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Duality, vector advection and the Navier-Stokes equations

Z. Brzeźniak and M. Neklyudov
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ABSTRACT. In this article we show that three dimensional vector advection equation is
self dual in certain sense defined below. As a consequence, weinfer classical result of Ser-
rin of existence of strong solution of Navier-Stokes equation. Also we deduce Feynman-
Kac type formula for solution of the vector advection equation and show that the formula
is not unique i.e. there exist flows which differ from standard flow along which vorticity is
conserved.
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1. Introduction

The purpose of this paper is twofold. The first one is to establish a certain self-duality
formula for a vector advection equation in the spaceR3. This formula can be understood
as generalization of the helicity invariance for the Euler equations , see Corollary 3.13
and Remark 3.14. As a byproduct, see Corollary 3.13, we give anew proof of the classical
result of Serrin [29] about the uniqueness of a weak solution to the Navier-Stokes equations
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(NSEs for short)

(1.1)





∂u

∂t
+ (u · ∇)u = ν△u+ ∇p+ f,

divu = 0,

u(0) = u0

satisfying certain additional integrability condition. The second one, see Theorem 4.12,
is to establish the existence of non-classical flows along with which the circulation of the
solution of the vector advection equation is conserved in the mean. This problem seems to
us important because it could potentially lead to the new a priori estimates of the solution
of vector advection equation.

The importance of the vector advection equation stems from the fact that it appears
in many different areas of hydrodynamics, e.g. the vorticity of a strong solution of the
3-dimensional NSEs is its solution. Moreover, the major obstacle in proving the global ex-
istence of a strong solution to the NSEs is the appearance of the ”vorticity stretching” term
in the vector advection equation. It is necessary to underline that in a simpler case of the
scalar advection equation, this conceptually important term is not present and therefore the
self-duality and other properties described in this paper do not hold. Another application
of the vector advection equation is the equation for magnetic field in MHD equations, see
e.g. [24].

Let us describe briefly the main contributions of the paper.
In the first part of our paper we study the following vector advection equations

(1.2)





∂F (t, x)

∂t
= −ν(AF )(t, x)

− [P((∇F −∇F⊥)v)](t, x) + f(t, x), x ∈ Rd,

F (0, x) = F0(x), x ∈ Rd,

wherev : [0,∞) × Rd → Rd is a given time-dependent vector field,d = 3, P is the
Helmholtz projection onto the divergence free vector fieldsandA is the Stokes operator.
As usual byHk,2

sol (R
d), d ∈ N, we denote the space of all divergence free vector fields that

belong to the Sobolev spaceHk,2(Rd). Let us denote byT v
T the transport operator along

v, i.e. T v
t F0 = F (t), for t ≥ 0, wheref is the unique solution to problem (1.2). The main

result here is Theorem 3.7 in which we formulate the following self-duality formula.

(1.3) (curlF0, T ST v
T G0)H = (curl T v

T F0, G0)H , F0 ∈ curl−1(H), G0 ∈ H,

whereST is the time reversal operator, i.e.(ST v)(t) = −v(T − t), t ∈ [0, T ]. The
self-duality formula (1.3) allows us to deduce certain properties of the operatorT v

T . In
particular in Corollary 3.10 we show that theL(Hk,2

sol ,H
k,2
sol )– norm of T v

T is equal to
its L(H1−k,2

sol ,H1−k,2
sol )– norm. Moreover, in Corollary 3.12, we prove that the space

L(H
1
2 ,2

sol ,H
1
2 ,2

sol ) is in a certain sense optimal forT v
T .

The main result in the second part of the paper, Theorem 4.12,is about a certain non-
classical Feynman-Kac type formula for the solutions of thevector advection equation (1.2)
in two dimensions. We show that if the divergence free vectorfield v is time-independent
and sufficiently regular, then the stochastic flow of diffeomorphisms ofR2 Xs(t; ·), 0 ≤
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s ≤ t ≤ T , corresponding to the following SDE onR2,

(1.4)

{
dXs(t;x) =

√
2νσ1(Xs(t;x)) dW (t), 0 ≤ s ≤ t ≤ T,

Xs(s;x) = x.

where, with a functionφ : R2 → R such that1 v = ∇⊥φ,

σ1(x) =

(
cos φ(x)

ν − sin φ(x)
ν

sin φ(x)
ν cos φ(x)

ν

)
, x ∈ R

2,

has the following properties: (i) its one-point motion is aBrownian Motionand (ii) the
circulation along it of the solution of the two dimensional vector advection equation (1.2),
i.e. with d = 2, is a martingale. This flow seems to be of interest on its own because the
stream functionφ naturally arise in its construction.

The question of the existence of an analogous flow in the threedimensional case re-
mains open, see Question (4.24) for details.

It should be noticed here that a similar construction does not work for the scalar ad-
vection equation because in this case the Feynman-Kac type formula depends only upon
the law of the flow itself and not upon the law of the gradient ofthe flow. Also we would
like to point out that the main obstacle in getting a’priori estimates for solutions of vector
advection equation (in particular, for vorticity of the solution to the 3-D NSEs) is lack of
an estimate for the gradient of the flow. Therefore, in connection with this result, a natural
question is whether it is possible to choose the optimal flow for which gradient is bounded?

The main idea behind our approach to the Feynman-Kac type formula for solutions of
the vector advection equation is that in the case with viscosity equal to0, the conservation
law of circulation, known also as Kelvin-Noether Theorem, holds. In the case of positive
viscosity we are able to find an analog of this conservation law. The Feynman-Kac formula
is then an immediate consequence of that result. This idea has been used before in the
papers [25] and [26] (though with quite sketchy proofs). In the latter paper, see Theorem
5 and Example1, the Feynman-Kac formula for the solution of vector advection equation
without incompressibility condition has been derived. A somewhat similar idea has been
also explored independently by Constantin and Iyer in [6], but see also Flandoli et al. [5]
for a different approach. Moreover, Flandoli et al. [5] proved Feynman-Kac formula for
more general systems of parabolic PDEs. However, we would like to point out that in all
of the articles mentioned above only the ”standard” stochastic flow corresponding to the
following SDE

dXs(t;x)) = v(t,Xs(t;x)) dt+
√

2ν dW (t), t ∈ [s, T ],(1.5)

Xs(s;x) = x.

has been used and, correspondingly, the problems discussedhere does not appear in their
framework.

One possible application of Theorem 4.12 is the extension ofLe Jan and Raimond’s
theory of statistical solutions of the scalar advection equations, see [18], to the 2D vector
advection case. Indeed, Le Jan, Raimond theory defines statistical solutionXs(t;x) of
SDE (1.5) (corresponding to a solution of scalar advection equation in a natural way) with
velocityv given by

(1.6) dvi(t, x) =

∞∑

k=1

σik(x) dW (t)k, x ∈ R
n, t ≥ 0, i = 1, . . . , n,

1Suchφ exists becausediv v = 0.
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whereσik(·) are Hölder continuous and{W (t)k}∞k=1 is a family of i.i.d. Wiener processes.
In the case of the 2D vector advection, Theorem 4.12 implies that we don’t need to define
processXs(t;x) (It is just Brownian motion!). We only need to show that thelinear equa-
tion (4.21) for the gradient of the flow∇Xs(t;x) has a strong solution. At this moment,
there appears certain difficulty with the definition of the right hand side of equation (4.21)
for irregular vector fieldv of the form (1.6). We are of the impression that the white noise
calculus could be of some help here.

Finally, the idea of generalization of the conservation laws has been extensively stud-
ied in physical literature, where it is called statistical integral of motion or zero mode, see
e.g. the survey [9, part II.E, p.932], and references therein.

Note: After we had proved Corollary 4.3 we became aware that independently of us a
similar result was proved recently by Constantin and Iyer in[6].

Acknowledgments. We would like to thank T. Komorowski and B. Gołdys for their
useful remarks, in particular to the former one for informing us about the work by Con-
stantin and Iyer [6]. The present article derives from work done as part of the Ph. D. thesis
of the second named author at the University of York, while supported by the ORS award,
University of York scholarship and, later, by an ARC Discovery project DP0558539. The
research of the first named author was supported by an by the EPSRC grant EP/E01822X/1
and the ARC Discovery grant DP0663153.

2. Notations and hypotheses

LetD be eitherRd or an open, bounded and connected set inRd . In the latter case,
we assume that the boundaryΓ = ∂D of D is ofC3 class and we denote by−→n the outer
normal vector field to the boundaryΓ. We denote byC∞(D,Rn ) the space of infinitely
differentiable functions fromD toRn and byC∞

0 (D,Rn ) the subspace of those functions
belonging toC∞(D,Rn ) which have a compact support. Finally, let us denote

D(D) = {f ∈ C∞
0 (D,Rd ) : div f = 0}.

For k ∈ N and p ∈ [1,∞), let Hk,p
0 (D,Rn ), respectivelyHk,p(D,Rn ), be the

completion ofC∞
0 (D,Rn ), respectivelyC∞(D,Rn ), with respect to norm

‖f‖k,p = (

k∑

l=0

∑

|α|≤l

∫

D

|Dαf(x)|p
Rn dx)1/p.

We will use the following notation

Hk,p(D) = Hk,p(D,R), Hk,p
0 (D) = Hk,p

0 (D,R),

Hk,p(D) = Hk,p(D,Rd ), H
k,p
0 (D) = Hk,p

0 (D,Rd ),
Hk(D) = Hk,2(D), Lp(D) = H0,p(D,Rd ).

Finally, let us denote

H = {f ∈ L
2(D) : div f = 0, (f · −→n )|Γ = 0},

V = H
1,2
0 (D) ∩H.

Equipped with the norm‖ · ‖0,2, H is a Hilbert space. Similarly,V is a Hilbert space
when equipped with the norm‖ · ‖1,2. The norms inH andV will be denoted by| · | and
‖ · ‖. See also [33, pp. 9-15] for the definition and different characterizations of the spaces
H andV .
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By H
k,p
sol (D) we will denote the completion ofD(D) w.r.t. the norm‖ · ‖k,p. We will

often writeH
k,p
sol instead ofHk,p

sol (R
3). We also denote byHk,p

h,sol the completion ofD(R3)
w.r.t. the homogeneous norm

‖f‖hk,p = (

∫

R3

| curlk f |p
R3 dx)

1/p, k ∈ N,∈ [1,∞).

Let us also denoteH−k,2
h,sol = (Hk,2

h,sol)
∗, k ∈ N and define the spaces with fractional order

via the complex interpolation, i.e.

H
α,p
h,sol =

[
H

[α],p
h,sol,H

[α]+1,p
h,sol

]
α−[α]

, α ∈ R,

where[·, ·]β is a complex interpolation space of orderβ.
Let P : Hk,p(D) → H

k,p
sol (D) be the Helmholtz projection onto the divergence-free

vector fields, see [11] or [33].
From now on we consider the cased = 3. By × we will denote the vector product in

R3. We will often use the following properties of the vector product.

(a× b, c)R3 = (a, b× c)R3(2.1)

|a× b|R3 ≤ |a|R3 |b|R3 .(2.2)

We will identify the dualH ′ withH and so we can assume thatH ⊂ V ′. In particular,

V ⊂ H ∼= H ′ ⊂ V ′

is Gelfand triple. We will need the following results borrowed from the monograph [19]
by Lions and Magenes, see Theorem 3.1, p. 19 and Proposition 2.1, p. 18.

LEMMA 2.1. Suppose thatV ⊂ H ⊂ V ′ is a Gelfand triple with the duality relation
〈·, ·〉V′,V . If u ∈ L2(0, T ;V), u′ ∈ L2(0, T ;V ′), thenu is almost everywhere equal to a
continuous function from[0, T ] intoH and we have the following equality, which holds in
the scalar distribution sense on(0, T ):

(2.3)
d

dt
|u|2 = 2〈u′, u〉.

As a consequence we have the following result.

COROLLARY 2.2. If f, g ∈ L2(0, T ;V) with f ′, g′ ∈ L2(0, T ;V ′) then (f, g)H is
almost everywhere equal to weakly differentiable functionand

(2.4)
d

dt
(f, g)H = 〈f ′, g〉V′,V + 〈f, g′〉V′,V .

We also recall the following result from [19], see Theorem 4.1, p. 238 and Remark
4.3, p. 239.

THEOREM 2.3. Assume that

(2.5) A ∈ L∞([0, T ],L(V ,V ′))

satisfies the following coercivity condition. There existα > 0 andλ ∈ R such that

(2.6) 〈A(t)u, u〉V′,V ≥ α|u|2V + λ|u|2H, u ∈ V .
Then for allu0 ∈ H andf ∈ L2(0, T ;V ′) the problem

{
du
dt +Au = f

u(0) = u0
,
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has unique solutionu ∈ L2(0, T ;V) such thatu′ ∈ L2(0, T ;V ′). Moreover, this unique
solutionu satisfies the following inequality

(2.7) |u|2H(t) + α

t∫

0

|u(s)|2V ds ≤ (1 + 2λt)e2λt(|u0|2H +
1

4α

t∫

0

|f |2V ′ ds), t ∈ [0, T ].

We will also need the following result.

PROPOSITION 2.4. Assume that an operatorA ∈ L(V ,V ′) satisfies the coercivity
condition(2.6). Let us denoteD(A) = {x ∈ H|Ax ∈ H}. Then for allf ∈ L2(0, T ;H)
and u0 ∈ V there exists a unique solutionu ∈ L2(0, T ;D(A)) ∩ C([0, T ];V) of the
problem: {

du
dt + νAu = f

u(0) = u0
,

and it satisfiesu′ ∈ L2(0, T ;H). Moreover, there exists a constantC = C(λ, T, ν)
(independent ofu0 andf ) such that

|u′|2L2(0,T ;H) + ν2|u|2L2(0,T ;D(A)) ≤ C(|f |2L2(0,T ;H) + |u0|2V).(2.8)

PROOF OFPROPOSITION2.4. It follows from Theorem 3.6.1 p.76 of [32] that −A
generates an analytic semigroup inH. Therefore, the existence and the uniqueness of
solutionu follows from Theorem 3.2 p.22 of [20]. It remains to show the inequality (2.8).
Let us define a Banach spaceX = {u ∈ L2(0, T ;D(A)) : u′ ∈ L2(0, T ;H)} and a
bounded linear operatorQ : X ∋ u 7→ (u(0), u′ + Au) ∈ V × L2(0, T ;H)). SinceQ is
a bijection, according to the Open Mapping Theorem, there exists the inverse continuous
operatorQ−1, i.e.Q−1 ∈ L(V × L2(0, T ;H), X). Hence the inequality (2.8) holds.

�

DEFINITION 2.5. Let us define a bilinear form̃a : V × V → R by

ã(u, v) =

3∑

i,j=1

∫

D

∇iu
j∇iv

jdx, u, v ∈ V.

LEMMA 2.6. The formã : V ×V → R1 is positive, bilinear, continuous and symmet-
ric.

PROOF. Proof is omitted. �

It follows from Lemma 2.6 and the Lax-Milgram Theorem that for anyf ∈ V ′ there
exists uniqueu ∈ V such that

(2.9) ã(u, v) + λ(u, v) = 〈f, v〉V ′,V , v ∈ V.

DEFINITION 2.7. DefineA ∈ L(V, V ′) by an identity

ã(u, v) = 〈Au, v〉V,V ′ , u, v ∈ V.

REMARK 2.8. The operatorA defined above is often called the Stokes operator.

COROLLARY 2.9. The operatorA defined in Definition 2.7 is self-adjoint and positive
definite.

PROOF. Follows from the symmetry of the form̃a, Theorem 2.2.3, Remark 2.2.1,
p.29 of [32]. �
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DEFINITION 2.10. Let us define trilinear form̃b : C∞
0 (D) ×D ×D → R by

(2.10) b̃(v, f, φ) = 〈P(v × curl f), φ〉V ′,V , (v, f, φ) ∈ C∞
0 (D) ×D ×D.

LEMMA 2.11. For anyδ there existsCδ > 0 such that for allε > 0 and all(v, f, φ) ∈
C∞

0 (D) ×D ×D,

|b̃(v, f, φ)|2 ≤ |f |2V |φ|2V (ε1+δ/3 +
Cδ

ε1+3/δ
|v(t)|2+

6
δ

L3+δ(D)
),(2.11)

|b̃(v, f, φ)| ≤ 1

2
‖f‖2

V +
1

2
(ε1+δ/3‖φ‖2

V +
Cδ

ε1+3/δ
|v(t)|2+

6
δ

L3+δ(D)
|φ|2H).(2.12)

Moreover, if we assume thatf ∈ D(A), then for anyφ ∈ V the following inequality holds

(2.13) |b̃(v, f, φ)|2 ≤ |φ|2H(ε1+δ/3‖f‖2
D(A) +

Cδ
ε1+3/δ

|v|2+
6
δ

L3+δ(D)
|f |2V )

To prove Lemma 2.11 we will need the following auxiliary result.

LEMMA 2.12. For anyδ there existsCδ > 0 such that for allε > 0

(2.14) ‖f × g‖2
L2(D) ≤ ε1+δ/3‖f‖2

V +
Cδ

ε1+3/δ
|g|2+

6
δ

L3+δ(D)
|f |2H , f ∈ V, g ∈ H.

PROOF OFLEMMA 2.12. Let usp = 3 − 2δ
1+δ , q = 3+δ

2 , θ = 3
3+δ . Then 1

p + 1
q = 1

and therefore by the inequality (2.2), the Hölder inequality, the Gagliardo-Nirenberg
inequality (see Theorem 9.3, p.24 in [10]) and from the Young inequality we infer the
following train of inequalities

‖f × g‖2
L2(D) ≤

∫

D

|f |2|g|2 dx ≤ |f |2
L2p(D)|g|2L2q(D)

≤ (‖f‖θV |f |1−θH )2|g|2
L2q(D) ≤ ε1+δ/3‖f‖2

V +
Cδ

ε1+3/δ
|g|2+

6
δ

L3+δ(D)
|f |2H .

�

PROOF OFLEMMA 2.11. Let us fix(v, f, φ) ∈ C∞
0 (D) ×D ×D. Then by equality

(2.1), and Lemma 2.12 we have

|b̃(v, f, φ)|2 = |〈v(t) × φ, curl f〉V ′,V |2(2.15)

≤ | curl f |2H |v(t) × φ|2H
≤ ‖f‖2

V (ε1+δ0/3‖φ‖2
V +

Cδ0
ε1+3/δ0

|v(t)|2+
6

δ0

L3+δ0 (D)
|φ|2H)

≤ |f |2V |φ|2V (ε1+δ0/3 +
Cδ0

ε1+3/δ0
|v(t)|2+

6
δ0

L3+δ0 (D)
).

Similarly,

|b̃(v, f, φ)| = |〈v(t) × φ, curl f〉V ′,V | ≤ | curl f |H |v(t) × φ|H(2.16)

≤ 1

2
‖f‖2

V +
1

2
|v(t) × φ|2H

≤ 1

2
‖f‖2

V +
1

2
(ε1+δ0/3‖φ‖2

V +
Cδ0

ε1+3/δ0
|v(t)|2+

6
δ0

L3+δ0 (D)
|φ|2H),

and

|b̃(v, f, φ)|2 = |〈v(t) × curl f, φ〉V ′,V |2 ≤ |φ|2H |v(t) × curl f |2H(2.17)

≤ |φ|2H(ε1+δ/3|f |2D(A) +
Cδ

ε1+3/δ
|v|2+

6
δ

L3+δ(D)
|f |2V ).
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�

Fix δ0 > 0. It follows from inequality (2.11) that the trilinear form̃b is continuous
with respect to theL3+δ0(D)×V ×V topology. Therefore, there exist continuous trilinear
form b : L3+δ0(D) × V × V → R such that

b(·, ·, ·)|C∞

0 (D)×D×D = b̃.

Moreover,

(2.18) b(v, f, φ) = −(v × φ, curl f)H , (v, f, φ) ∈ L3+δ0(D) × V × V .

Indeed, the form on the left hand side of equality (2.18) is equal to the form on the right
hand side of equality (2.18) for(v, f, φ) ∈ C∞

0 (D)×D×D and both forms are continuous
in L3+δ0(D) × V × V .

DEFINITION 2.13. Let us define a bilinear operatorB : L3+δ0(D) × V → V ′ by

〈B(v, f), φ〉V ′,V = b(v, f, φ), v ∈ L3+δ0(D), f ∈ V, φ ∈ V.

COROLLARY 2.14. Assume thatδ0 > 0. Then there exists a constantCδ0 > 0 inde-
pendent such that

(2.19) |B(v, f)|2V ′ ≤ ‖f‖2
V (ε1+δ0/3 +

Cδ0
ε1+3/δ0

|v(t)|2+
6

δ0

L3+δ0 (D)
), (v, f) ∈ L3+δ0(D)×V.

Moreover, if(v, f) ∈ L3+δ0(D) ×D(A) thenB(v, f) ∈ H and

(2.20) |B(v, f)|2H ≤ (ε1+δ0/3‖f‖2
D(A) +

Cδ0
ε1+3/δ0

|v|2+
6
δ

L3+δ0 (D)
|f |2V )

PROOF OFCOROLLARY 2.14. Proof immediately follows from Lemma 2.11. �

3. Duality

Assume thatF0 ∈ H, f ∈ L2(0, T ;V ′). We consider the following two problems:

∂F

∂t
= −νAF −B(v(t), F ) + f,(3.1)

F (0) = F0,(3.2)
∂G

∂t
= −νAG− curl (v(t) ×G) + f,(3.3)

G(0) = G0.(3.4)

DEFINITION 3.1. We will call an elementF , respectivelyG, of L2(0, T ;V ) ∩
L∞(0, T ;H) ∩ C([0, T ];Hw), whereHw is equal toH endowed with the weak topol-
ogy, a solution of problem (3.1-3.2), resp. (3.3-3.4), iffF , resp.G, satisfies equation (3.1),
resp. problem(3.3), in the distribution sense andF , resp.G, satisfies(3.2), resp.(3.4)as
elements ofC([0, T ];Hw).

In the next two Propositions we will deal with the existence and regularity results for
solutions of problems (3.1-3.2) and (3.3–3.4). These results are probably known, but since
we have been unable to find them (in the form we need) in the literature, we have decided
to present them for the sake of the completeness of the paper.

PROPOSITION3.2. Suppose that(F0, f) ∈ H × L2(0, T ;V ′) and

(3.5) v ∈
⋃

δ0>0

L2+ 6
δ0 (0, T ; L3+δ0(D)).

Then
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(i) there exists the unique solutionF of problem (3.1-3.2) and for eachδ0 > 0 there exists a
constantK1 = K1(|v|

L
2+ 6

δ0 (0,T ;L3+δ0(D))
, ν) independent of(F0, f) such thatF satisfies

the following inequality

|F (t)|2H + ν

t∫

0

‖F (s)‖2
V ds

≤ K1

( t∫

0

|v(s)|2+6/δ0
L3+δ0

ds, ν
)(

|F0|2H +
C

ν

t∫

0

|f(s)|2V ′ ds
)
, t ∈ [0, T ].(3.6)

Furthermore,F ∈ C([0, T ], V ′) andF ′ ∈ L1+ 3
2δ0+3 (0, T ;V ′). Moreover, ifv satisfies the

following, stronger than(3.5), condition

(3.7) v ∈ L∞(0, T ; L3+δ0(D)) for someδ0 > 0,

thenF ′ ∈ L2(0, T ;V ′).
(ii) If in addition (F0, f) ∈ V × L2(0, T ;H) and the condition(3.7) is satisfied, then
F ∈ C([0, T ], V ) ∩ L2(0, T ;D(A)).

(iii) Assume thatn ∈ N. Supposef (n) ∈ L2(0, T ;H), there existsδ0 > 0 such thatv ∈
Cn−1(0, T ; L3+δ0(D)), v(n) ∈ L∞(0, T ; L3+δ0(D)) and gk ∈ V , for k = 0, 1, . . . , n,
where sequence{gk}∞k=0 is defined by formula2

gm = −νAgm−1 −
m−1∑

k=0

B(v(m−k−1))(0), gk) + fm−1(0),m = 1, . . . , n(3.8)

g0 = F0.

ThenF ∈ Cn([0, T ], V ).

REMARK 3.3. We should notice that on the one hand, our class⋃
δ>0

L2+ 6
δ0 (0, T ; L3+δ0(D)) is the Serrin regularity class. Indeed, ifr = 2 + 6

δ0
,

s = 3 + δ0 then 2
r + 3

s = 1. Therefore, any weak solution of the NSEs belonging to this
class is a strong solution. On the other hand, we have been unable to prove that under
the assumption (3.5) a solutionF of problem (3.1-3.2) is such thatF ′ ∈ L2(0, T, V ′). A
problem that arises here is similar to the problem whether a weak solutionu of the NSEs,
see [33], p. 191 Problem 3.2 and Theorem 3.1, satisfiesu′ ∈ L2(0, T ;V ′).

For the second equation we have:

PROPOSITION3.4. Suppose that a time dependent vector fieldv satisfies the assump-
tion (3.5). Then

(i) for every (F0, f) ∈ H × L2(0, T ;V ′) there exists unique solutionG of the prob-
lem (3.3-3.4) such thatG′ ∈ L2(0, T ;V ′) and for eachδ0 > 0 there exists a constant

2It is easy to see that formally system (3.1-3.2) uniquely definesF (k)(0). Indeed, if we formally putt = 0
in the system we immediately get expression forF ′(0) through known parameters. Similarly, differentiating
equation 3.1 w.r.t. time we get recurrent formula (3.8) forF (k)(0), k ∈ N. So, the conditiongk ∈ V is
compatibility condition.
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K1

(
t∫
0

|v(s)|2+6/δ0
L3+δ0

ds, ν

)
such thatG satisfies the following inequality fort ∈ [0, T ],

|G(t)|2H + ν

t∫

0

‖G(s)‖2
V ds

≤ K1

( t∫

0

|v(s)|2+6/δ0
L3+δ0

ds, ν
)(

|G0|2H +
C

ν

t∫

0

|f(s)|2V ′ ds
)
, t ∈ [0, T ].(3.9)

(ii) If in addition v ∈ L2(0, T, V ) and (F0, f) ∈ V × L2(0, T ;H), then the solutionG
from part (i) satisfiesG ∈ C([0, T ], V ) ∩ L2(0, T ;D(A)).

(iii) Fix n ∈ N. If f (n) ∈ L2(0, T ;H), there existsδ0 > 0 such that v ∈
Cn−1(0, T ; L3+δ0(D)), v(n) ∈ L∞(0, T ; L3+δ0(D)) ∩ L2(0, T, V ) and lk ∈ V , for
k = 0, 1, . . . , n, where sequence{lk}∞k=0 is defined by formula

lm = −νAlm−1 −
m−1∑

k=0

curl(v(m−k−1)(0) × lk)(3.10)

+fm−1(0),m = 1, . . . , n

l0 = G0.

ThenG ∈ Cn([0, T ], V ).

COROLLARY 3.5. Assume thatF0 ∈ H , f, v ∈ C∞([0, T ];H). If for each
k ∈ N, v(k) satisfies the condition(3.5), then the solution of the problem (3.1-3.2) is in
C∞((0, T ] ×D).

PROOF OFCOROLLARY 3.5. It follows from Remark 3.2, p.90 in [34]. �

Similarly for the problem (3.3-3.4) we have

COROLLARY 3.6. Assume thatF0 ∈ H , f, v ∈ C∞([0, T ];H). If for eachk ∈ N v(k)

satisfies the condition(3.7), then the solution of the problem (3.3-3.4) is inC∞((0, T ]×D).

PROOF OFCOROLLARY 3.6. It follows from Remark 3.2, p.90 in [34]. �

The main result in this section is the following.

THEOREM 3.7. Suppose that F0 ∈ H , G0 ∈ H and v ∈⋃
δ0>0

L
2+ 6

δ0 (0, T ; L3+δ0(D)). Let F and G be solutions of respectively problems

(3.11)and(3.12)below.

∂F

∂t
= −νAF −B(v(t), F ), t ∈ (0, T ),(3.11)

F (0, ·) = F0,

∂G

∂t
= −νAG+ curl (v(T − t) ×G), t ∈ (0, T ),(3.12)

G(0, ·) = G0.

Then, the following identity holds

(3.13) (F (t), G(T − t))H = (F (0), G(T ))H , t ∈ [0, T ].
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From now on we will only consider the caseD = R3. We notice that ifF is a solution
of the problem (3.1-3.2) with data(F0, f, v), thencurlF is a solution of the problem (3.3-
3.4) with data(curlF0, curl f, v).

DEFINITION 3.8. Let T v
T : H → H be the vector transport operator defined by

T v
T (F0) = F (T ), whereF is the unique solution of the problem(3.11)with data(F0, v).

Define also the time reversal operator

ST :
⋃

δ0>0

L
2+ 6

δ0 (0, T ; L3+δ0(D)) →
⋃

δ0>0

L
2+ 6

δ0 (0, T ; L3+δ0(D))

by (ST v)(t) = −v(T − t). Then from Theorem 3.7 we infer that

COROLLARY 3.9. Assume that F0 ∈ V , G0 ∈ H and v ∈⋃
δ0>0

L2+ 6
δ0 (0, T ; L3+δ0(R3)). Then the following duality relation holds,

(3.14) (curlF0, T ST v
T G0)H = (curl T v

T F0, G0)H .

COROLLARY 3.10. Assume thatv satisfies the assumption(3.5)such that duality re-
lation (3.14)holds. Then

(3.15) ‖T vT ‖L(Hα,2
h,sol

,Hα,2
h,sol

) = ‖T ST v
T ‖L(H1−α,2

h,sol ,H
1−α,2
h,sol ), α ∈ [0, 1].

PROOF OFCOROLLARY 3.10. BecauseHα,2
h,sol is the complex interpolation space be-

tweenH
0,2
h,sol = L2

sol andH
1,2
h,sol of orderα, it is enough to consider the casesα ∈ {0, 1}.

Furthermore, we can restrict ourselves to the case ofα = 0 becauseST ◦ ST = id.
From equality (3.14) it follows that

‖T v
T ‖L(L2

sol,L
2
sol)

= sup
φ,ψ∈D(R3)

|〈T v
T φ, ψ〉|

‖φ‖L2
sol

‖ψ‖L2
sol

=

sup
φ,ψ∈D(R3)

|〈curl T v
T φ, curl−1 ψ〉|

‖φ‖L2
sol

‖ψ‖L2
sol

=

sup
φ,ψ∈D(R3)

|〈curlφ, T ST v
T curl−1 ψ〉|

‖φ‖L2
sol

‖ψ‖L2
sol

=

sup
φ,ψ∈D(R3)

|〈φ, T ST v
T ψ〉|

‖φ‖
H

−1,2
h,sol

‖ψ‖
H

1,2
h,sol

=

‖T ST v
T ‖L(H1,2

h,sol,H
1,2
h,sol)

�

DEFINITION 3.11. ByXα we denote the class of all functionsu : [0,∞)× R3 → R3

satisfying the following three conditions.

(i) u ∈ L∞
loc([0,∞);H).

(ii) For all t ∈ [0,∞) there exists a unique solution of equation(3.11)with parameters
ut = u|[0,t] andvt = St(u|[0,t]). Furthermore, the duality relation(3.14)with the vector
fieldv replaced by the vector fieldut holds.

(iii) For everyt ∈ [0,∞), T ut

t ∈ L(Hα,2
h,sol,H

α,2
h,sol).

Then the following result follows from Corollary 3.10



64 Z. BRZÉZNIAK AND M. NEKLYUDOV

COROLLARY 3.12. Assume thatα ∈ [0, 1]. ThenXα = X1−α ⊂ X 1
2

and the space

X 1
2

is invariant with respect to scalingsΨλ, λ ∈ (0, 1], where(Ψλu)(t, x) = λu(λ2t, λx),

t ∈ [0,∞), x ∈ R3.

PROOF OFCOROLLARY 3.12. PropertyXα = X1−α is a direct consequence of
Corollary 3.10 and the definition ofXα. We will show thatXα ⊂ X 1

2
. Let u ∈ Xα.

Then for allt ≥ 0,

T u
t ∈ L(Hα,2

h,sol,H
α,2
h,sol), T u

t ∈ L(H1−α,2
h,sol ,H

1−α,2
h,sol ).

Indeed, it follows by definition ofXα that

|T u
t |L(H1−α,2

h,sol ,H
1−α,2
h,sol ) = |T St(u|[0,t])

t |L(Hα,2
h,sol,H

α,2
h,sol)

, t ∈ [0,∞).

Therefore, by the Interpolation Theorem, see [35, Theorems 1.9.4, p. 59 and 1.15.3, p.
103], we have that

T u
t ∈ L([Hα,2

h,sol,H
1−α,2
h,sol ]1/2, [H

α,2
h,sol,H

1−α,2
h,sol ]1/2), t ∈ [0,∞),

i.e.

T u
t ∈ L(H

1
2 ,2

h,sol,H
1
2 ,2

h,sol), t ∈ [0,∞).

Third property follows from identity

T Ψλ(u)
t Ψλ(F0) = Ψλ(T u

t F0), t ∈ [0,∞)

and boundedness of scaling operatorsΨλ andΨ−1
λ = Ψ 1

λ
in H

1
2 ,2

h,sol. �

The first part of our next result is the classical result of Serrin-Prodi- Ladyzhenskaya
([29, 27, 17]). But the second part, i.e. inequalities (3.16) and (3.17)are new.

COROLLARY 3.13. Assume thatu is a weak solution of the NSEs(1.1) with
the external force0. Assume thatu satisfies the Serrin condition, i..eu ∈⋃
δ0>0 L

2+ 6
δ0 (0, T ; L3+δ0(R3)) andu(0) ∈ V . Thenu ∈ L∞(0, T ;V ), i.e. u is a strong

solution of (1.1). Moreover, ifG0 ∈ H , then

(curlu(0), T ST (u)
T G0)H = (curlu(T ), G0)H ,(3.16)

‖ curlu(T )‖H ≤ ‖T ST (u)
T ‖L(H,H)‖ curlu(0)‖.H(3.17)

REMARK 3.14. Let us observe that the equality (3.16) is a generalization of the he-
licity invariance

∫
R3

(u, curlu)R3 dx, see e.g. p. 120 – 121 in [24] for the solutions of

the Euler equations. Indeed, if we consider the transport operatorT ·
T for ν = 0 and take

G0 = u(T ) on the right hand side of equality (3.16) then, under the assumption that the

Euler equation has a unique solution, we infer thatT ST (u)
T u(T ) = u(0).

PROOF OFCOROLLARY 3.13. By Proposition 3.2 there exist unique solutionF ∈
L2(0, T ;V ) ∩ L∞(0, T ;H) of equation (3.1-3.2) with initial conditionF0 = u(0) and
v = u. We can notice thatu is also solution of (3.1-3.2) by Navier-Stokes equation. Thus,
F = u and we have (3.16) by Theorem 3.7. Therefore, we have

‖ curlu(t)‖H ≤ ‖T ST (u)
T ‖L(H,H)‖ curlu(0)‖H

and by boundedness of operatorT ST (u)
T (Proposition 3.2) we get the result. �
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4. Formulae of Feynman-Kac Type.

The aim of this section is twofold. Firstly, we will discuss the physical meaning of
the operatorT ST (·)

T . Secondly, we will deduce a formula of Feynman-Kac type. In the
whole section we suppose thatD = Rn . We also assume that(Ω,F , {Ft}t≥0,P) is a
complete filtered probability space and that(W (t))t≥0 is anRm-valued Wiener process
on this space. We have the following Proposition.

PROPOSITION4.1. Assume thatα ∈ (0, 1), σ(·, ·) ∈ L1(0, T ;C2,α
b (Rn ,Rn ⊗Rm)),

a(·, ·) ∈ L1(0, T ;C1,α
b (Rn ,Rn )). Let us assume that a continuous and adapted process

X = [0, T ]× Rn × Ω → Rn is a unique solution to the problem

dXt(x) = a(t,Xt(x)) dt + σ(t,Xt(x)) dW (t),
X0(x) = x.

Then for anyC1 class closed loopΓ in Rn , anyF ∈ C1,2([0, T ] × Rn ,Rn ) and any
t ∈ [0, T ], we haveP-a.s.,

∫

Xt(Γ)

n∑

k=1

F k(t, x) dxk =

∫

Γ

n∑

k=1

F k(0, x) dxk(4.1)

+

t∫

0

∫

Xs(Γ)

n∑

k=1

(
∂F k

∂t
+

n∑

j=1

aj(
∂F k

∂xj
− ∂F j

∂xk
)

+
1

2

n∑

i,j=1

∂2F k

∂xi∂xj

n∑

m=1

σimσjmbigg) dxkds

+
1

2

t∫

0

∫

Xs(Γ)

n∑

k=1


∑

j,l

∂F j

∂xl

∑

m

σlm
∂σjm

∂xk


 dxkds(4.2)

+

t∫

0

∫

Xs(Γ)

n∑

k,j=1

F j(s, x)
∂σjl

∂xk
dxkdW

l(s)

+

t∫

0

∫

Xs(Γ)

n∑

k=1


∑

i,l=1

∂F k

∂xi
σil


 dxk dW

l(s).

REMARK 4.2. The term (4.2) is of major interest for us. Its appearance allows us
to ” emulate” drift in two dimensional case i.e. to consider flow without drift such that
this term ”creates” necessary drift (see subsections 4.1, 4.2 and Theorem 4.12 for detailed
explanation).

PROOF OFPROPOSITION4.1. It follows from Theorems 3.3.3, p.94 and 4.6.5, p.173
of [16] thatXt(·), t ∈ [0, T ] is a flow ofC1–diffeomorphisms and∇Xt(·) satisfies corre-
sponding equation for gradient of the flow. Then formula (4.1) immediately follows from
the Itô formula, see [26] for calculations. �

COROLLARY 4.3. Assume thatν > 0 and v ∈ L1(0, T ;C1,α
b (Rn ,Rn )) for some

α ∈ (0, 1). Let (Xs(t;x))0≤s≤t≤T , be a stochastic flow corresponding to the following
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SDE

dXs(t;x) = v(t,Xs(t;x)) dt+
√

2ν dW (t), t ∈ [s, T ],(4.3)

Xs(s;x) = x.

Assume thatF0 ∈ C2(Rn ) and letF ∈ C1,2([0, T ] × Rn ,Rn ) be a solution of the
following linear equation3

∂F (t)

∂t
= −νAF + P((∇F −∇F⊥)v(T − t)), t ∈ (0, T ),(4.4)

F (0) = F0,(4.5)

Then for anys ∈ [0, T ] a process(Ms(t))t∈[T−s,T ] defined by the following formula

Ms(t) =

∫

XT−s(t;Γ)

n∑

k=1

F k(T − t) dxk, t ∈ [T − s, T ]

is a local martingale.

PROOF OFCOROLLARY 4.3. This follows immediately from Proposition 4.1. �

REMARK 4.4. Corollary 4.3, whose idea is taken from [26], can be seen as a gener-
alization of the Kelvin circulation Theorem, see e.g. [22, p. 26]. Indeed, ifν = 0, then
Xs(t;x) is a position of a particle at timet starting from pointx at times, moving in the
deterministic velocity fieldv. Moreover,Ms is the circulation along a curveγ moved by
the flow generated byv. Hence, by Proposition 4.1 it follows that the local martingaleMs

is constant in time. A similar result has recently been independently derived by Constantin
and Iyer, see [6, Proposition 2.9].

Next we deduce from the corollary 4.3 the following formula of the Feynman-Kac
type for the solution of equation (4.4).

PROPOSITION4.5. Assume thatv ∈ L1(0, T ;C2,α
b (Rn ,Rn )) for someα ∈ (0, 1)

and

(4.6)

T∫

0

(|v|L∞(s) + |∇v|L∞(s)) ds <∞.

Assume thatF : [0, T ] × Rn → Rn is a solution of the problem(4.4)-(4.5) with F0 ∈
C2(Rn)∩L4(Rn) and(Xs(t;x))0≤s≤t≤T is a stochastic flow corresponding to SDE(4.3).
Assume also that there existsβ > 0 such that for anyΓ ∈ C1(S1,Rn ), whereS1 is the
unit circle, for all s, t ∈ [0, T ] such thatT − s ≤ t,

(4.7) E|
∫

XT−s(t;Γ)

n∑

k=1

F k(T − t, x) dxk|1+β <∞.

Fix s ∈ [0, T ] and define a functionsQs : Rn → Rn by

Qs(x) := E(F0(XT−s(T ;x))∇XT−s(T ;x))), x ∈ R
n .

Then,Qs ∈ L2(Rn,Rn) ∩ C1+ε(Rn,Rn), 0 < ε < α and

(4.8) F (s, x) = [P(Qs)](x), x ∈ R
n, s ∈ [0, T ].

3which coincides with Problem (3.11) in the casen = 3
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REMARK 4.6. In connection with the formula (4.8) we can ask whether the flow
(Xs(t;x))0≤s≤t≤T associated to the SDE (4.3) is the only flow such that the function
F defined by the formula (4.8) is a solution to problem (4.4-4.5)? It turns out that the an-
swer to this question is negative. In the subsections 4.1 and4.2 we will consider separately
two and three dimensional examples.

REMARK 4.7. Condition (4.7) is satisfied if, for instance,F ∈ L∞([0, T ]× Rn ) and

T∫

0

|∇v|L∞(s) ds <∞.

Indeed, in this case we have the following inequality

|∇Xs(t; ·)|L∞ ≤ exp(

t∫

s

|∇v|L∞(r) dr), s ≤ t ≤ T,

and hence the result follows.

PROOF OFPROPOSITION4.5. For fixeds ∈ [0, T ) let us denote

(4.9) Ms(t) =

∫

XT−s(t;Γ)

n∑

k=1

F k(T − t) dxk, t ∈ [T − s, T ].

Then by Corollary 4.3 the process(Ms(t)), t ∈ [T − s, T ] is a local martingale. Hence, by
the uniform integrability condition (4.7) we infer thatMs is martingale and soEMs(T −
s) = EMs(T ). In particular,

(4.10)
∫

Γ

F k(s, x) dxk =

∫

Γ

Qks(x) dxk ,Γ ∈ C1(S1,Rn ).

It immediately follows from Theorems 3.3.3, p.94 and 4.6.5,p.173 of [16] that Qs ∈
C1+ε(Rn ,Rn ), 0 < ε < α. Furthermore,Qs ∈ L2(Rn ,Rn ). Indeed, by the definition
of the flow (4.3) we have

sup
x

|∇XT−s(T ;x)| ≤ e

T
R

0

|∇v|L∞ (r)dr
.

Hence
∫

Rn

|Qs(x)|2 dx ≤
∫

Rn

E|F0(XT−s(T ;x))∇XT−s(T ;x)|2 dx

≤ E

(
sup
x

|∇XT−s(T ;x)|2
∫

Rn

|F0(XT−s(T ;x))|2 dx
)

≤ e

T
R

0

|∇v|L∞ (r) dr
E

∫

Rn

|F0(XT−s(T ;x))|2 dx(4.11)

≤ e

T
R

0

|∇v|L∞ (r) dr
∫

Rn

Ẽ(|F0(x+
√

2ν(WT −WT−s))|2ETT−s) dx,
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where

ETT−s := e

T
R

T−s

v(r,XT−s(r;x))dWr−1/2
T
R

T−s

|v(r,XT−s(r;x))|2 dr

is a stochastic exponent. We can notice that

(4.12) Ẽ|ETT−s|2 ≤ e
2

T
R

0

|v(r)|L∞(r) dr

and, therefore, combining (4.11) and (4.12) we get

(4.13)
∫

Rn

|Qs(x)|2 dx ≤ e

T
R

0

(|v|L∞(r)+|∇v|L∞(r)) dr
∫

Rn

|F0|4dx <∞.

It remains to notice that operatorP : Cβ(Rn ,Rn ) → Cβ(Rn ,Rn ), β ∈ (0, 1) is
bounded. Indeed, it follows from representation ofP as pseudodifferential operator
([11],[33]) and Theorem 7.9.6 in [12]. �

REMARK 4.8. Another method of proving the formula (4.8) is presented in the article
[5] by Busnello et al., see also literature therein. The approach used there is based upon
an extension of the standard Feynman-Kac formula for parabolic equations to more gen-
eral system of linear parabolic equations with a potential term (see the system (3.2) in [5,
p.306]). This extension is carried out by using the new variables method introduced earlier
by Krylov [15]. One should mention here that the formula (4.8) is used in [5] to prove the
local existence and uniqueness of strong solutions to the NSEs.

4.1. Examples of nontrivial flows inR2. In this subsection we provide nontrivial
examples of the flows which can be used in the Feynman-Kac typeformula (4.8) in two
dimensional case.

PROPOSITION4.9. Suppose thatv ∈ C∞
0 ([0, T ]×R2,R2), ψ : R → R is aC1-class

diffeomorphism,φ = ψ ◦ rot v andF0 ∈ C∞
0 (Rn ). Let(Xs(t;x)), 0 ≤ s ≤ t ≤ T be the

stochastic flow corresponding to the following SDE

dXs(t;x) = v(t,Xs(t;x)) dt+
√

2νσ1(Xs(t;x)) dW (t),(4.14)

Xs(s;x) = x,

where

σ1(x) =

(
cosφ(x) − sinφ(x)
sinφ(x) cosφ(x)

)
, x ∈ R

2.

Assume thatF : [0, T ] × Rn → Rn is a solution to problem (4.4-4.5) such that for some
β > 0 and anyΓ ∈ C1(S1,R2) the condition(4.7) is satisfied. Then, the formula(4.8)
holds true.

PROOF OFPROPOSITION4.9. Suppose that the condition (4.7) is fulfilled. Then, it
is enough to show that process(Ms(t)), t ∈ [T − s, T ] defined by formula (4.9) above
(where flow(Xs(t;x)), 0 ≤ s ≤ t ≤ T is given by (4.14)) is a local martingale. We have

∫

XT−s(t;Γ)

n∑

k=1

F k(T − t, x) dxk =

∫

Γ

n∑

k=1

F k(s, x) dxk
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+

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1

(
∂F k

∂t
+

n∑

j=1

vj(
∂F k

∂xj
− ∂F j

∂xk
)

+ν

n∑

i,j=1

∂2F k

∂xi∂xj

n∑

m=1

σim1 σjm1

)
dxkdτ+

+ν

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1


∑

j,l

∂F j

∂xl

∑

m

σlm1
∂σjm1
∂xk


 dxkdτ

+
√

2ν

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k,j=1

F j(T − τ, x)
∂σjl1
∂xk

dxkdw
l
τ

+
√

2ν

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1


∑

i,l=1

∂F k

∂xi
σil1


 dxk dW

l
τ .

Hence, becauseσ1 is orthogonal matrix andF satisfies (4.4) we have that

∂F k

∂t
+

n∑

j=1

vj(
∂F k

∂xj
− ∂F j

∂xk
) + ν

n∑

i,j=1

∂2F k

∂xi∂xj

n∑

m=1

σim1 σjm1

=
∂F k

∂t
+

n∑

j=1

vj(
∂F k

∂xj
− ∂F j

∂xk
) + ν△F k =

∂p

∂xk
.

Therefore, it is enough to show that

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1


∑

j,l

∂F j

∂xl

∑

m

σlm1
∂σjm1
∂xk


 dxkdτ = 0.

We have that
∑
m
σlm1

∂σjm
1

∂xk
is antisymmetric w.r.t. indexesl, j becauseσ1 is orthogonal.

Hencen = 2, it means that it is enough to calculate

∑

m

σ1m
1

∂σ2m
1

∂xk
= cosφ

∂

∂xk
(sinφ) − sinφ

∂

∂xk
(cosφ) =

∂φ

∂xk

and, therefore,
t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1


∑

j,l

∂F j

∂xl

∑

m

σlm1
∂σjm1
∂xk


 dxkdτ

=

t∫

T−s

∫

XT−s(τ ;Γ)

(
∂F 1

∂x2
− ∂F 2

∂x1
) dφdτ =

t∫

T−s

∫

XT−s(τ ;Γ)

ψ−1(φ) dφdτ = 0.

�

REMARK 4.10. The construction of the example from Proposition 4.9 can easily be
generalized to the casen = 3 in the following way. Letψ : R → R be aC1-class
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diffeomorphism. Defineφ = ψ ◦ (curl v)1 and

σ1(x) =




cosφ(x) − sinφ(x) 0
sinφ(x) cosφ(x) 0

0 0 1


 , x ∈ R

3.

Let (Xs(t;x))0≤s≤t≤T be a stochastic flow corresponding to the following SDE

dXs(t;x) = v(t,Xs(t;x)) dt+
√

2νσ1(Xs(t;x)) dW (t), 0 ≤ s ≤ t ≤ T(4.15)

Xs(s;x) = x

Then the assertion of Proposition (4.9) holds true.
Note that similar construction can be made for other components of thecurl v) but the

truly three dimensional rotationsσ1 will be considered in next paragraph.

REMARK 4.11. Let us note that the laws of the solutions to SDEs (4.14)and (4.3) are
the same. Indeed, it is easy to see that quadratic variationsof both processes are the same.
In the next example we will show that it is possible to find a flowsuch that its one-point
motion has a law of Brownian motion.

THEOREM 4.12. Suppose thatν > 0, δ > 0 and a divergence free vector fieldv :
R2 → R2 is ofC1+δ class. Letφ : R2 → R be such that4 v = ∇⊥φ. Define

σ1(x) =

(
cos φ(x)

ν − sin φ(x)
ν

sin φ(x)
ν cos φ(x)

ν

)
, x ∈ R

2,

Let us denote byXs(t;x), 0 ≤ s ≤ t ≤ T, x ∈ R2 the stochastic flow of diffeomorphisms
of R2 of classC2 corresponding to the following SDE

(4.16)

{
dXs(t;x) =

√
2νσ1(Xs(t;x)) dW (t), 0 ≤ s ≤ t ≤ T,

Xs(s;x) = x.

Assume also thatF0 ∈ C2(R2) ∩ L2(R2) and thatF : [0, T ] × R2 → R2 is a
solution to problem (4.4-4.5) such that for someβ > 0 and anyΓ ∈ C1(S1,R2) the
condition(4.7) is satisfied. DenoteQs(x) = E(F0(XT−s(T ;x))∇XT−s(T ;x)). Then
Qs ∈ L2(Rn ) ∩ C1+ε(Rn ), 0 < ε < δ and

(4.17) F (s, x) = P(Qs)(x), s ∈ [0, T ], x ∈ R
n.

REMARK 4.13. As we have already noticed above the formula (4.17) canbe viewed as
generalization of Kelvin Theorem as in the Corollary 4.3. Indeed, it is enough to integrate
both sides of (4.17) w.r.t. arbitrary smooth closed contourΓ.

PROOF OFTHEOREM 4.12. From Theorem 4.6.5, p. 173 in [16] we infer that there
exists a flowXs(t;x), 0 ≤ s ≤ t ≤ T for problem (4.16) consisting of diffeomorphisms
of classC2+ε.

Moreover, it follows from Theorems 3.3.3, p. 94 and 4.6.5, p.173 therein that for all
s ∈ [0, T ], Qs ∈ C1+ε(Rn ,Rn ), 0 < ε < δ. Let us fixs ∈ [0, T ]. We will show now
thatQs ∈ L2(Rn ,Rn ). Since by Corollary 4.6.7 p. 175 of [16] there exists a positive
constantC such that

sup
x∈Rn

E|∇XT−s(T ;x)|2 ≤ C,

4Suchφ exists becausediv v = 0.
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by the Hölder inequality we infer that
∫

Rn

|Qs(x)|2 dx ≤
∫

Rn

E|F0(XT−s(T ;x))|2E|∇XT−s(T ;x)|2 dx

≤ C

∫

Rn

E|F0(XT−s(T ;x))|2 dx.(4.18)

Furthermore, let us observe that the law of the one-point motion of the flow
XT−s(T ;x) is equal to the law of the Brownian Motion (see example 6.1, p.75 of [13] for
more details). Therefore, we infer that

(4.19)
∫

Rn

E|F0(XT−s(T ;x))|2 dx =

∫

Rn

|SνsF0(x)|2 dx ≤
∫

Rn

|F0(x)|2 dx,

where{Sνt = eνt△}t≥0 is a heat semigroup. Combining inequalities (4.18) and (4.19) we
get

(4.20)
∫

Rn

|Qs(x)|2 dx ≤ C

∫

Rn

|F0(x)|2 dx.

Similarly to Proposition 4.9 we get that
∫

XT−s(t;Γ)

3∑
k=1

F k(T − t) dxk, t ∈ [T − s, T ] is a

local martingale. Indeed, correction term in (4.1) due to rotation of Brownian Motion is

equal to
t∫

T−s

∫
XT−s(τ ;Γ)

(∂F
1

∂x2
− ∂F 2

∂x1
) dφ ds, see the previous Proposition, and ifv = ∇⊥φ

this is exactly first order term of two dimensional equation (4.4). �

COROLLARY 4.14. Let (Xs(t;x)) 0 ≤ s ≤ t ≤ T, x ∈ R2 be the stochastic flow
corresponding to SDE(4.16). Then

d

(
∂X1

s (t;x)
∂x1

∂X1
s (t;x)
∂x2

∂X2
s (t;x)
∂x1

∂X2
s (t;x)
∂x2

)

=
1

ν

(
−v2(t,Xs(t;x)) dX

2
s (t;x) v1(t,Xs(t;x)) dX

2
s (t;x)

v2(t,Xs(t;x)) dX
1
s (t;x) −v1(t,Xs(t;x)) dX

1
s (t;x)

)

(
∂X1

s (t;x)
∂x1

∂X1
s (t;x)
∂x2

∂X2
s (t;x)
∂x1

∂X2
s (t;x)
∂x2

)
,(4.21)

and (
∂X1

s (s;x)
∂x1

∂X1
s (s;x)
∂x2

∂X2
s (s;x)
∂x1

∂X2
s (s;x)
∂x2

)
=

(
1 0
0 1

)
.

PROOF OFCOROLLARY 4.14. We have by definition of the flow(Xs(t;x)), 0 ≤ s ≤
t ≤ T that

dX1
s (t;x) =

√
2ν(cos

φ

ν
(Xs(t;x)) dw

1
t − sin

φ

ν
(Xs(t;x)) dw

2
t ),

dX1
s (t;x) =

√
2ν(sin

φ

ν
(Xs(t;x)) dw

1
t + cos

φ

ν
(Xs(t;x)) dw

2
t ),

Xs(s;x) = x, x ∈ R
2.
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Taking derivative of the flow(Xs(t;x)), 0 ≤ s ≤ t ≤ T with respect to initial conditionx
we get for the first component of the flow

d

(
∂X1

s (t;x)
∂x1

∂X1
s (t;x)
∂x2

)
=

√
2ν

(
(− 1

ν sin φ
ν (Xs(t;x)) dw

1
t − 1

ν cos φν (Xs(t;x)) dw
2
t )(

∂φ
∂x1

∂X1
s (t;x)
∂x1

+ ∂φ
∂x2

∂X2
s (t;x)
∂x1

)

(− 1
ν sin φ

ν (Xs(t;x)) dw
1
t − 1

ν cos φν (Xs(t;x)) dw
2
t )(

∂φ
∂x1

∂X1
s (t;x)
∂x2

+ ∂φ
∂x2

∂X2
s (t;x)
∂x2

)

)

=

(
− 1
ν dX

2
s (t;x)(v2

∂X1
s (t;x)
∂x1

− v1
∂X2

s (t;x)
∂x1

)

− 1
ν dX

2
s (t;x)(v2

∂X1
s (t;x)
∂x2

− v1
∂X2

s (t;x)
∂x2

)

)
,

where in the last inequality we have used thatv = ∇⊥φ and definition of the flow. Sim-
ilarly we can get an equation for the gradient of the second component of the flow. The
result follows. �

PROPOSITION4.15. Suppose that the vector fieldv : R2 → R2 is ofC∞
0 class and

divergence free, i.e.div v = 0. LetXs(t;x), 0 ≤ s ≤ t ≤ T be the flow corresponding to
equation(4.16). IdentifyingC with R2 in the usual way, i.e.z = x1 + ıx2, x = (x1, x2),
we can define a flowZs(t; z), 0 ≤ s ≤ t ≤ T , z ∈ C byZs(t; z) = X1

s (t;x) + ıX1
s (t;x).

If F0 ∈ C∞
0 (R2) andF : [0, T ] × R2 → R2 is a solution of equation(4.4)such that for

someβ > 0 and any smooth closed loopΓ condition(4.7) is satisfied, then
(4.22)

F(t, z) = P[E(F0(ZT−t(T ; z)))
∂ZT−t(T ; z)

∂z
+ F0(ZT−t(T ; z)))

∂ZT−t(T ; z)

∂z
],

whereF(t, z) = F 1(t, x) + ıF 2(t, x) andv(t, z) = v1(t, x) + ıv2(t, x).

Moreover,∂Zs(t;z)
∂z , ∂Zs(t;z)

∂z satisfy the following system of equations:

d(
∂Zs(t; z)

∂z
) =

1

2ν
(v(t, Zs(t; z))

∂Zs(t; z)

∂z
− v(t, Zs(t; z))

∂Zs(t; z)

∂z
) dZs(t; z)

d(
∂Zs(t; z)

∂z
) =

1

2ν
(v(t, Zs(t; z))

∂Zs(t; z)

∂z
− v(t, Zs(t; z))

∂Zs(t; z)

∂z
) dZs(t; z)

∂Zs(s; z)

∂z
= 0,

∂Zs(s; z)

∂z
= 1,(4.23)

where· is a complex conjugation.

PROOF OFPROPOSITION4.15. Definition of the flow (4.16) can be reformulated as
follows

(4.24)

{
dZs(t; z)(z, z) =

√
2νe

ıφ(Zs(t;z),Zs(t;z))
ν dW (t)C,

Zs(s; z) = z,

whereW (t)C = W (t)1+ıW (t)2- Wiener process inC. Then equation (4.23) immediately
follow from definition (4.24). Formula (4.22) is simply rewriting of formula (4.8). �

REMARK 4.16. Theorem 4.12 indicates the difference between the passive scalar ad-
vection equation and the vector advection equation. In the former case the Feynman-Kac
type formula does not contain a gradient of the flow and hence the solution is completely
determined by the law of flow itself. Since the rotation of theBrownian Motion does
not change the law of the flow, we cannot employ the same trick for the scalar advection
equation as we did for the vector advection equation.
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QUESTION 4.17. In connection with Theorem 4.12 we can ask if it is possible to give
a direct proof (not through formula (4.1)) of the fact that the limit asν → 0 exists and the
limit is a solution to the 2D Euler equations?

4.2. Examples of nontrivial flows inR3. In this subsection we provide nontrivial
examples of the flows which can be used in the Feynman-Kac typeformula (4.8) in three
dimensional case.

We will need the following definitions. Let̂· be the so called hat-map linear isomor-
phism defined by

·̂ : R
3 ∋




x1

x2

x3


 7→




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ∈ so(3),

whereso(3) is the Lie algebra of antisymmetric matrices. Let alsoSO(3) be the Lie group
of orthogonal matrices with determinant equal to one and letexp : so(3) ∋ A 7→ eA ∈
SO(3) be the standard exponential map. Let us notice that this map is a surjection.

DenoteS = ker(exp). Define a mapBCH : so(3) × so(3) → so(3)/S by

exp(BCH(û, v̂)) = exp(û) exp(v̂), û, v̂ ∈ so(3).

Now we will find different form of the term (4.2) appearing in formula (4.1) due to diffu-
sion coefficientσ of the flowX·.

PROPOSITION 4.18. Let a ∈ C1([0, T ] × R3,R3) and a mapσ is defined byσ :

[0, T ]× R3 ∋ (t, x) 7→ exp(â(t, x)) ∈ SO(3). If |a|(t, x) 6= 0, then

∑

m

σ·m ∂σ
·m

∂xk
= (1 − cos |a|)

̂
b × ∂b

∂xk
+ sin |a| ∂̂b

∂xk
+ b̂

∂|a|
∂xk

,(4.25)

where~b = ~a
|a| . If |a|(t, x) = 0 then

(4.26)
∑

m

σ·m ∂σ
·m

∂xk
=

∂~a

∂xk
.

REMARK 4.19. We can notice that the right side if equality (4.25) canbe rewritten as
follows

(1 − cos |a|)
̂
b × ∂b

∂xk
+ (sin |a| − |a|) ∂̂b

∂xk
+

∂~a

∂xk
.

Therefore it converges to∂~a∂xk
when|a| → 0, |a| 6= 0. Hence, in the following considera-

tions we will not to single out the case of|a|(t, x) = 0.

PROOF OFPROPOSITION4.18. If a(t, x) = 0 then formula (4.26) immediately fol-
lows from definition ofσ. Assume thata(t, x) 6= 0. We will use the following Baker-
Campbell-Hausdorff formula inso(3), see e.g. [8, p. 630].

PROPOSITION4.20. If u, v ∈ R3 then

BCH(û, v̂) = αû+ βv̂ + γ[û, v̂],

where[û, v̂] denotes the commutator ofû andv̂, andα, β, andγ are real constants defined
by

α =
sin−1(d)

d

a1

θ
, β =

sin−1(d)

d

b1
φ
, γ =

sin−1(d)

d

c1
θφ
,
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wherea1, b1, c1 andd are defined as

a1 = sin θ cos2(φ/2) − sinφ sin2(θ/2) cos∠(u, v),

b1 = sinφ cos2(θ/2) − sin θ sin2(φ/2) cos∠(u, v),

c1 =
1

2
sin(θ) sin(φ) − 2 sin2(θ/2) sin2(φ/2) cos∠(u, v),

d =

√
a2
1 + b21 + 2a1b1 cos∠(u, v) + c21 sin2

∠(u, v).

In the above formulaeθ = |u|, φ = |v|, and∠(u, v) is the angle between the two vectors
u andv.

We have

∑

m

σ·m ∂σ
·m

∂xk

= exp(−â) ∂

∂xk
exp(â) = exp(−â) × lim

δ→0

1

δ
(exp(â(x+ δek)) − exp(â(x)))

= lim
δ→0

1

δ
(exp(−â) exp(â(x+ δek)) − id)

= lim
δ→0

1

δ
(exp(BCH(−â, â(x+ δek))) − id) = lim

δ→0

BCH(−â, â(x + δek))

δ

= lim
δ→0

α(δ)(−â(x)) + β(δ)â(x+ δek) + γ(δ)[−â(x), â(x+ δek)]

δ
= (∗),

where in the last equality we have used Proposition 4.18 withu = −â(x), v = â(x+δek).
Therefore,

(∗) = lim
δ→0

β(δ)
â(x+ δek) − â

δ
+ â(x) lim

δ→0

β(δ) − α(δ)

δ

− lim
δ→0

γ(δ)[â(x),
â(x + δek) − â(x)

δ
]

=
∂â

∂xk
lim
δ→0

β(δ) + â lim
δ→0

β(δ) − α(δ)

δ
−

̂
(a× ∂a

∂xk
) lim
δ→0

γ(δ)

So, we need to calculate the following three limits.

(i) = lim
δ→0

β(δ), (ii) = lim
δ→0

β(δ) − α(δ)

δ
, (iii) = lim

δ→0
γ(δ).

From (4.20) follows that we need to calculate asymptotics ofa1(δ), b1(δ), c1(δ), d(δ),
δ → 0. We have

θ = |a|(x), φ = |a|(x+ δek) = |a|(x) + δ
∂

∂xk
|a| + o(δ),

cos(∠(u, v)) =
(−a(x), a(x+ δek))

|a|(x)|a|(x + δek)
= −1 + ō(δ2)
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a1 = sin |a|(1 + cos |a|(x + δek)

2
) − sin |a|(x+ δek) ×

(
1 − cos |a|(x)

2
)(−1 + ō(δ2)) =

sin |a|(
1 + cos(|a| + δ ∂

∂xk
|a|)

2
) + (

1 − cos |a|
2

) ×

sin(|a| + δ
∂

∂xk
|a|) + ō(δ2) =

sin |a|
2

(1 + cos |a| − sin |a| ∂
∂xk

|a|δ) +

(
1 − cos |a|

2
)(sin |a| + cos |a| ∂

∂xk
|a|δ) + ō(δ2) =

= sin |a|(x) − 1

2
(1 − cos |a|) ∂

∂xk
|a|δ + ō(δ2)(4.27)

Similarly,

b1 = sin |a|(x+ δek)(
1 + cos |a|

2
) − sin |a| ×

(
1 − cos |a|(x+ δek)

2
)(−1 + ō(δ2)) =

sin(|a| + δ
∂

∂xk
|a|)(1 + cos |a|

2
) +

sin |a|(
1 − cos(|a| + δ ∂

∂xk
|a|)

2
) + ō(δ2) =

(sin |a| + cos |a| ∂
∂xk

|a|δ)(1 + cos |a|
2

) +

1

2
sin |a|(cos |a| − δ sin |a| ∂

∂xk
|a|) + ō(δ2) =

sin |a| + 1

2
(1 + cos |a|) ∂

∂xk
|a|δ + ō(δ2)(4.28)

c1 = 1 − cos |a| + ō(δ)(4.29)

d = ō(δ)(4.30)

From (4.27),(4.28),(4.29) and (4.30) we get

(iii) = lim
δ→0

sin−1(d)

d

c1
|a|(x)|a|(x + δek)

=
1 − cos |a|

|a|2

(i) = lim
δ→0

sin−1(d)

d

b1
|a|(x+ δek)

=
sin |a|
|a|

(ii) = lim
δ→0

sin−1(d)

d

1

δ
(
sin |a| + 1

2 (1 + cos |a|) ∂
∂xk

|a|δ + ō(δ2)

|a|(x+ δek)
−

sin |a|(x) − 1
2 (1 − cos |a|) ∂

∂xk
|a|δ + ō(δ2)

|a| ) =
|a| − sin |a|

|a|2
∂

∂xk
|a|
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Thus, we get

exp(−â) ∂

∂xk
exp(â) =

sin |a|
|a|

∂â

∂xk
+

|a| − sin |a|
|a|2

∂

∂xk
|a|â+(4.31)

cos |a| − 1

|a|2
̂
a× ∂a

∂xk
(4.32)

If we putb = a
|a| and insert it in (4.32) we get (4.25). �

Everywhere below we assume thatv ∈ L1(0, T ;C2,α
b (Rn ,Rn )) for someα ∈ (0, 1).

COROLLARY 4.21. Let (Xs(t;x)), 0 ≤ s ≤ t ≤ T be the stochastic flow correspond-
ing to

dXs(t;x) = v(t,Xs(t;x)) dt+
√

2νσ1(t,Xs(t;x)) dW (t),(4.33)

Xs(s;x) = x,

whereσ1(t, x) = exp(â)(t, x), b = a
|a| ∈ S(2). Then for alls, t ∈ [0, T ] such thats ≤ t,

∫

XT−s(t;Γ)

n∑

k=1

F k(T − t, x) dxk =

∫

Γ

n∑

k=1

F k(s, x) dxk

+

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1

(
∂F k

∂t
+

n∑

j=1

vj(
∂F k

∂xj
− ∂F j

∂xk
) + ν△F k


 dxkdτ

+ν

t∫

T−s

∫

XT−s(τ ;Γ)

(
curlF, (1 − cos |a|)b × ∂b

∂xk
+ sin |a| ∂b

∂xk
+ b

∂|a|
∂xk

)
dxkdτ(4.34)

+
√

2ν

t∫

T−s

∫

XT−s(τ ;Γ)

n∑

k=1


∑

i,l=1

(
∂F k

∂xi
− ∂F i

∂xk
)σil1


 dxk dW

l
τ .

PROOF OFCOROLLARY 4.21. Immediately follows from Proposition 4.18 and iden-
tity

∑

i,j

∂F i

∂xj
(â)ij = (curlF, a).

�

REMARK 4.22. The vectorb can be interpreted as the axis of rotation ofσ andφ = |a|
as the angle of rotation.

Now, we present a three dimensional analog of the two dimensional result from Propo-
sition 4.9.

PROPOSITION 4.23. Assume thatF0 ∈ C∞
0 (R3), v ∈ L1(0, T ;C2,α

b (Rn ,Rn )),
α ∈ (0, 1), v satisfies condition(4.6), andF ∈ L∞([0, T ];C2+δ(R3,R3)) is a solution
of equation(4.4)-(4.5)such that for someβ > 0 and any smooth closed loopΓ condition
(4.7) is satisfied. Let(Xs(t;x)), 0 ≤ s ≤ t ≤ T be the stochastic flow corresponding to

dXs(t;x) = v(t,Xs(t;x)) dt+
√

2νσ1(t,Xs(t;x)) dW (t),(4.35)

Xs(s;x) = x,
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whereσ1(t, x) = exp(â(t, x)), a = curlF . Fix s ∈ [0, T ] and define a functionsQs :
R3 → R3 byQs = E(F0(XT−s(T ;x))∇XT−s(T ;x)).

Then,Qs ∈ L2(R3,R3) ∩ Cε(R3,R3), 0 < ε < α and

(4.36) F (s, x) = [P(Qs)](x), x ∈ R
3, s ∈ [0, T ].

PROOF OFPROPOSITION4.23. In view of [16, Theorem 4.6.5, p.173] we infer that
there exists solutionXs(t;x), 0 ≤ s ≤ t ≤ T of problem (4.35) andXs(t;x), 0 ≤ s ≤ t ≤
T is a flow ofC1–diffeomorphisms. Furthermore, it isC1+ε(Rn ,Rn )-valued process for
any0 < ε < δ.

Moreover, it follows from Theorems 3.3.3, p.94 and 4.6.5, p.173 therein that for all
s ∈ [0, T ],Qs ∈ Cε(Rn ,Rn ), 0 < ε < δ. Let us fixs ∈ [0, T ]. We will show now that
Qs ∈ L2(Rn ,Rn ). Since by Corollary 4.6.7 p. 175 of [16] that there exists a positive
constantC such that

sup
x∈Rn

E|∇XT−s(T ;x)|2 ≤ C,

by the Hölder inequality we infer that
∫

Rn

|Qs(x)|2 dx ≤
∫

Rn

E|F0(XT−s(T ;x))|2E|∇XT−s(T ;x)|2 dx

≤ C

∫

Rn

E|F0(XT−s(T ;x))|2 dx.(4.37)

Now it follows from Girsanov Theorem that

(4.38)
∫

Rn

E|F0(XT−s(T ;x))|2 dx =

∫

Rn

Ẽ(|F0(x+
√

2ν(WT −WT−s))|2ETT−s) dx,

whereETT−s = e

T
R

T−s

v(r,XT−s(r;x))dWr−1/2
T
R

T−s

|v(r,XT−s(r;x))|2 dr

is a stochastic exponent.
We can notice that

(4.39) Ẽ|ETT−s|2 ≤ e
2

T
R

0

|v(r)|L∞(r) dr

and, therefore, combining (4.37), (4.38) and (4.39) we get

(4.40)
∫

Rn

|Qs(x)|2 dx ≤ e

T
R

0

|v|L∞(r) dr



∫

Rn

|F0|4dx




1
2

.

Now let us show that
∫

XT−s(t;Γ)

3∑
k=1

F k(T − t) dxk, t ∈ [T − s, T ] is a local martingale. It

is enough to prove that the ”correction” term (due to nontrivial σ1) in the formula (4.34)
disappears.

Sinceb = curlF
| curlF | , |b| = 1, |a| = | curlF | we have

(curlF,
∂b

∂xk
) = | curlF |(b, ∂b

∂xk
) = 0.

Similarly,

(curlF, b× ∂b

∂xk
) = | curlF |(b, b× ∂b

∂xk
) = 0,
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and

(curlF, b)
∂| curlF |
∂xk

=
1

2

∂| curlF |2
∂xk

.

�

QUESTION 4.24. It would be interesting to generalize Theorem 4.12 to the
three dimensional case. In view of Corollary 4.21 in order tofind such gen-
eralization it is enough to prove that for any solutionF of equation (4.4) with
v being the correspondingC∞) vector field, there exists a triple(b, φ, ψ) ∈
(L∞([0, T ], C∞(R3, S2)), L∞([0, T ], C∞(R3, S1)), L∞([0, T ], C∞(R3,R))) such that

(cosφ− 1)(curlF, b× ∂b

∂xk
) + sinφ(curlF,

∂b

∂xk
)

+(curlF, b)
∂φ

∂xk
+

∂ψ

∂xk
=

(v × curlF )k

ν
, k = 1, 2, 3.(4.41)

We can notice that system (4.41) is time independent in the sense that there are no time
derivatives of the unknown functions. Therefore it is enough to consider the system for
every fixed timet ∈ [0, T ]. If the solenoidal vector fieldv is two dimensional, i.e.div v =
0, v3 = 0 and the componentsv1, v2 do not depend upon variablex3, thenb = (0, 0, 1),
φ = φ1/ν, whereφ1 is a stream function forv, ψ = 0, is a solution of the system (4.41),
see Theorem 4.12. However, in the three dimensional case theproblem is completely
open. One of the possibilities to narrow the problem is to consider the case whenF = u is
a solution to the Navier-Stokes equations.

QUESTION 4.25. Another question connected with system (4.41) is as follows. How
do variablesb, φ, ψ depend uponν? Can one take theν to 0 limit in the representation
(4.41)? But let us note that in the two dimensional case underthe additional condition
of incompressibilitydiv v = 0, the representation (4.41) holds also in the limitν → 0.
Indeed, in two dimensional case the stream function corresponding to the vector fieldv
exists becausediv v = 0 and is independent ofF andν.

REMARK 4.26. The Question 4.24 can be reformulated in the followingway.
Problem A. Find aC1-class functionσ : R3 → SO(3) such that for any smooth closed
loopΓ

(4.42)
∑

k

∫

Γ

∑

j

vj
(∂F k
∂xj

− ∂F j

∂xk

)
dxk = ν

n∑

k=1

∫

Γ

∑

j,l,m

∂F j

∂xl
σlm

∂σjm

∂xk
dxk.

Let∧ be the wedge product, see e.g. [30, p.79], and denote

α =
1

ν

∑

j,k

vj(
∂F k

∂xj
− ∂F j

∂xk
) dxk,

w = curlF.

Supposeσ : R3 → SO(3) is aC1-class function. Let us define a matrix valued function
A,

(4.43) A = dσσ−1.

Then the matrixA is antisymmetric and has the following form

(4.44) A =




0 −a3 a2

a3 0 −a1

−a2 a1 0
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whereai(x), i = 1, 2, 3, x ∈ R3 are 1-forms. Moreover,A satisfies system

(4.45) dA+A ∧A = 0,

or, in terms of 1-formsai, i = 1, 2, 3, equivalently

da1 = a3 ∧ a2

da2 = a1 ∧ a3

da3 = a2 ∧ a1.

Furthermore, if arbitrary antisymmetric matrixA of one-forms satisfies (4.45) then there
existsσ : R3 → SO(3) such that (4.43) is satisfied. Notice that the right part of formula
(4.42) can be rewritten as follows

(4.46) ν

∫

Γ

3∑

i=1

wiai.

Indeed,
∑

k,m

σ·m ∂σ
·m

∂xk
dxk = dσσ⊥ = dσσ−1 = A.

Now we can rewrite formula (4.42) as follows

(4.47)
∫

Γ

α = −
∫

Γ

3∑

i=1

wiai,

Hence, we can reformulate the equation (4.41) as follows

(4.48)
3∑

i=1

wiai = −α+ dψ.

Thus, Problem A can be solved in two stages. First, we need to solve system

(4.49)





da1 = a3 ∧ a2

da2 = a1 ∧ a3

da3 = a2 ∧ a1
3∑
i=1

wiai = −α+ dψ.

Then we need to findσ : R3 → SO(3) from equation (4.43). Existence of suchσ follows
from first three equations of system (4.49).

Applying the exterior derivative operatord to the last equation of the system (4.49) we
can get rid of functionψ and thus we get equivalent system

(4.50)





da1 = a3 ∧ a2

da2 = a1 ∧ a3

da3 = a2 ∧ a1

−dα =
3∑
i=1

dwi ∧ ai + w1a3 ∧ a2 + w2a1 ∧ a3 + w3a2 ∧ a1.

This system can be reformulated in terms of matrix-valued 1-formA as follows:

(4.51)

{
dA+A ∧A = 0

tr(WA ∧A+ dW ∧A) = 2 dα,
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where

W =




0 −w3 w2

w3 0 −w1

−w2 w1 0


 .

Thus we have quadratic equation on the space of flat connections.

Another application of Proposition 4.1 is a Feynman-Kac type formula for solutions
of the following equation

∂F

∂t
= −νA0F + (v(T − ·) · ∇)F − (F · ∇)v(T − ·), t > 0, x ∈ R

n ,(4.52)

F (0) = F0,(4.53)

whereA0 is a Stokes operator,F0 ∈ H andv satisfies condition (3.5). For the simplicity
sake we formulate the result forn = 3.

PROPOSITION4.27. Letv ∈ L1(0, T ;C2,α
b (Rn ,Rn )) for someα ∈ (0, 1), v satisfies

condition(4.6), (Xs(t;x)), 0 ≤ s ≤ t < ∞ is the flow corresponding to problem(4.3),
F0 ∈ C∞

0 (Rn ) andF is a solution of equation(4.52)such that there existsβ > 0:
(4.54)

E|
∫

XT−s(t;S)

F 1(T−t, x) dx2 dx3+F 2(T−t, x) dx3dx1+F 3(T−t, x) dx1dx3|1+β <∞

for any smooth surfaceS ⊂ R3 with smooth boundaryΓ and all 0 ≤ T − s ≤ t ≤ T .
Then it satisfies

F 1(s, x) =

E[F 1
0 (XT−s(T ;x))(

∂X2
T−s(T ;x)

∂x2

∂X3
T−s(T ;x)

∂x3
− ∂X2

T−s(T ;x)

∂x3

∂X3
T−s(T ;x)

∂x2
)

+F 2
0 (XT−s(T ;x))(

∂X3
T−s(T ;x)

∂x2

∂X1
T−s(T ;x)

∂x3
− ∂X3

T−s(T ;x)

∂x3

∂X1
T−s(T ;x)

∂x2
)(4.55)

+F 3
0 (XT−s(T ;x))(

∂X1
T−s(T ;x)

∂x2

∂X2
T−s(T ;x)

∂x3
− ∂X1

T−s(T ;x)

∂x3

∂X2
T−s(T ;x)

∂x2
)

F 2(s, x) =

E[F 1
0 (XT−s(T ;x))(

∂X2
T−s(T ;x)

∂x3

∂X3
T−s(T ;x)

∂x1
−
∂X2

T−s(T ;x)

∂x1

∂X3
T−s(T ;x)

∂x3
)

+F 2
0 (XT−s(T ;x))(

∂X3
T−s(T ;x)

∂x3

∂X1
T−s(T ;x)

∂x1
− ∂X3

T−s(T ;x)

∂x1

∂X1
T−s(T ;x)

∂x3
)(4.56)

+F 3
0 (XT−s(T ;x))(

∂X1
T−s(T ;x)

∂x3

∂X2
T−s(T ;x)

∂x1
− ∂X1

T−s(T ;x)

∂x1

∂X2
T−s(T ;x)

∂x3
)

F 3(s, x) =

E[F 1
0 (XT−s(T ;x))(

∂X2
T−s(T ;x)

∂x1

∂X3
T−s(T ;x)

∂x2
− ∂X2

T−s(T ;x)

∂x2

∂X3
T−s(T ;x)

∂x1
)

+F 2
0 (XT−s(T ;x))(

∂X3
T−s(T ;x)

∂x1

∂X1
T−s(T ;x)

∂x2
− ∂X3

T−s(T ;x)

∂x2

∂X1
T−s(T ;x)

∂x1
)(4.57)

+F 3
0 (XT−s(T ;x))(

∂X1
T−s(T ;x)

∂x1

∂X2
T−s(T ;x)

∂x2
− ∂X1

T−s(T ;x)

∂x2

∂X2
T−s(T ;x)

∂x1
)
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PROOF OFPROPOSITION4.27. The result follows from Proposition 4.5. Indeed, let
G ∈ L∞(0, T ;L2(Rn ,Rn ) ∩ C1+ε(Rn ,Rn )), 0 < ε < α be a solution of equation
(4.4)-(4.5). Its existence follows from Proposition 4.5. ThenF = curlG is a solution of
equation (4.52). For solutionG of (4.4) we have got representation by formula (4.8) of
Feynman-Kac type. Integrating it w.r.t. closed contourΓ we get

(4.58)
∫

Γ

∑

k

Gk(s, x) dxk = E(

∫

XT−s(T ;Γ)

∑

k

Gk0(x) dxk).

Now, result immediately follows from Stokes Theorem. �

REMARK 4.28. On an informal level, the Feynman-Kac type formula (4.55)-(4.57) in
the case ofν = 0 can be seen as a solution of the following informal infinite dimensional
first order PDE obtained by the characteristics method. Indeed, let us denote byY the
set of all smooth surfacesS ⊂ Rn with smooth boundaryΓ. Let TY be the set of all
smooth vector fields onY . If F is a solution of equation (4.52) with parametersν = 0 and
v ∈ C∞

0 ([0, T ]× Rn ), thenF̃ defined by

F̃ : [0,∞) × Y ∋ (t, S) 7→
∫

S

(F (t, ·), ~n) dσ ∈ R,

is a solution to the following equation

(4.59)
∂F̃

∂t
= DṽF̃ ,

whereDṽ is directional derivative along the vector fieldṽ ∈ TY defined by

Y ∋ S 7→
⋃

x∈S

v(x) ∈ TY.

Then, on a purely speculative level, the solution to equation (4.59) obtained via the char-
acteristics method is exactly our Feynman-Kac type formula.

REMARK 4.29. In a forthcoming publication the authors will consider the case of
equations with less regular velocity vector fields than those considered in the current paper.
Transport equations with irregular velocity field have beena subject of a great variety of
works, see e.g. recent works by Lions and Di Perna [7], Maniglia [21], Bouchot, James
and Mancini [2], and references therein. Our plan is to combine the resultsof Maniglia
[21] with our work i.e. to find probabilistic representation of solution of vector advection
equation with irregular velocity and then study the limit asthe viscosityν converges to0.

5. Proofs of results from section 3

PROOF OFPROPOSITION3.2.(i) The proof will be divided into three parts a), b), c).
a) Let us consider a special case whenv ∈ L∞(0, T ; L3+δ0(D)). We will use Theorem 2.3
with Gelfand tripleV ⊂ H ∼= H ′ ⊂ V ′. DenoteA(t) = νA + B(v(t), ·). We need to
check whether the conditions (2.5) and (2.6) are satisfied. We have,

(5.1) 〈A(t)f, f〉V ′,V = νã(f, f) + 〈B(v(t), f), f〉V ′,V , f ∈ V.

The second term on the RHS of the equality (5.1) from (2.12) can be estimated as follows

|〈B(v(t), f), f〉V ′,V | ≤
1

2
‖f‖2

V +
1

2
(ε1+δ0/3‖f‖2

V

+
Cδ0

ε1+3/δ0
|v(t)|2+

6
δ0

L3+δ0 (D)
|f |2H), ε > 0.(5.2)
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Thus from the inequality (5.2) and the continuity of form̃a we infer that,

(5.3) ‖A(t)‖L(V,V ′) ≤ Cν + C2|v(t)|L3+δ0 (D).

The coercivity assumption (2.6) also follows from the inequality (2.12). Indeed, forf ∈ V ,
t ∈ [0, T ] we have

|〈A(t)f, f〉V ′,V | = |νã(f, f) + 〈B(v(t), f), f〉V ′,V | ≥
ν

2
‖f‖2

V − C

ν
(ε1+δ0/3‖f‖2

V +
Cδ0
ε1+3/δ

|v(t)|2+
6

δ0

L3+δ0 (D)
|f |2H).

By choosingε > 0 such thatν2 − C
ν ε

1+δ0/3 > 0 we conclude the proof of the coercivity
condition (2.6). Thus, by the Theorem 2.3, first statement ofthe Proposition follows.

b) To prove Proposition in the general case we will show an energy inequality for solutions
of equation (3.1-3.2) whenv ∈ L∞(0, T ; L3+δ0(D)). From step (a) we know that a solu-
tion F ∈ L2(0, T ;V ) such thatF ′ ∈ L2(0, T ;V ′) exists and unique. Then, from Lemma
2.1 and equality (2.18) we infer that

1

2

d

dt
|F |2H = −ν‖F‖2

V + 〈f, F 〉V ′,V − 〈B(v, F ), F 〉V ′,V

= −ν‖F‖2
V + 〈f, F 〉V ′,V + (curlF, v × F )H .

Therefore, by applying the Young inequality, we infer that

|F (t)|2H + 2ν

t∫

0

|F (s)|2V ds−
t∫

0

(curlF (s), v(s) × F (s))H ds

= |F (0)|2H +

t∫

0

〈f(s), F (s)〉V ′,V ds

≤ |F (0)|2H +
ν

2

t∫

0

|F (s)|2V ds+
C

ν

t∫

0

|f(s)|2V ′ ds.
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The term
t∫
0

(curlF (s), v(s) × F (s))H ds can be estimated as follows:

|
t∫

0

(curlF (s), v(s) × F (s))H ds|

≤ ν

4

t∫

0

| curlF |2H ds+
C

ν

t∫

0

|v(s) × F (s)|2H ds

≤ ν

4

t∫

0

| curlF |2H ds+
C

ν

t∫

0

(ε1+δ0/3|F (s)|2V

+
Cδ0

ε1+δ0/3
|v(s)|2+6/δ0

L3+δ0
|F (s)|2H) ds

≤ (
ν

4
+
C

ν
ε1+δ0/3)

t∫

0

|F (s)|2V ds

+
Cδ0

νε1+δ0/3

t∫

0

|v(s)|2+6/δ0
L3+δ0

|F (s)|2H ds.(5.4)

Let us chooseε > 0 such thatν4 + C
ν ε

1+δ0/3 = ν
2 . Then

|F (t)|2H + ν

t∫

0

‖F (s)‖2
V ds ≤ |F (0)|2H +

C

ν

t∫

0

|f(s)|2V ′ ds

+
Cδ0

νε1+δ0/3

t∫

0

|v(s)|2+6/δ0
L3+δ0

|F (s)|2H ds, t ≥ 0.

Hence, in view of the Gronwall Lemma, we get

|F (t)|2H ≤


|F (0)|2H +

C

ν

t∫

0

|f(s)|2V ′ ds


 e

C(δ0,ν)
t

R

0

|v(s)|
2+6/δ0

L
3+δ0

ds
, t ≥ 0.

Thus

|F (t)|2H + ν

t∫

0

‖F (s)‖2
V ds ≤ K1


|F (0)|2H +

C

ν

t∫

0

|f(s)|2V ′ ds





1 +

t∫

0

|v(s)|2+6/δ0
L3+δ0

ds


 e

C(δ0,ν)
t

R

0

|v(s)|
2+6/δ0

L
3+δ0

ds
, t ≥ 0.(5.5)

(c) The general case. Letvn ∈ L∞(0, T ; L3+δ0(D)) be a sequence of functions such that

vn → v in L2+ 6
δ0 (0, T ; L3+δ0(D)). Let Fn be a corresponding sequence of solutions of

equation (3.1-3.2) withv being replaced byvn. Then from inequality (5.5) it follows that
the sequence{Fn}∞n=1 lies in a bounded set ofL∞(0, T ;H) ∩ L2(0, T ;V ). Therefore,
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by the Banach-Alaoglu Theorem there exists subsequence{Fn′} andF ∗ ∈ L∞(0, T ;H)
such that for anyq ∈ L1(0, T ;H)

(5.6)

T∫

0

(Fn′ − F ∗, q(s))H ds→ 0

Similarly, from the Banach-Alaoglu Theorem it follows thatwe can find a subsequence
{Fn′′} of {Fn′} convergent toF ∗∗ ∈ L2(0, T ;V ) weakly i.e. for anyq ∈ L2(0, T ;V ′)

(5.7)

T∫

0

〈Fn′′ − F ∗∗, q(s)〉V ′,V ds→ 0,

In particular, (5.6) and (5.7) are satisfied forq ∈ L2(0, T ;H). ThereforeF ∗ = F ∗∗ ∈
L∞(0, T ;H) ∩ L2(0, T ;V ). PutF = F ∗. Let us now show thatF satisfies equation
(3.1-3.2) in the weak sense. Letψ ∈ C∞([0, T ],R), ψ(1) = 0, h ∈ V . Then by part(a)
of the proof we have

−
T∫

0

(Fn(s), h)Hψ
′(s) ds +

T∫

0

〈B(vn, Fn), h〉V ′,V ψ(s) ds+ ν

T∫

0

ã(Fn(s), h)ψ(s) ds

= (F0, h)Hψ(0) +

T∫

0

〈f(s), h〉V ′,V ψ(s) ds.(5.8)

Convergence of the first term, respectively third term, follows immediately from (5.6),
respectively (5.7). For the second term we have

|
T∫

0

〈B(vn, Fn) −B(v, F ), h〉V ′,V ψ(s) ds| ≤ |
T∫

0

〈B(vn − v, Fn), h〉V ′,V ψ(s) ds|

+|
T∫

0

〈B(v, Fn − F ), h〉V ′,V ψ(s) ds| = In + IIn.

Let ε > 0 be fixed. For anyε2, ε3 > 0 we have, by inequality (2.12), the following
inequalities

In ≤ ε3

T∫

0

| curlFn|2H ds+
C

ε3

T∫

0

(ε2|h|2V +
C

ε2
|vn − v|2+

6
δ0

L3+δ0 (D)
|h|2H)|ψ|2 ds

= ε3‖Fn‖2
L2(0,T ;V ) +

Cε2
ε3

|h|2V
T∫

0

|ψ|2 ds+
C|h|2H
ε3ε2

T∫

0

|vn − v|2+
6

δ0

L3+δ0(D)
|ψ|2 ds.

Taking into account boundedness of the sequence{Fn}∞n=1 in L2(0, T ;V ) and the conver-

gence of{vn}∞n=1 to v in L2+ 6
δ0 (0, T ; L3+δ0(D)), we can chooseε2, ε3 andN = N(ε)

in such way thatIn ≤ ε
2 , for n ≥ N .

ForIIn we haveIIn = |
T∫
0

〈Fn−F, curl(v×h)〉V ′,V ψ(s) ds|. From inequality (2.14)

it follows that v × h ∈ L2(0, T ;H). Therefore,curl(v × h) ∈ L2(0, T ;V ′) and the
convergence ofIIn to 0 follows from inequality (5.7). The uniqueness ofF follows from
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the energy inequality (5.5). It remains to show thatF ∈ C([0, T ], Hw). Let us show
thatF ∈ C([0, T ], V ′). Then, sinceF ∈ L∞(0, T ;H), it immediately follows from [33,
Lemma 1.4, p.178] thatF ∈ C([0, T ], Hw). To prove thatF ∈ C([0, T ], V ′) it is enough
to show thatF ′ ∈ L1(0, T ;V ′). Indeed, we have thatF ∈ L∞(0, T ;H) ⊂ L1(0, T ;V ′)
and by [33, Lemma 1.1, p.169] the result follows. We have

|F ′|1+
3

2δ0+3

L
1+ 3

2δ0+3 (0,T ;V ′)

= |AF |1+
3

2δ0+3

L
1+ 3

2δ0+3 (0,T ;V ′)
=

T∫

0

|A(s)F (s)|1+
3

2δ0+3

V ′ ds

≤
T∫

0

|A(s)|1+
3

2δ0+3

L(V,V ′) |F (s)|1+
3

2δ0+3

V ds

≤ (

T∫

0

|F (s)|2V ds)
δ0+3

2δ0+3 (

T∫

0

|A(s)|2+
6

δ0

L(V,V ′) ds)
δ0

2δ0+3

≤ (

T∫

0

|F (s)|2V ds)
δ0+3
2δ0+3 (

T∫

0

(C1ν + C2|v(s)|L3+δ0 (D))
2+ 6

δ0 ds)
δ0

2δ0+3

≤ C|F |
2δ0+6
2δ0+3

L2(0,T ;V )(C1(ν, T, δ0) + |v|
2δ0+6
2δ0+3

L
2+ 6

δ0 (0,T ;L3+δ0(D))
) <∞,(5.9)

where the second inequality follows from the Hölder inequality and the third one follows
from the inequality (5.3). Thus, first statement of the Proposition 3.2 is proved.

(ii) To prove [ii] we follow an idea from [3] and [4].

LEMMA 5.1. Let g : [0, T ] → R be measurable function such that
T∫
0

|g(s)| ds <
∞. Then for anyδ > 0 there exists a partition{Ti}ni=1 of interval [0, T ] such that
Ti+1∫
Ti

|g(s)| ds < δ, i = 1, . . . , n.

PROOF. Follows easily from [28, Theorem 8.17]. �

Existence of a local solution. LetXT = {F ∈ L2(0, T ;D(A)) : F ′ ∈ L2(0, T ;H)} be a
Banach space endowed with a norm

|F |2XT
= ν2|F |2L2(0,T ;D(A)) + |F ′|2L2(0,T ;H).

We will prove the following result.

LEMMA 5.2. If v satisfies assumption(3.5), z ∈ XT thenB(v(·), z) ∈ L2(0, T ;H).

In view of Proposition 2.4 and the above Lemma, a mapΦT : XT → XT defined by
ΦT (z) = G iff G is the unique solution solution of the problem

(5.10) G′ + νAG = f −B(v(t), z), G(0) = F0,

is well defined.
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PROOF OFLEMMA 5.2. From inequality (2.20) we have

‖B(v(·), z)‖2
L2(0,T ;H) ≤ C1(ε, δ0)‖z‖2

L2(0,T ;H2(D))

+C2(ε, δ0)|z|2C([0,T ];V )|v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

.

Thus the result follows from Lemma 2.1. �

We will show that there existsT1 ≤ T such thatΦT1 is a strict contraction. By
Proposition 2.4 and inequality (2.20) we have, for allt ∈ [0, T ],

‖Φt(z1) − Φt(z2)‖2
Xt

≤ C1‖B(v, z1 − z2)‖2
L2(0,t;H) ≤ C1ε

1+δ0/3|z1 − z2|2L2(0,t;D(A))

+ C1
Cδ

ε1+3/δ
|z1 − z2|2C(0,t;V )|v|L2+6/δ0 (0,T ;L3+δ0(D))

≤ C1ε
1+δ0/3|z1 − z2|2Xt

+ C1
Cδ

ε1+3/δ
|z1 − z2|2Xt

|v|L2+6/δ0(0,t;L3+δ0(D))).

Now let us chooseε > 0 thatC1ε
1+δ0/3 = 1/2 and denoteK = C1

Cδ

ε1+3/δ . We have

(5.11) ‖Φt(z1)−Φt(z2)‖2
Xt

≤ (1/2+K|v|L2+6/δ0(0,t;L3+δ0(D)))|z1 − z2|2Xt
, t ∈ [0, T ].

Chooset = T1 such that|v|L2+6/δ0(0,T1;L3+δ0 (D)) ≤ d = 1
3K thenΦT1 is an affine con-

traction map and by the Banach Fixed Point Theorem there exists a fixed pointF ∈ XT1

of ΦT1 . ObviouslyF is a solution of problem (3.1-3.2) on interval[0, T1].
Existence of a global solution. From Lemma 5.1 and assumption (3.5) it follows that we
can find partition0 = T0 < T1 < . . . < Tk−1 < Tk = T of interval [0, T ] such that
|v|L2+6/δ0(Ti,Ti+1;L3+δ0(D)) <

1
3K , i = 0, . . . , k − 1. Therefore, we can use the inequality

(5.11) and the Banach Fixed Point Theorem iteratively to define global solution.

(iii) To proof the statement in part [iii] we will use a methodsuggested by Temam in [34].
We will consider only the casek = 1. General case follows by induction. Let us recall that

A(t) = νA+ B(v(t), ·).
By differentiating the equation (3.1-3.2) w.r.t.t (in weak sense) we find thatF ′ is a solution
of

dF ′

dt
= −A(t)F ′ +B(v′(t), F ) + f ′, t ∈ [0, T ].

Now from the assumptions of the statement in part [ii] it follows that it is enough to prove
thatB(v′(·), F ) ∈ L2(0, T ;H) and then use the already proven statement in part [i]. From
inequality (2.20) we have

T∫

0

|B(v′(t), F )|2H dt

≤ ε1+δ0/3
T∫

0

‖ curlF‖2
V dt+

Cδ0
ε1+3/δ0

T∫

0

|v′(t)|2
L3+δ0 (D)| curlF |2H dt

≤ ε1+δ0/3|F |L2(0,T ;D(A)) +
Cδ0

ε1+3/δ0
‖F‖2

C([0,T ];V )

T∫

0

|v′(t)|2+
6

δ0

L3+δ0 (D)
dt <∞.
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Note thatF ∈ C([0, T ];V ) by Lemma 2.1.
�

PROOF OFPROPOSITION3.4. The proof is very similar to the proof of the previous
Proposition.

(i) The proof will be divided into three parts a), b), c).
a) First we consider a special case whenv ∈ L∞(0, T ; L3+δ0(D)). We will use Theorem
2.3 with Gelfand tripleV ⊂ H ∼= H ′ ⊂ V ′. DenoteB(t) = νA+curl(v(t)×·). We need
to check whether the conditions (2.5) and (2.6) are satisfied. We have

〈B(t)f, f〉V ′,V = νã(f, f) + 〈curl(v(t) × f), f〉V ′,V

= νã(f, f) + 〈v(t) × f, curl f〉V ′,V , t ∈ [0, T ], f ∈ V.(5.12)

Now we can use the inequality (5.2) and the continuity of the form ã to get

‖B(t)‖L(V,V ′) ≤ Cν + C2|v(t)|L3+δ0 (D).

The coercivity condition (2.6) can be proved in the same way as in the proof of Proposition
3.2. Therefore, by Theorem 2.3 first statement of the Proposition is proved in our special
case.

b) To prove Proposition in the general case we will, as before, show an energy inequality
for solutions of the problem (3.3-3.4) whenv ∈ L∞(0, T ; L3+δ0(D)). From Step(a) we
know that there exists a unique solutionG ∈ L2(0, T ;V ) such thatG′ ∈ L2(0, T ;V ′).
Then, from Lemma 2.1 it follows thatG ∈ C([0, T ];H) and

1

2

d

dt
|G|2H = −ν‖G‖2

V + 〈f,G〉V ′,V − 〈v ×G, curlG〉V ′,V

= −ν‖G‖2
V + 〈f,G〉V ′,V + (curlG, v ×G)H

Therefore, by the Young inequality,

|G(t)|2H + 2ν

t∫

0

|G(s)|2V ds−
t∫

0

(curlG(s), v(s) ×G(s))H ds

= |G(0)|2H +

t∫

0

〈f(s), G(s)〉V ′,V ds

≤ |G(0)|2H +
ν

2

t∫

0

|G(s)|2V ds+
C

ν

t∫

0

|f(s)|2V ′ ds, t ∈ [0, T ].

The term
t∫
0

(curlG(s), v(s) ×G(s))H ds can be estimated in the same way as in Proposi-

tion 3.2, see (5.4). Thus we infer thatG satisfies the following inequality, fort ∈ [0, T ],

|G(t)|2H + ν

t∫

0

‖G(s)‖2
V ds ≤ K1


|G(0)|2H +

C

ν

t∫

0

|f(s)|2V ′ ds





1 +

t∫

0

|v(s)|2+6/δ0
L3+δ0

ds


 e

C(δ0,ν)
t

R

0

|v(s)|
2+6/δ0

L
3+δ0

ds
.(5.13)
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c) The general case. Now, let{vn}∞n=1 be an L∞(0, T ; L3+δ0(D))-valued se-

quence of functions such thatvn → v ∈ L
2+ 6

δ0 (0, T ; L3+δ0(D)), n → ∞ in

L2+ 6
δ0 (0, T ; L3+δ0(D)). Let {Gn}∞n=1 be corresponding sequence of solutions of the

problem (3.3-3.4). Then from (5.13) it follows that sequence{Gn}∞n=1 lie in a bounded set
of L∞(0, T ;H)∩L2(0, T ;V ). Using the same argument as in the proof of Proposition 3.2
we can find subsequence{Gn′}∞n′=1 weakly convergent toG ∈ L∞(0, T ;H)∩L2(0, T ;V )
which solves the problem (3.3-3.4) in a weak sense. Moreover, it follows from inequality
(5.13), that the functionG satisfies energy inequality (3.9). Uniqueness of the solution of
the problem (3.3-3.4) follows from the energy inequality (3.9). The only difference with
the previous Proposition is that now we can prove thatG′ ∈ L2(0, T, V ′). Indeed, we have

‖G′‖2
L2(0,T,V ′) = ‖BG‖2

L2(0,T,V ′)

≤
T∫

0

|νAG+ curl(v(t) ×G(t))|2V ′ dt

≤ ν2‖G‖2
L2(0,T,V ) +

T∫

0

|v(t) ×G(t)|2H dt

≤ ν2‖G‖2
L2(0,T,V ) +

T∫

0

(C1|G(t)|2V + C2|v(t)|2+6/δ0
L3+δ0

|G(t)|2H) dt

≤ C3‖G‖2
L2(0,T,V ) + C2‖G‖2

L∞(0,T,H)|v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

<∞.

Thus, the first statement of Proposition is proved. Statements [ii] and [iii] can be proved in
the same way as in the proof of Proposition 3.2.

(ii) Existence of a local solution.Let XT = {F ∈ L2(0, T ;D(A)) : F ′ ∈ L2(0, T ;H)}
be a Banach space endowed with a norm

|F |2XT
= ν2|F |2L2(0,T ;D(A)) + |F ′|2L2(0,T ;H).

We will prove the following result.

LEMMA 5.3. If v ∈ L2(0, T ;V ), z ∈ XT thencurl(v(t) × z) ∈ L2(0, T ;H).

In view of Proposition 2.4 and the above Lemma, a mapΦT : XT → XT defined by
ΦT (z) = G iff G is the unique solution of the problem

(5.14) G′ + νAG = f − curl(v(t) × z), G(0) = F0 ∈ V

is well defined.

PROOF OFLEMMA 5.3. We have:

‖ curl(v(t) × z)‖2
L2(0,T ;H) ≤ C(‖z∇v‖2

L2(0,T ;H) + ‖v∇z‖2
L2(0,T ;H))

≤ C|z|C([0,T ];V )|v|L2(0,T ;V )(5.15)

and the result follows from Lemma 2.1. �

Now we will show that there existsT1 ∈ (0, T ] such thatΦT1 is a strict contraction.
Let us fixt ∈ (0, T ] and takez1, z2 ∈ XT . Then, by Proposition 2.4 and Lemma 2.12, we



DUALITY AND THE NSES 89

have

‖Φt(z1) − Φt(z2)‖2
Xt

≤ C1‖ curl(v(t) × (z1 − z2))‖2
L2(0,t;H)

≤ C|z1 − z2|2C(0,t;V )|v|2L2(0,t;V ) ≤ C|z1 − z2|2Xt
|v|2L2(0,t;V ).

Let us chooseT1 ∈ (0, T ] such thatC|v|L2(0,T1;V ) < 1/2. ThenΦT1 is a strict contraction
map and hence by the Banach Fixed Point Theorem there exists auniqueF ∈ XT1 that is
a fixed point ofΦT1 . By the definition of theΦT it follows thatF ∈ XT1 is a solution of
problem (3.1-3.2) on interval[0, T1]. Notice also thatF (T1) ∈ V . Therefore, the mapΦT
with initial dataF (T1) is well defined on interval[T1, T ].
Existence of a global solution.From Lemma 5.1 and assumption (3.5) it follows that we
can find a partition0 = T0 < T1 < . . . < Tk−1 < Tk = T of the interval[0, T ] such that
|v|L2(Ti,Ti+1;V ) < 1/2, i = 0, . . . , k − 1. Therefore, we can use inequality (5.11) and the
Banach Fixed Point Theorem iteratively to define a global solution (3.3-3.4).

(iii) We will consider only the casek = 1. General case follows by induction. We differ-
entiate equation (3.3-3.4) w.r.t.t (in the weak sense) and get an equation for the function
G′:

∂G′

∂t
(t) = −νAG′(t) − curlG′(t) × v(t) − curl(G(t) × v′(t)) + f ′(t)

G′(0) = −νAG0 − curl v(0) ×G0 + f(0), t ∈ [0, T ].

Now from the assumptions of the statement [ii] it follows that it is enough to prove that
curl(G × v′(t)) ∈ L2(0, T ;H) and then use the already proven statement in part [i]. By
the inequality (5.15) we have

‖ curl(G× v′)‖2
L2(0,T ;H) ≤ C|G|C([0,T ];V )|v′|L2(0,T ;V ) <∞.

Note thatG ∈ C([0, T ];V ) by Lemma 2.1.

�

PROOF OFTHEOREM 3.7. 1st Step. Fixδ0 > 0. Let us prove the Theorem in the
case of smooth initial dataF0 ∈ C∞(D) ∩ H and vector fieldv ∈ C∞

b ([0, T ] × D) ∩
L2+ 6

δ0 (0, T ; L3+δ0(D)). For eachε > 0 we can findF ε0 ∈ C∞(D)∩H ,Gε0 ∈ C∞(D)∩
H , vε ∈ C∞

b ([0, T ] × D) ∩ L
2+ 6

δ0 (0, T ; L3+δ0(D)) such that asε → 0, F ε0 → F0 in
H , Gε0 → G0 in H andvε → v in L∞(0, T ; L3+δ0(D)). It follows from Corollaries 3.5
and 3.6 that there existsF ε ∈ C([0, T ];H) ∩ C∞((0, T ] × D), Gε ∈ C([0, T ];H) ∩
C∞((0, T ] ×D)) that are solutions to the following problems

∂F ε

∂t
(t) = −νAF ε(t) − P (vε(t) × curlF ε(t))

F ε(0, ·) = F ε0 , t ∈ [0, T ]

∂Gε

∂t
(t) = −νAGε(t) + curl (vε(T − t) ×Gε(t))

Gε(0, ·) = Gε0, t ∈ [0, T ]
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Therefore, for allt ∈ (0, T ] we have

d

dt
(F ε(t), Gε(T − t))L2(D)

= (
d

dt
F ε(t), Gε(T − t))L2(D) − (F ε(t),

d

dt
Gε(T − t))L2(D)

= ν(P△F ε(t), Gε(T − t))L2(D) − (P(v(t) × curlF ε(t)), Gε(T − t))L2(D)

− ν(F ε(t),P△Gε(T − t))L2(D) − (F ε(t), curl (v(t) ×Gε(T − t)))L2(D)

= K1(t) −K2(t) −K3(t) −K4(t)

It follows from the fact thatdivF ε = divGε = 0, F ε|∂D = Gε|∂D = 0 and the integra-
tion by parts formula that(F ε,∇ψ)L2(D) = (Gε,∇ψ)L2(D) = 0 for anyψ ∈ C∞(D).
Thus, we have

K1(t) = (P△F ε(t), Gε(T − t))L2(D) = (△F ε(t), Gε(T − t))L2(D),

K2(t) = (P(v(t) × curlF ε(t)), Gε(T − t))L2(D)

= (v(t) × curlF ε(t), Gε(T − t))L2(D), t ∈ (0, T ](5.16)

and

K3(t) = (F ε(t),P△Gε(T − t))L2(D) = (F ε(t),△Gε(T − t))L2(D), t ∈ (0, T ]

Therefore, by the Green Formula we getK1(t)−K3(t) = 0, t ∈ (0, T ]. From (2.1), (5.16)
and the formula ∫

D

u curlvdx −
∫

D

v curludx =

∫

∂D

(u× v,−→n ) dσ

we infer that

K2(t) = (v(t) × curlF ε(t), Gε(T − t))L2(D)

= −(curlF ε(t) × v(t), Gε(T − t))L2(D)

= −(curlF ε(t), v(t) ×Gε(T − t))L2(D) = −K4(t), t ∈ (0, T ].

Thus, ddt (F
ε(t), Gε(T − t))L2(D) = 0, t ∈ (0, T ]. Also, by the regularity ofF ε, Gε

it follows that (F ε(·), Gε(T − ·))L2(D) ∈ C∞((0, T ]) ∩ C([0, T ]). As a result we get
equality (3.13).
2nd step. Let us suppose that we have showed that for eacht ∈ [0, T ], Fε(t) → F (t) in
weak topology ofH and thatGε → G in C([0, T ], H). Then we have

|(F (t), G(T − t)) − (F ε(t), Gε(T − t))|
= |(F − F ε(t), G(T − t)) + (F ε(t), G−Gε(T − t))|
≤ |(F − F ε(t), G(T − t))| + |F ε(t)|H |G−Gε(T − t)|H
≤ |(F − F ε(t), G(T − t))| + |F ε0 |H sup

s∈[0,T ]

|G−Gε(s)|H ε→0→ 0, t ∈ [0, T ]

i.e. (F (t), G(T − t))H = lim
ε→0

(F ε(t), Gε(T − t))H , t ∈ [0, T ] and the result follows

from first step. In order to show weak convergence ofFε(t) to F (t), t ∈ [0, T ] let us first
notice that by the Banach-Alaoglu Theorem,Fε converges toF weakly-* inL∞(0, T ;H).
The proof of this claim can be performed in exactly the same manner as the proof of the
convergence ofFn → F in Proposition 3.2). Also, we have from the Banach-Alaoglu
Theorem thatF ε(t) weakly-* convergent to someΨ(t) ∈ H, t ∈ [0, T ]. We will show that
Ψ = F . Fix ξ ∈ V . Let us denoteg(t) = (Ψ(t) − F (t), ξ)H , t ∈ [0, T ]. SinceV is dense
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in H it is enough to show thatg = 0. Now we will show thatg ∈ C([0, T ]). From the part
(i) of Proposition 3.2 we infer thatF ∈ C([0, T ], V ′). Thus,(F (·), ξ)H = 〈F (·), ξ〉V ′,V ∈
C([0, T ]). Furthermore, fort ∈ [0, T ] we have

|(Fε(t), ξ) − (Fε(s), ξ)| ≤
t∫

s

|〈F ′
ε(r), ξ〉|dr(5.17)

≤ (

T∫

0

|〈F ′
ε(r), ξ〉|1+

3
2δ0+3 dr)

2δ0+3
2δ0+6 |t− s|

3
2δ0+6

≤ |F ′
ε|
L

1+ 3
2δ0+3 (0,T ;V ′)

|ξ|V |t− s|
3

2δ0+6

≤ C|Fε|L2(0,T ;V )(C1(ν, T, δ0) + |vε|
2δ0+6
2δ0+3

L
2+ 6

δ0 (0,T ;L3+δ0(D))
)

2δ0+3
2δ0+6 |ξ|V |t− s|

3
2δ0+6

≤ C|F 0
ε |H(C(ν, T, δ0) + |vε|

L
2+ 6

δ0 (0,T ;L3+δ0(D))
)|ξ|V |t− s|

3
2δ0+6

≤ C|F 0|H(C(ν, T, δ0) + |v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

)|ξ|V |t− s|
3

2δ0+6 , 0 < s ≤ t < T.

In the above sequence of inequalities, the first one follows because(Fε(·), ξ) ∈
C∞((0, T )), the second one from the Hölder inequality and the fourth one from the in-
equality (5.9).

Taking theεց 0 limit in (5.17) we immediately get

(5.18) |(Ψ(t), ξ) − (Ψ(s), ξ)| ≤ C(F0, v, ν, δ0, T )|ξ|V |t− s|
3

2δ0+6 ,

whereC(F0, v, ν, δ0, T ) = C|F 0|H(C(ν, T, δ0) + |v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

). Hence,Ψ ∈
C([0, T ], V ′) and, consequently,g ∈ C([0, T ]). Therefore it is enough to prove thatg(t) =
0 for a.a.t ∈ [0, T ].

We have already observed that

(5.19) lim
εց0

T∫

0

(F ε(s) − F (s), q(s))H ds = 0, for all q ∈ L1(0, T ;H).

Let us take anyf ∈ L1(0, T ) and putq = ξf , gε = (F ε(·) − F (·), ξ)H . Then from (5.19)
we infer that

(5.20)

T∫

0

gε(s)f(s) ds → 0, for all f ∈ L1(0, T ).

On the other hand, it follows from the definition ofg that gε → g pointwise. We will
show now that (5.20) and this pointwise convergence ofgε imply thatg = 0 a.e.. Indeed,
by the Egorov Theorem, see e.g. [1, Theorem 2.2.1, p. 110], for anyl > 0 there exists
a measurable setAl ⊂ [0, T ] such thatλ(Al) < l andgε → g uniformly on [0, T ] \ Al.
Hereλ denotes the Lebesgue measure. Hence by (5.20) we infer thatg(t) = 0, for a.e.
t ∈ [0, T ] \Al and consequentlyg(t) = 0 for a.e.t ∈ [0, T ].
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Thus, it remains to show thatGε → G in C([0, T ], H). DenoteRε = Gε −G. Then
Rε is a solution to the following problem.

∂Rε

∂t
(t) = −νARε(t)

+ curl(vε(T − t) ×Rε(t)) + curl((vε(T − t) − v(T − t)) ×G(t))

Rε(0, ·) = Gε0 −G0, t ∈ [0, T ].

Applying the energy inequality (3.9) to the functionRε we infer that for anyτ > 0

|Rε|2C([0,T ];H) ≤ C(|vε|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

)(|Gε0 −G0|2H
+| curl((v − vε) ×G)|2L2(0,T ;V ′))

≤ C(|vε|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

)(|Gε0 −G0|2H + |(v − vε) ×G|2L2(0,T ;H))

≤ C(|v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

)(|Gε0 −G0|2H + τ1+δ0/3

T∫

0

|G(s)|2V ds+

Cδ0
τ1+3/δ0

|G|2C([0,T ];H)|vε − v|
L

2+ 6
δ0 (0,T ;L3+δ0(D))

),(5.21)

where last inequality of (5.21) follows from Lemma 2.12. Now, from the convergences

vε → v in L
2+ 6

δ0 (0, T ; L3+δ0(D)), Gε0 → G0 in H and inequalities (5.21) we get the
result.

�
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