

c ,

where the solution ϕ ∈ H1
loc(R).
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There is quite strong numerical evidence that there are no solutions to (4.1)
defined on the whole R. This fact would rule out self-similar solutions1.

4.2. Leray type results. We will prove the following theorem, which is based
on one of the several celebrated results of Leray [14] on the Navier-Stokes equations.
This relies mainly on a comparison result for ODEs (see Lemma B.1) and energy
estimates. It improves the results of Theorem 3.1, which states that at blow up for
s > 1

2 the function t → |h(t)|8/(2s−1)
s is not integrable. The result now says that it

diverges at least as fast as 1
t .

Theorem 4.1. Let h ∈ C∞([0, t0) × [0, L]) be a smooth local solution. Then
for s > 1

2 there is a universal constant C > 0 such that |h(t)|s → ∞ for t ↑ t0 (or
for any subsequence) implies

|h(t)|s ≥ C(t0 − t)−(2s−1)/8 for all t ∈ [0, t0).

Proof. We proceed by using energy estimates. Again use the notation D =
A1/4 = |∂x| and B(u, v) = (uxvx)xx.

From (1.1) we obtain for s = 1 + δ with δ ∈ (− 1
2 , 3

2 )

d

dt
|h|21+δ + 2|h|23+δ = −2

∫ L

0

D2δhxxB(h, h) dx = 4
∫ L

0

D2δhxB(h, hx) dx

≤ C|h|1+δ+ε|h| 5
2−ε

|h|3+δ,

where we used Proposition A.4 with α = 2+ δ, β = 1
2 − ε, and γ = −α+ ε for some

small ε ∈ (0, 1
2 ) such that ε + δ ∈ (− 1

2 , 3
2 ). Now interpolation (see Remark 3.5)

yields
d

dt
|h|21+δ + 2|h|23+δ ≤ C|h|

1
4 (7−2δ)

1+δ |h|
1
4 (5+2δ)

3+δ .

As (5 + 2δ) < 8, we can apply Young’s inequality with p = 8/(7 − 2δ) and q =
8/(1 + 2δ) to derive

d

dt
|h|21+δ ≤ C|h|2(5+2δ)/(1+2δ)

1+δ = C|h|2(3+2s)/(2s−1)
s .

Thus Lemma B.1 implies the theorem for s ∈ ( 1
2 , 5

2 ).
Consider now s = 2 + δ with δ ∈ (− 1

2 , 3
2 ).

d

dt
|h|22+δ + 2|h|24+δ = 2

∫ L

0

D2δhxxxxB(h, h) dx

= −4
∫ L

0

D2δhxxxB(h, hx) dx

= −4
∫ L

0

D2δhxx [B(hx, hx) + B(h, hxx)] dx

≤ C|h|2+δ+ε|h| 7
2−ε

|h|3+δ + C|h|3+δ+ε|h| 7
2−ε

|h|2+δ ,

1Existence of self-similar solutions has been a long standing problem for the Navier-
Stokes equations. The problem was firstly posed by J. Leray [14] in 1934 and finally in 1996

Nečas, Růžička and Šverák [17] proved that there are no self-similar solutions with locally finite
energy. Lately, Cannone and Planchon [9] proved existence of self-similar solution in Besov spaces.

Nečas et al. exploited a non-trivial maximum principle for |u|2 + p (where u is the velocity
field and p is the pressure). We remark that no such fact seems to be true in this case.
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where we again used Proposition A.4 with the same choice of α, β, γ and ε. Now
using interpolation,

d

dt
|h|22+δ + 2|h|24+δ ≤ C|h|

1
4 (7+2δ)

2+δ |h|
1
4 (5−2δ)

4+δ ,

while by Young’s inequality with p = 8/(5− 2δ) and q = 8/(3 + 2δ) it follows that

d

dt
|h|22+δ ≤ C|h|2(7+2δ)/(3+2δ)

2+δ = C|h|2(3+2s)/(2s−1)
s .

Now Lemma B.1 finishes the proof for s ∈ ( 3
2 , 7

2 ).
The general case is proved similarly, by distributing the derivatives as evenly

as possible on the tri-linear terms, as in the proof of Proposition 2.10, and then
applying Proposition A.4, possibly with different α’s for different terms. �

Remark 4.2. We can also give a lower bound on the blow-up time t0 depending
on |h(0)|δ for δ > 1

2 . To be more precise, using the upper bound in Lemma B.1 the
following is straightforward to verify. For all s > 1

2 there is a constant cs > 0 such
that the solution is regular and smooth on (t, t∗) if cs|h(t)|8/(2s−1)

s (t∗ − t) < 1.
On the other hand, Theorem 4.1 immediately implies that near a blow up at

t∗ we obtain for all r ∈ (t, t∗), that cs|h(r)|8/(2s−1)
s (t∗ − r) ≥ 1.

4.3. Criterion for point-wise blow up to −∞. We show that for a blow
up in L∞ the blow up to −∞ is much more likely than the blow up to +∞. This
is mainly based on the a-priori estimate from Section 1.3, but first we derive the
following estimate:

1
3

d

dt

∫ L

0

h3 dx = −
∫ L

0

h2hxxxx dx−
∫ L

0

h2((hx)2)xx dx

= 2
∫ L

0

hhxhxxx dx + 4
∫ L

0

h(hx)2hxx dx

= −
∫ L

0

h(hxx)2 dx− 4
3

∫ L

0

(hx)4 dx,

where we used the cancellation property (1.2). Thus∫ T

0

∫ L

0

(hx)4 dx dt ≤
∫ L

0

h3(0) dx +
∫ T

0

∫ L

0

h−(hxx)2 dx dt +
∫ L

0

h−h2 dx.

This implies a point-wise blow up to −∞, as stated by the following theorem.

Theorem 4.3. Let h ∈ C∞([0, τ) × [0, L]) be a smooth local solution. If∫ L

0
h3(0) dx is finite and ‖h‖L4(0,τ,W 1,4) = ∞ then the negative part h− has to blow

up. In other words, there are tn ↑ τ and xn ∈ [0, L] such that h(tn, xn) → −∞.

Corollary 4.4. If
∫ L

0
h3(0) dx < ∞ and if h− is uniformly bounded, then one

obtains ‖h‖L4(0,T,W 1,4) < ∞ and
∫ T

0

∫ L

0
h+(hxx)2 dx dt < ∞.

Let us now show that not only we have a point-wise blow up, but also a blow
up for some

∫ L

0
e−γh(t) dx, while we know already by Section 1.3 that

∫ L

0
eγh(t) dx

is finite for γ ∈ (0, 2).
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Lemma 4.5. Let h ∈ C∞([0, τ)× [0, L]) be a smooth local solution. If∫ t

0

∫ L

0

|hx|α|h|k dx dt −→∞

as t ↑ τ for some α ∈ (0, 4) and k ≥ 0, then∫ L

0

e−γh−(t) dx −→∞

as t ↑ τ , for all γ > 0.

Proof. Applying twice Hölder’s inequality and using (1.4) yield for any ε ∈
(0, α

2 ) (that is, 4ε
α ∈ (0, 2)),( ∫ t

0

∫ L

0

|hx|α|h|k dx dt
) 4

α ≤

≤ C

∫ t

0

( ∫ L

0

|hx|α|h|k dx
) 4

α

dt

≤ C

∫ t

0

(∫ L

0

e
4ε
α h |hx|4 dx

)( ∫ L

0

e−
4ε

4−α h |h|
4k

4−α dx
) 4−α

α

dt

≤ C sup
[0,t]

( ∫ L

0

e−
4ε

4−α h |h|
4k

4−α dx
) 4−α

α

∫ t

0

∫ L

0

e
4ε
α h |hx|4 dx dt

≤ C(α, h(0)) sup
[0,t]

(
1 +

∫ L

0

e−γh− dx
) 4−α

α

,

for γ > 4ε
4−α . Since ε can be chosen arbitrarily small, the lemma follows. �

4.4. The set of singular times. Let h be a weak solution to (1.1) and
consider the set of regular times of h,

R = {t ∈ (0,∞) : h is continuous with values in H1 in a neighbourhood of t}.

By Proposition 2.10, R is equal to the set of all times t such that h is C∞ in space
and time in a neighbourhood of t. Define the set of singular times S = [0,∞) \R.

The next theorem proves (in the spirit of results of Leray [14], Scheffer [22] for
Navier-Stokes), that the set of singular times is “small”.

Theorem 4.6. Given a weak solution h to (1.1), the set S of singular times
of h is a compact subset of [0,∞) and

H 1
4 (S ) = 0,

where H 1
4 is the 1

4 -dimensional Hausdorff measure.

Proof. Fix a weak solution h and define R and S as above. The proof is
divided in four steps.

1. S is compact. The set R is clearly open, hence S is closed. We prove that
S is bounded. Let a• be the constant given in part 3 of Theorem 2.2. Assume by
contradiction that a• < |h(t)| 1

2
for all t ≥ 0. By interpolation and using the energy

inequality (1.3),

a
8
3
• t <

∫ t

0

|h(s)|
8
3
1
2

ds ≤
∫ t

0

|h(s)|
2
3
L2 |h(s)|22 ds ≤ |h(0)|

2
3
L2

∫ t

0

|h(s)|22 ds ≤ 2|h(0)|
8
3
L2 .
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Hence for some t0 > 0, |h(t0)| 1
2
≤ a• and Theorems 2.2 and 2.11 imply that the

solution h is regular in [t0,∞).
2. S has Lebesgue measure 0. As any open set of R is the countable union

of disjoint open intervals we have R =
⋃

j Ij , where the open intervals Ij are the
connected components of R.

Define S2 = {t : h(t) 6∈ Ḣ2}. Trivially, R ⊂ S c
2 , hence S2 ⊂ S . If t0 ∈

S \S2, by Proposition 2.10 t0 is the endpoint of some Ij , hence S \S2 is at most
countable. Finally, the energy estimate (1.3) implies that S2 has measure 0.

3. Estimate on the length of bounded Ij . Indeed, let Ij be a bounded component
of R and let t1, t2 ∈ Ij . From Remark 4.2 we know c(t2−s)|h(s)|8/3

2 ≥ 1, and hence
c(t2 − s)−3/4 ≤ |h(s)|22, for s ∈ (t1, t2). Integrating for s ∈ (t1, t2) and using the
energy inequality (1.3), yields

(4.2) c(t2 − t1)
1
4 ≤

∫ t2

t1

|h(s)|22 ds ≤ 1
2
|h(0)|2L2 .

4. H 1
4 (S ) = 0. Write Ij = (aj , bj) for bounded intervals. From (4.2) it follows

that ∑
j

(bj − aj)
1
4 < ∞,

while
∑

j(bj − aj) < ∞, by the first step of the proof. Now we can proceed as in
the proof of Theorem 2 of [22] to get the conclusion. �

Remark 4.7. It is possible to give a further limit to the set of singular times
by showing that its box-counting dimension is smaller or equal than 1

4 . This result
can be proved as in [21] and we refer to this paper for further details.

Appendix A. An inequality for the non-linearity

Given three real numbers α, β, γ, consider the following condition.

Condition A.1. The real numbers α, β, γ satisfy
• α, β ≥ 0,
• α + β + γ ≥ 1

2 with strict inequality if at least one is equal to 1
2 , and

• if γ < 0, then either at least one of α and β ≤ 1
2 , or at least one ≥ −γ.

Lemma A.2. For every γ ∈ R there is c > 0 such that for every a ≥ 1,

∑
|k|≤a

|k|−2γ ≤


ca1−2γ γ < 1

2 ,

c log a γ = 1
2 ,

c γ > 1
2 .

Lemma A.3. Let α, β and γ satisfy (A.1) (with α ≤ 1
2 or β ≥ −γ when γ < 0).

Then there is c > 0 such that for each m ∈ Z, with m 6= 0,∑
|k|<2|m|

0<|k−m|< 1
2 |k|

1
|k −m|2α|k|2γ

≤ c|m|2β .

Proof. Notice that, if |k| < 2|m| and |k−m| < 1
2 |k|, then 2

3 |m| ≤ |k| < 2|m|,
since

2
3
|m| ≤ 2

3
|k −m|+ 2

3
|k| < 1

3
|k|+ 2

3
|k| = |k|.
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Then apply Lemma A.2. �

Consider
B(u, v) = (uxvx)xx.

Proposition A.4. If α, β and γ satisfy (A.1), there exists c > 0 such that for
all u ∈ Ḣ1+α, v ∈ Ḣ1+β and w ∈ Ḣ2+γ ,

〈B(u, v), w〉 ≤ c|u|1+α|v|1+β |w|2+γ .

Proof. Step 1. Write the functions u, v, w in the Fourier expansion,

u =
∑
k 6=0

uk eikx

(and similarly for v and w), so that

(uxvx)xx =
∑
k 6=0

k2
( ∑

l+m=k

lmulvm

)
eikx

and by the Cauchy-Schwarz inequality,

〈B(u, v), w〉 =
∑
k 6=0

k2wk

( ∑
l+m=k

lmulvm

)
≤ |w|2+γ

[∑
k 6=0

|k|−2γ
( ∑

l+m=k

|lmulvm|
)2] 1

2
.

Hence, it is sufficient to analyse only the second term in the above product. Set for
every k 6= 0,

Ak = {(l,m) : l + m = k, |l| ≥ 1
2
|k|, |m| ≥ 1

2
|k|},

Bk = {(l, m) : l + m = k, |l| < 1
2
|k|},

Ck = {(l,m) : l + m = k, |m| < 1
2
|k|},

and, for simplicity, Ul = |l|1+α|ul| and Vm = |m|1+β |vm|.
Step 2. We start by analysing the sum on Ak.∑

k 6=0

|k|−2γ
(∑

Ak

|lmulvm|
)2

≤
∑
k 6=0

|k|−2γ
(∑

Ak

|l|−α|m|−βUlVm

)2

(using Young’s inequality) ≤ c
∑
k 6=0

|k|−2γ
(∑

Ak

|l|−α−βUlVm

)2

+ c
∑
k 6=0

|k|−2γ
(∑

Ak

|m|−α−βUlVm

)2

,

the two terms are similar, we bound only the first one,

(using the Cauchy-Schwarz inequality) ≤ c
∑
k 6=0

|k|−2γ
(∑

Ak

|l|−2(α−β)U2
l

)(∑
Ak

V 2
m

)
(switching the sums) ≤ c|v|21+β

∑
l 6=0

|l|−2(α+β)U2
l

( ∑
|k|≤2|l|

|k|−2γ
)

(using Lemma A.2) ≤ c|u|21+α|v|21+β .
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Step 3. Next, we analyse the sum on Bk (the sum on Ck being entirely similar).
Notice that, when using the Cauchy-Schwarz inequality below, we are free to weigh
either the terms in u or in v with derivatives. We shall choose one of the two
depending on the values of γ (wherever we need an exponent to be ≤ 1

2 or ≥ −γ,
according to condition (A.1)).∑
k 6=0

|k|−2γ
(∑

Bk

|lmulvm|
)2

≤
∑
k 6=0

|k|−2γ
(∑

Bk

|l|−α|m|−βUlVm

)2

(Cauchy-Schwarz’ inequality) ≤
∑
k 6=0

|k|−2γ
(∑

Bk

|l|−2α|m|−2βV 2
m

)(∑
Bk

U2
l

)
(switching the sums) ≤ |u|21+α

∑
m6=0

|m|−2βV 2
m

( ∑
|k|<2|m|

0<|k−m|< 1
2 |k|

|k −m|−2α|k|−2γ
)

(using Lemma A.3) ≤ c|u|21+α|v|21+β .

The proof is complete. �

Appendix B. Blow up for ODEs

The following elementary lemma is crucial to prove Leray type bounds. We
state and prove it for completeness.

Lemma B.1. Let ϕ : (0, t0) → R be a non-negative function such that for p > 1
we have ϕ̇ ≤ Cϕp, on (0, t0). Then, ϕ(tn) ↑ ∞ for a subsequence tn ↑ t0, implies

ϕ(t) ≥ [(p− 1)C(t0 − t)]−1/(p−1) for all t ∈ (0, t0).

Moreover,

ϕ(t) ≤
[
ϕ(s)−(p−1) + C(p− 1)s− C(p− 1)t

]− 1
p−1

for all 0 < s < t < t0.

Proof. We have for t > s

1
p−1 (ϕ(s)−(p−1) − ϕ(t)−(p−1)) =

∫ ϕ(t)

ϕ(s)

1
zp

dz =
∫ t

s

ϕ̇

ϕp
dτ ≤ C(t− s)

Now for tn ↑ t0 we obtain

1
p−1ϕ(t)−(p−1) ≤ C(t0 − t)

and finally
ϕ(t) ≥ [(p− 1)C(t0 − t)]−1/(p−1)

for all t ∈ (0, t0).
For the second result

ϕ(s)−(p−1) − C(p− 1)(t− s) ≤ ϕ(t)−(p−1)

and thus

ϕ(t) ≤
[
ϕ(s)−(p−1) + C(p− 1)s− C(p− 1)t

]−1/(p−1)

.

�
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Appendix C. Analytic Semigroups

The following properties of analytic semigroups are well known, but we give
short sketches of proofs for the sake of completeness.

Lemma C.1. Consider A = ∂4
x subject to periodic boundary conditions on [0, L]

and T > 0. For all u =
∑

k ukek ∈ L2 and α > 0,

|sαAα e−sA u|L2 → 0, for s → 0,

and for all f ∈ L∞(0, T, L2), with 0 average on (0, 1), and 1 + a − b = 0, with
a > −1 and b < 1,

Ia,b(f)(t) =
∫ t

0

saAb e−(t−s)A f(s) ds

converges to 0 in L2 as t → 0.

Proof. The first statement is obvious by Lebesgue theorem, since

|sαAα e−sA u|2L2 ≤ C
∑

k

(k4s)2α e−csk4
u2

k.

For the second statement note that (with a change of variables) |Ia,b(f)(t)|2L2 is
equal to∑
k 6=0

k8b

∫ t

0

∫ t

0

sarak8b e−c(2t−s−r)k4
fk(s)fk(r)d ds dr =

= t2a+2

∫ 1

0

∫ 1

0

(1− s)a(1− r)a
∑
k 6=0

k8b e−c(s+r)tk4
fk(t− ts)fk(t− tr) ds dr

= t2b

∫ 1

0

∫ 1

0

(1− s)a(1− r)a
[( ∑

(s+r)tk4≤ε

+
∑

(s+r)tk4>ε

)
k8b e−c(s+r)tk4

fk(t− ts)fk(t− tr)
]
ds dr

≤ c

∫ 1

0

∫ 1

0

(1− s)a(1− r)a

(s + r)2b

(
ε2b‖f‖L∞(L2) +

∑
(s+r)tk4>ε

fk(t− ts)fk(t− tr)
)

ds dr,

which goes to zero by Lebesgue theorem if one first takes the limit as t → 0 and
then as ε ↓ 0, since the function (1 − r)a(1 − s)a(r + s)−2b is integrable and the
other term is bounded for ε ≤ 1 and t ≤ T . �
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