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Duality, vector advection and the Navier-Stokes equations
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ABSTRACT. In this article we show that three dimensional vector atlercequation is
self dual in certain sense defined below. As a consequendefevelassical result of Ser-
rin of existence of strong solution of Navier-Stokes equratiAlso we deduce Feynman-
Kac type formula for solution of the vector advection equatand show that the formula
is not unique i.e. there exist flows which differ from starttifiow along which vorticity is

conserved.
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1. Introduction

The purpose of this paper is twofold. The first one is to eshla certain self-duality
formula for a vector advection equation in the spRée This formula can be understood
as generalization of the helicity invariance for the Eulguations , see Corollary 3.13
and Remark 3.14. As a byproduct, see Corollary 3.13, we gienaproof of the classical
result of Serrin 29 about the uniqueness of a weak solution to the Navier-Steleations
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(NSEs for short)
%—F(U-V)u = vAu+Vp+f,
(1.1) divu = 0,
u(0) = wg

satisfying certain additional integrability condition. h& second one, see Theorem 4.12,
is to establish the existence of non-classical flows alorig which the circulation of the
solution of the vector advection equation is conservedeémtiean. This problem seems to
us important because it could potentially lead to the newi@ipstimates of the solution
of vector advection equation.

The importance of the vector advection equation stems flenfdct that it appears
in many different areas of hydrodynamics, e.g. the vogtioit a strong solution of the
3-dimensional NSEs is its solution. Moreover, the majottatle in proving the global ex-
istence of a strong solution to the NSEs is the appearanbe 8fbrticity stretching” term
in the vector advection equation. It is necessary to unaethat in a simpler case of the
scalar advection equation, this conceptually importamt is not present and therefore the
self-duality and other properties described in this pamenat hold. Another application
of the vector advection equation is the equation for magritid in MHD equations, see
e.g. 4.

Let us describe briefly the main contributions of the paper.

In the first part of our paper we study the following vector @chion equations

OF(t,x)
— = —v(AF)(t, )
(1.2) — [P((VF = VFY))|(t, @) + f(t,2), € RY,
F(0,2) = Fy(z), z € RY,

wherev : [0,00) x RY — R? is a given time-dependent vector field,= 3, P is the
Helmholtz projection onto the divergence free vector figldd A is the Stokes operator.
As usual byH"?(R?), d € N, we denote the space of all divergence free vector fields that
belong to the Sobolev spagE"2(R?). Let us denote by} the transport operator along

v, i.e. T,V Fy = F(t), fort > 0, wheref is the unique solution to problem (1.2). The main

result here is Theorem 3.7 in which we formulate the follayelf-duality formula.
1.3) (curlFo,TTST”GO)H = (cwrl 7 Fo, Go)u, Fo € curl_l(H), Gy € H,

where St is the time reversal operator, i.dS7v)(t) = —v(T —t), t € [0,T]. The
self-duality formula (1.3) allows us to deduce certain gnties of the operatdf?. In
particular in Corollary 3.10 we show that th(e(IHI’“’2 H’“Q)— norm of 77 is equal to

sol ? "7 sol

its £(H.»? H!*?)~ norm. Moreover, in Corollary 3.12, we prove that the space
1 1 .. . .
L‘,(H;O’IQ, ]I-]I:O’f) is in a certain sense optimal f@r}.

The main result in the second part of the paper, Theorem . BBout a certain non-
classical Feynman-Kac type formulafor the solutions ofietor advection equation (1.2)
in two dimensions. We show that if the divergence free vefi¢dd v is time-independent
and sufficiently regular, then the stochastic flow of diffephisms ofR? X, (¢;-),0 <
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s <t < T, corresponding to the following SDE d@&¥,

dXs(t;2) = V2wo(Xs(t2))dW(t), 0<s<t<T,
(1.4)
Xs(s;2) = =
where, with a functior : R?2 — R such thatv = V+¢,
$(z) - o)
cos =X —sin & 9
= 7 v )z e R
o1(2) ( sin @ cos @ ) v

has the following properties: (i) its one-point motion i88eownian Motionand (ii) the
circulation along it of the solution of the two dimensionaktor advection equation (1.2),
i.e. withd = 2, is a martingale. This flow seems to be of interest on its owrabse the
stream functiorp naturally arise in its construction.

The question of the existence of an analogous flow in the ttireensional case re-
mains open, see Question (4.24) for details.

It should be noticed here that a similar construction doeéswvook for the scalar ad-
vection equation because in this case the Feynman-Kac ¢ypaufa depends only upon
the law of the flow itself and not upon the law of the gradienthaf flow. Also we would
like to point out that the main obstacle in getting a’pricsiimnates for solutions of vector
advection equation (in particular, for vorticity of the gtibn to the 3-D NSES) is lack of
an estimate for the gradient of the flow. Therefore, in cotineavith this result, a natural
guestion is whether it is possible to choose the optimal flmwvhich gradient is bounded?

The main idea behind our approach to the Feynman-Kac typeularfor solutions of
the vector advection equation is that in the case with viscesgual to0, the conservation
law of circulation, known also as Kelvin-Noether Theoremlds. In the case of positive
viscosity we are able to find an analog of this conservatian Tdhe Feynman-Kac formula
is then an immediate consequence of that result. This idedéean used before in the
papers 25] and [26] (though with quite sketchy proofs). In the latter papee $&eorem
5 and Exampld, the Feynman-Kac formula for the solution of vector adwetgquation
without incompressibility condition has been derived. Ansavhat similar idea has been
also explored independently by Constantin and lyeBlniut see also Flandoli et al5]
for a different approach. Moreover, Flandoli et a] proved Feynman-Kac formula for
more general systems of parabolic PDEs. However, we wokadtdi point out that in all
of the articles mentioned above only the "standard” stoth#lsw corresponding to the
following SDE

(1.5) dXs(t;x)) = o(t, Xs(tx))dt + V2w dW(t), t € [s,T],
Xs(s;z2) = =
has been used and, correspondingly, the problems dischesedioes not appear in their
framework.
One possible application of Theorem 4.12 is the extensidreafan and Raimond’s
theory of statistical solutions of the scalar advectionatigums, seelg], to the 2D vector
advection case. Indeed, Le Jan, Raimond theory definest&attisolutionX(¢; z) of

SDE (1.5) (corresponding to a solution of scalar advectiragion in a natural way) with
velocity v given by

(1.6) dv'(t,z) = Za,@(z) AW t)*, zeR", t>0,i=1,...,n,
k=1

1Such<¢> exists becauséiv v = 0.
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whereo? (-) are Holder continuous anfdV (¢)*}2° , is a family of i.i.d. Wiener processes.
In the case of the 2D vector advection, Theorem 4.12 imptiaswe don’t need to define
processX(t; z) (Itis just Brownian motion!). We only need to show that tiiear equa-
tion (4.21) for the gradient of the floW X (¢; «) has a strong solution. At this moment,
there appears certain difficulty with the definition of thghtihand side of equation (4.21)
for irregular vector fields of the form (1.6). We are of the impression that the white @ois
calculus could be of some help here.

Finally, the idea of generalization of the conservationddas been extensively stud-
ied in physical literature, where it is called statistigatieigral of motion or zero mode, see
e.g. the surveyq, part Il.E, p.932], and references therein.

Note: After we had proved Corollary 4.3 we became aware that inciégetly of us a
similar result was proved recently by Constantin and lyd6]n

Acknowledgments. We would like to thank T. Komorowski and B. Goldys for their
useful remarks, in particular to the former one for informims about the work by Con-
stantin and lyer§]. The present article derives from work done as part of thelPlthesis
of the second named author at the University of York, whileparted by the ORS award,
University of York scholarship and, later, by an ARC Discouproject DP0558539. The
research of the first named author was supported by an by tBRE@rant EP/E01822X/1
and the ARC Discovery grant DP0663153.

2. Notations and hypotheses

Let D be eithefR? or an open, bounded and connected s&dn In the latter case,
we assume that the bounddty= 9D of D is of C* class and we denote by the outer
normal vector field to the boundafy We denote byC*>°(D,R™ ) the space of infinitely
differentiable functions fronb toR™ and byC5° (D, R™ ) the subspace of those functions
belonging toC** (D, R™ ) which have a compact support. Finally, let us denote

D(D) = {f € C5°(D,R%) : div f = 0}.

Fork € Nandp € [1,00), let H¥?(D,R" ), respectivelyd*?(D,R™ ), be the
completion ofC§° (D, R™ ), respectivel)COO(D R™ ), with respect to norm

e =Y 107 @) dzy.

=0 |a|<ip

We will use the following notation

H**(D) = H"(D,R), Hy?(D) = Hy"(D,R),
H’”’( ) = HMP(D,R?), HgP(D) = Hy"(D,R%),
H*(D) H*2(D), L*(D) = H°?(D,R%).
Finally, let us denote
H = {fel’D):divf=0,(f-7)[r =0}

V = Hy*D)NH.

Equipped with the nornij - ||o.2, H is a Hilbert space. Similarlyy” is a Hilbert space
when equipped with the nort: ||1 2. The norms in andV will be denoted by - | and
|| - |I. See also33, pp. 9-15] for the definition and different characterizat®f the spaces
H andV.
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By H"(D) we will denote the completion dP(D) w.r.t. the norm| - lk,p- We will

sol

often writeH""? instead offl"?(R?). We also denote bil,” | the completion oD (R?)

sol sol

w.r.t. the homogeneous norm

17k = (/Icurl’“flfgs dz)'/7.k € N, € [L, ).
R’i

Let us also denot®l, *7 = (H;2 )*,k € N and define the spaces with fractional order
via the complex interpolation, i.e.

wp _ rplale glel+1,
Hy o = Hisop Hisor “lo_fp @ € R,

where[, | 3 is a complex interpolation space of order
LetP : H*?(D) — H'?(D) be the Helmholtz projection onto the divergence-free

sol

vector fields, seell1] or [33).
From now on we consider the cage= 3. By x we will denote the vector product in
R3. We will often use the following properties of the vector guat.

(2.1) (a x b,c)gs = (a,b X ¢)s
(2.2) la x blgs < [a|gs|b|rs.

We will identify the dualH’ with H and so we can assume tHatC V. In particular,
VcH=2H cV’

is Gelfand triple. We will need the following results borregvfrom the monograph.p]
by Lions and Magenes, see Theorem 3.1, p. 19 and Proposifipp.218.

LEMMA 2.1. Suppose that ¢ ‘H C V' is a Gelfand triple with the duality relation
(v fu € L20,T;V), ' € L?(0,T;)V'), thenu is almost everywhere equal to a
continuous function frorfo, T'] into H and we have the following equality, which holds in
the scalar distribution sense df, T'):

d 2 _ /
(2.3) dt|u| = 2(u’, u).

As a consequence we have the following result.

COROLLARY 2.2. If f,g € L2(0,T;V) with f',g' € L?(0,T;V') then(f,g)x is
almost everywhere equal to weakly differentiable functind

2.9 S = (s gy + (9w

We also recall the following result fronif], see Theorem 4.1, p. 238 and Remark
4.3, p. 239.

THEOREM2.3. Assume that

(2.9) A€ L=([0,T],L(V,V))
satisfies the following coercivity condition. There exist 0 and X € R such that
(2.6) (At u,u)yry > aluld + Mul?, ue .

Then for allug € Hand f € L?(0,T;V’) the problem

%—i—Au = f
u(0) = wg ’
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has unique solutiom € L2(0,T;V) such thatu’ € L2(0,T;V’). Moreover, this unique
solutionu satisfies the following inequality

t t
1
@7) [u%®) +a / () ds < (14 2000 (fuol + 7 / B ds),t € [0,
0 0

We will also need the following result.

PROPOSITION2.4. Assume that an operatot € £(V,)’) satisfies the coercivity
condition(2.6). Let us denotd)(A) = {z € H|Axz € H}. Thenforallf € L?(0,T;H)
anduy € V there exists a unique solutiom € L*(0,T; D(A)) N C([0,T];V) of the
problem:

{ % +vAu = f
u(0) = wg ’
and it satisfiesy’ € L2(0,T;H). Moreover, there exists a constafit = C(\,T,v)
(independent ofiy and f) such that

(2.8) |u/|i2(O,T;H) + V2|u|i2(O,T;D(A)) < C(|f|2L2(O,T;H) + [uol)-

PROOF OFPROPOSITION2.4. It follows from Theorem 3.6.1 p.76 087 that — A
generates an analytic semigroup%fi Therefore, the existence and the uniqueness of
solutionu follows from Theorem 3.2 p.22 o[]]. It remains to show the inequality (2.8).
Let us define a Banach spaée = {u € L?(0,T;D(A)) : ' € L*(0,T;H)} and a
bounded linear operat® : X > u — (u(0),u' + Au) € V x L*(0,T; H)). SinceQ is
a bijection, according to the Open Mapping Theorem, therg®the inverse continuous
operatorQ—1,i.e. 97! € L(V x L%(0,T; H), X ). Hence the inequality (2.8) holds.

O

DEFINITION 2.5. Let us define a bilinear forria : V x V' — R by
3
a(u,v) = Z /Viujvivjda:,u,v eV
i,j=17,

LEMMA 2.6. The forma : V x V — R! is positive, bilinear, continuous and symmet-
ric.

PrOOFE Proof is omitted. O

It follows from Lemma 2.6 and the Lax-Milgram Theorem that&my f € V'’ there
exists unique: € V such that

(2.9) a(u,v) + Au,v) = (f,v)v v,v € V.
DEFINITION 2.7. DefineA € L(V, V') by an identity
a(u,v) = (Au,v)yyr,u,v € V.
REMARK 2.8. The operatod defined above is often called the Stokes operator.

COROLLARY 2.9. The operatord defined in Definition 2.7 is self-adjoint and positive
definite.

PrRoOOF Follows from the symmetry of the ford, Theorem 2.2.3, Remark 2.2.1,
p.29 of [32]. O
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DEFINITION 2.10. Let us define trilinear form : C3°(D) x D x D — R by
(210)  b(v,f,0) = (P(vx curl ), 0)yrv, (v, f,¢) € C5°(D) x D x D.
LEmMMA 2.11. For any¢ there exist€’s > 0 such thatfor ale > 0 and all (v, f, ¢) €
C§°(D) x D x D,
- Cs
(2.12) [b(v, £, )P < IfRIRA(° + irays 0t )ILM(D))

- Cs
(2.12) o(v, f,9)| < —||f||v (”5/3H¢Ilv 1+3/5lv()lLe+5(D>|¢I?{)-

Moreover, if we assume thdite D(A ), then for anyy € V the following inequality holds

= Cs | 248
(2.13) [b(v, £, 0)1* < 101 (P f 1 Bay + 75 Vs s (o))

To prove Lemma 2.11 we will need the following auxiliary résu

LEMMA 2.12. For anyd there exist”s > 0 such that for alke > 0

Cs 248
(2.14) N % 9lZa) <P + g lolaisn) | [y £ € Vig € H.
PROOF OFLEMMA 2.12. Letup =3 — 2%, ¢ = 32,0 = 35 Then; + ¢ =1

and therefore by the inequality (2.2), the Holder mecWathe Gagllardo Nlrenberg
inequality (see Theorem 9.3, p.24 ih(]) and from the Young inequality we infer the
following train of inequalities

17 % gy < [ 17Plol do < |fEancolofEanco)
D

C 6
—0 s 2+
<A P gRaapy < € TPRIFIR + mlglpfs(p)lﬂ?{-

A

O

PROOF OFLEMMA 2.11. Letusfix(v, f,¢) € C5°(D) x D x D. Then by equality
(2.1), and Lemma 2.12 we have

(2.15)  [b(v, f,0)> = [(v(t) x ¢,curl )y v|?

< Jeurl flglo(t) x ¢l%
Cs 2+ £
< fIRE3 )13 + m“}( )|L3+6§’0(D)|¢|?1)
Cs, 245
< |fI¥lely (/3 + 1+3/50 [0(t) L3150 (py)-

Similarly,
(2.16)b(v, f, 6)|

[(v(t) x ¢, curl fiv: v| < |curl flg|v(t) X ¢|lu
1 1
—HfH%/ + —|U(t) X ¢}

Cs,

—Hva ( P61 + “Tvs/8 1Y ()stf)(mlsbl?z),

IN

IN

and

217)  |b(v, f,9)?

[(v(t) x curl f, ¢>V’,V|2 < |¢|§1|v(t) X Cur1f|?{

Cs 248
|¢|2H(51+6/3|f|2D(A) + €1+—3/5|U L3+55(D)|f|%/)-

IN
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O

Fix 6 > 0. It follows from inequality (2.11) that the trilinear forimis continuous
with respect to thé.3% (D) x V x V topology. Therefore, there exist continuous trilinear
formb : L3t% (D) x V x V — R such that

b('a K ')|C(?°(D)><'D><'D = l;
Moreover,
(2.18) b(v, f,¢) = —(v x ¢,curl ), (v, f,¢) € L*T (D) x V x V.

Indeed, the form on the left hand side of equality (2.18) isaddo the form on the right
hand side of equality (2.18) fdp, f, ¢) € C5°(D) x D x D and both forms are continuous
in L3t (D) x V x V.

DEFINITION 2.13. Let us define a bilinear operatds : L3+% (D) x V — V' by
(B(v.f).d)vr.v =b(v, f.¢),v € L**(D),feV,0 € V.

COROLLARY 2.14. Assume thad#, > 0. Then there exists a constafif, > 0 inde-
pendent such that

050 2+% 0
(2.19) [B(v, I} < I + 57 [0 (Dl ())» (v, f) € LFF0(D) x V.
Moreover, if(v, f) € L3+%(D) x D(A) thenB(v, f) € H and
Cs, 248

(2.20) |B(o, N)lF < () flha) + 75 V0 () [T )

PROOF OFCOROLLARY 2.14. Proofimmediately follows from Lemma 2.11. O

3. Duality

Assume thaf, € H, f € L*(0,T;V'). We consider the following two problems:
(3.1) %—ZZ = —vAF —B(v(t),F)+ f,
(3.2) F(0) = Fp,

oG

(3.3) 5 = —VvAG — curl (v(t) x G) + f,
(3.4) G0) = Go.

DEFINITION 3.1. We will call an elementF, respectivelyG, of L?(0,T;V) N
L>(0,T;H) n C([0,T); Hy), where H,, is equal toH endowed with the weak topol-
ogy, a solution of problem (3.1-3.2), resp. (3.3-3.4)Fiffresp.G, satisfies equation (3.1),
resp. problen(3.3), in the distribution sense an#l, resp.G, satisfieq3.2), resp.(3.4)as
elements o€ ([0, T']; Hy, ).

In the next two Propositions we will deal with the existenod aegularity results for
solutions of problems (3.1-3.2) and (3.3-3.4). These tesué probably known, but since
we have been unable to find them (in the form we need) in thetitee, we have decided
to present them for the sake of the completeness of the paper.

PROPOSITION3.2. Suppose thatFy, f) € H x L*(0,T;V’) and
(3.5) ve |J L% (0, ;L% (D)),
50>0
Then
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(i) there exists the unique solutiéhof problem (3.1-3.2) and for eadly > 0 there exists a

constanti; = K1(|U|L2+3%(O,T;IL,3+50(D))7 v) independent of Fy, f) such thatF’ satisfies

the following inequality

OB + v [ 1P ds
0

t t
C
(3.6) < K / w(s)lr " ds,v) (1Rl + = / () ds), t € (0,7
0 0

Furthermore F" € C([0,T],V’) andF’ € LT (0,T;V"). Moreover, ifv satisfies the
following, stronger thar§3.5), condition

(3.7) v e L®(0,T; L3+ (D)) for somed, > 0,

thenF’ € L*(0,T; V).

(ii) If in addition (Fy, f) € V x L?(0,T; H) and the condition(3.7) is satisfied, then
F e C([0,T],V)NL*0,T; D(A)).

(iii) Assume that € N. Supposg ™) € L?(0,T; H), there exist®y > 0 such thatv €
C"=10,T;L3+% (D)), v™ e L>®(0,T; L% (D)) andg, € V, fork = 0,1,...,n,
where sequencfyy } 22, is defined by formufa

m—1
(38) g = —vAgm1— > BOTF)0),00) + f7H0)m = 1,...,n
k=0
go = Fp.

ThenF € C™([0,T1,V).

REMARK 3.3. We should notice that on the one hand, our class
U L2+%(O,T;L3+50 (D)) is the Serrin regularity class. Indeed,if = 2 + %
6>0
s =34 do then% + % = 1. Therefore, any weak solution of the NSEs belonging to this
class is a strong solution. On the other hand, we have bedreut@aprove that under
the assumption (3.5) a solutidn of problem (3.1-3.2) is such th&’ € L2(0,7,V’). A
problem that arises here is similar to the problem whetheeakvgolutioru of the NSEs,
see B3], p. 191 Problem 3.2 and Theorem 3.1, satisfies L2(0,7;V").

For the second equation we have:

PROPOSITION3.4. Suppose that a time dependent vector fiesatisfies the assump-
tion (3.5). Then

(i) for every(Fy, f) € H x L*(0,T;V’) there exists unique solutio of the prob-
lem (3.3-3.4) such that’ € L?(0,T;V’) and for each, > 0 there exists a constant

Atis easy to see that formally system (3.1-3.2) uniquelyraist (%) (0). Indeed, if we formally put = 0
in the system we immediately get expression f5i(0) through known parameters. Similarly, differentiating
equation 3.1 w.r.t. time we get recurrent formula (3.8) R)‘r’“)(o), k € N. So, the conditiory, € V' is
compatibility condition.
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t
K (f |v(s)|]iif§0‘5° ds, u) such that satisfies the following inequality fare [0, 77,
0
t
GOR + v [I6EE ds

0
t C t
(3.9) < K ( / o) 734" ds,v) (1Gol3 + / () ds), t € (0,7
0 0

(i) If in additionv € L2(0,T,V) and (Fy, f) € V x L?(0,T; H), then the solutiorG
from part (i) satisfiess € C([0,7],V) N L?(0,T; D(A)).

(i) Fix n € N. If f® ¢ L?0,T;H), there existss, > 0 such thatv ¢
Cn=10, T; L3+ (D)), v(™ € L>(0,T;L*% (D)) n L?(0,T,V) andl, € V, for

k=0,1,...,n, where sequencf};2, is defined by formula
m—1
(3.10) I = —VAlp_1— Y curl(™ 51 (0) x Ix)
k=0
+fmH0),m=1,...,n
ly = Gy.

ThenG € C™([0,T],V).

COROLLARY 3.5. Assume thatFy, € H, f,v € C>=([0,T];H). If for each
k € N, v(*) satisfies the conditio(8.5), then the solution of the problem (3.1-3.2) is in
C*((0,T] x D).

PROOF OFCOROLLARY 3.5. It follows from Remark 3.2, p.90 ir8f]. O
Similarly for the problem (3.3-3.4) we have

COROLLARY 3.6. Assume thaF, € H, f,v € C>=([0,T]; H). If for eachk € Nv(*)
satisfies the conditiof8.7), then the solution of the problem (3.3-3.4) i1/ ((0, T x D).

PROOF OFCOROLLARY 3.6. It follows from Remark 3.2, p.90 ir8f]. O

The main result in this section is the following.

THEOREM 3.7. Suppose thatly, € H, Gy € H and v ¢

U L2+%(O,T;L3+50(D)). Let I and G be solutions of respectively problems
850>0
(3.11)and (3.12)below.

(3.11) ‘98—1; = —vAF — B(u(t),F), t € (0,T),
F(Ov ) = Fo,
oG
(3.12) rrilie —vAG + curl (v(T —¢t) X G), t € (0,T),
G(0,) = Go.

Then, the following identity holds
(3.13) (F(t),G(T = t)n = (F(0),G(T))n, t €[0,T].
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From now on we will only consider the cage= R3. We notice that ifF is a solution
of the problem (3.1-3.2) with dai@?, f, v), thencurl F' is a solution of the problem (3.3-
3.4) with data(curl Fy, curl £, v).

DEFINITION 3.8. Let 7 : H — H be the vector transport operator defined by
T4 (Fy) = F(T), whereF is the unique solution of the problef®.11)with data(Fy, v).

Define also the time reversal operator

Sy U LzJF%(O’T;]L:’,JF(S()(D))_> U L2+%(O,T;L3+6°(D))
50>0 80>0

by (S7v)(t) = —v(T — t). Then from Theorem 3.7 we infer that

COROLLARY 3.9. Assume thatty, € V, Gy € H and v ¢

U L*"% (0, T;L3+%(R3)). Then the following duality relation holds,
60>0

(3.14) (curl Fo, T77°Go) ir = (curl T2 Fy, Go) .

COROLLARY 3.10. Assume that satisfies the assumpti@8.5) such that duality re-
lation (3.14)holds. Then

(3.15) ||771~)H£(Ha,2 He2 ) T ”TTSTU||L(H1*ﬂ’27H}l;gl)2)a a€[0,1].

h,sol" ™ h,so0l h,sol

PROOF OFCOROLLARY 3.10. Becausg"> is the complex interpolation space be-

tweenH, > =12, andH, > , of ordera, it is enough to consider the casess {0,1}.
Furthermore, we can restrict ourselves to the case6f0 becauseSt o St = id.
From equality (3.14) it follows that

(T b, )]
177l ez, L2,y = sup = e =
TILLz,, L2, $HED(R?) H(b”]}diole”Liol
17 1!
Sup |<Cul“ T¢7 cur w>| —
swep®e)  |Ollz, (1Yl
wp  Leurl 6, T curl )|
swep®s)  [8llz,, [1¥llLz,

sol

(¢, T ")

sup _
o.weD®) |9ll; 12 ¥z

h,sol

h,sol?

STv
17" gtz a2
([

DEeFINITION 3.11. By X,, we denote the class of all functions [0, c0) x R? — R3
satisfying the following three conditions.

() ue Ly.([0,00); H).

(i) For all t € [0,00) there exists a unique solution of equati¢hl1l)with parameters
u' = ulj, andv’ = S*(ulj,). Furthermore, the duality relatio(8.14)with the vector
field v replaced by the vector field holds.

(i) Foreveryt € [0,00), T,*" € L(Hy2 Hy 2 ).

Then the following result follows from Corollary 3.10
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COROLLARY 3.12. Assume that € [0,1]. ThenX, = X;_, C X% and the space
X isinvariant with respect to scalingkx, A € (0, 1], where(¥u)(t, z) = Au(N%t, Ax),
t €1[0,00), x € R3.

PROOF OFCOROLLARY 3.12. PropertyX, = X;_, is a direct consequence of
Corollary 3.10 and the definition ofX,. We will show thatX, C X%. Letu € X,.
Then for allt > 0,

7, € L(H; 5017 H,; bol) T," € L(H }17,531727]}]1}11;(0;172)'
Indeed, it follows by definition o, that
T pg o2 gy = [T, 0

h, sol h,sol )

|£(H: szol’Hh sol)7 t € [0’ OO)

Therefore, by the Interpolation Theorem, s8&, [Theorems 1.9.4, p. 59 and 1.15.3, p.
103], we have that

u «@,2 1—a,2 «@,2 1—a,2
7:5 € ‘C([Hh,sol’Hh,sol ]1/2’ [Hh,SODHh,SOI ]1/2)7t € [07 00)7

1 1
T € L(HG 5, Wi o), € [0, 0).
Third property follows from identity
T, (Fy) = UA(T“Fy), t € [0,0)
and boundedness of scaling operatbssand ¥, ! = 1 in H,%”fol. O

The first part of our next result is the classical result ofri@eProdi- Ladyzhenskaya
([29, 27, 17). But the second patrt, i.e. inequalities (3.16) and (3&aré)new.

COROLLARY 3.13. Assume that: is a weak solution of the NSHE4.1) with
the external force0. Assume thatu satisfies the Serrin condition, i.e& &

Usy>o0 L?3% (0, T; L3+ (R%)) andu(0) € V. Thenu € L®(0,T; V), i.e. u is a strong
solution of (1.1). Moreover, ifGy € H, then

(3.16) (curlu(0), 7" Go) g = (curlu(T), Go)p

(3.17) | curla(T) e < 172" e, m) || cunlw(O)] o

REMARK 3.14. Let us observe that the equality (3.16) is a genetaizaf the he-
licity invariance f (u, curlu)gs dz, see e.g. p. 120 — 121 ir24] for the solutions of

the Euler equatlons Indeed, if we consider the transpataipr7;. for » = 0 and take
Go = u(T) on the right hand side of equality (3.16) then, under theragsion that the

Euler equation has a unique solution, we infer tﬁﬁf(“)u(T) = u(0).

PROOF OFCOROLLARY 3.13. By Proposition 3.2 there exist unique solutiBne
L?(0,T;V) N L*>(0,T; H) of equation (3.1-3.2) with initial conditiody, = «(0) and
v = u. We can notice thai is also solution of (3.1-3.2) by Navier-Stokes equationugh
F = v and we have (3.16) by Theorem 3.7. Therefore, we have

| curlu(t) || g < HTTST(M)HL(H,H)H curlw(0)|| m

and by boundedness of operafq?T(“) (Proposition 3.2) we get the result. O
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4. Formulae of Feynman-Kac Type.

The aim of this section is twofold. Firstly, we will discudsetphysical meaning of

the operatorTfT('). Secondly, we will deduce a formula of Feynman-Kac type. him t
whole section we suppose thBt = R" . We also assume thaf), 7, {F;}:>0,P) is a
complete filtered probability space and ti#it (¢)):>o is anR™-valued Wiener process
on this space. We have the following Proposition.

PROPOSITION4.1. Assume that € (0,1),0(-,-) € L*(0, T; Cy*(R™ ,R™ @R™)),
a(-,-) € L'(0,T; C’;"O‘(R” ,R™)). Let us assume that a continuous and adapted process
=1[0,7T] x R® x © — R™ is a unique solution to the problem

dX(z) = a(t, Xy (x)) dt + o(t, Xy (x)) AW (t),
Xo(z) = z.

Then for anyC? class closed loof" in R” , any ' € C%2([0,7] x R™ ,R"™ ) and any
t € [0,7T], we haveP-a.s.,

(4.2) F*(t, ) dxy, = (0,z) dz
/z o= /kz ‘

X (F)
aFk " . OFF 9FJ
> oG- 20
8:cj 8xk
0 x. () K =
1 < 0°FF
- im __jm
2“7 ow07; ZO’ o’bigg) dxyds
t
1 = OF7 8a
(4.2) +§/ / S — - > o'm—— | dayds
0 x.(I) k=1 75l m

+/ / zn: Z%Ta” day, dW' (s).

k=1 \i,l=1

REMARK 4.2. The term (4.2) is of major interest for us. Its appeagaatows us
to ” emulate” drift in two dimensional case i.e. to considemflwithout drift such that
this term "creates” necessary drift (see subsections £1ad Theorem 4.12 for detailed
explanation).

PrROOF oFPROPOSITION4.1. It follows from Theorems 3.3.3, p.94 and 4.6.5, p.173
of [16] that X, (-),t € [0,T] is a flow of C'—diffeomorphisms an& X, (-) satisfies corre-
sponding equation for gradient of the flow. Then formula #4rimediately follows from
the Ité formula, seeZ6] for calculations. O

COROLLARY 4.3. Assume that > 0 andv € L'(0,T;C,*(R™ ,R™)) for some
€ (0,1). Let(X(t;x))o<s<t<T, be a stochastic flow corresponding to the following
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SDE
(4.3) dX(t;x) = o(t,Xs(t2))dt + V2w dW (), t € [s,T),
Xs(s;2) = =
Assume thaf, € C?(R™) and letFF € C*2([0,7] x R™ ,R™) be a solution of the
following linear equatior?

(4.4) ag—f) = —VAF +P((VF — VFY (T —t)),t € (0,T),
(4.5) F0) = FR,

Then for any € [0, T] a procesg M, (t)).c[r—s,7) defined by the following formula

M,(t) = > FNT —t)day, t € [T —5,T]
Xr_o(t;0) #=1

is a local martingale.
PROOF OFCOROLLARY 4.3. This follows immediately from Proposition 4.1. [

REMARK 4.4. Corollary 4.3, whose idea is taken frog€], can be seen as a gener-
alization of the Kelvin circulation Theorem, see e.82[ p. 26]. Indeed, itv = 0, then
X;(t; x) is a position of a particle at timestarting from pointe at times, moving in the
deterministic velocity field». Moreover,M; is the circulation along a curve moved by
the flow generated by. Hence, by Proposition 4.1 it follows that the local martiteg\/,
is constant in time. A similar result has recently been irtelently derived by Constantin
and lyer, seef, Proposition 2.9].

Next we deduce from the corollary 4.3 the following formulatloe Feynman-Kac
type for the solution of equation (4.4).

PROPOSITION4.5. Assume that € L'(0,T;C;*(R™ ,R™)) for somea € (0,1)
and
T

(4.6) /(|v|Lm(s) + [Vl (s)) ds < 0.
0

Assume thafF : [0,7] x R™ — R™ is a solution of the problert4.4)(4.5)with F €
C?(R™)NLA*(R™) and(X(t; 2))o<s<t<7 iS @ stochastic flow corresponding to SPE3).
Assume also that there exigts> 0 such that for anyi" € C'(S!,R" ), whereS! is the
unit circle, for all s, ¢ € [0, T] such thatl’ — s < ¢,

(4.7) E| > FNT —t,x) day | < o0,
Xr_,r) P
Fix s € [0,7] and define a functiong; : R* — R™ by
Qs(z) = E(Fo(Xr—s(T;2))VXr_s(T;2))), € R".
Then,Qs € L2(R",R") N C*T¢(R",R"),0 < ¢ < aand
(4.8) F(s,z) = [P(Qs)](z), z € R", s € [0,T].

Swhich coincides with Problem (3.11) in the case= 3
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REMARK 4.6. In connection with the formula (4.8) we can ask whetter flow
(Xs(t;x))o<s<t<r associated to the SDE (4.3) is the only flow such that the fonct

F defined by the formula (4.8) is a solution to problem (4.4Y2.B turns out that the an-
swer to this question is negative. In the subsections 4. hdhde will consider separately
two and three dimensional examples.

REMARK 4.7. Condition (4.7) is satisfied if, for instandé,c L*>([0,7] x R™ ) and
T
/|VU|Loo(s) ds < 0.
0
Indeed, in this case we have the following inequality
t
VX (81~ < eapl [ [Velum(r)dr), s <1< T,

and hence the result follows.

PROOF OFPROPOSITION4.5. For fixeds € [0,T) let us denote
(4.9) M,(t) = FM(T —t)dxy, t € [T — s,T).
1

Xr_s(t7) =

Then by Corollary 4.3 the proce&d/;(t)), t € [T — s, T] is a local martingale. Hence, by
the uniform integrability condition (4.7) we infer thaf, is martingale and sBM, (T —
s) = EM(T). In particular,

(4.10) F¥(s,z)dxy = | Q%(2)dxy,T € CH(S*,R™).
[roms]

It immediately follows from Theorems 3.3.3, p.94 and 4.5,73 of [L§] that Qs €
C1Te(R™ ,R™), 0 < € < a. Furthermore@)s € L?(R" ,R™ ). Indeed, by the definition
of the flow (4.3) we have

T
|Vv|poo (1) dr
sup |VX7r_(T;z)| < ebf " .

Hence
/|Qs(x)|2dar < /E|F0(XT,S(T;J:))VXT,S(T;:17)|2da:
R’Vl RTL
< E(suprT,S(T;x)P/|F0(XT,S(T;x))|2dI)
* R’Vl
F190lz00 (r) d
(4.11) < e E/|FO(XT,S(T;x))|2da:

Rn

T
|Vv|peo (1) dr -
A1V / B(|Fo(z + VI (Wr — W) 2EL_) da,
RTL
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where
/

v(r,Xr_s(r;z)) dW,wfl/QTf [v(r, X1 —s(r;z))|? dr

s —s

T e T
Ep_gi=¢€

is a stochastic exponent. We can notice that

T
~ 2 [ |v(r)|poeo(r)dr
4.12) BleT 2 < o PO

and, therefore, combining (4.11) and (4.12) we get
[ (ol e (1) +90] e (1)) d
v|poo (r)+|Vv|co(r r
@13  [lQ@pazd T iR < .
R™ R™

It remains to notice that operat® : C°(R" ,R") — CP(R",R"),3 € (0,1) is
bounded. Indeed, it follows from representation Ibfas pseudodifferential operator
([11],[33]) and Theorem 7.9.6 inlp)]. O

REMARK 4.8. Another method of proving the formula (4.8) is presdiitethe article
[5] by Busnello et al., see also literature therein. The apgrased there is based upon
an extension of the standard Feynman-Kac formula for pdicabquations to more gen-
eral system of linear parabolic equations with a potengiaht(see the system (3.2) if, [
p.306]). This extension is carried out by using the new \desmethod introduced earlier
by Krylov [15]. One should mention here that the formula (4.8) is used]ito[ prove the
local existence and unigueness of strong solutions to tHesNS

4.1. Examples of nontrivial flows inR?. In this subsection we provide nontrivial
examples of the flows which can be used in the Feynman-Kacfoypaula (4.8) in two
dimensional case.

PROPOSITION4.9. Suppose that € C5°([0,T] x R, R?), ¢ : R — RisaC!-class
diffeomorphism¢ = ¢ orot v and Fy € C§°(R™ ). Let(X,(¢;x)), 0 < s < ¢ < T be the
stochastic flow corresponding to the following SDE

(4.14) dX () = v(t, X(t;2)) dt + V2001 (X(t;2)) AW (2),
Xs(s52) = x,

where

o) = (o) ) ) sew

Assume that" : [0,7] x R® — R"™ is a solution to problem (4.4-4.5) such that for some
B > 0and anyl' € C'(S*, R?) the condition(4.7)is satisfied. Then, the formu(4.8)
holds true.

PROOF OFPROPOSITION4.9. Suppose that the condition (4.7) is fulfilled. Then, it
is enough to show that proce&¥/;(t)),t € [T — s, T defined by formula (4.9) above
(where flow(X,(¢;z)),0 < s <t < T is given by (4.14)) is a local martingale. We have

FM(T —t,2)dxy, = /ZFk(s,:zr) dxy,
Xp_o (D) P r k=l
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L) oFk  QFJ
! Z(—at 2o~ o)

+v Z D200, Z crima{m> drpdr+
1,7=1 g T m=1

. OF7 I 8U{m
+v g g -— g o™ dxrdt
/ / — — a@[ - 1 axk k
T—s Xp_s(mT) ’

t .
00 !
+\/2V/ / E FI(T —1,2) 3

Lk
T—s Xp_s(m;T) k,j=1

t
< aF il l
+\/ﬂ/ / S o dxy dW?.

T—s Xp_s(m;T) k=1 \z,1=1

daydw!

Hence, because, is orthogonal matrix and’ satisfies (4.4) we have that
OFF " OFF aFJ " 9?FF & im gim

or ; Sl s Zaxlaszl 10

IFF ~ ; OFF  OF

J— _— k:
= —+ ((?:zrj (?a:k)+UAF

b
8xk'

Jj=
Therefore, it is enough to show that

t n

Z Z %—Z; Z allm 8;3:1 dxdr = 0.

k=1 \ jl

T—s XT, »(T‘F)

We have thag olm "1 is antisymmetric w.r.t. indexelsj becauser; is orthogonal.

Hencen = 2, |t means that it is enough to calculate

do2m 0 0 o
1m 1 — 7 (a g N = —
; N cos (baxk (sin ¢) — sin (baxk (cos @) .
and, therefore,
t .
n j jim
/ / Z Z %i olm 6801 dxydr
T—s X1 s( k:1 gl " m o
t
8F1 OF? 1

T—s Xp_s(m;T") T—s Xp_s(m;T)

O

REMARK 4.10. The construction of the example from Proposition 49 easily be
generalized to the case = 3 in the following way. Lety : R — R be aC!-class
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diffeomorphism. Defing = v o (curlv)! and

cosgp(xz) —sing(z) 0
o1(z) = [ sing(z) cosp(z) 0 |,zeR3
0 0 1

Let (Xs(t; z))o<s<t<T be a stochastic flow corresponding to the following SDE

(4.15)1X,(t; x) o(t, Xo(t;2)) dt + V2v0 (X (t;2) dW(t),0< s <t <T
Xs(s;2) = =

Then the assertion of Proposition (4.9) holds true.
Note that similar construction can be made for other comptsnaf thecurl v) but the
truly three dimensional rotations will be considered in next paragraph.

REMARK 4.11. Letus note that the laws of the solutions to SDEs (4ahd)(4.3) are
the same. Indeed, it is easy to see that quadratic variatidnsth processes are the same.
In the next example we will show that it is possible to find a fleweh that its one-point
motion has a law of Brownian motion.

THEOREM 4.12. Suppose that > 0, § > 0 and a divergence free vector field:
R? — R?is of C'19 class. Letp : R? — R be such thdtv = V4. Define

$(x) - o)
o COS - — s — 2
Ul(x)_<sinM cos 2@ >7x€R’

Let us denote by (t;x),0 < s < t < T,z € R? the stochastic flow of diffeomorphisms
of R? of classC? corresponding to the following SDE

dXs(tz) = V2wo (Xs(t;2))dW(t), 0<s<t<T,
(4.16) { Yoso) — '

Assume also thaty € C?(R?) N L%(R?) and thatF : [0,7] x R? — R?is a
solution to problem (4.4-4.5) such that for soffie> 0 and anyl’ € C'(S!',R?) the
condition(4.7) is satisfied. Denot€),(z) = E(Fy(Xr—_s(T;2))VXr_s(T;2)). Then
Q. € L2(R" )N C'+(R™ ), 0 < € < 6 and

(4.17) F(s,z) =P(Qs)(x), s €[0,T], x € R™.

REMARK 4.13. As we have already noticed above the formula (4.17pearnewed as
generalization of Kelvin Theorem as in the Corollary 4.3dad, it is enough to integrate
both sides of (4.17) w.r.t. arbitrary smooth closed coniaur

PROOF OFTHEOREM4.12. From Theorem 4.6.5, p. 173 ibg] we infer that there
exists a flowX;(¢;x),0 < s < ¢t < T for problem (4.16) consisting of diffeomorphisms
of classC?+¢.

Moreover, it follows from Theorems 3.3.3, p. 94 and 4.6.51 3 therein that for all
s €1[0,T],Qs € C*¢(R™ ;R"),0 < ¢ < 4. Letus fixs € [0,T]. We will show now
that@Q, € L%(R™ ,R™). Since by Corollary 4.6.7 p. 175 o1§] there exists a positive
constantC such that

sup E|VXr_ o(T;x)* <C,
TER™

4Such¢> exists becauséiv v = 0.
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by the Holder inequality we infer that

/|Q5(x)|2d:c§ /1E|F0(XT,S(T;a:))|2E|VXT,S(T;x)|2da:
R™ R™
(4.18) <C | ElF(Xr—s(T; 2)) | da.
]Rn

Furthermore, let us observe that the law of the one-pointianobf the flow
Xr_s(T;x) is equal to the law of the Brownian Motion (see example 6.%50f [13] for
more details). Therefore, we infer that

@19)  [ERX (TP d= [|SR@Ed < [ R d.
R™ R™ R7

where{S? = e"*~},>( is a heat semigroup. Combining inequalities (4.18) and/uie

get

(4.20) / Qu(@)2de < C / Fo(@)]? de.
R™ R™
3
Similarly to Proposition 4.9 we getthat [ Y F*(T —t)day,t € [T —s,T)isa

Xr—s(t;T) k=1
local martingale. Indeed, correction term in (4.1) due tation of Brownian Motion is
t

equalto [ ) (aai; — %—if) d¢ ds, see the previous Proposition, andit= V¢
T—s Xp_4(m;T)
this is exactly first order term of two dimensional equatié]. O

COROLLARY 4.14. Let (X4(t;2)) 0 < s < t < T,z € R? be the stochastic flow
corresponding to SDE4.16) Then

AX(tx)  OXI(tw)
Oz Oxo
d X2 (t;x)  OXZ(t;x)

8LE1 BLEQ

1 et Xa(0) dX2(e) nl X(5e) X2 (e
v\ n(tXs(te)dX () —ui(t Xs(ta)) dX] ()
AXtx)  9Xl(te)
ox ox
611 612
and ) )
09X (s;x) 90X, (s;x)
511 BLEQ — 1 O
IX 2 (s;) AX2(s;x) - 0 1 :
Ox1 Ox2

PROOF OFCOROLLARY 4.14. We have by definition of the flopK  (¢; 2)), 0 < s <
t < T that

dX(t;z) = V2vu(cos %(Xs(t; x)) dw} — sin %(Xs(t; z)) dw?),

dX(t;z) = V2u(sin %(Xs(t; z)) dw} + cos %(Xs(t; z)) dw?),

X (s;x) = z,x € R%
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Taking derivative of the flow X (¢; x)), 0 < s < ¢ < T with respect to initial condition:
we get for the first component of the flow

an(t;z)
d< 3Xaﬁi;w) ) =V

Oxo
. ox! T 8X52 T
( (=2 sin £(X,(t; 2)) duw} —%cos%(Xs(t;:c))dwf)(aa—fl_a}(f >+§_;;_82I<f ) )
. 0¢ 0X, (t;x 0¢ 00X (t;x
(=2 sin £(X,(t;2)) dw} — L cos 2(X,(t;7)) dw}) (52 P50 4 o 08,00l

X! (tsx X2 (t;x
_ ( L X3 (t5) (0 25 — 0y L)) )
- 0X_ (t;x 0X(tx ’
—%dXSQ(t;ZC)('UQ 5252 )—vl 61(2 ))

where in the last inequality we have used that V+¢ and definition of the flow. Sim-
ilarly we can get an equation for the gradient of the secomdpmment of the flow. The
result follows. d

PROPOSITION4.15. Suppose that the vector field: R? — R? is of C§° class and
divergence free, i.elivv = 0. Let X4(¢;x), 0 < s < ¢t < T be the flow corresponding to
equation(4.16) IdentifyingC with R? in the usual way, i.ez = 1 + 122, * = (71, 2),
we can define a flow(t;2),0 < s <t < T,z € Cby Z(t; 2) = X (t;2) + 1 X1 (t; x).

If Fy € C5°(R?) andF : [0,7] x R? — R?is a solution of equatiof@.4) such that for
somel > 0 and any smooth closed lodpcondition(4.7)is satisfied, then
(4.22)

— 0Zp_(T; 0Zp_(T;
F(t.2) = PIEFo(Zr(T: ) 2D (02 22052
whereF (t,z) = FY(t,x) +1F%(t,z) andv(t, z) = v!(t,z) + w?(t, z).
Moreover,2Zst:2) | 92:(12) gaisfy the following system of equations:
0Zs(t;z), _ 1 o 0Zs(tiz) 0 Z,(t;2) _
d(iaz ) = o (vt Zs(t; 27))78E V(t, Zs(t; 2‘))78E )dZs(t; 2)
0Zs(t;2) 1, W\ 0Z(t; 2) L W0Zs(t2),
d(T) E(V(ta Zs(t: Z))T —v(t, Zs(t; Z))T) dZs(t; z)
0Zs(s;2) . 0Zs(s;2)

where- is a complex conjugation.

PrROOF oFPROPOSITION4.15. Definition of the flow (4.16) can be reformulated as
follows

(4.24) dZs(t;2)(2,2) = V2ve v dW ()€,
Zs(s;z) = =z,

wherel ()€ = W (t)* +:W (¢)2- Wiener process ift. Then equation (4.23) immediately
follow from definition (4.24). Formula (4.22) is simply reiting of formula (4.8). O

REMARK 4.16. Theorem 4.12 indicates the difference between th&vgascalar ad-
vection equation and the vector advection equation. Indheér case the Feynman-Kac
type formula does not contain a gradient of the flow and hemeeodlution is completely
determined by the law of flow itself. Since the rotation of Bewnian Motion does
not change the law of the flow, we cannot employ the same tdckhie scalar advection
equation as we did for the vector advection equation.
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QUESTION4.17. In connection with Theorem 4.12 we can ask if it is fulsd give
a direct proof (not through formula (4.1)) of the fact tha timit asv — 0 exists and the
limit is a solution to the 2D Euler equations?

4.2. Examples of nontrivial flows inR3. In this subsection we provide nontrivial
examples of the flows which can be used in the Feynman-Kacftypaula (4.8) in three
dimensional case.

We will need the following definitions. Létbe the so called hat-map linear isomor-
phism defined by

T 0 —x3 i)
R3S a — T3 0 -z € s0(3),
I3 —T2 X1 0

whereso(3) is the Lie algebra of antisymmetric matrices. Let a#&0(3) be the Lie group
of orthogonal matrices with determinant equal to one anexgt: s0(3) > A — e €
SO(3) be the standard exponential map. Let us notice that this snaiurjection.
DenoteS = ker(exp). Define a maBCH : s0(3) x s0(3) — s0(3)/S by
exp(BCH (4, 0)) = exp() exp(?), @, 0 € 50(3).

Now we will find different form of the term (4.2) appearing iorinula (4.1) due to diffu-
sion coefficient of the flow X..

PROPOSITION4.18. Leta € C([0,T] x R3,R?) and a mapo is defined by :
[0,T] x R? > (t,:v) — exp(a(t,z)) € SO(3). If |a|(t, z) # 0, then

/E) ED S0lal
(4.25) Zcr = (1 — cos|a|)b x P2 +bln|a| + T

whereb = (Z,. If |a|(t, #) = 0 then

oo™ oa
(4.26) Z m o =5

dxy,

REMARK 4.19. We can notice that the right side if equality (4.25) bamewritten as
follows
b od

+ 8xk
Therefore it converges t§% when|a| — 0,]a| # 0. Hence, in the following considera-
tions we will not to single out the case jf| (¢, z) = 0.

(1 — cos|a|)b x % + (sin|a| — |a|)

PROOF OFPROPOSITION4.18. Ifa(t,z) = 0 then formula (4.26) immediately fol-
lows from definition ofo. Assume that(t¢,z) # 0. We will use the following Baker-
Campbell-Hausdorff formula iso(3), see e.g.§, p. 630].

PROPOSITION4.20. If u,v € R3 then
BCH (i1,) = ot + B0 + v[a, ],
where]i, 9] denotes the commutator @fand®, ande, 3, andy are real constants defined
by
sin~(d) by sin™!(d) ¢;

a=—7F——,0= d EvVZT%a
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wherea;, b1, c; andd are defined as

ap = sinfcos?(¢/2) — sin sin®(0/2) cos £ (u,v),

by = sin¢pcos?(0/2) — sinfsin?(¢/2) cos £(u,v),
= % sin(6) sin(¢) — 2sin®(0/2) sin?(¢/2) cos £ (u, v),
d = \/af + b2 + 2a1by cos Z(u,v) + 3 sin? Z(u, v).

In the above formulaé = |u|, ¢ = |v|, and Z(u, v) is the angle between the two vectors
u andv.

We have
Z O"m aO'.m
™ 8$k
0 . R .1 . .
= exp(—a)=—exp(a) = exp(—a) x lim —(exp(a(z + dex)) — exp(a(x)))
a(Ek 6—0 0

= lim %(exp(—d) exp(a(z + dex)) — id)

= %E% %(exp(BC’H(—d7 a(z + deg))) —id) = }if}) BCH(—d,?(x + ber))
L QO + B0 + der) +9(O)=a(w), e +der)]
= 5 (%),

where in the last equality we have used Proposition 4.18with—a(x), v = a(x + dey).
Therefore,

I
=

=
=)
=
(«%)
=

IS
=

(%)

i o
N 82(%%5(5)%%%M_

So, we need to calculate the following three limits.

BO) —ald) ..o
— (41) = %Hn ~(9).

—0

(i) = lim 8(9), (i) = lim

6—0 —0

From (4.20) follows that we need to calculate asymptotica@b), b1 (), c1(d), d(d),
d — 0. We have

0
0 = |a|(x), ¢ = [a|(z + dex) = |al(z) + 56_;%'@' +0(9),

_ Calate ton) _ o
D) = @+ oo )
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1+ cos|al(x + deg)
2

ay = sin |al( ) — sin |a|(z + deg) ¥

1 — cos|al(x)

(— ) 1+ 0(8%) =

1+ cos(la| + 052 |al) 1 — cos |a

. 0 oy
sin(|a| + 68—xk|a|) +0(6°%) =

sin |a(

Sl 1 4 cos faf — sin |a|%|a|5) +
1—coslal,, . 0 o
( 5 )(sin |a| + cos |a|8xk lald) + o(6°) =
, 1 ) .

(4.27) = sin |a|(z) — 5(1 — cos |a|)6—xk|a|5 +0(6%)

Similarly,

1 + cos|al

2

1 — cos|al(z + deg)
( 2

by = sin|al(z + deg)( ) —sin|al x

)(—1+0(6%)) =

) 0 1+ cos|al
sin(|al +6a—xk|a|)(f) +
1 —cos(|a|] + 5a%k|a|)

2

) +0(0%) =

1+ cosla
TH)_F

sin |a|(
(sina] + cos|al =2 |al)(
Sin (a COS [a 8xk a

L. . 9 N
5 sin la|(cos|a| — 5s1n|a|8—xk|a|) +0(6°) =

, 1 ) o
(4.28) sin|a| + 5(1 + cos |a|)a—xk|a|5 +0(6%)
(4.29) ¢y =1 —cos|a| + o(d)
(4.30) d = o(9)
From (4.27),(4.28),(4.29) and (4.30) we get
. sin~'(d) a1 1 — cos|al
i) = o (@) al(e ¥ 6e) ~  JaP
, . sin~!(d) b1 sin |a|
() = b i+ e~ Tal

sin~!(d) 1 sin|a| + 3(1 4 cos |a|)a%k|a|5 +0(6?%)

() = lim =23 lal(z + dex) -
sin |a|(z) — 3(1 — cos|al) 52-[ald +06(8*)  |a| —sin|a| @

al =T eF ow

75
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Thus, we get
0 . sinla|] da  |a| —sin|a| 9
4.31 _a)—= - ga | lal—smiel 9
(4.31)  exp( a)axk exp(a) ol Dor PR
coslal — 1 ~ da
il hed BVl
la|? Oxy,

If we putd = ﬁ and insert it in (4.32) we get (4.25). O

lala +

(4.32)

Everywhere below we assume that L' (0, T'; C;* (R™ ,R™ )) for somex € (0, 1).

COROLLARY 4.21. Let(X,(t;2)), 0 < s < t < T be the stochastic flow correspond-
ing to

(4.33) dXs(tx) = v(t, Xs(t;x)) dt +V2v01 (8, Xs(t;2)) AW (t),

whereo (¢, z) = exp(a)(t, z), b = T € S(2). Then for alls, ¢ € [0, T] such thats < ¢,

—~ (OFF {~ ; OFF OF’
- (2 T k
+/ / Z( +ZU(8IJ- Gu) HVOF" | doydr
T—sXp_s(mT) k=1 7=t
¢
b b
(4.34) +v / / (curl F, (1 — cos|al)b x 38—Ik + sin |a|88—a:k + bg'TCiJ) dxpdr
T—s Xp_s(mT)
¢
- Fk o OF
+V2v / / Z Z (8 0 Yyoil | day, dW.

or; Oz
k=1 \ii=1 7%t k

T—s Xp_s(m;T)
PROOF OFCOROLLARY 4.21. Immediately follows from Proposition 4.18 and iden-
tity _
o
Z g—%(ayﬂ = (curl F,a).
%,J
O

REMARK 4.22. The vectob can be interpreted as the axis of rotatiomaindg = |a|
as the angle of rotation.

Now, we present a three dimensional analog of the two dimeasresult from Propo-
sition 4.9.

PROPOSITION4.23. Assume that, € C5°(R?), v € L'(0,T;Co*(R™ ,R")),
a € (0,1), v satisfies conditiorf4.6), and F' € L>([0, T]; C?*+°(R3,R3)) is a solution
of equation(4.4)(4.5) such that for somg > 0 and any smooth closed lodpcondition
(4.7)is satisfied. LetX(t;2)), 0 < s < t < T be the stochastic flow corresponding to

(4.35) dX(t;x) = w(t, Xs(t;2)) dt +V2woy (t, Xs(t; ) dW (1),
Xs(s52) = =z

)
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whereo (t,z) = exp(a(t,z)), a = curl F. Fix s € [0,7T] and define a functiong; :
R? — R by Qs = E(Fo(Xr—s(T52))VXr_s(T; 2)).
Then,Q, € L2(R3,R3) N C*(R3,R?),0 < e < aand

(4.36) F(s,x) = [P(Qy)](z), = € R* s€[0,T).

PROOF OFPROPOSITION4.23. In view of L6, Theorem 4.6.5, p.173] we infer that
there exists solutioiX,(¢; 2),0 < s < ¢t < T of problem (4.35) an(¢; 2),0 < s <t <
T is a flow of C1—diffeomorphisms. Furthermore, it@' ¢ (R" ,R™ )-valued process for
any0 < e < 4.

Moreover, it follows from Theorems 3.3.3, p.94 and 4.6.51p3 therein that for all
s €[0,T],Qs € C*(R™ ,R™),0 < € < 4. Letus fixs € [0,T]. We will show now that
Qs € L?(R™ ,R™). Since by Corollary 4.6.7 p. 175 oL§] that there exists a positive
constanC such that

sup E|VXr_4(T;2))* < C,
rER™
by the Holder inequality we infer that

/|Qs(:v)|2dx§ /IE|F0(XT_S(T;:v))|2E|VXT_S(T;:v)|2d:v
R™ R™

(4.37) < [ BR(Xr. (L) do.
J

Now it follows from Girsanov Theorem that
(4.38) / E|Fo(X7p_o(T;2))* dz = / E(|Fy(z + V2u(Wp — Wr_y))|?EL ) da,
R™ R™

T T
J v Xr_o(ri@) dW,e—1/2 [ |o(r,X7_q(r;z))|* dr
where€l = er== T

We can notice that

is a stochastic exponent.

T
~ 2 [ |v(r)|poe (r)dr
(4.39) Bl 2 <ed 0

and, therefore, combining (4.37), (4.38) and (4.39) we get

1
2

T
o] o (r) dr
(4.40) /|Qs(x)|2dx < ebf /|F0|4d:v
]Rn n

3
Now let us show that [ S FK(T —t)dxy,t € [T — s,T)is alocal martingale. It
Xr—s(t;T) k=1
is enough to prove that the "correction” term (due to nomdtiv,) in the formula (4.34)

disappears.
Sinceb = Sy, bl = 1, |a| = | cwrl F| we have
0b 0b
(curl F, 3—:ck) = | curl F|(b, 3—:ck) =0.
Similarly,
ab ob

(curl Fyb x 3—:ck) = |curl F|(b,b x 3—:ck) =0,
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and

Olcurl F| 10| curl F|?
1F,b) .
(CUI‘ 8xk 2 8:17k
(]

QUESTION 4.24. It would be interesting to generalize Theorem 4.12 he t
three dimensional case. In view of Corollary 4.21 in orderfied such gen-
eralization it is enough to prove that for any solutidh of equation (4.4) with
v being the corresponding’>) vector field, there exists a tripléb, ¢,v) €
(L ([0, T], C=(R3, 52)), L>=([0,T], C>=(R3, S1)), L>=(]0, T],C*(R?,R))) such that

(cos¢—1)(cur1F,b><aa—b) + sinqﬁ(curlF,aa—b)

Tk Tk
k
(4.41) Heml 522 4 00 xewd )
oxy, oxy, v

We can notice that system (4.41) is time independent in theesthat there are no time
derivatives of the unknown functions. Therefore it is enotmy consider the system for
every fixed time € [0, T'. If the solenoidal vector field is two dimensional, i.edivv =

0, v3 = 0 and the components, v, do not depend upon variahlg, thenb = (0,0, 1),

¢ = ¢1/v, whereg; is a stream function fos, ¢ = 0, is a solution of the system (4.41),
see Theorem 4.12. However, in the three dimensional casprdidem is completely
open. One of the possibilities to narrow the problem is tostaber the case wheh = w is

a solution to the Navier-Stokes equations.

QUESTION4.25. Another question connected with system (4.41) is ksifs. How
do variables, ¢, ¥ depend upomw? Can one take the to 0 limit in the representation
(4.41)? But let us note that in the two dimensional case uttteadditional condition
of incompressibilitydivv = 0, the representation (4.41) holds also in the limit- 0.
Indeed, in two dimensional case the stream function cooredipg to the vector field
exists becauséiv v = 0 and is independent df andv.

REMARK 4.26. The Question 4.24 can be reformulated in the followiag.
Problem A. Find aC!-class functiorr : R® — SO(3) such that for any smooth closed
loopT

8F 6FJ 3FJ ., Ogim
(4.42) Z/Z B~ Bmy dxk—VZ/Z o a"xk dzy.

k= 1r 7,l,m

Let A be the wedge product, see e.80[p.79], and denote

3Fk OFJ
o = —Zvﬂ a% k)d:ck,

w = curlF.

Supposer : R? — SO(3) is aC!-class function. Let us define a matrix valued function
Ay

(4.43) A=doo™!
Then the matrixA is antisymmetric and has the following form

0 —as ag
(444) A= as 0 —a1
—as aq 0



DUALITY AND THE NSES 79

wherea;(x),i = 1,2,3,r € R3 are 1-forms. Moreover satisfies system
(4.45) dA+ANA=0,

or, in terms of 1-forms,;, i = 1, 2, 3, equivalently

da1 = as A as
das = aj Nas
da3 = a2 A aj.

Furthermore, if arbitrary antisymmetric matrik of one-forms satisfies (4.45) then there
existso : R3 — SO(3) such that (4.43) is satisfied. Notice that the right part ofrfola
(4.42) can be rewritten as follows

3
(446) U/Zwiai.
T i=1

Indeed,

dry, = doot = doo™! = A.

m 00
% 7 8xk

Now we can rewrite formula (4.42) as follows

(4.47) /a = —/iwiai,
r r =1

Hence, we can reformulate the equation (4.41) as follows

3
(4-48) Z wia; = —a + di.
i=1
Thus, Problem A can be solved in two stages. First, we neeal¥e system
dai1 = a3z as
dQQ = Qi A as
(449) d&g = a2 Nay
3
Swia; = —a+di.
i=1

Then we need to find : R® — SO(3) from equation (4.43). Existence of sueHollows
from first three equations of system (4.49).

Applying the exterior derivative operatdto the last equation of the system (4.49) we
can get rid of function) and thus we get equivalent system

dai = a3z as
dQQ = Qi A as
(450) dag = Qa2 A al
3
—da = ) dw; Aa; +wiaz A ag +waar A az + wsas A a.

=1

This system can be reformulated in terms of matrix-valuéolrn A as follows:

JA+ANA = 0
(4.51) { r(WANA+dWAA) = 2da,
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0 —Wws3 wa
W = w3 0 —w1 .
— w2 w1 0

Thus we have quadratic equation on the space of flat conmsctio

where

Another application of Proposition 4.1 is a Feynman-Kacetjgrmula for solutions
of the following equation

(4.52) %—IZ = —vAF + (T —)-V)F —(F-Vo(T—), t >0,z € R",
4.53)F(0) = I,

where A, is a Stokes operatofyy € H andv satisfies condition (3.5). For the simplicity
sake we formulate the result far= 3.

PROPOSITION4.27. Letv € L(0,T; CP*(R™ ,R™ )) for somen € (0, 1), v satisfies
condition(4.6), (X(¢;z)), 0 < s <t < oo is the flow corresponding to proble(.3),
Fy € C§°(R™) and F' is a solution of equatiofd.52)such that there exists > 0:

(4.54)

E| / FYT —t,2) dvo drs+ F?(T—t, x) dvsdey + F3(T —t, ) deydes|' P < oo
X1 _5(t;9)
for any smooth surfacé c R? with smooth boundary and all0 < T —s <t < T.
Then it satisfies
Fl(s,z) =
0XF_ (T;2) 0X3_(Tyw)  9XG_(Tyx) 0Xp_(T;x)

E[Fy (X1—s(T; x))( )

6$2 6$3 (91‘3 (91‘2
0X3_ (T;x)0X+_ (T;x) 0X3_ (T;x)0X+_ (T;x)
2 . T—s ’ T—s ) _ T—s ) T—s )
(455)+F0 (XT*S(T7 ZC))( 6$2 6$3 61'3 axz )
0XLt_ (T;x)0X2_ (T;x) 0Xi_ (T;x)0X3_ (T;x)
3 . T—s ’ T—s ’ _ T—s ) T—s )
+F0 (XTis(T7 x))( 6$2 6$3 (91‘3 (91‘2 )

F%(s,z) =
0X7_(Ti2) 0Xp_(Tix) 0X7_(Tiz) 0Xj ,(T;x)

E[FOl(XT—S(T7x))( 8(173 8(171 8501 axg )
0X3_ (T;z)0XL (T;x) 0X3  (T;x)0Xk (T;x)

(456} F3 (Xp_o(T; 2))(—= . T Bt - =T Bt r S )
0Xt (T;z)0X2 (T;x) 0X3 (T;2)0X2_ (T;x)

+FO3(XT_S(T; .’L’))( TaiZ?g T(?:z:l B T@xl Taxg )

F3(s,z) =
0X2_ (T;2)0X3_ (T;x) 0X2_ (T;x)0X3_ (T;x)

E[FOI (XT—S(T7x))( 8171 8172 aCCQ 8501 )
0X3_ (T;x) 90Xt (Tyx)  0X3_ (T;x)0X+_ (T;x)
(457)+F02(XT*5(T7:C))( Taxl T6$2 - Tax2 Taxl )

0Xt_(T;2)0X2_ (T;x) 0X3_ (T;x)0X2_ (T;x)

oxy Oxs Jra 0y )

+FG (X7 (T 2))(
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PROOF OFPROPOSITION4.27. The result follows from Proposition 4.5. Indeed, let
G € L>=(0,T; L*(R™ ,R" ) N C**¢(R" ,R")), 0 < ¢ < « be a solution of equation
(4.4)-(4.5). Its existence follows from Proposition 4.5heh F' = curl G is a solution of
equation (4.52). For solutio& of (4.4) we have got representation by formula (4.8) of
Feynman-Kac type. Integrating it w.r.t. closed contbuwre get

(4.58) /Z G* (s, ) day, = E( / > Gh(x) day,).
Pk Xr_o(ri) F
Now, result immediately follows from Stokes Theorem. O

REMARK 4.28. On an informal level, the Feynman-Kac type formul&%#(4.57) in
the case oy = 0 can be seen as a solution of the following informal infinitendnsional
first order PDE obtained by the characteristics method. dddét us denote by the
set of all smooth surfaceS ¢ R™ with smooth boundary. Let T'Y be the set of all
smooth vector fields ol If F'is a solution of equation (4.52) with parameters: 0 and
v e Cge([0,T) x R™), thenF defined by

F:[0,00) xY 3> (t,S)H/(F(t,-),ﬁ)dO’ER,
S

is a solution to the following equation

OF -
4.59 Y — DiF,
(4.59) 5

whereDj is directional derivative along the vector figlde T'Y defined by

Y580 | Joul@) ey
€S
Then, on a purely speculative level, the solution to equat#59) obtained via the char-
acteristics method is exactly our Feynman-Kac type formula

REMARK 4.29. In a forthcoming publication the authors will considlee case of
equations with less regular velocity vector fields than¢hamsidered in the current paper.
Transport equations with irregular velocity field have baesubject of a great variety of
works, see e.g. recent works by Lions and Di PerfjaNaniglia [21], Bouchot, James
and Mancini B], and references therein. Our plan is to combine the resiilkidaniglia
[21] with our work i.e. to find probabilistic representation afigtion of vector advection
equation with irregular velocity and then study the limittlas viscosityr converges td).

5. Proofs of results from section 3

PrROOF oFPROPOSITION3.2.(i)) The proof will be divided into three parts a), b), c).
a) Letus consider a special case when L>(0, T; L3+%(D)). We will use Theorem 2.3
with Gelfand tripleV ¢ H =~ H’ c V’. DenoteA(t) = vA + B(v(t),-). We need to
check whether the conditions (2.5) and (2.6) are satisfiezlhVe,

(51) <A(t)f7 f)V’,V = Vd(fa f) + <B(U(t)7 f)a f>V’,V7 f evV.
The second term on the RHS of the equality (5.1) from (2.18)=aestimated as follows
(B, 1), vl < SIFIR + 551517

Cs 24+ 2
(52) +m|v(t)|L3+5éoo(D)|f|%’)vE > 0.
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Thus from the inequality (5.2) and the continuity of foémve infer that,
(5.3) A | cv,vry < Cv + Colv(t)[Ls+so (-

The coercivity assumption (2.6) also follows from the inalify (2.12). Indeed, foyf € V,
t € [0,T] we have

[CAQ) S, Fvevl = lvalf, ) + (B(@), f), flviv] =
c C =
SUFI = S + o o (Ol e o 1):

By choosinge > 0 such thaty — £¢11%/3 > 0 we conclude the proof of the coercivity
condition (2.6). Thus, by the Theorem 2.3, first statemett@fProposition follows.

b) To prove Proposition in the general case we will show amgni@equality for solutions
of equation (3.1-3.2) when € L>(0, T'; L3%%(D)). From step (a) we know that a solu-
tion F € L?(0,7T;V) such thatt” € L?(0,T; V') exists and unique. Then, from Lemma
2.1 and equality (2.18) we infer that

1d
§E|F|%I = _I/HF”%/ + <fa F)V/,V - <B(U7F)7F>V/7V

= —V|FII} +{f,F)v/v + (cwtl F,v x F)g.

Therefore, by applying the Young inequality, we infer that

t t

[F(H)3% + 2V/|F(S)|%/ ds—/(curlF(s),v(s) X F(s))m ds
0 0

FO) + / (F(5), F(s))vrv ds

IN

0
t t
v C
O+ 5 1P ds+ S [ 17 ds.
0 0
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t
The term [ (curl F'(s), v(s) x F(s))u ds can be estimated as follows:
0

t

|/(cur1F(s),v(s) x F(s))p ds|

0
t c t
v / (curl £} ds + & / [u(s) x F(s)[3 ds
0 0
t

<
/ C
< %/|cur1F|%, ds+—/(£1+5°/3|F(s)|%,
1%
0 0
Doy (s) 225 P (s)]2y) d
61+50/3vs L3+ s)|3) ds
t
< (L4 Gorva / F(s)[2 ds
4 v
Cs 16/6
&4 Qe / V(&) 1)y o

Let us choose > 0 such thats + £c11%/3 = £ Then

|<|H+u/|\F 3 ds < PO + /|f (5)3 ds

t

Cs +6/6
E1+z[5)0/ / |]L%+6/00|F( )% ds,t > 0.
0

Hence, in view of the Gronwall Lemma, we get
C(s ,V)f|v $)|2$6/% gg
O < (17(0) / P s | e

Thus

|<|H+u/|\F N ds < Ky ( 1FOF + /|f (5) ds

' s
C (B0 [ [o(s)|75 4500 ds

(5.5) 1+ /| |L3+66/050 ds|e 0 ,t>0.

(c) The general case. Let, € L>(0,T;1L3% (D)) be a sequence of functions such that
Un — vin L% (0, T;1L3+%(D)). Let F,, be a corresponding sequence of solutions of
equation (3.1-3.2) withv being replaced by,,. Then from inequality (5.5) it follows that
the sequencéF,, }>° , lies in a bounded set at>°(0,7; H) N L*(0,T;V). Therefore,
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by the Banach-Alaoglu Theorem there exists subsequgfigg andF* € L>(0,T; H)
such that forany € L'(0,T; H)

T

(5.6) [ B = F s ds — 0
0
Similarly, from the Banach-Alaoglu Theorem it follows thae can find a subsequence
{F,»} of {F,,} convergenttd™* € L?(0,T; V) weakly i.e. for any; € L*(0,T; V")
T

(57) /<Fn// — F**, Q(S)>V’,V ds — 0,
0

In particular, (5.6) and (5.7) are satisfied fpre L?(0,T; H). ThereforeF* = F** ¢
L*(0,T;H) N L?(0,T;V). PutF = F*. Let us now show that" satisfies equation
(8.1-3.2) in the weak sense. Lgte C>°([0,T],R), ¥(1) = 0, h € V. Then by par{(a)
of the proof we have

T T T
- [E @i + [ BB ds + [ a6 mee) ds

0 0 0

T

(5.8) = (Fo,h)u(0) + / (F(s)s By yi(s) ds.
0

Convergence of the first term, respectively third term,die immediately from (5.6),
respectively (5.7). For the second term we have

T T
| [(Bon B = B P vy ds| < | [ (Blon = v, )by d|
0 0

T
] /(B(v, Py — F), hyyrytb(s) ds| = Iy + I1,.
0
Lete > 0 be fixed. For anys,e3 > 0 we have, by inequality (2.12), the following
inequalities
+5

T T
C C 2
I, < 53/|Cur1Fn|%i d5+8_3/(52|h|%/+€_2|UH_U|L3+50(D)|h|%i)|¢|2 ds
0 0

T T
Ces C|h|? 2+ £
= 53||Fn||%2(0,T;V)+g|h|%//|¢|2d5+?62H/|vn_U|L3+5§0(D)|7/}|2 ds.
0 0

Taking into account boundedness of the sequéitg >, in L?(0,T; V') and the conver-
gence of{v,, }°; tov in L* (0, T;1L3*+% (D)), we can choosey, 3 and N = N(e)
in such way thaf,, < 5, forn > N.
T
ForII, wehavell, = | [(F, — F,curl(v x h))v, vi(s) ds|. From inequality (2.14)
0

it follows thatv x h € L?(0,T;H). Thereforecurl(v x h) € L?*(0,T;V’) and the
convergence of I,, to 0 follows from inequality (5.7). The uniqueness Bffollows from
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the energy inequality (5.5). It remains to show tiiate C([0,T], H,). Let us show
that ' € C([0,T],V’). Then, sinceF’ € L>=(0,T; H), it immediately follows from B3,
Lemma 1.4, p.178] that’ € C([0, T, H,,). To prove thatF' € C([0,T],V") itis enough
to show thatF” € L'(0,7;V"). Indeed, we have thd € L>(0,7;H) c L'(0,T;V")
and by B3, Lemma 1.1, p.169] the result follows. We have

3
| /|1+260+3
3
L0 0,13v7)

_ |AF|1+260+3 |A | 2(5()3+3 dS
B LM 70T (0,757 v

T

1+ It o5y

< [ G IFE T ds

0

T T

8 3 I

< ([ IR a5 5 / A(S) o0, ds) oS

0

T T

5

< ([IFR a9 B ( [+ Caluls)osan ) ds) 7

0 0

2o e
(5.9) < CIFI ) (Crln.To00) + ol ) ) < oo,

L3 (0,734 (D))
where the second inequality follows from the Holder indiuand the third one follows
from the inequality (5.3). Thus, first statement of the Psifan 3.2 is proved.
(iiy To prove [ii] we follow an idea from ] and [4].
T
LEMMA 5.1. Letg : [0,7] — R be measurable function such thatg(s)|ds <
0
oo. Then for anys > 0 there exists a partitionT;}7, of interval [0,7] such that

Tit1

[ lg(s)|ds <6,i=1,...,n
T

PrROOF Follows easily from28, Theorem 8.17]. O

Existence of a local solution. Letr = {F € L?(0,T; D(A)) : F' € L*(0,T;H)} be a
Banach space endowed with a norm

|F|%, = ’/2|F|2L2(0,T;D(A)) + |F/|%2(O,T;H)'
We will prove the following result.
LEMMA 5.2. If v satisfies assumptid3.5), z € X1 thenB(v(-),z) € L?(0,T; H).

In view of Proposition 2.4 and the above Lemma, a nkap: X — X7 defined by
®r(z) = Giff G isthe unique solution solution of the problem

(5.10) G’ +vAG = f — B(v(t), 2), G(0) = Fy,

is well defined.
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PROOF OFLEMMA 5.2. From inequality (2.20) we have
IB@(-), 2)l| 720,781 < Ci(&,80) 1211720752 (D)
2
+Cs (e, 50)|Z|C([O,T];V)|U|L2+% (O.TL3+50(D))’
Thus the result follows from Lemma 2.1. O

We will show that there exist$} < T such that®r, is a strict contraction. By
Proposition 2.4 and inequality (2.20) we have, fortadl [0, T,

1@ (21) = ®e(22)]%,

< Cil|B(v, 21 — 22)[|72(0 4.1y < Cre't/3|z) — 22|%2(0.1:D(A))
£ G =zl

L7375 171 ~ 2210(0,6v) [Vl2+es50 (0,7;03+50 (D))
< 01€1+60/3|21 _ 22|§(t

Cs
+ Clapr—g/(;|21 - ZQ'%Q|U|L2+6/50(O,t;JL3+50(D)))'
Now let us choose > 0 thatCye'+%/3 = 1/2 and denotds = C; 819—3/5 We have
(5.11) [|[@4(21) — ®e(22)[1%, < (1/24 K|v] p2+6/50 (0,113+50 (py) )| 21 — 221%,, t € [0, T).

Chooset = T such thaﬂv|L2+6/50(07T1;L3+50(D)) <d= % then®, is an affine con-
traction map and by the Banach Fixed Point Theorem ther¢sexifixed pointF' € X,

of &r,. ObviouslyF is a solution of problem (3.1-3.2) on intenjal 71].

Existence of a global solution. From Lemma 5.1 and assumg8d®) it follows that we
can find partition0 = Ty < 71 < ... < Tp—1 < Tx = T of interval [0, T'] such that
[V L2+6/50 (1 131 513400 (D)) < 71z:1=0,...,k — 1. Therefore, we can use the inequality
(5.11) and the Banach Fixed Point Theorem iteratively tongediobal solution.

(iii) To proof the statement in part [iii] we will use a methedggested by Temam i34].
We will consider only the case = 1. General case follows by induction. Let us recall that

A(t) = vA+ B(u(t), ).

By differentiating the equation (3.1-3.2) w.rtit(in weak sense) we find that' is a solution
of
dF/ /! / !
= —AQ@)F + B(W'(t), F)+ f',t € 0,T].
Now from the assumptions of the statement in part [ii] itdelk that it is enough to prove
thatB(v'(+), F) € L*(0,T; H) and then use the already proven statement in part [i]. From
inequality (2.20) we have

/ B/ (1), F)[% di

T
C
< el / | ewrl FIIf dt + -5t / [V ()0 ()| ] F I
0
o T
x 24
< €1+50/3|F|L2(0,T;D(A))+51+3(}_50 1E1E o, 71:v /| ()|L3+5‘$0 dt < oc.
0
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Note thatF" € C'([0,T]; V) by Lemma 2.1.
O

PrROOF oFPROPOSITION3.4. The proof is very similar to the proof of the previous
Proposition.

(i) The proof will be divided into three parts a), b), c).

a) First we consider a special case wheg L>(0,7T;1L3%(D)). We will use Theorem
2.3 with Gelfand tripld/ ¢ H =2 H' C V'. DenoteB(t) = vA+ curl(v(t) x -). We need
to check whether the conditions (2.5) and (2.6) are satistMalhave

(BMf, Hlviy = valf, f)+ (curl(v(t) x f), fHv,v
(5.12) va(f, f) + wt) x f,eurl fyyrv, t€[0,T], f€ V.

Now we can use the inequality (5.2) and the continuity of threnfa to get
1Bl cv,vy < Cv+ CQ|'U(t)|]L3+60(D).

The coercivity condition (2.6) can be proved in the same vgain ghe proof of Proposition
3.2. Therefore, by Theorem 2.3 first statement of the Prdéipass proved in our special
case.

b) To prove Proposition in the general case we will, as befdrewsan energy inequality
for solutions of the problem (3.3-3.4) whenc L°°(0, T;1L.3+%(D)). From Step(a) we
know that there exists a unique solutiGhe L?(0,7; V) such thatG’ € L2(0,T;V").
Then, from Lemma 2.1 it follows tha¥ € C([0,7T]; H) and

|G|H = |G|} +{f,G)v'v — (v x G,cwrl Gy v
_V”GHQV + <f7 G>V’,V + (CUI‘IG7U X G)H

2dt

Therefore, by the Young inequality,

¢
Gt 3+ 21// |Vds—/cur1G $) x G(8))u ds
0

0
t

— GO+ / (f(), G(s))vr v ds

0

IN

t t
C
GO+ 5 166k ds+ S [k dste 0.1
0 0

t
The term/ (curl G(s), v(s) x G(s))u ds can be estimated in the same way as in Proposi-

0
tion 3.2, see (5.4). Thus we infer th@tsatisfies the following inequality, fare [0, T,

GO+ v/HG 3 ds < K (|G i+ /|f ws)

(5.13) (1+/Iv( |2+6/50d) cwo,u){w( $)IZgphe0 ds
’ L3+d%0 .
0
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c) The general case. Now, lefv,}>2, be an L>(0,T;L3+%(D))-valued se-

n=1
quence of functions such that, — v € L*% (0, T;1L3*+%(D)),n — oo in
L“%(O,T;LP’”O(D)). Let {G,,}52, be corresponding sequence of solutions of the
problem (3.3-3.4). Then from (5.13) it follows that sequef€,, } 22, lie in a bounded set
of L>°(0,T; H)NL*(0,T; V). Using the same argument as in the proof of Proposition 3.2
we can find subsequen¢€’,,/ }°5_, weakly convergentt&’ € L>(0,7; H)NL?(0,T;V)
which solves the problem (3.3-3.4) in a weak sense. Moredvetlows from inequality
(5.13), that the functior satisfies energy inequality (3.9). Uniqueness of the smiubf
the problem (3.3-3.4) follows from the energy inequalityd}3 The only difference with
the previous Proposition is that now we can prove @at L?(0,T,V’). Indeed, we have

||G/||2Lz(o,:r,v') = HBGH%%O,T,{//)
T
< /|1/AG + curl(v(t) x G(t))[} dt
0

T

P16 a0y + [ 108) x GO
0
T

do
< AlG2201v) +/(01|G(t)|%/ + Caolo()[7H1G () [3) dt
0

IN

< C3||GH%2(O,T,V) + CQHGH%DC(O,T,H) |U|L2+%(07T;L3+50(D))

Thus, the first statement of Proposition is proved. Stateésrféhand [iii] can be proved in
the same way as in the proof of Proposition 3.2.
(i) Existence of a local solutiorLet Xo = {F € L?(0,T; D(A)) : F' € L*(0,T; H)}
be a Banach space endowed with a norm
F%, = V2|F|2L2(O,T;D(A)) + |F/|i2(O,T;H)'
We will prove the following result.
LEMMA 5.3. If v € L2(0,T;V), z € Xr thencurl(v(t) x 2) € L*(0,T; H).

In view of Proposition 2.4 and the above Lemma, a nbap: X7 — X defined by
®r(z) = Giff G isthe unique solution of the problem

(5.14) G +vAG = f —curl(v(t) x 2),G(0) = Fy € V
is well defined.
PrROOF OFLEMMA 5.3. We have:

[| curl(v(t) x Z)H%%O,T;H) < C(”ZVUH%%O,T;H) + HUVZ”%?(O,T;H))
(5.15) < Clzleo,rv)ylvlL20,mv)
and the result follows from Lemma 2.1. O

Now we will show that there exists; € (0, 7] such that®r, is a strict contraction.
Let us fixt € (0,T] and takez;, zo € Xp. Then, by Proposition 2.4 and Lemma 2.12, we
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have

1@(21) — De(22)II%,

IN

Chl| curl(v(t) x (21 — 22))lI72(0,0:)

IN

Clz1 = 2ol G010 720,0) < Clz1 = 22l%, 101720 1 -

Letus choos@ € (0, 7] such thaCl|v|20,1,;vy < 1/2. Thendr, is a strict contraction
map and hence by the Banach Fixed Point Theorem there exisigaeF < X, thatis
a fixed point of®, . By the definition of theb it follows that ' € X, is a solution of
problem (3.1-3.2) on intervédd, 7 ]. Notice also thaf'(Ty) € V. Therefore, the ma@r
with initial dataF'(77) is well defined on intervdll, 7.
Existence of a global solutio:rom Lemma 5.1 and assumption (3.5) it follows that we
can find a partitio) = Ty < T < ... < Tx—1 < T, = T of the interval[0, T'] such that
[v|L2(r, 10y 3vy) < 1/2,4=0,...,k — 1. Therefore, we can use inequality (5.11) and the
Banach Fixed Point Theorem iteratively to define a globaltsmh (3.3-3.4).

(iii) We will consider only the casé = 1. General case follows by induction. We differ-
entiate equation (3.3-3.4) w.rt.(in the weak sense) and get an equation for the function
G"

366;" (t) = —vAG'(t) — curlG'(t) x v(t) — curl(G(t) x v'()) + f'(t)
G'(0) = —vAGy — curlv(0) x Go + f(0),t € [0, T].

Now from the assumptions of the statement [ii] it followsttitais enough to prove that
curl(G x v'(t)) € L?(0,T; H) and then use the already proven statement in part [i]. By
the inequality (5.15) we have

| curl(G x UI)H%Z(O,TQH) < C|Gleqo, 1)1V 1200, 13v) < 00

Note thatG € C([0,T]; V) by Lemma 2.1.
(]

PROOF OFTHEOREM3.7. 15 Step. Fixdy > 0. Let us prove the Theorem in the
case of smooth initial dat&, € C>(D) N H and vector fieldv € C°([0,T] x D) N
L**3% (0, T;1L3*+% (D)). For eachs > 0 we can findfs € C°(D)NH, G € C*(D)nN
H, v € C2([0,T] x D) N L*7% (0, T; L3+% (D)) such that ag — 0, F§ — Fy in
H,G§ — Goin H andv® — v in L*°(0, T;1L3+%(D)). It follows from Corollaries 3.5
and 3.6 that there exist&® € C([0,T]; H) N C*((0,T] x D), G¢ € C([0,T]; H) N
C*>((0,T] x D)) that are solutions to the following problems

5);;5 (t) = —vAF®(t) — P(v*(t) x curl F(t))
Fe(0,:) = F§,te[0,T)

oG*®

o (t) = —vAG®(t) + curl (v (T —t) x G°(t))
G°(0,-) = G§,tel0,T)
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Therefore, for alk € (0, 7] we have

d
2 (), G (T = t))e2(p)
= (LF), G D)) — (F(0), G (T~ )i

= v(PAF*(1),G*(T = t))r2(p) — (P(v(t) x carl F=(t)), G*(T — t))12(p)
— W(FE(t),PAGHT — t))ia(py — (F5(), curl (v(t) x G(T — 1)))i2(p)
= Ki(t) — Ka(t) — K3(t) — Ky(t)
It follows from the fact thatliv 7= = div G° = 0, F¢|sp = G¢|sp = 0 and the integra-

tion by parts formula thatF, Vo)), 2py = (G%, V¢)12(py = 0 for anyy € C*°(D).
Thus, we have

Ki(t) = (PAF(1),G(T —t))L2(p) = (AF(t),G°(T — 1))12(D),
Ky(t) = (P(v(t) x curl F&(t)), G°(T — t))r2(p)
(5.16) = (v(t) x curl F*(t), G*(T — t))Lz(D),t € (0,T]

and
K3(t) = (F°(1), PAGH(T — t))12(p) = (F*(t), AG(T = t))r2(p), t € (0,T]
Therefore, by the Green Formula we dét(t) — K5(t) = 0,¢ € (0,T]. From (2.1), (5.16)

and the formula
/ucurlvdx—/vcurludz = /(u X v, ) do

D D oD
we infer that
Ks(t) = (u(t) x curl F¥(), G5(T = 1))12(p)
= —(curl F*(t) x v(t), G(T —t))L2(D)
= —(curl F*(t),v(t) x GS(T —t))L2(py = —Ka(t),t € (0,T7.

Thus, & (F=(t),G5(T — t))12(py = 0,t € (0,T]. Also, by the regularity off®, G*
it follows that (F=(-), G*(T — -))L2(py € C*((0,T]) N C([0,T7). As a result we get
equality (3.13).

2" step. Let us suppose that we have showed that for eacko, 7], F.(t) — F(t) in
weak topology off and that7. — G in C([0,T], H). Then we have

I(F(t),G(T—t))—( (1), G5(T = 1))

[(F' = F=(8), G(T' = 1)) + (F°(1), G = G*(T — 1))|
(F' = F=(t), G(T = )| + [F* ()| |G = GH(T = )|
( (

F— F(8),G(T —t)| + |F§ | sup G~ G=(s)|u =" 0,t € [0,T]
sel0

IN

|
|
ie. (F(t),G(T —t))w = hn%(FE( ),G*(T — t))u,t € [0,T] and the result follows
E—

from first step. In order to show weak convergencégoft) to F(¢), t € [0,T] let us first
notice that by the Banach-Alaoglu Theorefa,converges t&” weakly-*in L>(0,T; H).
The proof of this claim can be performed in exactly the samamaaas the proof of the
convergence of;, — F' in Proposition 3.2). Also, we have from the Banach-Alaoglu

Theorem thaf#*(t) weakly-* convergentto som&(t) € H,t € [0, T]. We will show that
U = F.Fix{ € V. Letus denotg(t) = (¥(¢t) — F(¢),§)u, t € [0,T]. SinceV is dense

IN
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in H itis enough to show that = 0. Now we will show thaty € C'([0,T]). From the part
(i) of Proposition 3.2 we infer that' € C([0,T],V’). Thus,(F(-),{) g = (F(-),{)v.v €
C([0,T7)). Furthermore, fot € [0,T] we have

t

(5.17) [(Fo(t),€) — (Fu(s).6)] < / (FL(r),€)ldr

S

(r), )70 dr) Fovs ¢ — 5| T

IN
—
=

, 3
< |F5|L1+2_5ﬁ(07T;V/)|§|V|t_S|250+6

% 250+3 3
< ClFer20,mv)(CL(v, T, 60) + |ve| 00 )ZP0¥E [E|y [t — s[ZP0FS

L**3 (0,15L3+50 (D))
0 _3

s ClFElu(CT,00) + |UE|L2+%(O,T;L3+60(D)))|§|V|t — §|0Fe

0 4

s ClFu(C@ T, 00) + |U|L2*8%(0,T;Ls+so(D)))|f|V|t — [P0 0<s<t<T.

In the above sequence of inequalities, the first one followsahse(F.(-),£) €
C*>((0,T)), the second one from the Holder inequality and the fourth fsam the in-
equality (5.9).

Taking thes \, 0 limitin (5.17) we immediately get

(5.18) (®(1),€) = (¥(5), )| < C(Fo, v, v, 80, T)|€]v |t — 5|07,

— 0
whereC (Fy,v,v,00,T) = C|F°|g(C(v, T, do) + |U|L2*%(0,T;L3+éo(p)))' Hence, U ¢

C([0,T],V') and, consequently,e C([0,T]). Thereforeit is enough to prove that) =
0fora.a.t € [0,T).
We have already observed that

T
(5.19) gig%/(FE(s) — F(s),q(s))gds =0, forall ¢ € L'(0,T; H).
0

Letus take any € L'(0,7)and puty = £f, g. = (F(-) — F(-),&) 5. Then from (5.19)
we infer that

T
(5.20) /ga(s)f(s) ds — 0, forall f e L*0,T).
0

On the other hand, it follows from the definition gfthatg. — ¢ pointwise. We will
show now that (5.20) and this pointwise convergence.amply thatg = 0 a.e.. Indeed,
by the Egorov Theorem, see e.d., Theorem 2.2.1, p. 110], for arly> 0 there exists
a measurable set; C [0,7] such that\(4;) < [ andg. — ¢ uniformly on[0, 7] \ A4;.

Here \ denotes the Lebesgue measure. Hence by (5.20) we infeg(hat 0, for a.e.
t €[0,T]\ A; and consequently(t) = 0 fora.e.t € [0,T].
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Thus, it remains to show th&t. — G in C(]0,T], H). DenoteR® = G* — G. Then
R® is a solution to the following problem.

ORe E
S () = VAR ()

+curl(v®(T — t) x R°(t)) + curl((v°(T —t) — v(T — t)) x G(t))
R%(0,-) = Gj — Go,t € 0,T7.

Applying the energy inequality (3.9) to the functi®t we infer that for any- > 0
€12 € € 2
IR |C([O,T];H) <C(lv |L2+%(07T;L3+50(D)))(|G0 — Goly

+eurl((v = o) x @) a0,

(0,T3L3+%0 (D))

< CU] o soso oy 1G5 = Goll 10 = 0%) X Gl i)
T

< (ol g 1G5 — Goly + 7/ [ G(s)- s +
0

Cs 9
(5-21) s Cloomm [V =Vl s o))

where last inequality of (5.21) follows from Lemma 2.12. Ndvom the convergences
v® — vin L”%(O,T;L“%(D)), G§ — Gy in H and inequalities (5.21) we get the
result.

O

References

[1] V.I. Bogachev, MEASURE THEORY VoOL. |, Springer-Verlag, Berlin, 2007.

[2] F. Bouchut, F. James, S. Mancitiniqueness and weak stability for multi-dimensional tggors equations
with one-sided Lipschitz coefficie#nn. Sc. Norm. Super. Pisa Cl. Sci. $)2005), no. 1, 1-25.

[3] Z. Brzezniak,0On analytic dependence of solutions of Navier-Stokes emsavith respect to exterior force
and initial velocity Univ. lagel. Acta Math. No. 28 (1991), 111-124.

[4] Z. Brzezniak and Y. LiAsymptotic compactness and absorbing sets for 2D Stochdatiier-Stokes equa-
tions on some unbounded domaifisans. Amer. Math. So858(2006), no. 12, 5587-5629.

[5] B. Busnello, F. Flandoli, M. RomitoA probabilistic representation for the vorticity of a thréémensional
viscous fluid and for general systems of parabolic equafiBnsc. Edinb. Math. Soc. (28 (2005), no. 2,
295-336.

[6] P. Constantin , G. lyerA stochastic Lagrangian representation of the three-disimmal incompressible
Navier-Stokes equation€omm. Pure and Applied Mathemati&, (2008), no. 3, 330-345.

[7] R. J. DiPerna, P.-L. LionsQrdinary differential equations, transport theory and 8ty spaceslnvent.
Math. 98 (1989), no. 3, 511-547.

[8] K. Engg,On the BCH-formula iso(3), BIT. 41(2001), no. 3, 629-632.

[9] G. Falkovich, K. Gawedzki, M. Vergassol®&articles and fields in fluid turbulencdkev. Mod. Phys73
(2001), 913-975.

[10] A. Friedman, RRTIAL DIFFERENTIAL EQUATIONS, Holt, Rinehart and Winston Inc., New York-Montreal,
Que.-London, 1969.

[11] D. Fujiwara, H. Morimoto, An L.,.-theorem of the Helmholtz decomposition of vector field$-ac. Sci.
Univ. Tokyo Sect. IA Math24(1977), no. 3, 685-700.

[12] L. Hormander, HE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL OPERATORSI, 2nd ed., Springer,
Berlin, 1990.

[13] N. Ikeda and S. WatanabeTSCHASTICDIFFERENTIAL EQUATIONS AND DIFFUSIONPROCESSESJohn
Wiley and Sons, New York, 1981.

[14] A. N. Kolmogorov, S. V. Fomin, EEMENTS OF THE THEORY OF FUNCTIONS AND FUNCTIONAL ANALY
sis(in russian), Nauka, Moscow, 4th edition, 1976.



DUALITY AND THE NSES 93

[15] N. V. Krylov, On Kolmogorovs equations for finite dimensional diffusjansStochastic PDEs and Kol-
mogorov equations in infinite dimensions (ed. G. Da Prat@gtlre Notes in Mathematics, vd715
Springer, 1999.

[16] H. Kunita, STOCHASTIC FLOWS AND STOCHASTIC DIFFERENTIAL EQUATIONSCambridge Studies in
Advanced Mathematics, 24. Cambridge University Press,iiage, 1990.

[17] O. A. LadyzhenskayaDn uniqueness and smoothness of generalized solutions fdahier-Stokes equa-
tions Zapiski Nauchn. Seminar. POMS,(1967), 169-185.

[18] Y. Le Jan, O. Raimondntegration of Brownian vector field#\nn. Probab30 (2002), no. 2, 826-873.

[19] J.L. Lions and E. Magenes, 0i-HOMOGENEOUS BOUNDARY VALUE PROBLEMS AND APPLICATIONS
VoL. I, Grundlehren der Mathematischen Wissenschaften [Fuedtal Principles of Mathematical Sci-
ences], 181. Springer-Verlag, New York-Heidelberg, 1972.

[20] J.L. Lions and E. Magenes, 0i-HOMOGENEOUS BOUNDARY VALUE PROBLEMS AND APPLICATIONS
VoL. Il, Grundlehren der Mathematischen Wissenschaften [Eomahtal Principles of Mathematical Sci-
ences], 182. Springer-Verlag, New York-Heidelberg, 1972.

[21] S. Maniglia, Probabilistic representation and uniqueness results feagsure-valued solutions of transport
equations,J. Math. Pures Appl. (%7 (2007), no. 6, 601-626.

[22] C. Marchioro, M. Pulvirenti, MTHEMATICAL THEORY OF INCOMPRESSIBLE NONVISCOUS FLUIDSAp-
plied Mathematical Sciences, 96. Springer-Verlag, NewkY&994.

[23] R. Mikulevicius,On the Cauchy problem for stochastic Stokes equati®hsiv J. Math. Anal.,34 (2002),
121-141.

[24] H. K. Moffat, The degree of knottedness of tangled vortex JideBluid Mech.35 (1969), 117-129.

[25] M. Neklyudov,Controllable stochastic dynamical system equivalent éoNhvier-Stokes equatioRuss. J.
Math. Phys.12 (2005), No. 2, 232-240.

[26] M. Neklyudov,Equivalence of Navier-Stokes equation and infinite dinweradiBurgers equatigiiRussian),
Fundamental and Applied Mathematid® (2006), No. 5, 109-120; translated in Journal of Matheraatic
Sciences150(2008), No. 6, 2531-2539.

[27] G. Prodi,Un teorema di unicitper le equazioni di Navier-Stok&sn. Mat. Pura Appl. (438 (1959), 173—
182.

[28] W. Rudin, REAL AND COMPLEX ANALYSIS, McGraw-Hill Book Co., New York, 1987.

[29] J. Serrin, HE INITIAL VALUE PROBLEM FOR THE NAVIER-STOKES EQUATIONS NONLINEAR PROB-
LEMS. Madison, Wis. pp. 69-98 Univ. of Wisconsin Press, Madistfis., 1963.

[30] M. Spivak, CALCULUS ON MANIFOLDS. A MODERN APPROACH TO CLASSICAL THEOREMS OF AD
VANCED CALCULUS. W. A. Benjamin, Inc., New York-Amsterdam, 1965.

[31] M. Spivak, A COMPREHENSIVE INTRODUCTION TO DIFFERENTIAL GEOMETRYVOL. ONE. Published
by M. Spivak, Brandeis Univ., Waltham, Mass. 1970.

[32] H. Tanabe, BUATIONS OF EVOLUTION, Monographs and studies in mathematics, 6. Pitman Pubgshi
Ltd., London, 1979.

[33] R.Temam, MVIER-STOKES EQUATIONS THEORY AND NUMERICAL ANALYSIS, AMS Chelsea Publish-
ing, Providence, RI, 2001.

[34] R. TemampBehaviour at time¢ = 0 of the solutions of semilinear evolution equatigh®ifferential Equa-
tions,43(1982), no. 1, 73-92.

[35] H. Triebel, NTERPOLATION THEORY, FUNCTION SPACES DIFFERENTIAL OPERATORS, North-Holland
Publishing Co., Amsterdam-New York, 1978.

DEPARTMENT OFMATHEMATICS, THE UNIVERSITY OF YORK, HESLINGTON, YORK YO10 5DD, UK
E-mail addresszb500@or k. ac. uk

DEPARTMENT OFMATHEMATICS, THE UNIVERSITY OF YORK, HESLINGTON, YORK YO10 5DD, UK
E-mail addressrmn505@or k. ac. uk



