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Existence and multiplicity of solutions to elliptic equations
of fourth order on compact manifolds.
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ABSTRACT. This paper deals with a fourth order elliptic equation on compact
Riemannian manifolds, the function f involved in the nonlinearity is of chang-
ing sign which makes the analysis more difficult than the case where f is
of constant sign.We prove the multiplicity of solutions in the subcritical case
which is the subject of the first theorem. In the second one we establish the
existence of solutions to the equation with critical Sobolev growth.
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1. Introduction
Let (M, g) be a Riemannian compact smooth n- manifold n > 5 with the metric
g, we let H2(M) be the standard Sobolev space which is the completion of the space
C2(M) = {u € C*°(M): ||uH22 < —l—oo}

with respect to the norm ||ul|, , = 212:0 HVlu||2.
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204 MOHAMMED BENALILI
Let Hy be the space HS endowed with the equivalent norm
1
2 2 2)2
lullyr, = (2wl + 19ull3 + ull3)
where, A(u) = —div(Vu), denotes the Riemannian Laplacian.

First we establish the existence of at least two solutions of the subcritical equa-
tion

(1.1) A%y + Vi(a(z)Viu) + h(z)u = f(z) |u]?>u

where 2 < ¢ < N. Next we investigate solutions of the critical equation

(1.2) Au+ Vi(a(z)Viu) + h(z)u = fz) |u)V > u

where a, h and f are smooth functions on M and N = % is the critical
exponent.

The function f involved in the nonlinearity is of changing sign which makes the
analysis more difficult than the case where f is of constant sign.

The equation (1.1) has a geometric roots, in fact while the conformal Laplacian

n—2
L =Au+—=<R
g(u) = Au =1

where R is the scalar curvature of the metric g, is associated to the scalar curvature;
the Paneitz operator as discovered by Paneitz ([10]) on 4-dimension manifolds and
extended by Branson ([3]) to higher dimensions (n > 5) reads as

—-2)2+4 4 n—4
PB,(u) = A%u + div(——" R. Ric)du + ——Q"
g (u) u ~+ div( =D =2 g+n_2 ic)du + ) Q"u
where Ric is the Ricci curvature of g and where
1 n® —4n? + 16n — 16 2 2
o AR - Ri
AT} h T § T g 1 =) 1Ficl

is associated to the notion of @) -curvature, good references on the subject are
Chang ([5]) and Chang-Yang ([6]). When the manifold (M, g) is Einstein, the
Paneitz-Branson operator has constant coefficients. It expresses as

PB, = A*u+ aAu + au

with
n?—2n—4 (n—4)(n? —4)
=———R and a=-~—"——"R?
T =1 M T Tenm—1)2

and this operator is a special case of what it is usually referred as a Paneitz- Branson
type operator with constant coefficients.

Since 1990 many results have been established for precise functions a, h and f.
D.E. Edmunds, D. Fortunato, E. Jannelli ([8]) proved for n > 8 that if A € (0, A1),

with \; is the first eigenvalue of A? on the euclidean open ball B, the problem

u=2% =0ondB

{ A2u—)\u:u|u|ﬁ in B
on

has a non trivial solution.
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In 1995, R. Van der Vorst ([12]) obtained the same results as D.E. Edmunds,
D. Fortunato, E. Jannelli. when applied to the problem

AQu—Au=u|u|% in Q
u=Au=0 on 0

where (2 is an open bounded set of R” and moreover he showed that the solution
is positive

In ([7]) D.Caraffa studied the equation (1.1) on compact manifolds in the case
f(z) =constant; and in the particular case where the functions a(z) and h(z) are
precise constants she obtained the existence of positive regular solutions.

In the case of second order equation related to the prescribed scalar curvature,
that is

n—2 o*_1

(1.3) Au+4(n_1)Ru—fu
where 2* = %, A. Rauzy [11] stated, in the case where the scalar curvature R of
the manifold (M, g) is a negative constant and f is a changing sign function, the
following results.

Let f be a C* function on M, f~ = —inf(f,0), f+ = sup(f,0) and

Vul* d
Af = infifM| ul” dvg
weA [, utdvg

where A = {u € H}(M),u>0, u#0st. [, fTudvy =0}, and Ay = +oo if
A=o

THEOREM 1. Let (M,g) be a smooth manifold with constant scalar curvature
R < 0 and let f be a smooth changing sign function on M. Suppose that there

exists a constant C' > 0 which depends only on such that if f fulfills the

f-
f Jdvg
following conditions .
(1) [R] < =2 )

n

2) ;;a-g; <C.

Then, the equation (1.8) admits a positive solution.

THEOREM 2. Let (M,g) be a smooth manifold with constant scalar curvature
R < 0 and let f be a smooth changing sign function on M. Suppose that there

exists a constant C' > 0 which depends only on such that if f fulfills the

f-
f Jdvg
following conditions .
(1) [R] < =)

n

(2) fRL-<C

(3) supy, f > 0.

Then the subcritical equation Agu+ Ru = fu?™', q € ]2,2*[ admits two nontrivial
distinct solutions.

More recently [2] the authors have extended the work of Rauzy to the case of
the so called generalized prescribed scalar curvature type equation

(1.4) Apu + auP~t = fuP 71
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where p* = n"—_’;), Apu = —div(|Vu|p72 Vu) is the p-Laplacian operator on a com-
pact manifold M of dimension n > 3, with negative scalar curvature, p € (1,n),
u € HY(M) is a positive function, f is a changing sign function and a is a negative
constant. Let

Vul|’ d
)\f = inf 7“[]\/[ | U| Ug
ued [, uPdug
where A = {u € H{(M),u>0,u#0st. [, fTudv, = 0}, and Ay = +oo if
A=¢
THEOREM 3. (Critical case) There is a constant C > 0 which depends only on
/([ f~dvy) such that if f € C°° on M fulfills the following conditions
(1) la| < Ay

(2) (supft/ [ f=dvg) < C.
Then the equation (1.4) has a positive solution of class C1*(M).

THEOREM 4. (Subcritical case ) For every C*- function on M there is a
constant C' > 0 which depends only on f~/([ f~dvg) such that if f fulfills the
following conditions

(1) lal < As

(2) (supft/ [ f-dvg) <C

(8) sup f > 0.

Then the subcritical equation

Apu+auP™t = ful™t g €lp,p*|

has at least two non trivial positive solutions of class C1*(M).

For a, f , C*° -functions M, we let

N b= inf fM(Au)zdvg - fM a |Vu|2 dvg
ol = ea Sy u?dvg

WhereA:{ueHg,uZO,uiéOs. t. fo*udvg:O}, and
Aa,f = oo if A= ¢.

Let h be a smooth negative function on M, we consider the functional F; defined
on Hsy by

Fyfw) = [8ul} = [ alVuldo,+ [ iido,~ [ e, qe(@N).
M M M

In the case of fourth order elliptic equations on manifolds with changing sign right
hand side, no work is done at least I know off. While we borrow ideas from the
paper of Rauzy ([12]), our method is not an adaptation of that of Rauzy, since
the behavior of fourth order operators differs from that of second order ones. It
is essentially due to the structures of the spaces H? (M) and H3(M): indeed if
uw € H? (M) so does |u| and the gradient of |u| satisfies |V |u|| = |Vu| and also the
analysis on H2 (M) is more complicated than on H? (M). In this paper we state
the following results

THEOREM 5. Let a, h be C* functions on M with h negative. For every C*
function, f on M with fM f~dvg > 0, there exists a constant C' > 0 which depends
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only on ﬁ such that if f satisfies the following conditions

(1) [h(@)] < Aa,y for any x € M
sup f+

(2) 7524, <C

(3) Supr > Oa

then the subcritical equation

A%u+ Vi(aViu) +hu= flul' *u, qe]2,N]

has at least two distinct solutions uw and v satisfying Fy (u) < 0 < Fy (v) and of
class O+, for some o € (0,1).

THEOREM 6. Let a, h be C°° functions on M with h negative. For every C'*°
function f on M with fM f~dvg > 0 there exists a constant C' > 0 which depends
only on fff%dv such that if f satisfies the following conditions

E g9

(1) |h(z)] < Ao for any x € M

(2) fb-<C

the critical equation
A%+ Vi(aViu) + hu = f|ul¥ %u
has a solution of class C*®, for some o € (0,1), with negative energy.

To have applications to conformal geometry, we must obtain positive solutions
but this is a difficult problem because of the lack of a maximum principle, This will
be treated in a separated work.

If the set A = ¢, the condition (1) of Theorem 5 and 6 is fulfilled.

Suppose that A # ¢ and let p = inf,c 4 %.

REMARK 1. We get smooth functions for which we have solutions by observing
See Lemma 2 ) where € is any positive real number and Ko, Az (€) are the constants
of the Sobolev inequality given by Lemma 1.

Let Byg = qu € Ha: [julfj = k}, where |||, denotes the L-norm, and put

pk,q = infuep, , Fy(u). The method used in this paper consists in the case of
Theorem 5, to show that the curve & — py 4 is continuous as a function of the
argument k, starts at 0 goes by a relative negative minimum, which is attained,
and takes positive values for £ in some interval [, and finally goes to —oo, to do so
many a priori estimates are given, then we deduce the existence of two solutions of
the subcritical equation, one of negative energy and the other of positive energy.
For the proof of Thorem 6, we show that the sequence of solutions of the subcritical
equations, with negative energies,obtained in Theorem 5 is bounded in Hj as g tends
to N = n2f4, the critical Sobolev exponent. By classical arguments, we show that
up to a subsequence u, converges weakly to a solution u of the critical equation.
After, we show that u is of negative energy i.e. u Z 0.
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2. Preliminaries

Let a, h be C* functions on M with h negative. We suppose without lost of
generality that the Riemannian manifold (M, g) is of volume equals to 1. Since it
is equivalent to solve the equation (1.1) with f or af ( « a real number # 0 ), we
consider the functional F, defined on Hj by

Fy(u) = || Aull} _/ a|Vul® dv, +/ hu?dv, _/ flulfdvy, qe(2,N)
M M M
and set
Biog = {u e Hy(M), ||ul =k}
where k is some constant. Let

prg = Inf Fy(u),

k,q

we state

PROPOSITION 1. The infimum py,q is achieved. Futhermore any minimizer of
the functional Fy is of class C**, a € (0,1).

Proor. We have
2 .
(2.1) Fy(u) > [|Aul; = [lag || [ Vul; + ki min o(z)

—k iré%f(x)

where a (x) = max [a(z),0] and ||.||, is the supremum norm.
The following formula is well known on compact manifolds

||V2uH§ < ||Au||§ —/ RicijVu;Vujdug
M

(2.2) < | Aul; + B[Vl .

where [ is some constant. As it is shown in ([1] p.93), for any 7 > 0, there exists
a constant C(n) depending on 1 such that

2
(2.3) IVully < n[V2ully + CO) ull;
Plugging (2.2) in (2.3), we get
(24) IVully < ol Aully + 0B Vull; + C@) flull;
and choosing 7 such that ng < %, we obtain

2 2 2
(2.5) IVully < 2n[|Aully +2C0) [Jull; -
The inequality (2.1) reads then
2
Fy(u) = [[Aully (1 =27 lat]l)

+7 iy ) — 200 sl ) = K 10

and then, with 7 small enough, we have

1= 2 flas] =a>0
SO
(2.6) Fy(u) > a||Aul; + C
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where o is some positive constant and C| is a constant independent of w. Let (u;)
be a minimizing sequence of the functional F, in By 4; so for j sufficiently large
Fy(u;) < pg,q + 1 and by (2.6), we get
2 1
1Au;ll; < = (kg +1 = C1).
By formula (2.5) and the fact
2 2
l[uslly < ko,

we obtain that ||Vuj|\§ is bounded. It follows that the sequence (u;) is bounded in
H,. Consequently u; converges weakly in Hy, the compact embedding of Hy in LY
and the unicity of the weak limit allow us to claim that there is a subsequence of
(u;) still denoted (u;) such that

uj — u strongly in L® for any s < N
Vu; — Vu strongly in L?
and
ol < limine ],

Consequently

Fy(u) = HAqu—/ a|Vu|2dvg+/ hu2dvg—/ [ |ul? dv,
M M M

SlimianAujH;—lim/ a|Vu,|? dvg—l—lir_n/ hu?dvg—lir_n/ I lus|? dog
J J Jm J JM J JM

= h}nFq(uj) = Hk,q
and since clearly
lullg =k
we obtain that
Fy(u) = prq -
So w fulfills

/Au.Avdvg—/ a(a:)Viu.Vivdvg—l—/ h(z)uvdug
M M M

3 | f@)ul* v, = My [l vy
M M

for any v € Hy; where )\ 4 is the Lagrange multiplier and u is a weak solution of
the equation

(2.7) A%y + Vi(aVu) + hu = ()\k,q + gf) u]?? .

Using the bootstrap method, we show that v € L%(M) for any s < N, so
P(u) = A?u+Vi(aVu)+hu € L*(M) for any s < N and since P is a fourth order
elliptic operator, it follows by a well known regularity theorem that P(u) € C%(M)
for some a € (0,1). Then u € C**(M) . O

PROPOSITION 2. Ly q 5 continuous as a function of the argument k .
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Proor. For any k , 1 € RT, let u and v be two functions of norm 1 in L¢ such
that Fq(k%u) = ug,q and Fq(l%v) = g -
Then
1 1 1
Mg — Bhg = Fy(liv) — Fo(kav) + Fy(k7v) — pug

= Fq(kév) ~ Hk,q

+(I7 — k) (|A’UH§—/ a|Vv|2dvg+/ hv2dvg)
M M
=8 [ floftn,
M

On the other hand, we have

fg = Fy(liv) =17 <|Av|§ —/ a|VU|2dvg+/ hv2dvg) —l/ I vt dvg,
M M M

1 2
qu(la):la/ hdvg—l/ Fav,
M M
||A’UH§—/ a|VU|2dvg+/ hv?dv, <
M M

/hdvg—zl—%/ fdvg+zl—§/ flv]? du,.
M M M

Since [|v[|] = 1, it follows that the term [, f|v|* dv, is bounded for any I in a
neighborhood of k and so the term [|Av|; — [,, a|Vo|* dv, + [,, hv*dv, is upper

bounded. Also since i 4 is lower bounded, it follows that ||A’UH§ — [y a IVol? dv, +
Jo; hv*dvy is bounded in a neighborhood of k.
Consequently

i.e.

lim inf(py,q — prg) 2 lim inf (Fq(kév) - uk,q)
and by the definition of py 4, we get
(2.8) lim inf (1 — piq) > 0.

By writing

1 1 1
g = Bk,g = g — Fy(lau) + Fy(liu) — Fy(k7u)
= Mg — Fq(léu)

+(13_k3)<||Au|§_/ a|Vu|2dvg—|—/ hu2dvg)
M

M
—(1— k)/ I |ul? dv,
M
we get
lim sup(pu,q — pg) <0

and taking into account of (2.8), we obtain

lim py,q = pir,q -
l—k
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3. A priori estimates

First, we quote the following Lemma due to Djadli-Hebey-Ledoux and improved
by Hebey [9].
LEMMA 1. Let M be a Riemannian compact manifold with dimension n > 5.
For any € > 0 there is a constant As(e) such that for any v € Ha ||u|\?v <
4 _4
K2(1+e¢) ||Au||§ + As(e) ||u||§ with K32 = mn(n —4)(n* — 4)I (2)" T'(n) ™.

Suppose that the set A = {u € Hoy, u#0s. t. fM f7|uldvg = 0} is non empty.

LEmMA 2. If f{meM : dvy as a function of the variable f tends to 0, Aq ¢

f(z)=>0}
goes to +oo. In particular the condition f{wEM ()30} dvg < K3 (1+¢€) ||| +

Ay (e) + pllal|l,  implies that  Xa 5 > ||h] -

PrOOF. For any u € A, we obtain by applying successively the Holder inequal-
ity and the Sobolev one given by Lemma 1,

x 1-
/ udv, < / luY dvg / dvy
{meM : f()>0} {zeM : f(x)>0} {zeM : f(x)>0}
5 4
2 w
= (/ |u|Ndvg> / dv,
M {zeM : f(z)=0}

< (K2 L+ o aal + 42 (@ Jull) | [ v,
{zeM : f(x)>0}

2

N

4
n

So
_a )
" Vul®d
(/ dvg> < K3 (14 €)Aas+ Az (e) + inf Jya@)]| 2u| Yo
{weM : f(2)>0} zeA [l

2
and letting p = inf,ca % , we get that

2

_4
1 .
pr > e (| dvy | = Az () = pullall .
! K3 (1+¢) ( {e€M : f(z)=0} g)

where [la|, = supgen |a(z)].
Hence if f{zeM . f(x)>0) Qg tends to 0 as a function of the variable f, Aq y
goes to +o0. (I

Denote also by ||h|| ., = sup,eas |2(2)] the supremum norm.
As in [11], we define the quantities,

1Au|l; — [y alVul* dvg

u€A(n,9) ]|

A(n’q):{UEHQ: Hul|q:1= /Mf_|u|qdvg:77/Mf_dvg}

for a real n > 0,

Aa,fﬂz,q =

with
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and ) )
[Aully = [y a|Vul” dug

ueA! (n,q) ull3

/ _
a,fm.q —

where

A’(n,q)—{ueHzr =1, [ s puitas, <o | fdvg}-
M M

Now, we will study Aq,f,5,4 , to do so, we distinguish ( as it is done in [11]) the case
where the set {z € M : f(x) > 0} is of positive measure with respect to Riemannian
measure and the case where the set is negligible and sup,¢,,; f = 0.

Case fT > 0.

CLAM 1. For any real n > 0, the set A(n,q) is not empty .

Indeed, the set A’ (7, ¢) is not empty since it includes the set of functions u € Hy
such that [lu]| = 1 and with supports in the set {z € M : f~(z) <n [, f~dv,}.
The same arguments as in [11] show that | , is achieved by a function v €
A'(n,q) and moreover v satisfies [,, f~ |u|* dvy =0 [, f~dv,.

The following facts which are proved in [11], for the Laplacian operator remain
valid in the case of the bi-Laplacian operator: X’ s a decreasing function with

a.fima
respect to 1, bounded by Aa.f and Aa,f,,q = Ayt 40 SO Aa,f,n,q 15 also a decreasing

function with respect to 1, and bounded by A, ¢ .
LEMMA 3. For any q € 12, N[, Aa,fn.q goes to Aq f whenever n goes to zero.

PROOF. Aq s p,q is attained by a family of functions labelled v, 4. The functions
vy,q indexed by 1 are bounded in H3: since

onally < llom.all; Vol(M)'~2 =1
and
1804115 = ot oo [1V0nall5 < Aa.sina lvnally
< Aot 1onglly < Aa.s-
By formula (2.5), for a well chosen € > 0, there is a constant C'(g) > 0 such that
IV0n.ql5 < 26 [|Avg,qll5 +2C () llvg.ql

S0
2 2
[Avgnlly < Aa.g + la+]oo VOl

< s +2 sl (2 1804l13 + CE) unall3)
and
180015 (1 = 2¢ [lat]lo0) < Aoy + 2 [latllo Cle).
By choosing € > 0 small enough such that
1—2¢lay| >0
we get that
18040115 < O (Nags llat ]| - )
where C'(Aq. 7, |la+| o »€) is a constant depending of Mg f, [|ay || s €.
IVognlly < 26C(Nag llat]l &) +2C(e) < C'(a g, lat o »8)-

Consequently the sequence (vg,y),, is bounded in Hy and we have
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Vgn — Vg weakly in Ho.
Vgn — Vq strongly in H2 r=0,1
Vgn — Uq strongly in L?
and

2 N 2
|Avg |5 < nh_n}O inf || Avgyll5

Also
llvgll, = 1.

/f_|”qn|qdvg:77/ I dug
M M

On the other hand

SO
/ I~ |vg|* dv, = 0.
M
Hence
vg € A
and

2 2 2
o0l 30 < N0l = [ a9, P,

. 2 2 . 2
< lim inf (HA”ang _/ a|Vugy| dvg) = lim inf [Jvgy |l (Aa.f.9m)
n—s>0 M n—>>0
and since by construction
/\a-,f 2 /\a,fytm

we get that
limO Aa,frqm = Na,f-

n—

O

LEMMA 4. Let € > 0, there ewists 1, such that for any n < n,, there is g,
such that Aa,f,.q,n = Aa,f — € for any ¢ > gqy.

PrOOF. We proceed by contradiction. Suppose that there is a €, > 0, such
that for any n there exists an n, < n and for any ¢,, there is ¢ > g,, with
Aa,frgm < Ap — €. If vg, is the function in Hy which achieves A, f 4., , then

2 2
. ||A”qn||2 - fMa‘ | Vg, |™ dvg

Aa,f',qm = 2
||Utm||2

with ||”q77||g = 1. For a convenient 7, we choose a sequence g converging to N such
that

18015 — / @ |Vogy|* dvg < Xaj = 0.
M

By the same argument as in the proof of Lemma 3, we get that the sequence vg,,
indexed by ¢ is bounded in Hs so up to a subsequence vg, converges weakly to vy,
in Hy and strongly in H2? , r = 0,1. Also we have

2 o 2
|Av, 5 < qh_n)lN inf || Avgy|[5
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and by the strong convergence in HZ, r = 0,1, we get

| Av |2 - /Mawﬁdvg < (s —20) [on]2

By the Sobolev inequality given in the Lemma 1 we have for any €; > 0 there
is a constant A(e1) > 0 such that

1= H”anz < H”qn”?v ( since the manifold M is of volume 1)

2 2
< K3 (1+e1) ([ Avgnlly + A(e1) [vgnll;
2 2
< [K3 (14 e1) Aag + Ale1)] [lvgnlly + +(K3 + e1) las [l o [Vvgyll5
< [K3 (14 1) (1+ llatll ) Aa,s + AleD)] lvgnllZs -
Consequently

) 1
lealle 2 G T e G Tor ey + AGDD

As in [11] we can show that

/|Un| dvg <1 and/ f7|vn| dvg<77/ fdvg.

Consider the sequence of 1 such that for any g, there is a ¢ > ¢, with

/\a_’fqu < )\a,f — .

Now tending 7 to 0, if v, is the sequence corresponding to 7 previously considered,
vy is bounded in Hs and

) 1
lealle 2 G T e G Tor ey + AGDD

so v, converges weakly to v # 0 in H> and strongly to v in H2, r =0,1 and v
satisfies

2 2 2
(3.1 8003 = [ Vol do, < (g =20) .
On the other hand
0 §/ f~ |v|Ndvg < lim inf/ f- |vn|Ndvg < lim 77/ [ dvg =0
M n—>0 M =0 " Jm

then [, f~ [v]dvy = 0 and v belongs to the domain A of definition of \,, ;. Hence
HAUH2 Jua |VU| dvq

)\a,f <
T v|? dv,
A contradiction with the inequality (3.1) and Lemma 4 is proved. O
Case f+=0.
In this case Ag s is not defined so Ay, s = +oo. First, we give the lemma

equivalent to Lemma 3

LEMMA 5. Let q € ]2,N[. For any positive constant R, there exists 1, such
that for any n <no, Aqfnq > R.
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Proor. We argue by contradiction. It is easy to show that A4, ¢4, is achieved
by a function vg, in Ha with [[vgy[|, = 1. Suppose that there is Aq,f.y,q bounded
when 7 goes to 0. Then

2
1AV, 115 — lat ]l [ Vo

2
qunnHQ

2
qnnHQ

180l = llat |l |V, |17 <

< /\a_’fqu < +o00.

and proceeding as in the proof of Lemma 3 we get that the sequence vy, indexed by
7 is bounded in Hy. Consequently the sequence vg, converges weakly to vg in Ho
and converges strongly to v, in H2? , 7 = 0,1, and strongly to v, in L9 as 1 goes to
0. [or [ [vg]* dvg = 0 which implies that v, = 0 almost everywhere and [vg[|, =1
which are in contradiction with each other. O

Now we give an analogue to Lemma 4.

LEMMA 6. There exists an n, such that for any n < 7, there is g, such that
for any q > ¢, we have Aq f.q.n > |1 -

The proof of this lemma is similar to the previous ones so we omit it.
Let ¢ > 0, any sufficient small real number, with the previous notations we
obtain by using the lemmas quoted above the following

LEMMA 7. (1) Suppose that supy, f > 0 and ||h|| < Aa,f. There exists n such

that Xa.f,q.n — ||P]l o = €0 > 0.
_ (1—20]lay | )eo
Let b= [(cotlIll o +2llat]l o O o)) K3 (1+e)+(1-20lat |, ) Ale)]
p = inf (b, ||h||, + 2 |la+||,, C(0)) and suppose that
supy S Ln
Jag £ dvg 8(IInll o +2lla4 1, C (o))

pearing in the Sobolev inequality given by Lemma 1. For any q € |2, N| there exists

where and K3, A(e) are the constants ap-

a non empty interval I, C Rt such that for every uw € Hy with L1-norm ki and
ke Iy = [ki,q, k2,4 we have Fy(u)> %uk%

(2) Suppose that supy, f = 0 and ||h||, < Aa,f , there exists an interval I, =
k1,4, 00| such that for any k € I, and any u € Ha with |ullj = k, we have

2
Fy(u) > Suka.

PRrOOF. Case: fT > 0.
Let u € Hy such that [jul|] = k.
Putting

Golw) = 180}~ [ alVuPdv, + [ hatdv,+ [l du,
M M M

we get

Gylu) 2 [ Aul; = llas o IVully = I1All llull; + /M £ [ul" dvg

and taking account of (2.5), we obtain that for any suitable real o > 0, there is a
constant C(o) > 0 such that

Gyl(u) = (1= 20 ||as || ) | Aull;



216 MOHAMMED BENALILI

— (IAlle +2C(0) llat o) lull; + /M 7 lul® dvg.

So if
/ I~ |u|qdvg > nk/ fdug
M M
then
2
Glw) > (1— 20 [lag|) 1Al
(3.2) — (Il +2C(0) llas I lull? + 1k /M f~dv,

with ¢ > 0 sufficiently small so that
1—20|lay|l,, > 0.

Now since ] 2 2
lull? < [[ulli Vol(M)'~F = ki

we get

Gylu) > & [— (Il + 2lla o, Co)) + k'~ /Mfdvg}

2 nklf% _
zm<|h||m+2||a+|ooc<o>>(m| I dvg—1>

and choosing k such that

2
nk'~a / _
fdv, —1>1
7l +2latllo Clo) S I
that is .
=
s ol 2lecl Clo)
nfM J~dvg
we obtain )
Gq(u) = k7 (Al + 2 llat][o C(o)) -
Let

N AU TR )
" 1 [y fdvg
In the case [,, [~ |u|? dvy < nk [, f~dv,, we have
80l = [ alVul doy > Al

SO
Galw) 2 Mg [l + [ Hduy+ [ pult o,
M M

2 _
> Ohugina = Il + [ 77 ol oy
by Lemma 4 and 6 there exists 1 such that
Aastmg = 1l = €0 > 0.
Now, putting d; + d2 = &,, where d; and Jo are positive real numbers, and solving
Hu||§ in (3.2), we get
1
ully >
27 Il +2llas o Clo)

=20 a2 180l ~ Gyl + [ 5 ", .
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Consequently
d2
14
< 12l + 2 lla+]lo C(o)
02
Al +2latll C(o)

) Gy () > 61

2
i (1 =20 [lat]lo) | Aull;

SO
o1 ([Pl o + 2 lla o Co)) 82 (1— 20 |jar||.) ,
G,(u) > o0 0 o Au
g(u) = 0]l +2lay], Clo) + 6 T +2]as]l C(o) + 02 ([ Aull;

and where o is sufficiently small and such that 1 —2|jay|, o > 0.
Or

2
[[llz +

02 (1 = 20 f|ay|[)
(IPlloe + 2 llat ]l Co) +02) (K3 +€)
01 ([l oo + 2la [l Clo) (K3 +¢)
02 (1 =20 [lay|[) Ale)

Gg(u) >

x | K3 (14 ¢) || Aull; + Ae) llull;

where for any fixed ¢ > 0, K3 denotes the best Sobolev constant in the embedding
of HZ(R™) in LI(R™).
Taking §; and d2 such that
31 (|Ihllo + 2 [la+]l C(0)) (KF +¢)
b2 (1 =20 [lat||) Ale)

we get
. (1 20 las L) AG) ]
(Al + 2as | o)) K2 (L + &) + (1 =20 ay o) AG)
and
. (Il +2llas ]l o)) (K3 + <) ]
(Al + 2as ], C@) K2+ &) + (1 —20 [z o) AG)
Consequently
52 (1~ 20 as]l.0) )
G, (u) > 29 n
o) 2 R T 2 ag Clo) + 62) (W &) 1 la
and since
Wl 42 las oy C(0) + 62 = (Il + 2 las o, C(0))
2
x |1+ K22(1 t+e) e,
Tl + 2as | Ol K2 (L + &) + (1 =20 ay o) AGE)
ot Ul + 2ol Clo) K3 (14 2) + (1= 20 [las ) AG)
Tl + 2as ], C0) KZ(+2) + (1~ 20 las]o) AG)
we get that
(1 20 s |l e .
Gg(u) > == ka.
) 2 TR 2 ar o Clo)) K2 (1 + &) + (1= 20 lar ) A
Letting

B (1~ 20 ]z [l 0
(o + TRl T 2z Clo) K3 (1 +2) + (1~ 20 [las] ) A=)
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we get
Fyfu) = Gyu) = [ 1* ful'do,
M
> b —/ £ lul"dvy = bkE — ksup £ = k3 (b— k17 sup £).
So if supy, f >0, kﬁ p=1inf (b, || k||, + 2 |la4||,, C(0)). For any k > k; 4, we have

2
Fy(u) > ki (ju— k'~ sup f)
w1 and suppose that sup,, f < C, fM o,

. _ n
Now if we put Cq = g1 5@

we obtain that the inequality is fulfilled provided that

-2
s [l 2ol D)™ _ ey,
1 [y Fdvg
and )
Fy(u) =2 iﬂk%
provided that
I a=2
k< .
- LSpr}
We put
ko =272k ,.
Case fT =0.
In this case, for any k& > kq 4,
1
Fo(u) 2 gﬂk%

4. Subcritical case

First, we show the existence of a solution to the subcritical equation with
negative energy.

LEMMA 8. For each t > 0, small enough, | li‘nf F,(u) <0, gq€]2,N].

u H2§t

In fact Fy(t) < t? (h—t772 [}, fdvy), where h = maxy; h(z), and since h < 0,
there is ¢, > 0 small enough such that inf F,(u) <0 for each t € ]0,%,].
t

lull, <

PROPOSITION 3. Let a, h be C* functions on M , with h negative. For every
C* function, f on M with fM f~dvy > 0, there exists a constant C > 0 which

depends only on ffj%dv such that if f satisfies the following conditions
g

(1) |h(2)] < Aa,y for any x € M
su +
() i, <C
then the subcritical equation

(4.1) Auy + Vi(aViug) + hug = flug|" *u ,  with g €2, N]

admits a C**, for some a € (0,1), solution u, with negative energy.
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PROOF. For any ¢ € ]2, N[ and k > 0, let pg,q = inf”w”g:k F,(w). First we
remark that if £ is close to 0, £ > 0, pg,q < 0 : indeed

fihg < Fy(kt) = ki (/ hdv, — kl’é/ fdvg> <0.
M M

By Proposition 2 the real valued function k& — py,4 is continuous and 4 goes
to 0, when & — 0. So by Lemma 7 and 8 the function k¥ — pus 4 starts at 0,
takes a negative minimum, say at k,, then takes positive values. Let I = k14 =
[2||h||m+2na+||ooc<a> 2

n fM fdvg
Lemma 7, then

the lower bound of the interval I, given in the proof of

ph,q = inf  Fy(u).
T fulia<t,

By Proposition 1 the infimum pik4 4 is attained by a function v, € Hy with qu||g =
kg , s0

Now since for any k4 € I;, and any v € Hy with ||u||g = kq, Fy(u) > 0, it follows
that k, < 4. So v4 is a critical point of Fy , that is for any ¢ € H»

/Aqugadvg—/ aVvgVedvg+
M M

q _
/ hvgpdvg — 5/ I lvgl? 2 vgpdvg =0
M M
q

then u, = (5)7121},1 is a weak solution of the subcritical equation with negative
energy such that

q._a_
luglly < ()™,

Moreover, arguing as in the proof of the Proposition 1, u, € C**(M) with a €
(0,1). O

Now we are going to seek a second solution to the subcritical equation with
positive energy.
We start by showing that Fj, with ¢ € ]2, N|satisfies the Palais-Smale condition.

LEMMA 9. Let ¢ be a real number, then each Palais-Smale sequence at level ¢
for the functional Fy, satisfies the Palais -Smale condition.

PROOF. First, we show that each Palais-Smale sequence is bounded: we argue
by contradiction. Suppose that there exists a sequence (u;) such that F,(u;) tends
to a finite limit ¢, F(u;) goes strongly to zero and w; to infinite in the Ha-norm.
More explicitly we have

/ ((Auj)2 —a|Vu;* + hu?) dv, — / f ul? dvy —
M M
and
2 2 q -1
/M ((Auj) —a|Vu,|” + hu?) dvg — 3 /M flulj™ vdvg — 0
so for any € > 0 there exists a positive integer A such that for every j > A we have

'/M ((Auj)2 —a |Vuj|2 + hu?) dvg — /M f |u|§ dvg — ¢

<e
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and

/M ((Auj)2 —a|Vu,)* + hu dquvq / flulf™ Yodv,| <

Hence, we get

(4.2) (q— 2)/ (Auj)2 —a |Vuj|2 + hu?dvg —qc| < (g4 2)e
M
and
(4.3) (q— 2)/ [ luil? = 2¢| < de.
M

By Lemma 7, we can choose k to be an L?— norm such that

[l ||nf Fylu) >
Letting v; = ko HU’JH , we obtain from (4.2) and (4.3) that
2
2cka ka
(4.4) q—2/f|vjl"d < -
I I [l
and
2
12
(q— 2)/ (Avj)2 —a |ij|2 + hvjz-dvg —qc——s
M [l
2
kq
(4.5) <(@+2)e—s
[l

Now since ([[vj]|,); is a bounded sequence, it follows by (4.5) that (v;) is
bounded in Hy. If [|u;||, goes to infinity, it follows from (4.4) and (4.5) that Fy(v;)
goes to zero. And since ||vj|\g =k, we have

it Fy) < Fy)
o

inf F,(u) <O0.
lull2=k a(v) <

Hence a contradiction. Then the sequence (u;) is bounded in Hs. Since ¢ < N,

the Sobolev injections are compact. Consequently the Palais-Smale condition is
satisfied. O

LEMMA 10. Let u € Ha. If the Lg-norm |ull{ =k goes to +oo, then pyq =
inf”uHZ:k Fq(u) — —0O0 .

PROOF. In fact since sup,cy, f(z) > 0 let u be a function of class C? with
support contained in the open subset {z € M : f(z) > 0} of the manifold M such
that [lul|] = 1, then [y, f|u|? dvy > 0 and

Fy(ku) = ki (/M ((Au)2 —a|Vul* + hu2) dvy — kT /M Flul? dvg) :

So limg— 400 Fy(ku) = —o0 . O
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PROPOSITION 4. Let a, h be C* functions on M with h negative. For every
C* function, f on M with fM f~ >0, there exists a constant C > 0 which depends

only on ff% such that if [ satisfies the following conditions

(1) [h(@)] < Aa,y for any x € M
(2) B <C
(3) sup f >0,

then the subcritical equation
A%u+ViaViu) +hu= flul?u, ¢e]2,N]
admits a nontrivial solution of class C*®, for some o € (0, 1), with positive energy.
PRrROOF. By Lemma 7, 8 and 10 the curve k — p, 4 starts at 0, takes a negative
minimum, then takes positive maximum and goes to minus infinite. Mimicking
which is done in ([11]), let I, be an L%-norm such that y, 4 is a maximum and I,

Iy two Li-norms such that p, ¢ = pu,,q = 0 with Iy <, and Iy > I,.
Set
['={yeC([0,1],H2): ¥(0) = u,,q:7(1) = wiz,q} -
where uy,; g € By, 4, @ = 1,2, are such that ;¢ = Fy (w,,q) = infuep,, , Fy (w)
and

Vg = Inf nax Fy (v(@)) -

Arguing as in [11], we show that v, is a critical level of the functional F, and
Vg > pu,q > 0. Consequently the subcritical equation (1.2) admits a weak solution
of positive energy. This solution is in fact of class C** with a € (0, 1). O

Theorem 5 follows from Proposition 3 and 4.

5. Critical case
Now, we are going to investigate solutions of the critical equation.

THEOREM 7. Let a, h be C* functions on M with h negative. For every C*>
function, f on M with fM f= >0, there exists a constant C > 0 which depends

only on ff% such that if [ satisfies the following conditions

(1) |h(x)] < Aasf for any x € M
(2) 2L <cC
then the critical equation
(5.1) A%u+ Vi(aViu) + hu = flulN " u
admits a C*%, for some a € (0,1), solution u with negative energy.

PRrROOF. For each g € (2,N), let ug be the solution to the subcritical equation
(4.1) given by Proposition 3, u, is of negative energy. We have already shown in
the proof of Proposition 3 that

5 1Al +2llatll, Clo) ]2
n [y fdvg

Huq”Z =kg <l =
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3

as q goes to N, (uq) is bounded in

and since I, goes to Iy = {2Hh|\x+2lla+l\mc(o)}

n fM fdvg
L4, so it is in L? and since u, are of negative energy then

||Auq||§§/ a|Vu|2dvg—/ hugdvg—i—/ [ ug|* dvg
M M M

2 2
< llatlloo 1Vuqlly + 1Rl gl + 111l lluglly -

Now since for any sufficiently o > 0, there exists a constant C(o) such that
2 2 2
Vgl <20 |[Auglly +2C(0) [|uqll,

we get

(1 =20 lat o) [Auglly < @llatl o Clo) + l1hlloo) lluglly + 11l luqll]

2
< (2llatll Clo) + Ihllo) i+ 11.f oo La-
So (uq) is a bounded sequence in Hy. Consequently u, — v weakly in Ho, up to a
subsequence, we have

uq — v strongly in L*(M) for s < N
Vuy, — Vo strongly in L?
ug(z) — v(x) for a.e. z € M.

On the other hand for any ¢ € ]2, N[, u, satisfies, for any ¢ € Hs

/ Aqugpdvg—/ aViquigadvg—F/ hugpdvg
M M M

q _
(5.2) = §/Mf|uq|q “uy pdvg

and since the convergence of (u,) is weak in Hs, it follows that for any ¢ € Hs

/ Aqugpdvg—/ aviuqvigodvg—i—/ hugpdvg
M M M

(5.3) — / AvApdvg — / aV'uV,p)dv, +/ hvedug .

M M M
Moreover since uy(z) — v(z) for a.e. x € M and (ug) is bounded in Hy we have

g (z) [ug(2)|7? — v(x) |u(x)|N 7 forae. ze M

and

-2 ~1 N-1 N-1

Jaaal™|| = Muallf ) s < Crllugll¥ ™ < C gl
N—-1

consequently (ug) is bounded in L~ and by a well known theorem [1] u, converges

weakly to v in L~ Now for any ¢ € Ho C LY, and any smooth function f,
fo € LY ( the dual space of L%), then

(5.4) | fuat sy — [ 1o vpdu,,
M M

So by (5.3) and (5.4) u = (§)~ 2 v is a weak solution of the critical equation.
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It remains to check that u # 0. We let

fikg,g = nf Fy(w)
wEBy 4

where i
Brg={we Hy (M) : Jwl? <1}

By Proposition 1, ju, 4 is attained by by a function u, € Ho (M) with [ju,|| = k; <
lg that is px, .o = Fq(ug).

CLAIM 2. pg, q are uniformly lower bounded, as q goes to N.

Indeed, in one hand we have p, 4, < 0 and on the other hand if mingeps a(z) <0
we obtain

Hiq.q = Folug)

= ||Auq|\§—/ a|qu|2dvg—|—/ hugdvg—/ I ugl® dvg
M M M
2

> min h(x)k¢ — max f(x)k,.

zeM xeM
Letting
Cy = max(ly, 1)
we get
> i - +
kg > (i hlo) — mae () ) €,
SO

xeM

. . . _ +
qlg?v inf pug,.q > (;Iéll\r/l[ h(z) — max f (x)) Cn.

In the case minge s a(x) > 0, thanks to formula (2.5), we obtain for any sufficiently
small o > 0

kg = (1= 0 mig o) |13 + (mig o)+ mig () (0) — mae () ) €,

and taking o small so that (1 — o mingeps a(x)) > 0, we obtain

. . _ +
g (i (o) + iy (2)C (o) — e () ) €,

and py,.q are lower bounded as ¢ — N.
CLAaM 3. Up to a subsequence we have

Jim kgq = Hreren <0

For ¢ close to N, we let

q%g
0 < k <min | g, [M]

2fM fdvg
Since
Phyq = inf  Fy(u)
u€ By 4
with

Bryq = {ue o Julll <1, )
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we get

fiy.q < Fy(ka) = ki /hdvg+k1—%/ fdvg)
M M

1
< —ka / hdv,
2 Jum
hence up to a subsequence
. 1 =2
(5.5) iy, N = lim pg, ¢ < kN hdvg < 0.
’ ¢—N' " 2 M

1
Now, we are in position to show that u = (%) N=2 0 £0.
CLAIM 4. The weak solution of the critical equation (5.1) is non trivial.

In fact since u is a solution of the equation (5.1) and the sequence (ug), of
solutions to the subcritical equations, converges weakly to v in Hy, we have

N

(5.6) _/ Flofy = <||Av||§_/ a|Vv|2dvg—|—/ hv2dvg>
2 Jm M M
<lim inf HAuqﬂg—/ a|qu|2dvq+/ hu?dv,

. . 2 q
= hmqlilgv (E /Mf [ugl dvg) .

The function u, solution of the subcritical equation achieves the minimum py, , =

inf 5 F,(u) , where qu,q = {u € Hy : [|ullj < lq}.

So
q
Hiq.q = Fo(ug) = (5 - 1) / £ lug|* dvg
M
and taking account of (5.5) and (5.6), we get

/M FlolN dvy <0

uz(%)mv#o.

By the bootstrap method and a method imagined by Vaugon see [12], we get that
u is of class C*® for some a € (0,1). 0

hence
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