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Existence and multiplicity of solutions to elliptic equations

of fourth order on compact manifolds.

Mohammed Benalili

Communicated by Terence Tao, received March 28, 2008.

Abstract. This paper deals with a fourth order elliptic equation on compact
Riemannian manifolds, the function f involved in the nonlinearity is of chang-
ing sign which makes the analysis more difficult than the case where f is
of constant sign.We prove the multiplicity of solutions in the subcritical case
which is the subject of the first theorem. In the second one we establish the
existence of solutions to the equation with critical Sobolev growth.
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1. Introduction

Let (M, g) be a Riemannian compact smooth n- manifold n ≥ 5 with the metric
g, we let H2

2 (M) be the standard Sobolev space which is the completion of the space

C2
2 (M) =

{

u ∈ C∞(M): ‖u‖2,2 < +∞
}

with respect to the norm ‖u‖2,2 =
∑2

l=0

∥

∥∇lu
∥

∥

2
.

2000 Mathematics Subject Classification. Primary 58J05.
Key words and phrases. Elliptic equation of fourth order, Critical Sobolev exponent.

c©2009 International Press

203



204 MOHAMMED BENALILI

Let H2 be the space H2
2 endowed with the equivalent norm

‖u‖H2
=
(

‖∆u‖
2
2 + ‖∇u‖

2
2 + ‖u‖

2
2

)
1
2

.

where, ∆(u) = −div(∇u), denotes the Riemannian Laplacian.
First we establish the existence of at least two solutions of the subcritical equa-

tion

(1.1) ∆2u + ∇i(a(x)∇iu) + h(x)u = f(x) |u|q−2 u

where 2 < q < N. Next we investigate solutions of the critical equation

(1.2) ∆2u + ∇i(a(x)∇iu) + h(x)u = f(x) |u|
N−2

u

where a, h and f are smooth functions on M and N = 2n
n−4 is the critical

exponent.
The function f involved in the nonlinearity is of changing sign which makes the

analysis more difficult than the case where f is of constant sign.
The equation (1.1) has a geometric roots, in fact while the conformal Laplacian

Lg(u) = ∆u +
n − 2

4(n − 1)
Ru

where R is the scalar curvature of the metric g, is associated to the scalar curvature;
the Paneitz operator as discovered by Paneitz ([10]) on 4-dimension manifolds and
extended by Branson ([3]) to higher dimensions ( n ≥ 5 ) reads as

PBg(u) = ∆2u + div(−
(n − 2)2 + 4

2(n − 1)(n − 2)
R.g +

4

n − 2
Ric)du +

n − 4

2
Qnu

where Ric is the Ricci curvature of g and where

Qn =
1

2(n − 1)
∆R +

n3 − 4n2 + 16n− 16

8(n − 1)2(n − 2)2
R2 −

2

(n − 2)2
|Ric|

2

is associated to the notion of Q -curvature, good references on the subject are
Chang ([5]) and Chang-Yang ([6]). When the manifold (M, g) is Einstein, the
Paneitz-Branson operator has constant coefficients. It expresses as

PBg = ∆2u + α∆u + au

with

α =
n2 − 2n− 4

2n(n − 1)
R and a =

(n − 4)(n2 − 4)

16n(n − 1)2
R2

and this operator is a special case of what it is usually referred as a Paneitz- Branson
type operator with constant coefficients.

Since 1990 many results have been established for precise functions a, h and f.
D.E. Edmunds, D. Fortunato, E. Jannelli ([8]) proved for n ≥ 8 that if λ ∈ (0, λ1),
with λ1 is the first eigenvalue of ∆2 on the euclidean open ball B, the problem

{

∆2u − λu = u |u|
8

n−4 in B
u = ∂u

∂n
= 0 on ∂B

has a non trivial solution.
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In 1995, R. Van der Vorst ([12]) obtained the same results as D.E. Edmunds,
D. Fortunato, E. Jannelli. when applied to the problem

{

∆2u − λu = u |u|
8

n−4 in Ω
u = ∆u = 0 on ∂Ω

where Ω is an open bounded set of Rn and moreover he showed that the solution
is positive

In ([7]) D.Caraffa studied the equation (1.1) on compact manifolds in the case
f(x) =constant; and in the particular case where the functions a(x) and h(x) are
precise constants she obtained the existence of positive regular solutions.

In the case of second order equation related to the prescribed scalar curvature,
that is

(1.3) ∆u +
n − 2

4(n − 1)
Ru = fu2∗−1

where 2∗ = 2n
n−2 , A. Rauzy [11] stated, in the case where the scalar curvature R of

the manifold (M, g) is a negative constant and f is a changing sign function, the
following results.

Let f be a C∞ function on M , f− = − inf(f, 0), f+ = sup(f, 0) and

λf = inf
u∈A

∫

M
|∇u|

2
dvg

∫

M
u2dvg

where A =
{

u ∈ H2
1 (M), u ≥ 0, u 6≡ 0 s.t.

∫

M
f−udvg = 0

}

, and λf = +∞ if
A = φ.

Theorem 1. Let (M, g) be a smooth manifold with constant scalar curvature
R < 0 and let f be a smooth changing sign function on M . Suppose that there

exists a constant C > 0 which depends only on f−

R

M
f−dvg

such that if f fulfills the

following conditions

(1) |R| < 4(n−1)
n−2 λf

(2) sup f+

R

f−dvg
< C.

Then, the equation (1.3) admits a positive solution.

Theorem 2. Let (M, g) be a smooth manifold with constant scalar curvature
R < 0 and let f be a smooth changing sign function on M . Suppose that there

exists a constant C > 0 which depends only on f−

R

M
f−dvg

such that if f fulfills the

following conditions

(1) |R| < 4(n−1)
n−2 λf

(2) sup f+

R

f−dvg
< C

(3) supM f > 0.

Then the subcritical equation ∆gu + Ru = fuq−1, q ∈ ]2, 2∗[ admits two nontrivial
distinct solutions.

More recently [2] the authors have extended the work of Rauzy to the case of
the so called generalized prescribed scalar curvature type equation

(1.4) ∆pu + aup−1 = fup∗−1
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where p∗ = np
n−p

, ∆pu = −div(|∇u|
p−2

∇u) is the p-Laplacian operator on a com-

pact manifold M of dimension n ≥ 3, with negative scalar curvature, p ∈ (1, n),
u ∈ Hp

1 (M) is a positive function, f is a changing sign function and a is a negative
constant. Let

λf = inf
u∈A

∫

M
|∇u|

p
dvg

∫

M
updvg

where A =
{

u ∈ Hp
1 (M), u ≥ 0, u 6≡ 0 s.t.

∫

M
f−udvg = 0

}

, and λf = +∞ if
A = φ

Theorem 3. (Critical case) There is a constant C > 0 which depends only on
f−/(

∫

f−dvg) such that if f ∈ C∞ on M fulfills the following conditions
(1) |a| < λf

(2)
(

supf+/
∫

f−dvg

)

< C.

Then the equation (1.4) has a positive solution of class C1,α(M).

Theorem 4. (Subcritical case ) For every C∞- function on M there is a
constant C > 0 which depends only on f−/(

∫

f−dvg) such that if f fulfills the
following conditions

(1) |a| < λf

(2)
(

supf+/
∫

f−dvg

)

< C
(3) sup f > 0.
Then the subcritical equation

∆pu + aup−1 = fuq−1 q ∈ ]p, p∗[

has at least two non trivial positive solutions of class C1,α(M).

For a, f , C∞ -functions M, we let

λa,f = inf
u∈A

∫

M
(∆u)2dvg −

∫

M
a |∇u|

2
dvg

∫

M
u2dvg

where A =
{

u ∈ H2, u ≥ 0, u 6≡ 0 s. t.
∫

M
f−udvg = 0

}

, and

λa,f = +∞ if A = φ.

Let h be a smooth negative function on M , we consider the functional Fq defined
on H2 by

Fq(u) = ‖∆u‖2
2 −

∫

M

a |∇u|2 dvg +

∫

M

hu2dvg −

∫

M

f |u|q dvg, q ∈ (2, N ] .

In the case of fourth order elliptic equations on manifolds with changing sign right
hand side, no work is done at least I know off. While we borrow ideas from the
paper of Rauzy ([12]), our method is not an adaptation of that of Rauzy, since
the behavior of fourth order operators differs from that of second order ones. It
is essentially due to the structures of the spaces H2

1 (M) and H2
2 (M): indeed if

u ∈ H2
1 (M) so does |u| and the gradient of |u| satisfies |∇ |u|| = |∇u| and also the

analysis on H2
2 (M) is more complicated than on H2

1 (M). In this paper we state
the following results

Theorem 5. Let a, h be C∞ functions on M with h negative. For every C∞

function, f on M with
∫

M
f−dvg > 0, there exists a constant C > 0 which depends
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only on f−

R

f−dvg
such that if f satisfies the following conditions

(1) |h(x)| < λa,f for any x ∈ M

(2) sup f+

R

f−dvg
< C

(3) supM f > 0,

then the subcritical equation

∆2u + ∇i(a∇iu) + hu = f |u|
q−2

u, q ∈ ]2, N [

has at least two distinct solutions u and v satisfying Fq (u) < 0 < Fq (v) and of
class C4,α, for some α ∈ (0, 1).

Theorem 6. Let a, h be C∞ functions on M with h negative. For every C∞

function f on M with
∫

M
f−dvg > 0 there exists a constant C > 0 which depends

only on f−

R

f−dvg
such that if f satisfies the following conditions

(1) |h(x)| < λa,f for any x ∈ M

(2) sup f+

R

f−dvg
< C

the critical equation

∆2u + ∇i(a∇iu) + hu = f |u|
N−2

u

has a solution of class C4,α, for some α ∈ (0, 1), with negative energy.

To have applications to conformal geometry, we must obtain positive solutions
but this is a difficult problem because of the lack of a maximum principle, This will
be treated in a separated work.

If the set A = φ, the condition (1) of Theorem 5 and 6 is fulfilled.

Suppose that A 6= φ and let µ = infu∈A

R

M
|∇u|dvg

R

M
u2dvg

.

Remark 1. We get smooth functions for which we have solutions by observing
that

∫

{x∈M : f(x)>0}
dvg <

(

K2
2 + ǫ

)

‖h‖∞ +A2 (ǫ)+µ ‖a‖∞ implies λa,f > ‖h‖∞ (

See Lemma 2 ) where ǫ is any positive real number and K2, A2 (ǫ) are the constants
of the Sobolev inequality given by Lemma 1.

Let Bk,q =
{

u ∈ H2 : ‖u‖
q
q = k

}

, where ‖‖q denotes the Lq-norm, and put

µk,q = infu∈Bk,q
Fq(u). The method used in this paper consists in the case of

Theorem 5, to show that the curve k → µk,q is continuous as a function of the
argument k, starts at 0 goes by a relative negative minimum, which is attained,
and takes positive values for k in some interval lq and finally goes to −∞, to do so
many a priori estimates are given, then we deduce the existence of two solutions of
the subcritical equation, one of negative energy and the other of positive energy.
For the proof of Thorem 6, we show that the sequence of solutions of the subcritical
equations, with negative energies,obtained in Theorem 5 is bounded in H2 as q tends
to N = 2n

n−4 , the critical Sobolev exponent. By classical arguments, we show that
up to a subsequence uq converges weakly to a solution u of the critical equation.
After, we show that u is of negative energy i.e. u 6≡ 0.
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2. Preliminaries

Let a, h be C∞ functions on M with h negative. We suppose without lost of
generality that the Riemannian manifold (M, g) is of volume equals to 1. Since it
is equivalent to solve the equation (1.1) with f or αf ( α a real number 6= 0 ), we
consider the functional Fq defined on H2 by

Fq(u) = ‖∆u‖2
2 −

∫

M

a |∇u|2 dvg +

∫

M

hu2dvg −

∫

M

f |u|q dvg, q ∈ (2, N)

and set

Bk,q =
{

u ∈ H2(M), ‖u‖
q
q = k

}

where k is some constant. Let

µk,q = inf
u∈Bk,q

Fq(u),

we state

Proposition 1. The infimum µk,q is achieved. Futhermore any minimizer of
the functional Fq is of class C4,α, α ∈ (0, 1).

Proof. We have

(2.1) Fq(u) ≥ ‖∆u‖2
2 − ‖a+‖∞ ‖∇u‖2

2 + k
2
q min

x∈M
h(x)

−k max
x∈M

f(x).

where a+(x) = max [a(x), 0] and ‖.‖∞ is the supremum norm.
The following formula is well known on compact manifolds

∥

∥∇2u
∥

∥

2

2
≤ ‖∆u‖

2
2 −

∫

M

Ricij∇ui∇ujdvg

(2.2) ≤ ‖∆u‖
2
2 + β ‖∇u‖

2
2 .

where β is some constant. As it is shown in ([1] p.93), for any η > 0, there exists
a constant C(η) depending on η such that

(2.3) ‖∇u‖
2
2 ≤ η

∥

∥∇2u
∥

∥

2

2
+ C(η) ‖u‖

2
2

Plugging (2.2) in (2.3), we get

(2.4) ‖∇u‖
2
2 ≤ η ‖∆u‖

2
2 + ηβ ‖∇u‖

2
2 + C(η) ‖u‖

2
2

and choosing η such that ηβ ≤ 1
2 , we obtain

(2.5) ‖∇u‖
2
2 ≤ 2η ‖∆u‖

2
2 + 2C(η) ‖u‖

2
2 .

The inequality (2.1) reads then

Fq(u) ≥ ‖∆u‖
2
2 (1 − 2η ‖a+‖∞)

+k
2
q

(

min
x∈M

h(x) − 2C(η) ‖a+‖∞

)

− k max
x∈M

f(x)

and then, with η small enough, we have

1 − 2η ‖a+‖∞ = α > 0

so

(2.6) Fq(u) ≥ α ‖∆u‖
2
2 + C1
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where α is some positive constant and C
1

is a constant independent of u. Let (uj)
be a minimizing sequence of the functional Fq in Bk,q; so for j sufficiently large
Fq(uj) ≤ µk,q + 1 and by (2.6), we get

‖∆uj‖
2
2 ≤

1

α
(µk,q + 1 − C1) .

By formula (2.5) and the fact

‖uj‖
2
2 ≤ k

2
q ,

we obtain that ‖∇uj‖
2
2 is bounded. It follows that the sequence (uj) is bounded in

H2. Consequently uj converges weakly in H2, the compact embedding of H2 in Lq

and the unicity of the weak limit allow us to claim that there is a subsequence of
(uj) still denoted (uj) such that

uj → u strongly in Ls for any s < N

∇uj → ∇u strongly in L2

and

‖u‖H2
≤ lim

j
inf ‖uj‖H2

.

Consequently

Fq(u) = ‖∆u‖2
2 −

∫

M

a |∇u|2 dvg +

∫

M

hu2dvg −

∫

M

f |u|q dvg

≤ lim inf
j
‖∆uj‖

2
2 − lim

j

∫

M

a |∇uj|
2
dvg + lim

j

∫

M

hu2
jdvg − lim

j

∫

M

f |uJ |
q
dvg

= lim
J

Fq(uj) = µk,q

and since clearly

‖u‖
q
q = k

we obtain that

Fq(u) = µk,q .

So u fulfills
∫

M

∆u.∆vdvg −

∫

M

a(x)∇iu.∇ivdvg +

∫

M

h(x)uvdvg

−
q

2

∫

M

f(x) |u|
q−2

uvdvg = λk,q

∫

M

|u|
q−2

uvdvg

for any v ∈ H2; where λk,q is the Lagrange multiplier and u is a weak solution of
the equation

(2.7) ∆2u + ∇i(a∇iu) + hu =
(

λk,q +
q

2
f
)

|u|
q−2

u.

Using the bootstrap method, we show that u ∈ Ls(M) for any s < N , so
P (u) = ∆2u+∇i(a∇iu)+hu ∈ Ls(M) for any s < N and since P is a fourth order
elliptic operator, it follows by a well known regularity theorem that P (u) ∈ C0,α(M)
for some α ∈ (0, 1). Then u ∈ C4,α(M) . �

Proposition 2. µk,q is continuous as a function of the argument k .
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Proof. For any k , l ∈ R+, let u and v be two functions of norm 1 in Lq such

that Fq(k
1
q u) = µk,q and Fq(l

1
q v) = µl,q .

Then

µl,q − µk,q = Fq(l
1
q v) − Fq(k

1
q v) + Fq(k

1
q v) − µk,q

= Fq(k
1
q v) − µk,q

+(l
2
q − k

2
q )

(

‖∆v‖
2
2 −

∫

M

a |∇v|
2
dvg +

∫

M

hv2dvg

)

−(l − k)

∫

M

f |v|
q
dvg.

On the other hand, we have

µl,q = Fq(l
1
q v) = l

2
q

(

‖∆v‖2
2 −

∫

M

a |∇v|2 dvg +

∫

M

hv2dvg

)

− l

∫

M

f |v|q dvg

≤ Fq(l
1
q ) = l

2
q

∫

M

hdvg − l

∫

M

fdvg

i.e.

‖∆v‖
2
2 −

∫

M

a |∇v|
2
dvg +

∫

M

hv2dvg ≤

∫

M

hdvg − l1−
2
q

∫

M

fdvg + l1−
2
q

∫

M

f |v|
q
dvg.

Since ‖v‖
q
q = 1, it follows that the term

∫

M
f |v|

q
dvg is bounded for any l in a

neighborhood of k and so the term ‖∆v‖
2
2 −

∫

M
a |∇v|

2
dvg +

∫

M
hv2dvg is upper

bounded. Also since µl,q is lower bounded, it follows that ‖∆v‖
2
2−
∫

M
a |∇v|

2
dvg +

∫

M
hv2dvg is bounded in a neighborhood of k.
Consequently

lim
l→k

inf(µl,q − µk,q) ≥ lim
l→k

inf
(

Fq(k
1
q v) − µk,q

)

and by the definition of µk,q, we get

(2.8) lim
l→k

inf(µl,q − µk,q) ≥ 0 .

By writing

µl,q − µk,q = µl,q − Fq(l
1
q u) + Fq(l

1
q u) − Fq(k

1
q u)

= µl,q − Fq(l
1
q u)

+(l
2
q − k

2
q )

(

‖∆u‖2
2 −

∫

M

a |∇u|2 dvg +

∫

M

hu2dvg

)

−(l − k)

∫

M

f |u|
q
dvg

we get

lim
l→k

sup(µl,q − µk,q) ≤ 0

and taking into account of (2.8), we obtain

lim
l→k

µl,q = µk,q .

�
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3. A priori estimates

First, we quote the following Lemma due to Djadli-Hebey-Ledoux and improved
by Hebey [9].

Lemma 1. Let M be a Riemannian compact manifold with dimension n ≥ 5.

For any ǫ > 0 there is a constant A2(ǫ) such that for any u ∈ H2 ‖u‖
2
N ≤

K2
2(1 + ǫ) ‖∆u‖

2
2 + A2(ǫ) ‖u‖

2
2 with K−2

2 = π2n(n − 4)(n2 − 4)Γ
(

n
2

)
4
n Γ (n)

− 4
n .

Suppose that the set A =
{

u ∈ H2, u 6≡ 0 s. t.
∫

M
f− |u|dvg = 0

}

is non empty.

Lemma 2. If
∫

{x∈M : f(x)>0} dvg as a function of the variable f tends to 0, λa,f

goes to +∞. In particular the condition
∫

{x∈M : f(x)>0} dvg < K2
2 (1 + ǫ) ‖h‖∞ +

A2 (ǫ) + µ ‖a‖∞ implies that λa,f > ‖h‖∞.

Proof. For any u ∈ A, we obtain by applying successively the Hölder inequal-
ity and the Sobolev one given by Lemma 1,

∫

{x∈M : f(x)>0}

u2dvg ≤

(

∫

{x∈M : f(x)>0}

|u|
N

dvg

)
2
N
(

∫

{x∈M : f(x)>0}

dvg

)1− 2
N

=

(∫

M

|u|
N

dvg

)
2
N

(

∫

{x∈M : f(x)>0}

dvg

)
4
n

≤
(

K2
2 (1 + ǫ) ‖∆u‖

2
2 + A2 (ǫ) ‖u‖

2
2

)

(

∫

{x∈M : f(x)>0}

dvg

)
4
n

.

So
(

∫

{x∈M : f(x)>0}

dvg

)− 4
n

≤ K2
2 (1 + ǫ)λa,f + A2 (ǫ) + inf

x∈A

∫

M
a (x) |∇u|

2
dvg

‖u‖
2
2

and letting µ = infx∈A

R

M
|∇u|2dvg

‖u‖2
2

, we get that

λa,f >
1

K2
2 (1 + ǫ)





(

∫

{x∈M : f(x)>0}

dvg

)− 4
n

− A2 (ǫ) − µ ‖a‖∞





where ‖a‖∞ = supx∈M |a(x)|.
Hence if

∫

{x∈M : f(x)>0} dvg tends to 0 as a function of the variable f , λa,f

goes to +∞. �

Denote also by ‖h‖∞ = supx∈M |h(x)| the supremum norm.
As in [11], we define the quantities,

λa,f,η,q = inf
u∈A(η,q)

‖∆u‖2
2 −

∫

M
a |∇u|2 dvg

‖u‖
2
2

with

A (η, q) =

{

u ∈ H2 : ‖u‖q = 1,

∫

M

f− |u|q dvg = η

∫

M

f−dvg

}

for a real η > 0,
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and

λ′
a,f,η,q = inf

u∈A′(η,q)

‖∆u‖
2
2 −

∫

M
a |∇u|

2
dvg

‖u‖2
2

where

A′ (η, q) =

{

u ∈ H2 : ‖u‖
q
q = 1,

∫

M

f− |u|
q
dvg ≤ η

∫

M

f−dvg

}

.

Now, we will study λa,f,η,q , to do so, we distinguish ( as it is done in [11]) the case
where the set {x ∈ M : f(x) ≥ 0} is of positive measure with respect to Riemannian
measure and the case where the set is negligible and supx∈M f = 0.

Case f+ > 0.

Claim 1. For any real η > 0, the set A(η, q) is not empty .

Indeed, the set A′(η, q) is not empty since it includes the set of functions u ∈ H2

such that ‖u‖q = 1 and with supports in the set
{

x ∈ M : f−(x) < η
∫

M
f−dvg

}

.

The same arguments as in [11] show that λ′
a,f,η,q is achieved by a function v ∈

A′(η, q) and moreover v satisfies
∫

M
f− |u|

q
dvg = η

∫

M
f−dvg.

The following facts which are proved in [11], for the Laplacian operator remain
valid in the case of the bi-Laplacian operator: λ′

a,f,η,q is a decreasing function with

respect to η, bounded by λa,f and λa,f,η,q = λ′
a,f,η,q, so λa,f,η,q is also a decreasing

function with respect to η, and bounded by λa,f .

Lemma 3. For any q ∈ ]2, N [ , λa,f,η,q goes to λa,f whenever η goes to zero.

Proof. λa,f,η,q is attained by a family of functions labelled vη,q. The functions
vη,q indexed by η are bounded in H2

2 : since

‖vη,q‖
2
2 ≤ ‖vη,q‖

2
q
V ol(M)1−

2
q = 1

and
‖∆vη,q‖

2
2 − ‖a+‖∞ ‖∇vη,q‖

2
2 ≤ λa,f,η,q ‖vη,q‖

2
2

≤ λa,f ‖vη,q‖
2
2 ≤ λa,f .

By formula (2.5), for a well chosen ε > 0, there is a constant C(ε) > 0 such that

‖∇vη,q‖
2
2 ≤ 2ε ‖∆vη,q‖

2
2 + 2C(ε) ‖vη,q‖

2
2

so
‖∆vq,η‖

2
2 ≤ λa,f + ‖a+‖∞ ‖∇vn,q‖

2
2

≤ λa,f + 2 ‖a+‖∞

(

ε ‖∆vη,q‖
2
2 + C(ε) ‖vη,q‖

2
2

)

and
‖∆vq,η‖

2
2 (1 − 2ε ‖a+‖∞) ≤ λa,f + 2 ‖a+‖∞ C(ε).

By choosing ε > 0 small enough such that

1 − 2ε ‖a+‖∞ > 0

we get that

‖∆vq,η‖
2
2 ≤ C′(λa,f , ‖a+‖∞ , ε)

where C′(λa,f , ‖a+‖∞ , ε) is a constant depending of λa,f , ‖a+‖∞ , ε.

‖∇vq,η‖
2
2 ≤ 2εC(λa,f , ‖a+‖∞ , ε) + 2C(ε) ≤ C′(λa,f , ‖a+‖∞ , ε).

Consequently the sequence (vq,η)η is bounded in H2 and we have
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vqη −→ vq weakly in H2.

vqη −→ vq strongly in H2
r , r = 0, 1

vqη −→ vq strongly in Lq

and

‖∆vq‖
2
2 ≤ lim

η−→0
inf ‖∆vqη‖

2
2

Also

‖vq‖q
= 1.

On the other hand
∫

M

f− |vqη|
q
dvg = η

∫

M

f−dvg

so
∫

M

f− |vq|
q
dvg = 0.

Hence

vq ∈ A

and

‖vq‖
2
2 λa,f ≤ ‖∆vq‖

2
2 −

∫

M

a |∇vq |
2
dvg

≤ lim
η−→0

inf

(

‖∆vqη‖
2
2 −

∫

M

a |∇vqη|
2
dvg

)

= lim
η−→0

inf ‖vqη‖
2
2 (λa,f,q,η)

and since by construction

λa,f ≥ λa,f,q,η

we get that

lim
η−→0

λa,f,q,η = λa,f .

�

Lemma 4. Let ε > 0, there exists ηo such that for any η < ηo, there is qη

such that λa,f,q,η ≥ λa,f − ε for any q > qη.

Proof. We proceed by contradiction. Suppose that there is a εo > 0, such
that for any η there exists an ηo < η and for any qηo there is q > qηo with
λa,f,q,η < λf − ε. If vqη is the function in H2 which achieves λa,f,q,η , then

λa,f,q,η =
‖∆vqη‖

2
2 −

∫

M
a |∇vqη|

2 dvg

‖vqη‖
2
2

with ‖vqη‖
q

q
= 1. For a convenient η, we choose a sequence q converging to N such

that

‖∆vqη‖
2
2 −

∫

M

a |∇vqη|
2
dvg < λa,f − εo.

By the same argument as in the proof of Lemma 3, we get that the sequence vqη

indexed by q is bounded in H2 so up to a subsequence vqη converges weakly to vη

in H2 and strongly in H2
r , r = 0, 1. Also we have

‖∆vη‖
2
2 ≤ lim

q−→N
inf ‖∆vqη‖

2
2
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and by the strong convergence in H2
r , r = 0, 1, we get

‖∆vη‖
2
2 −

∫

M

a |∇vη|
2 dvg < (λa,f − εo) ‖vη‖

2
2 .

By the Sobolev inequality given in the Lemma 1 we have for any ε1 > 0 there
is a constant A(ε1) > 0 such that

1 = ‖vqη‖
2
q
≤ ‖vqη‖

2
N

( since the manifold M is of volume 1 )

≤ K2
2 (1 + ε1) ‖∆vqη‖

2
2 + A(ε1) ‖vqη‖

2
2

≤
[

K2
2 (1 + ε1)λa,f + A(ε1)

]

‖vqη‖
2
2 + +(K2

2 + ε1) ‖a+‖∞ ‖∇vqη‖
2
2

≤
[

K2
2 (1 + ε1) (1 + ‖a+‖∞)λa,f + A(ε1)

]

‖vqη‖
2
H2

1

.

Consequently

‖vη‖
2
2 ≥

1

[K2
2 (1 + ε1) (1 + ‖a+‖∞)λa,f + A(ε1)])

.

As in [11] we can show that
∫

M

|vη|
N

dvg ≤ 1 and

∫

M

f− |vη|
N

dvg ≤ η

∫

M

f−dvg.

Consider the sequence of η such that for any qη, there is a q > qη with

λa,f,q,η ≤ λa,f − ε.

Now tending η to 0, if vη is the sequence corresponding to η previously considered,
vη is bounded in H2 and

‖vη‖
2
2 ≥

1

[K2
2 (1 + ε1) (1 + ‖a+‖∞)λa,f + A(ε1)])

.

so vη converges weakly to v 6= 0 in H2 and strongly to v in H2
r , r = 0, 1 and v

satisfies

(3.1) ‖∆v‖
2
2 −

∫

M

a |∇v|
2
dvg ≤ (λa,f − εo) ‖v‖

2
2 .

On the other hand

0 ≤

∫

M

f− |v|N dvg ≤ lim
η−→0

inf

∫

M

f− |vη|
N dvg ≤ lim

η→0
η

∫

M

f−dvg = 0

then
∫

M
f− |v| dvg = 0 and v belongs to the domain A of definition of λa,f . Hence

λa,f ≤
‖∆v‖

2
2 −

∫

M
a |∇v|

2
dvg

∫

M
|v|

2
dvg

.

A contradiction with the inequality (3.1) and Lemma 4 is proved. �

Case f+ = 0.
In this case λa,f is not defined so λa,f = +∞. First, we give the lemma

equivalent to Lemma 3

Lemma 5. Let q ∈ ]2, N [. For any positive constant R, there exists ηo such
that for any η < ηo, λa,f,η,q ≥ R.
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Proof. We argue by contradiction. It is easy to show that λa,f,q,η is achieved
by a function vqη in H2 with ‖vq,η‖q

= 1. Suppose that there is λa,f,η,q bounded

when η goes to 0. Then

‖∆vq,η‖
2
2 − ‖a+‖∞

∥

∥∇v
q,,η

∥

∥

2

2
≤

‖∆vq,η‖
2
2 − ‖a+‖∞

∥

∥∇v
q,,η

∥

∥

2

2
∥

∥v
q,,η

∥

∥

2

2

≤ λa,f,q,η < +∞.

and proceeding as in the proof of Lemma 3 we get that the sequence vqη indexed by
η is bounded in H2. Consequently the sequence vqη converges weakly to vq in H2

and converges strongly to vq in H2
r , r = 0, 1, and strongly to vq in Lq as η goes to

0.
∫

M
f− |vq|

q
dvg = 0 which implies that vq = 0 almost everywhere and ‖vq‖q

= 1

which are in contradiction with each other. �

Now we give an analogue to Lemma 4.

Lemma 6. There exists an ηo such that for any η < ηo there is qη such that
for any q > qη we have λa,f,q,η > ‖h‖∞.

The proof of this lemma is similar to the previous ones so we omit it.
Let σ > 0, any sufficient small real number, with the previous notations we

obtain by using the lemmas quoted above the following

Lemma 7. (1) Suppose that supM f > 0 and ‖h‖∞ < λa,f . There exists η such
that λa,f,q,η − ‖h‖∞ = εo > 0.

Let b =
(1−2σ‖a+‖

∞
)εo

[(εo+‖h‖
∞

+2‖a+‖
∞

C(σ))K2
2
(1+ε)+(1−2σ‖a+‖

∞
)A(ε)]

µ = inf (b, ‖h‖∞ + 2 ‖a+‖∞ C(σ)) and suppose that
supM f

R

M
f−dvg

< µη

8(‖h‖
∞

+2‖a+‖
∞

C(σ))
, where and K2

2 , A(ǫ) are the constants ap-

pearing in the Sobolev inequality given by Lemma 1. For any q ∈ ]2, N [ there exists

a non empty interval Iq ⊂ R+ such that for every u ∈ H2 with Lq-norm k
1
q and

k ∈ Iq = [k1,q, k2,q] we have Fq(u) ≥ 1
2µk

2
q .

(2) Suppose that supM f = 0 and ‖h‖∞ < λa,f , there exists an interval Iq =
[k1,q, +∞[ such that for any k ∈ Iq and any u ∈ H2 with ‖u‖

q
q = k, we have

Fq(u) ≥ 1
2µk

2
q .

Proof. Case: f+ > 0.
Let u ∈ H2 such that ‖u‖

q
q = k.

Putting

Gq(u) = ‖∆u‖
2
2 −

∫

M

a |∇u|
2
dvg +

∫

M

hu2dvg +

∫

M

f− |u|
q
dvg,

we get

Gq(u) ≥ ‖∆u‖
2
2 − ‖a+‖∞ ‖∇u‖

2
2 − ‖h‖∞ ‖u‖

2
2 +

∫

M

f− |u|
q
dvg

and taking account of (2.5), we obtain that for any suitable real σ > 0, there is a
constant C(σ) > 0 such that

Gq(u) ≥ (1 − 2σ ‖a+‖∞) ‖∆u‖
2
2
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− (‖h‖∞ + 2C(σ) ‖a+‖∞) ‖u‖
2
2 +

∫

M

f− |u|
q
dvg .

So if
∫

M

f− |u|
q
dvg ≥ ηk

∫

M

f−dvg

then
Gq(u) ≥ (1 − 2σ ‖a+‖∞) ‖∆u‖

2
2

(3.2) − (‖h‖∞ + 2C(σ) ‖a+‖∞) ‖u‖2
2 + ηk

∫

M

f−dvg

with σ > 0 sufficiently small so that

1 − 2σ ‖a+‖∞ > 0.

Now since
‖u‖

2
2 ≤ ‖u‖

2
q
q V ol(M)1−

2
q = k

2
q

we get

Gq(u) ≥ k
2
q

[

− (‖h‖∞ + 2 ‖a+‖∞ C(σ)) + ηk1− 2
q

∫

M

f−dvg

]

≥ k
2
q (‖h‖∞ + 2 ‖a+‖∞ C(σ))

(

ηk1− 2
q

‖h‖∞ + 2 ‖a+‖∞ C(σ)

∫

M

f−dvg − 1

)

and choosing k such that

ηk1− 2
q

‖h‖∞ + 2 ‖a+‖∞ C(σ)

∫

M

f−dvg − 1 ≥ 1

that is

k ≥

[

2
‖h‖∞ + 2 ‖a+‖∞ C(σ)

η
∫

M
f−dvg

]
q

q−2

we obtain
Gq(u) ≥ k

2
q (‖h‖∞ + 2 ‖a+‖∞ C(σ)) .

Let

k1,q =

[

2
‖h‖∞ + 2 ‖a+‖∞ C(σ)

η
∫

M
f−dvg

]
q

q−2

.

In the case
∫

M
f− |u|

q
dvg < ηk

∫

M
f−dvg , we have

‖∆u‖
2
2 −

∫

M

a |∇u|
2
dvg ≥ λa,f,q,η ‖u‖

2
2

so

Gq(u) ≥ λa,f,η,q ‖u‖
2
2 +

∫

M

hu2dvg +

∫

M

f− |u|
q
dvg

≥ (λa,f,η,q −‖h‖∞) ‖u‖2
2 +

∫

M

f− |u|q dvg

by Lemma 4 and 6 there exists η such that

λa,f,η,q −‖h‖∞ = εo > 0.

Now, putting δ1 + δ2 = εo, where δ1 and δ2 are positive real numbers, and solving

‖u‖
2
2 in (3.2), we get

‖u‖
2
2 ≥

1

‖h‖∞ + 2 ‖a+‖∞ C(σ)

[

(1 − 2σ ‖a+‖∞) ‖∆u‖
2
2 − Gq(u) +

∫

M

f− |u|
q
dvg

]

.
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Consequently
(

1 +
δ2

‖h‖∞ + 2 ‖a+‖∞ C(σ)

)

Gq(u) ≥ δ1 ‖u‖
2
2

+
δ2

‖h‖∞ + 2 ‖a+‖∞ C(σ)
(1 − 2σ ‖a+‖∞) ‖∆u‖

2
2

so

Gq(u) ≥
δ1 (‖h‖∞ + 2 ‖a+‖∞ C(σ))

‖h‖∞ + 2 ‖a+‖∞ C(σ) + δ2
‖u‖

2
2 +

δ2 (1 − 2σ ‖a+‖∞)

‖h‖∞ + 2 ‖a+‖∞ C(σ) + δ2
‖∆u‖

2
2

and where σ is sufficiently small and such that 1 − 2 ‖a+‖∞ σ > 0.
Or

Gq(u) ≥
δ2 (1 − 2σ ‖a+‖∞)

(‖h‖∞ + 2 ‖a+‖∞ C(σ) + δ2) (K2
2 + ε)

×

[

K2
2 (1 + ε) ‖∆u‖

2
2 +

δ1 (‖h‖∞ + 2 ‖a+‖∞ C(σ))
(

K2
2 + ε

)

δ2 (1 − 2σ ‖a+‖∞)A(ε)
A(ε) ‖u‖

2
2

]

where for any fixed ε > 0, K2
2 denotes the best Sobolev constant in the embedding

of H2
2 (Rn) in Lq(Rn).
Taking δ1 and δ2 such that

δ1 (‖h‖∞ + 2 ‖a+‖∞ C(σ))
(

K2
2 + ε

)

δ2 (1 − 2σ ‖a+‖∞)A(ε)
= 1

we get

δ1 =
(1 − 2σ ‖a+‖∞) A(ε)

(‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)

εo

and

δ2 =
(‖h‖∞ + 2 ‖a+‖∞ C(σ))

(

K2
2 + ε

)

(‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)

εo.

Consequently

Gq(u) ≥
δ2 (1 − 2σ ‖a+‖∞)

(‖h‖∞ + 2 ‖a+‖∞ C(σ) + δ2) (K2
2 + ε)

‖u‖
2
q

and since

‖h‖∞ + 2 ‖a+‖∞ C(σ) + δ2 = (‖h‖∞ + 2 ‖a+‖∞ C(σ))

×

[

1 +
K2

2 (1 + ε)

(‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)

εo

]

=
(εo + ‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2

2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)

(‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)

we get that

Gq(u) ≥
(1 − 2σ ‖a+‖∞) εo

[(εo + ‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)]

k
2
q .

Letting

b =
(1 − 2σ ‖a+‖∞) εo

[(εo + ‖h‖∞ + 2 ‖a+‖∞ C(σ)) K2
2 (1 + ε) + (1 − 2σ ‖a+‖∞)A(ε)]
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we get

Fq(u) = Gq(u) −

∫

M

f+ |u|
q
dvg

≥ bk
2
q −

∫

M

f+ |u|
q
dvg ≥ bk

2
q − k sup f+ = k

2
q (b − k1−

2

q sup f+).

So if supM f > 0, let µ = inf (b, ‖h‖∞ + 2 ‖a+‖∞ C(σ)). For any k ≥ k1,q, we have

Fq(u) ≥ k
2
q (µ − k1−

2

q sup f)

Now if we put Cq = η

8(‖h‖
∞

+2‖a+‖
∞

C(σ))
µ and suppose that supM f ≤ Cq

∫

M
f−,

we obtain that the inequality is fulfilled provided that

k ≤

[

4 (‖h‖∞ + 2 ‖a+‖∞ C(σ))

η
∫

M
f−dvg

]
q

q−2

= 2
q

q−2 k1,q.

and

Fq(u) ≥
1

2
µk

2
q

provided that

k ≤

[

µ

2 sup f

]
q

q−2

.

We put

k2,q = 2
q

q−2 k1,q.

Case f+ = 0.
In this case, for any k ≥ k1,q,

Fq(u) ≥
1

2
µk

2
q .

�

4. Subcritical case

First, we show the existence of a solution to the subcritical equation with
negative energy.

Lemma 8. For each t > 0, small enough, inf
‖u‖

H2
≤t

Fq(u) < 0, q ∈ ]2, N ].

In fact Fq(t) ≤ t2
(

h − tq−2
∫

M
fdvg

)

, where h = maxM h(x), and since h < 0,
there is to > 0 small enough such that inf

‖u‖
H2

≤t
Fq(u) < 0 for each t ∈ ]0, to[ .

Proposition 3. Let a, h be C∞ functions on M , with h negative. For every
C∞ function, f on M with

∫

M
f−dvg > 0, there exists a constant C > 0 which

depends only on f−

R

f−dvg
such that if f satisfies the following conditions

(1) |h(x)| < λa,f for any x ∈ M

(2) sup f+

R

f−dvg
< C

then the subcritical equation

(4.1) ∆2uq + ∇i(a∇iuq) + huq = f |uq|
q−2

u q with q ∈ ]2, N [

admits a C4,α, for some α ∈ (0, 1), solution uq with negative energy.
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Proof. For any q ∈ ]2, N [ and k > 0, let µk,q = inf‖w‖q
q
=k Fq(w). First we

remark that if k is close to 0, k > 0, µk,q < 0 : indeed

µk,q ≤ Fq(k
1
q ) = k

2
q

(∫

M

hdvg − k1− 2
q

∫

M

fdvg

)

< 0.

By Proposition 2 the real valued function k → µk,q is continuous and µk,q goes
to 0 , when k → 0. So by Lemma 7 and 8 the function k → µk,q starts at 0,
takes a negative minimum, say at kq, then takes positive values. Let lq = k1,q =
[

2
‖h‖

∞
+2‖a+‖

∞
C(σ)

η
R

M
f−dvg

]
q

q−2

the lower bound of the interval Iq given in the proof of

Lemma 7, then
µkq,q = inf

‖u‖q
q≤lq

Fq(u).

By Proposition 1 the infimum µkq,q is attained by a function vq ∈ H2 with ‖vq‖
q

q
=

kq , so

Fq(vq) = inf
‖u‖q

q
≤lq

Fq(u) .

Now since for any kq ∈ Iq, and any u ∈ H2 with ‖u‖
q
q = kq, Fq(u) ≥ 0, it follows

that kq < lq. So vq is a critical point of Fq , that is for any ϕ ∈ H2
∫

M

∆vq∆ϕdvg −

∫

M

a∇vq∇ϕdvg+

∫

M

hvqϕdvg −
q

2

∫

M

f |vq|
q−2

vqϕdvg = 0

then uq = ( q
2 )

1
q−2 vq is a weak solution of the subcritical equation with negative

energy such that

‖uq‖
q

q
≤ (

q

2
)

q
q−2 lq.

Moreover, arguing as in the proof of the Proposition 1, uq ∈ C4,α(M) with α ∈
(0, 1). �

Now we are going to seek a second solution to the subcritical equation with
positive energy.

We start by showing that Fq with q ∈ ]2, N [ satisfies the Palais-Smale condition.

Lemma 9. Let c be a real number, then each Palais-Smale sequence at level c
for the functional Fq satisfies the Palais -Smale condition.

Proof. First, we show that each Palais-Smale sequence is bounded: we argue
by contradiction. Suppose that there exists a sequence (uj) such that Fq(uj) tends
to a finite limit c, F ′

q(uj) goes strongly to zero and uj to infinite in the H2-norm.
More explicitly we have

∫

M

(

(∆uj)
2 − a |∇uj|

2
+ hu2

j

)

dvg −

∫

M

f |u|
q
j dvg → c

and
∫

M

(

(∆uj)
2
− a |∇uj |

2
+ hu2

j

)

dvg −
q

2

∫

M

f |u|
q−1
j vdvg → 0

so for any ε > 0 there exists a positive integer A such that for every j ≥ A we have
∣

∣

∣

∣

∫

M

(

(∆uj)
2 − a |∇uj |

2
+ hu2

j

)

dvg −

∫

M

f |u|
q
j dvg − c

∣

∣

∣

∣

≤ ε
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and
∣

∣

∣

∣

∫

M

(

(∆uj)
2
− a |∇uj |

2
+ hu2

j

)

dvgdvg −
q

2

∫

M

f |u|
q−1
j vdvg

∣

∣

∣

∣

≤ ε.

Hence, we get

(4.2)

∣

∣

∣

∣

(q − 2)

∫

M

(∆uj)
2 − a |∇uj|

2
+ hu2

jdvg − qc

∣

∣

∣

∣

≤ (q + 2)ǫ

and

(4.3)

∣

∣

∣

∣

(q − 2)

∫

M

f |uj |
q
− 2c

∣

∣

∣

∣

≤ 4ε.

By Lemma 7, we can choose k to be an Lq− norm such that

inf
‖u‖q

q
=k

Fq(u) > 0.

Letting vj = k
1
q

uj

‖uj‖q

, we obtain from (4.2) and (4.3) that

(4.4)

∣

∣

∣

∣

∣

(q − 2)

∫

M

f |vj |
q
dvg −

2ck
2
q

‖uj‖
2
q

∣

∣

∣

∣

∣

≤ 4ε
k

2
q

‖uj‖
2
q

and

∣

∣

∣

∣

∣

(q − 2)

∫

M

(∆vj)
2 − a |∇vj |

2 + hv2
j dvg − qc

k
2
q

‖uj‖
2
q

∣

∣

∣

∣

∣

(4.5) ≤ (q + 2)ǫ
k

2
q

‖uj‖
2
q

.

Now since (‖vj‖q
)j is a bounded sequence, it follows by (4.5) that (vj) is

bounded in H2. If ‖uj‖q
goes to infinity, it follows from (4.4) and (4.5) that Fq(vj)

goes to zero. And since ‖vj‖
q

q
= k, we have

inf
‖u‖q

q
=k

Fq(u) ≤ Fq(vj)

so

inf
‖u‖q

q
=k

Fq(u) ≤ 0.

Hence a contradiction. Then the sequence (uj) is bounded in H2. Since q < N ,
the Sobolev injections are compact. Consequently the Palais-Smale condition is
satisfied. �

Lemma 10. Let u ∈ H2. If the Lq-norm ‖u‖
q
q = k goes to +∞, then µk,q =

inf‖u‖q
q=k Fq(u) → −∞ .

Proof. In fact since supx∈M f(x) > 0 let u be a function of class C2 with
support contained in the open subset {x ∈ M : f(x) > 0} of the manifold M such
that ‖u‖

q
q = 1, then

∫

M
f |u|

q
dvg > 0 and

Fq(ku) = k
2
q

(∫

M

(

(∆u)2 − a |∇u|
2

+ hu2
)

dvg − k
q−2

q

∫

M

f |u|
q
dvg

)

.

So limk→+∞ Fq(ku) = −∞ . �
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Proposition 4. Let a, h be C∞ functions on M with h negative. For every
C∞ function, f on M with

∫

M
f− > 0, there exists a constant C > 0 which depends

only on f−

R

f−
such that if f satisfies the following conditions

(1) |h(x)| < λa,f for any x ∈ M

(2) sup f+

R

f−
< C

(3) sup f > 0,

then the subcritical equation

∆2u + ∇i(a∇iu) + hu = f |u|
q−2

u, q ∈ ]2, N [

admits a nontrivial solution of class C4,α, for some α ∈ (0, 1), with positive energy.

Proof. By Lemma 7, 8 and 10 the curve k → µk,q starts at 0, takes a negative
minimum, then takes positive maximum and goes to minus infinite. Mimicking
which is done in ([11]), let lo be an Lq-norm such that µlo,q is a maximum and l1,
l2 two Lq-norms such that µl1,q = µl2,q = 0 with l1 < lo and l2 > lo.

Set

Γ = {γ ∈ C ([0, 1] , H2) : γ(0) = ul1,q,γ(1) = ul2,q} ,

where uli,q ∈ Bli,q, i = 1, 2, are such that µli,q = Fq (uli,q) = infw∈Bli,q
Fq (w)

and

νq = inf
γ∈Γ

max
t∈[0,1]

Fq (γ(t)) .

Arguing as in [11], we show that νq is a critical level of the functional Fq and
νq ≥ µl,q > 0. Consequently the subcritical equation (1.2) admits a weak solution
of positive energy. This solution is in fact of class C4,α with α ∈ (0, 1). �

Theorem 5 follows from Proposition 3 and 4.

5. Critical case

Now, we are going to investigate solutions of the critical equation.

Theorem 7. Let a, h be C∞ functions on M with h negative. For every C∞

function, f on M with
∫

M
f− > 0, there exists a constant C > 0 which depends

only on f−

R

f−
such that if f satisfies the following conditions

(1) |h(x)| < λa,f for any x ∈ M

(2) sup f+

R

f−
< C

then the critical equation

(5.1) ∆2u + ∇i(a∇iu) + hu = f |u|N−2 u

admits a C4,α, for some α ∈ (0, 1), solution u with negative energy.

Proof. For each q ∈ (2, N), let uq be the solution to the subcritical equation
(4.1) given by Proposition 3, uq is of negative energy. We have already shown in
the proof of Proposition 3 that

‖uq‖
q

q
= kq ≤ lq =

[

2
‖h‖∞ + 2 ‖a+‖∞ C(σ)

η
∫

M
f−dvg

]
q

q−2
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and since lq goes to lN =
[

2
‖h‖

∞
+2‖a+‖

∞
C(σ)

η
R

M
f−dvg

]
4
n

as q goes to N , (uq) is bounded in

Lq, so it is in L2 and since uq are of negative energy then

‖∆uq‖
2
2 ≤

∫

M

a |∇u|
2
dvg −

∫

M

hu2
qdvg +

∫

M

f |uq|
q
dvg

≤ ‖a+‖∞ ‖∇uq‖
2
2 + ‖h‖∞ ‖uq‖

2
q

+ ‖f‖∞ ‖uq‖
q

q
.

Now since for any sufficiently σ > 0, there exists a constant C(σ) such that

‖∇uq‖
2
2 ≤ 2σ ‖∆uq‖

2
2 + 2C(σ) ‖uq‖

2
2

we get

(1 − 2σ ‖a+‖∞) ‖∆uq‖
2
2 ≤ (2 ‖a+‖∞ C(σ) + ‖h‖∞) ‖uq‖

2
q

+ ‖f‖∞ ‖uq‖
q

q

≤ (2 ‖a+‖∞ C(σ) + ‖h‖∞) l
2
q
q + ‖f‖∞ lq.

So (uq) is a bounded sequence in H2. Consequently uq → v weakly in H2, up to a
subsequence, we have

uq → v strongly in Ls(M) for s < N

∇uq → ∇v strongly in L2

uq(x) → v(x) for a.e. x ∈ M.

On the other hand for any q ∈ ]2, N [, uq satisfies, for any ϕ ∈ H2
∫

M

∆uq∆ϕdvg −

∫

M

a∇iuq∇iϕdvg +

∫

M

huqϕdvg

(5.2) =
q

2

∫

M

f |uq|
q−2

uq ϕdvg

and since the convergence of (uq) is weak in H2, it follows that for any ϕ ∈ H2
∫

M

∆uq∆ϕdvg −

∫

M

a∇iuq∇iϕdvg +

∫

M

huqϕdvg

(5.3) →

∫

M

∆v∆ϕdvg −

∫

M

a∇iv∇iϕ)dvg +

∫

M

hvϕdvg .

Moreover since uq(x) → v(x) for a.e. x ∈ M and (uq) is bounded in H2 we have

uq(x) |uq(x)|q−2 → v(x) |v(x)|N−2 for a.e. x ∈ M

and
∥

∥

∥uq |uq|
q−2
∥

∥

∥

N
N−1

= ‖uq‖
q−1

(q−1) N
N−1

≤ C1 ‖uq‖
N−1
N

≤ C ‖uq‖
N−1
H2

.

consequently (uq) is bounded in L
N

N−1 and by a well known theorem [1] uq converges

weakly to v in L
N

N−1 . Now for any ϕ ∈ H2 ⊂ LN , and any smooth function f,

fϕ ∈ LN ( the dual space of L
N

N−1 ), then

(5.4)

∫

M

f |uq|
q−2

uqϕdvg →

∫

M

f |v|
N−2

vϕdvg .

So by (5.3) and (5.4) u =
(

N
2

)
1

N−2 v is a weak solution of the critical equation.
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It remains to check that u 6= 0. We let

µkq ,q = inf
w∈Bk,q

Fq(w)

where

Bk,q =
{

w ∈ H2 (M) : ‖w‖
q
q ≤ lq

}

.

By Proposition 1, µkq ,q is attained by by a function uq ∈ H2 (M) with ‖uq‖ = kq ≤
lq that is µkq,q = Fq(uq).

Claim 2. µkq,q are uniformly lower bounded, as q goes to N .

Indeed, in one hand we have µkq,q < 0 and on the other hand if minx∈M a(x) ≤ 0
we obtain

µkq,q = Fq(uq)

= ‖∆uq‖
2
2 −

∫

M

a |∇uq|
2
dvg +

∫

M

hu2
qdvg −

∫

M

f |uq|
q
dvg

≥ min
x∈M

h(x)k
2
q
q − max

x∈M
f+(x)kq .

Letting

Cq = max(lq, 1)

we get

µkq,q ≥

(

min
x∈M

h(x) − max
x∈M

f+(x)

)

Cq

so

lim
q→N

inf µkq,q ≥

(

min
x∈M

h(x) − max
x∈M

f+(x)

)

CN .

In the case minx∈M a(x) > 0, thanks to formula (2.5), we obtain for any sufficiently
small σ > 0

µkq ,q ≥ (1 − σ min
x∈M

a(x)) ‖∆uq‖
2
2 +

(

min
x∈M

h(x) + min
x∈M

a(x)C(σ) − max
x∈M

f+(x)

)

Cq

and taking σ small so that (1 − σ minx∈M a(x)) ≥ 0, we obtain

µkq ,q ≥

(

min
x∈M

h(x) + min
x∈M

a(x)C(σ) − max
x∈M

f+(x)

)

Cq

and µkq,q are lower bounded as q → N .

Claim 3. Up to a subsequence we have

lim
q→N

µkq,q = µkN ,N < 0 .

For q close to N , we let

0 < k < min



lq,

[
∣

∣

∫

M
hdvg

∣

∣

2
∫

M
f−dvg

]
q

q−2



 .

Since
µkq,q = inf

u∈Bk,q

Fq(u)

with

Bkq,q =
{

u ∈ H2 : ‖u‖
q
q ≤ lq

}
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we get

µkq,q ≤ Fq(k
1
q ) = k

2
q

(∫

M

hdvg + k1− 2
q

∫

M

f−dvg

)

≤
1

2
k

2
q

∫

M

hdvg

hence up to a subsequence

(5.5) µkN ,N = lim
q→N

µkq ,q ≤
1

2
k

2
N

∫

M

hdvg < 0.

Now, we are in position to show that u =
(

N
2

)
1

N−2 v 6= 0.

Claim 4. The weak solution of the critical equation (5.1) is non trivial.

In fact since u is a solution of the equation (5.1) and the sequence (uq), of
solutions to the subcritical equations, converges weakly to v in H2, we have

(5.6)
N

2

∫

M

f |v|N =

(

‖∆v‖2
2 −

∫

M

a |∇v|2 dvg +

∫

M

hv2dvg

)

≤ lim inf
q→N

(

‖∆uq‖
2
2 −

∫

M

a |∇uq|
2 dvg +

∫

M

hu2
qdvg

)

= lim inf
q→N

(

2

q

∫

M

f |uq|
q
dvg

)

.

The function uq solution of the subcritical equation achieves the minimum µkq,q =

inf
u∈Bk,q

Fq(u) , where Bkq,q =
{

u ∈ H2 : ‖u‖
q
q ≤ lq

}

.

So

µkq,q = Fq(uq) =
(q

2
− 1
)

∫

M

f |uq|
q dvg

and taking account of (5.5) and (5.6), we get
∫

M

f |v|N dvg < 0

hence

u =

(

N

2

)
1

N−2

v 6= 0.

By the bootstrap method and a method imagined by Vaugon see [12], we get that
u is of class C4,α for some α ∈ (0, 1). �
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