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Global attractor and asymptotic smoothing effects for the

weakly damped cubic Schrödinger equation in L
2(T)

Luc Molinet
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Abstract. We prove that the weakly damped cubic Schrödinger flow in L2(T)
provides a dynamical system that possesses a global attractor. The proof relies
on a sharp study of the behavior of the associated flow-map with respect to
the weak L2(T)-convergence inspired by [18]. Combining the compactness in
L2(T) of the attractor with the approach developed in [10], we show that the
attractor is actually a compact set of H2(T). This asymptotic smoothing effect
is optimal in view of the regularity of the steady states.

Contents

1. Introduction 15
2. Function spaces and notation 17
3. Proof of Theorem 1.3 18
4. Existence of the global attractor 21
5. Asymptotic smoothing effect 22
References 33

1. Introduction

The cubic nonlinear Schrödinger equation (NLS) can be derived as an asymp-
totic model to describe long wave propagation in different dispersive media. In
some physical contexts, an exterior forcing and damping effects have to be taken
into account and this can lead to the following cubic NLS equation

(1) ut + γu+ iuxx ∓ i|u|2u = f,
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where γ > 0 is the damping parameter and f is the forcing term. In this paper we
focus on the case where u(t, x) is a function from R+×T to C, with T = R/2πZ, and
f ∈ L2(T) does not depend on time. Also since the sign in front of the nonlinear
term will not play any role in our analysis, we will take the + sign in all this paper.

It is well-known since the work of Bourgain [3] that (1) provides an infinite
dimensional dynamical system on Hs(T) for s ≥ 0. Using an a priori estimate in
H1(T) related to the energy conservation of the classical cubic NLS equation, the
existence of a global attractor in H1(T) can be obtained by a standard method
(see for instance [22] or [9] where the additional regularity of the attractor is also
proved). This method principally contains two steps. A first step consists in proving
the continuity of the flow-map associated with the equation with respect to the
weak topology of the phase space. This ensures the existence of a compact global
attractor for the weak topology. The second step uses the argument of Ball [2] to
convert the weak convergence to the attractor into a strong one. The standard way
to prove the first step is to use the well-posedness of the equation in a larger function
space where the phase space is compactly embedded (cf. for instance [6]). This
approach cannot be applied to (1) in L2(T) since the well-posedness of this equation
is not known in such a space. Actually, the strong ill-posedness of the classical cubic
NLS equation in Hs(T), s < 0, has been even proved (cf. [5], [18]). In [12] Goubet
and the author used another approach involving the so called Kato local smoothing
effect for (1) on R to establish the weak continuity of the flow-map in L2(R). The
situation in L2(T) seems more complicated since, as was shown in [18], the flow-
map of the classical cubic NLS equation is discontinuous for the weak topology of
L2(T). Note however that the result in [18] shows that the flow-map associated
with the modified Schrödinger equation (see (16 below) introduced by Christ [4] is
continuous for this weak topology. Let us mention here that the well-posedness of
the modified NLS equation in a function space where L2(T) is continuously (but not
compactly) embedded is obtained in [4] (see also [13] for a related result). Using
results of [18], we clarify some behaviors of the flow-map of (1)with respect to the
weak L2(T)-convergence. From this information supplemented with the argument
of Ball we deduce the existence of a global attractor in L2(T). Finally, combining
the approach developed in [9]-[10] with the compactness of the attractor, we prove
that the global attractor actually belongs to H2(T) which can be viewed as an
asymptotic smoothing effect. This smoothing effect is optimal since for f belonging
to L2(T) but not to Hs(T), with s > 0, the steady state to (1) does not belong to
Hs(T) for s > 2.

Denoting by S(·) the nonlinear group associated with (1), i.e. S(t)u0 :=
u(t), t ∈ R, where u is the solution of (1) associated with the initial data u0,
our main result is as follows :

Theorem 1.1. The nonlinear group S(·) associated with (1) provides an infinite-
dimensional dynamical system in L2(T) that has a global attractor A which is a
compact set of H2(T). More precisely, A is a connected and compact set of H2(T),
invariant (positively and negatively) by S(·) that attracts for the L2(T)-metric all
positive orbits uniformly with respect to bounded sets of initial data in L2(T).

Remark 1.2. Exactly the same proof as in Section 5 below shows that the
L2(R) global attractor to (1) on the line, that was constructed in [12], is actually a
compact set of H2(R).
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The main new ingredient for proving Theorem 1.1 is the following result on the
behavior of the flow-map of (1) with respect to the weak L2(T)-convergence.

Theorem 1.3. Let {u0,n} be a sequence of L2(T) converging weakly to u0 in
L2(T) and let {un} be the sequence of the associated emanating solutions of the
weakly damped cubic Schrödinger equation (1). For any adherence value a0 of
{‖u0,n‖

2
L2} there exists a continuous function t 7→ a(t) from R to R+, with a(0) =

a0, and a subsequence {unk
} of {un} such that, for any t ∈ R, unk

(t) converges
weakly in L2(T) to v(t) where v ∈ C(R;L2(T))∩L4

loc(R×T) is the unique solution
to

(2)

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = u0

.

Remark 1.4. It is worth noticing that this theorem ensures that, in sharp
contrast with the case on the line (cf. [12]), the flow-map associated with (1) is not
continuous for the weak topology of L2(T). Indeed, following [18], let u0 ∈ L2(T) be
different from 0 and let {φn} ⊂ L2(T) be a sequence such that φn ⇀ 0 in L2(T) and
‖φn‖

2
L2 → 2π as n goes to infinity (one can take for instance φn = einx). Setting

u0,n = u0 + φn, we get that u0,n ⇀ u0 in L2(T) and ‖u0,n‖
2
L2 → ‖u0‖

2
L2 + 2π as

n → ∞. On account of Theorem 1.3, the emanating solutions un tend weakly in
L2(T) for any fixed t ∈ R to v satisfying (2). Observe that w = v− u is solution of

(3)

{
wt + iwxx + γw + i

(
|v|2w + (wu+ wv)u

)
= −

i

π

(
a(·) − ‖v(·)‖2

L2

)
v

w(0) = 0
.

Since v(0) = u0 6= 0 and a(0) = ‖u0‖
2
L2 + 2π 6= ‖v(0)‖2

L2 we infer that the L2(T)-
norm of the right-hand side of (3) cannot vanish for small t 6= 0. Hence w(t) = 0
is not a solution of (3) and thus v(t) 6= u(t) for small t 6= 0.
Finally, note that, since L2(T) is compactly embedded in Hs(T) for s < 0, this
proves that (1) is ill-posed in Hs(T) as soon as s < 0.

This paper is organized as follows. In the next section we introduce some
notation and the function spaces we will work with. Section 3 is devoted to the proof
of Theorem 1.3 and Section 4 is devoted to the existence of the global attractor.
Finally in Section 5 we prove the asymptotic smoothing effect.

2. Function spaces and notation

When we affirm that a proposition is valid for x+ (respectively x−) with x ∈ R,
we mean that there exists a small real number ǫ > 0 such that the proposition is
valid for any real number in the interval ]x, x + ǫ[ (respectively ]x − ǫ, x[). For
(x, y) ∈ R2, x . y means that there exists C > 0 such that x ≤ Cy. We will also
denote by ε any function from R+ into itself that goes to zero at infinity.
For a 2π-periodic function ϕ, we define its space Fourier transform by

ϕ̂(k) :=
1

2π

∫

T

e−ikx ϕ(x) dx, ∀k ∈ Z ,

and we denote by PNϕ and QNϕ the L2(T) orthogonal projections on respectively
the space Fourier modes |k| ≤ N and |k| > N .
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We denote by V (·) the free group associated with the linearized Schrödinger equa-
tion,

V̂ (t)ϕ(k) := e−ik2t ϕ̂(k), k ∈ Z .

The Sobolev spaces Hs(T) for 2π-periodic functions are defined as usually and
endowed with

‖ϕ‖Hs(T) := ‖〈k〉sϕ̂(k)‖l2(Z) = ‖Js
xϕ‖L2(T) ,

where 〈·〉 := (1 + | · |2)1/2 and Ĵs
xϕ(k) := 〈k〉sϕ̂(k).

For a function u(t, x) on R × T, we define its space-time Fourier transform by

û(τ, ξ) := Ft,x(u)(τ, ξ) :=
1

2π

∫

R×T

e−i(τt+kx) u(t, x)dt dx, ∀(τ, k) ∈ R × Z .

and define the Bourgain spaces Xb,s and X̃b,s of functions on R × T respectively
endowed with the norm

‖u‖Xb,s := ‖〈τ + k2〉b〈k〉sû‖L2(R;l2(Z)) = ‖〈τ〉b〈k〉sFt,x(V (−t)u)‖L2(R;l2(Z)) .

and

‖u‖X̃b,s := ‖〈τ − k2〉b〈k〉sû‖L2(R;l2(Z)) = ‖〈τ〉b〈k〉sFt,x(V (t)u)‖L2(R;l2(Z)) .

Finally, for an open interval I ⊂ R we define the restriction in time spaces Xb,s
I of

functions on I × T endowed with the norm

‖u‖Xb,s
I

:= inf
v∈Xb,s

{‖v‖Xb,s , v(·) ≡ u(·) on I } .

It is worth noticing that the Xb,s
I spaces are Hilbert spaces with dual (for the

L2-duality) X−b,−s
I and that for any θ ∈ [0, 1] it holds

X
θb1+(1−θ)b2,s
I = [Xb1,s

I , Xb2,s
I ]θ .

Moreover, for b > 1/2, Xb,s
I is continuously embedding in L∞(I;Hs(T)) with a

constant of continuity that depends on b and on |I| the length of I, i.e.

(4) ‖u‖L∞(I;Hs(T)) ≤ C(b, |I|)‖u‖Xb,s
I
, ∀u ∈ Xb,s

I

3. Proof of Theorem 1.3

Theorem 1.3 is based on the observation made in [18] on the cubic NLS equation
posed on the one-dimensional torus. We first recall the following well-posedness
result due to Bourgain ([3]) for (1). Let us mention that this result was established
for the cubic Schrödinger equation without damping and forcing but the adaptations
for (1) are straightforward.

Theorem 3.1. Let s ≥ 0. For any u0 ∈ Hs(T), f ∈ Hs(T) and any T > 0,
there exists a unique solution

u ∈ L4(] − T, T [×T)

satisfying (1) in D′(] − T, T [×T). Moreover u ∈ C([−T, T ];Hs(T)) ∩X
1/2+,s
]−T,T [ and

the map data to solution u0 7→ u is real analytic from Hs(T) to C([−T, T ];Hs(T)).
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Let us recall that this theorem principally use the linear estimates in Bourgain’s
spaces for the free evolution and the retarded Duhamel operator

(5) ‖V (t)ϕ‖Xb,s
]−T,T [

≤ C(T, b)‖ϕ‖Hs , b ∈ R, s ∈ R, 0 < T < 1,

and for any 0 < ε << 1 and 0 < T < 1,

(6) ‖

∫ t

0

V (t− t′)g(t′) dt′‖Xb,s
]−T,T [

≤ C(b, ε)T ε‖g‖Xb−1+ε,s
]−T,T [

, 1/2 ≤ b < 1,

as well as the following linear dispersive estimate

(7) ‖v‖L4(R×T) . ‖v‖X3/8,0 , ∀v ∈ X3/8,0 .

This estimate is proven in [3] for functions on T2 but also holds for functions on
R × T (See [17] for a shorter proof that works also clearly on R × T ). Moreover,
according to [7], (7) ensures that for 0 < T < 1 it holds

(8) ‖V (t)ϕ‖L4(]−T,T [×T) . T 1/8‖ϕ‖L2(T), ∀ϕ ∈ L2(T) ,

which gives directly the existence and uniqueness in L4(] − T, T [×T) by classical

TT ∗ arguments. On the other hand, to prove that u ∈ X
1/2+,0
]−T,T [ one has to notice

that, applying (7) with v, (7) clearly also holds with X3/8,0 replaced by X̃3/8,0.
Therefore,

(9) ‖F−1(|v̂|)‖L4(T2) . ‖v‖X̃3/8,0 = ‖v‖X3/8,0 , ∀v ∈ X3/8,0.

and (7)-(9) yield

(10) ‖u1u2u3‖X
−1/2+,0

]−T,T [

.

3∏

i=1

‖ui‖X
1/2,0

]−T,T [

, ∀ui ∈ X
1/2,0
]−T,T [ .

Writing the Duhamel formulation of (1), using (5)-(6) and (10) and choosing some
small positive real number ε, one can eventually derive the key estimate:

(11) ‖u‖
X

1/2+,0

]−T,T [

. ‖u0‖L2(T) + T 0+
[
(‖u‖2

X
1/2+,0

]−T,T [

+ γ)‖u‖
X

1/2+,0

]−T,T [

+ ‖f‖L2(T)

]
.

This leads to the local existence result in X
1/2+,0
]−T,T [ . Finally, the fact that the time

of existence in Theorem 3.1 can be chosen arbitrarly large follows from the a priori
bound on the L2(T)-norm of the solution (see (13)-(14) below).

Now, let u0 ∈ L2(T) and {u0,n} ⊂ L2(T) be a sequence converging weakly to
u0 in L2(T). Note that, from Banach Steinhaus’theorem, {||u0,n||L2(T)} is bounded
in R+. It is well-known that the solutions of (1), given by Theorem 3.1, satisfy for
all t ∈ R,

(12)
1

2

d

dt
||u||2L2(T) + γ||u||2L2(T) = Re

∫

T

fūdx

By Young’s inequality and Gronwall’s lemma, we deduce that the L2-solutions
satisfy for any t ∈ R+,

(13) ||u(t)||2L2(T) ≤ e−γt||u0||
2
L2(T) +

1 − e−γt

γ2
||f ||2L2(T).
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Performing the change of variables (t, x) 7→ (−t, x) and proceeding as above we also
infer that for any t ∈ R− it holds

(14) ||u(t)||2L2(T) ≤ e3γ|t|||u0||
2
L2(T) +

e3γ|t| − 1

γ2
||f ||2L2(T)

Therefore, from (12), we deduce that for any (t0, t1) ∈ R2 with t1 > t0,

∣∣∣||u(t1)||2L2
x
− ||u(t0)||

2
L2

x

∣∣∣ =
∣∣∣2γ

∫ t1

t0

||u(τ)||2L2(T) dτ + 2Re

∫ t1

t0

∫

T

fū(τ)dx dτ
∣∣∣

≤ |t1 − t0|
[
3γ

(
e3γ|t1|||u0||

2
L2(T) +

e3γ|t1| − 1

γ2
||f ||2L2(T)

)

+
1

γ
||f ||2L2(T)

]
.(15)

Denoting by un the solution to (1) associated with the initial data u0,n, this last in-
equality ensures that the sequence {t 7→ ||un(t)||2L2(T)} is uniformly equi-continuous

on any bounded interval of R. It follows from Ascoli’s theorem that there exists
a subsequence {t 7→ ||unk

(t)||2L2(T)} that converges to some function t 7→ a(t) in

C([−T, T ]; R+) for any T > 0. Moreover, from Theorem 3.1 we know that {unk
}

is bounded in X
1/2+,0
]−T,T [ and thus, up to the extraction of a subsequence, converges

weakly to some v in X
1/2+,0
]−T,T [ .

Now, in ([18], Lemmas 2 & 3 ) it is proven that the nonlinear term of the modified
Schrödinger equation introduced in [4]:

(16) Λ(u) := |u|2u−
1

π
‖u‖2

L2u

is continuous from (X
1/2+,0
1 )3 into X

−7/16,0
1 equipped with their respective weak

topology. We thus rewrite the Duhamel formulation for un in the following way :

un(t) = V (t)u0,n − i

∫ t

0

V (t− t′)Λ(un(t′)) dt′

−
i

π

∫ t

0

V (t− t′)
(
‖un(t′)‖2

L2un(t′)
)
dt′ − γ

∫ t

0

V (t− t′)un(t′)dt′

+

∫ t

0

V (t− t′)fdt′ .(17)

Since unk
⇀ v inX

1/2+,0
]−T,T [ →֒ C([−T, T ];L2(T)) and ank

(·) → a(·) in C([−T, T ];L2(T)),

it follows that ank
(·)unk

⇀ a(·)v in C([−T, T ];L2(T)). According to the continuity
of the Duhamel operator from C([−T, T ];L2(T)) into itself, the linear estimates
(5)-(6), the continuity result on Λ for the weak topology and the above convergence
results, we can pass to the limit to obtain that

v(t) = V (t)u0 − i

∫ t

0

V (t− t′)Λ(v(t′)) dt′

−
i

π

∫ t

0

V (t− t′)(a(t′)v(t′)) dt′ − γ

∫ t

0

V (t− t′)v(t′)dt′ +

∫ t

0

V (t− t′)fdt′
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and v is solution of the following Cauchy problem on ] − T, T [:

(18)

{
vt + vxx + γv + iΛ(v) +

i

π
a(·)v = f in D′(] − T, T [×T)

v(0) = u0

.

Proceeding exactly as for the cubic Schrödinger equation, it is easy to prove that this
Cauchy problem is globally well-posed1 in Hs(T), s ≥ 0, with a solution belonging
for all T > 0 to

C([−T, T ];Hs(T)) ∩ L4(] − T, T [×T)

with uniqueness in L4(]− T, T [×T). Therefore, there exists only one possible limit
and thus the sequence {unk

}, and not only a subsequence of it, converges weakly to v

in X
1/2+,0
]−1,1[ . Moreover, using the equation satisfied by the un and the uniform bound

in L∞(] − T, T [;L2(T)) ∩ L4(] − T, T [×T), it is easy to check that for any smooth
2π-periodic function φ, the family {t 7→ (unk

(t), φ)L2} is bounded in C([−1, 1]) and
uniformly equi-continuous on [−1, 1]. Ascoli’s theorem then ensures that (unk

, φ)
converges to (v, φ) on [−1, 1] and thus unk

(t) ⇀ v(t) in L2(T) for all t ∈ [−1, 1].
By direct iteration this clearly also holds for all t ∈ R.
Finally, according to (16), v can be also characterized as the unique solution in
L4(] − T, T [×T) to

(19)

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = u0

.

4. Existence of the global attractor

Let us denote by S(t) the nonlinear group associated with (1), i.e.

S(t)u0 := u(t), t ∈ R .

On account of Theorem 1.3 and (13), we infer that the ball of L2(T),

X :=
{
v ∈ L2(T), ‖v‖L2(T) ≤M0 := 2

||f ||L2(T)

γ

}

is a global absorbing set for the dynamical system under consideration and that
S(t) acts continuously on X . To prove that there exists a global attractor it suffices
to check the relative compactness in L2(T) of sequences of the type {S(tn)bn} with
tn ↑ +∞ and {bn} ⊂ X . This is the aim of the following proposition.

Proposition 4.1. For any sequences {bn} ⊂ X and {tn} ↑ +∞, the sequence
{S(tn)bn} has an adherence value in L2(T).

Proof . We combine Theorem 1.3 with the famous J. Ball’s argument (see [2],
[22], [16]). Let {bn} ⊂ X and let {tn} be a sequence of positive real numbers that
goes to infinity. From (13) the sequence {S(tn)bn} remains bounded in L2(T) and
thus, up to the extraction of a subsequence, converges weakly in L2(T) to some v0.
According to Theorem 1.3 there exists a subsequence {S(tnk

)bnk
} and a continuous

function t 7→ a(t) from R to R+ such that the solutions emanating from {S(tnk
bnk

)}
converge weakly in L2(T) for all t ∈ R to v(t) where v is the unique solution to

(20)

{
vt + ivxx + γv + i|v|2v +

i

π

(
a(·) − ‖v(·)‖2

L2

)
v = f

v(0) = v0
.

1Note that the L2-norm is controlled on any bounded interval of R
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From (12) we infer that for τ > 0 fixed and nk large enough,
(21)

‖S(tnk
)bnk

‖2
L2(T) = e−2γτ‖S(tnk

−τ)bnk
‖2

L2(T)−2Re

∫ τ

0

∫

T

e−2γsf S(tnk
−s)bnk

dsdx

where ‖S(tnk
− τ)bnk

‖2
L2(T) ≤M2

0 and, according to the weak convergence and the

dominated convergence theorem,

(22) lim
nk→+∞

2Re

∫ τ

0

∫

T

e−2γsf S(tnk
−s)bnk

dxds = 2Re

∫ τ

0

∫

T

e−2γsf v(−s)dxds .

On the other hand, using the energy identity for equation (20) , we get

(23) ||v0||
2
L2(T) = e−2γτ ||v(−τ)||2L2(T) − 2Re

∫ τ

0

∫

T

e−2γsf v(−s)dxds.

But since S(tnk
− τ)bnk

⇀ v(−τ) in L2(T), it follows from (13) that

‖v(−τ)‖2
L2(T) ≤M2

0 .

Gathering the above three equalities, we thus infer that for any fixed τ > 0,

(24) lim sup
nk→+∞

||S(tnk
)bnk

||2L2(T) ≤ ||v0||
2
L2(T) + 2e−2γτM2

0 ,

which ensures that S(tnk
)bnk

converges actually strongly to v0 in L2(T). This
completes the proof of Proposition 4.1.

Proposition 4.1 ensures the existence of a compact global attractor in L2(T). More
precisely, from classical arguments (see for instance the proof of Theorem 1.1 in
[20]), it follows that the positively invariant connected closed set

A := ω(X) =
⋂

s>0

⋃

t>s

S(t)X

is non-empty and attracts any bounded set of L2(T). The compactness of A follows
as well. Indeed, let {an} ⊂ A. Taking a sequence {tn} ↑ +∞ and setting bn =
S(−tn)an, we get that an = S(tn)bn with {bn} ⊂ A ⊂ X and thus {an} has got an
adherence point in L2(T). Finally, it is worth noticing that, by construction, A is
also negatively invariant.

5. Asymptotic smoothing effect

In this section we prove that the global attractor lies actually in H2(T) and is
moreover compact in this space. Following the approach developed in [10], we split
the solution u(t) = S(t)u0 emanating from u0 into two parts by setting2

(25) vt + ivxx + γv + i|v|2v = f − iPN (|u|2u) + iPN(|v|2v)

wt + iwxx + γw = −iQN(|w|2w − 2|w|2u− w2u) − iQN(2|u|2w + u2w)

with initial conditions

(26) v(0) = PN (u0) and w(0) = QN(u0) .

2Recall that PN and QN are the projections on respectively the spatial Fourier modes |k| ≤ N

and |k| > N .
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Remark 5.1. Proceeding as for the equation (1) it is easy to check that, u ∈

X
1/2+,0
T and f ∈ L2(T) being given, the Cauchy problems (25) and (26) are locally

well-posed in L2(T). Hence, there exists α > 0 and a unique solution v ∈ X
1/2+,0
]−α,α[

of (25) and w ∈ X
1/2+,0
]−α,α[ of (26). Actually we will see in this section that w ∈

C(R+;L2(T)) and v ∈ C(R+;H2(T)).

In [10], Goubet introduced this decomposition for the weakly damped KdV
equation. A first step of his analysis consists in proving that the high frequency
part w(t) is decreasing to 0 in L2(T). This decay of ‖w(t)‖L2(T) , which is uniform
for all u0 in the absorbing ball, is obtained by using the dispersive damping effect on
the high-high frequencies interactions that occurs for the nonlinear part of the KdV
equation above H−1/2(T). This is related to the fact that the associated Cauchy
problem is well-posed in Hs(T) for s ≥ −1/2. For the cubic Schrödinger equation
the situation is more delicate since as recalled in the introduction this equation is
ill-posed in Hs(T) for s < 0. Actually, due to some resonant parts in the nonlinear
term, there is no damping effect on high-high-high interactions. To overcome this
difficulty we will work directly on the global attractor and use in a crucial way that
we already proved that it is compact in L2(T). Note that the a priori compactness
of the global attractor is not required in [10] where the compactness of the attractor
can be obtained as a consequence of the asymptotic behavior of v and w.

The second step of the analysis in [10] consists in proving an uniform bound
in H3(T) on v. This uniform estimate follows from an uniform bound in L2(T) on
the time derivative vt of v. To get this last bound the author uses that, in view of
the equation satisfied by v, the low frequencies PNvt belongs to any Hs(T), s ∈ R.
We will not be able to use this approach here since for v ∈ L2(T), PN (|v|2v) does
not belong a priori to any Hs(T). Inspired by [21] we will instead introduce the

auxiliary function z := QN (v− g), where g is defined by ĝ(k) :=
bf(k)

−ik2+γ , and prove

that z is uniformly bounded in H2(T).

The key proposition to derive the regularity of the attractor is the following.

Proposition 5.2. There exist functions h and K : R+ → R+ with limt→+∞ h(t) =
0 such that for all N > 0 large enough and all u0 ∈ A the function v and w con-
structed in (25)-(26) satisfy

(27) ‖w(t)‖L2(T) ≤ h(t) and ‖v(t)‖H2(T) ≤ K(N) , ∀t ∈ R+ .

With Proposition 5.2 at hand it is straightforward to check that A is embedded
in H2(T). Indeed, let a ∈ A and {tn} ↑ +∞. For all n ∈ N we can write a as

a = S(tn)S(−tn)a = S(tn)bn

with bn = S(−tn)a ∈ A. From Proposition 5.2 it follows that, for any n ∈ N, a
can be decomposed as a = vn + wn with ‖vn‖H2(T) ≤ K and ‖wn‖L2(T) → 0 as

n → +∞. Therefore a ∈ H2(T) and ‖a‖H2(T) ≤ K. Hence, there exists K > 0,
such that the following uniform bound holds on the attractor :

(28) ‖a‖H2(T) ≤ K , ∀a ∈ A.

5.1. Proof of Proposition 5.2.
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5.1.1. Preliminaries. The L2(T)-compactness of A ensures the following uni-
form bound on the L2(T)-norm of the high frequency part to the elements of A.

Proposition 5.3. There exists a function ε from R+ into itself that goes to
zero at infinity such that

(29) ‖QNa‖L2(T) ≤ ε(N) , ∀a ∈ A .

Thanks to this remark we will have to prove a damping effect only on terms of
the form PN/2u1PN/2u2QNu3. This is the aim of the following lemma :

Lemma 5.4. Let I ⊂ R be a bounded interval and let ui ∈ X
1/2,0
I , i = 1, 2, 3.

Then for ǫ > 0 small enough it holds

(30) ‖PN/2u1PN/2u2QNu3‖X
−1/2+ǫ,0
I

. N−1/4+2ǫ
3∏

i=1

‖ui‖X
1/2,0
I

.

Proof. We take extensions vi of the ui’s such that ‖vi‖X1/2,0 ≤ 2‖ui‖X
1/2,0
I

.

By duality we have to prove that

sup
‖w‖

X1/2−ǫ,0=1

∣∣∣
(
w,PN/2v1PN/2v2QNv3)

)
L2(R×T)

∣∣∣ . N−1/4+2ǫ
3∏

i=1

‖vi‖X1/2,0 .

It thus suffices to estimate

J =

∫

R3

∑

(k1,k2,k3)∈A(N)

|ŵ(τ, k)||v̂1(τ1, k1)||v̂2(τ2, k2)||v̂3(τ3, k3)| dτ1 dτ2 dτ3

where τ = τ1 + τ2 + τ3, k = k1 + k2 + k3 and

A(N) := {(k1, k2, k3) ∈ Z
3, |k1| ≤ N/2, |k2| ≤ N/2 and |k3| > N } .

To do this we will use the famous resonance relation for the Schrödinger equation.
Setting σ = τ + k2, σ1 = τ1 + k2

1 , σ2 = τ2 + k2
2 and σ̃3 = τ3 − k2

3 , it holds

(31) σ − σ1 − σ2 − σ̃3 = 2(k3 + k1)(k3 + k2) .

This ensures that on R3 ×A(N),

max(|σ|, |σ1|, |σ2|, |σ̃3|) & N2 .

Therefore we get, thanks to (7) and (9),

J . N−1/4+2ǫ

∫

R3

∑

(k1,k2,k3)∈A(N)

|σ|1/8−ǫ|ŵ(τ, k)||σ1|
1/8|v̂1(τ1, k1)|

|σ2|
1/8|v̂2(τ2, k2)||σ̃3|

1/8|v̂3(τ3, k3)| dτ1 dτ2 dτ3

. N−1/4+2ǫ‖ F−1(|σ|1/8−ǫ|ŵ|)‖L4(R×T)‖F
−1(|σ̃|1/8|v̂3|)‖L4(R×T)

2∏

i=1

‖F−1(|σ|1/8|v̂i|)‖L4(R×T)

. N−1/4+2ǫ‖w‖X1/2−ǫ,0

3∏

i=1

‖vi‖X1/2,0 .

This completes the proof of the lemma.
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We are now in position to prove the Proposition 5.2. Let u0 ∈ A we decompose
u(t) = S(t)u0 by

(32) u(t) = v(t) + w(t)

where v and w are defined as in (25)-(26). Note that (26) can be rewritten as

wt + iwxx + γw = −iQN(|u|2u) + iQN(|v|2v)

which clearly ensures that (32) holds.
5.1.2. Decay in time of w. From Theorem 3.1, (11) and the fact that u belongs

to the attractor, we know that for all t ∈ R (recall that A is positively and negatively
invariant by the flow),

(33) ‖u‖
X

1/2+,0

]t−1,t+1[

. M0 and ‖QNu‖X
1/2,0

]t−1,t+1[

. ε(N) .

Since u ∈ X
1/2+,0
]−T,T [ for any T > 0, proceeding as in Theorem 3.1 it is easy to

prove that the Cauchy problem for w is locally well-posed in L2(T) and thus w ∈
C([−α, α];L2(T)) for some α > 0. Moreover, proceeding as in the proof of Theorem
3.1, we get the following estimate on w for all t ∈] − α, α[ and 0 < δ < min(|t −
α|, |t+ α|),
(34)

‖w‖
X

1/2+,0

]t−δ,t+δ[

. ‖w(t)‖L2(T) + δ0+‖w‖
X

1/2+,0

]t−δ,t+δ[

(
‖w‖2

X
1/2+,0

]t−δ,t+δ[

+ ‖u‖2

X
1/2+,0

]t−δ,t+δ[

+ 1
)
.

Assuming that ‖w(t)‖L2(T) is bounded by some constant A > 0 on [0, T ] for some
positive time T ∈]0, α[, we deduce that there exists δ0 = δ0(A) > 0 such that for
0 < δ < δ0 small enough,

(35) ‖w‖
X

1/2+,0

]t−δ,t+δ[

. ‖w(t)‖L2(T), ∀t ∈ [0, T ] .

From now on, we fix 0 < δ < δ0 such that (35) holds. From this last inequality and
(4) we infer that

(36) inf
τ∈]t,t+δ[

‖w(τ)‖L2(T) & ‖w(t)‖L2(T), ∀t ∈ [0, T ] .

Multiplying (26) with 2w and integrating over T we get

d

dt
‖w‖2

L2(T) + 2γ‖w‖2
L2(T) ≤ 2

∣∣∣
∫

T

(2|w|2u− w2u)w
∣∣∣

+2
∣∣∣
∫

T

u2w2
∣∣∣ .(37)

Integrating (37) with respect to time we obtain the following estimate for any
t ∈ [0, T ],

‖w(t+ δ)‖2
L2(T) ≤ ‖w(t)‖2

L2(T)e
−γδ − γ

∫ t+δ

t

e−γ(t+δ−s)‖w(s)‖2
L2(T) ds

+2
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

(2|w|2u− w2u)w ds
∣∣∣

+2
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

u2w2 ds
∣∣∣ .(38)
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From (36) we infer that,

(39) −γ

∫ t+δ

t

e−γ(t+δ−s)‖w(s)‖2
L2(T) ds ≤ −C (1 − e−γδ)‖w(t)‖2

L2(T) .

Let us estimate now the two last time integrals in (38). To do this we will extensively

use that, following [11], for h ∈ X
−1/2+,α
]t,t+δ[ and g ∈ X

1/2+α,0
]t,t+δ[ with 0 < α << 1, it

holds

(40)
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

h(s, x)g(s, x)dx ds
∣∣∣. C(δ, α)‖h‖

X
−1/2+α,0

]t,t+δ[

‖g‖
X

1/2+α,0

]t,t+δ[

.

Indeed, taking time extensions h̃ and g̃ of h and g such that ‖g̃‖X−1/2+α,0 ≤

2‖g‖
X

−1/2+α,0

]t,t+δ[

and ‖h̃‖X1/2+α,0 ≤ 2‖h‖
X

1/2+α,0

]t,t+δ[

, we have

∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

h(s, x)g(s, x)dx ds
∣∣∣

=
∣∣∣
∫

R

∫

T

h̃(s, x)χ[t,t+δ]e
−γ(t+δ−s)g̃(s, x)dx ds

∣∣∣

. ‖h̃‖X−1/2+α,0‖χ[t,t+δ]e
−γ(t+δ−s)g̃‖X1/2−α,0

with

‖χ[t,t+δ]e
−γ(t+δ−s)g̃‖X1/2−α,0 . ‖χ[t,t+δ]e

−γ(t+δ−s)‖L∞‖g̃‖X1/2−α,0

+‖χ[t,t+δ]e
−γ(t+δ−s)‖H1/2−α‖g̃‖L∞(R;L2(T))

. C(α, δ)‖g̃‖X1/2+α,0

With (40) at hand, we deduce from (10), (33) and (35) that

I1 :=
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

(2|w|2u− w2u)w ds
∣∣∣

. ‖(2|w|2u− w2u)‖
X

−1/2+,0

]t,t+δ[

‖w‖
X

1/2+,0

]t,t+δ[

. ‖w‖3

X
1/2+,0

]t,t+δ[

(
‖w‖

X
1/2+,0

]t,t+δ[

+ ‖u‖
X

1/2+,0

]t,t+δ[

)

. ‖w(t)‖3
L2(T)

(
‖w(t)‖L2(T) +M0

)
(41)

To estimate the last time integral we split it into two parts in the following way:

I2 :=
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

u2w2 ds
∣∣∣

=
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

(QN/2u(s))(QN/2u(s) + 2PN/2u(s))(w(s))2 ds
∣∣∣

+
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)

∫

T

(PN/2u(s))
2(w(s))2 ds

∣∣∣

= I21 + I22 .(42)

To estimate I21 we proceed as above and use (33) to get

I21 . ‖u‖
X

1/2+,0

]t,t+δ[

‖QN/2u‖X
1/2+,0

]t,t+δ[

‖w‖2

X
1/2+,0

]t,t+δ[

. M0 ε(N/2)‖w(t)‖2
L2(T) .(43)
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Finally, to estimate I22 we use Lemma 5.4 (recall that w = QNw) and (35) to
obtain

I22 . ‖(PN/2v(s))
2w‖

X
−1/2+,0

]t,t+δ[

‖w‖
X

1/2+,0

]t,t+δ[

.
M2

0

N1/4−
‖w‖2

X
1/2+,0

]t,t+δ[

.
M2

0

N1/4−
‖w(t)‖2

L2(T) .(44)

Gathering (38)-(44) we thus infer that for all t ∈ [0, T ],

‖w(t+ δ)‖2
L2(T) − ‖w(t)‖2

L2(T)e
−γδ

≤
[
C1

(
‖w(t)‖L2(T)(‖w(t)‖L2(T) +M0) +M0 ε(N/2) +

M2
0

N1/4−

)

−C2(1 − e−γδ)
]
‖w(t)‖2

L2(T) .(45)

Since w(0) = QN (u0), according to Proposition 5.3, we can choose N > 0 large
enough so that the right-hand side of the above inequality is negative at t = 0. By
direct iteration in time and (36) we thus infer that
(46)

‖w(t)‖L2(T) . e−γt‖w(0)‖L2(T) . e−γt‖QNu0‖L2(T) . e−γtε(N) , ∀t ∈ [0, T ] .

In particular, ‖w(t)‖L2(T) is bounded by A = C‖w(0)‖L2(T) on [0, T ] and from the

local well-posedness of (26) we infer that w ∈ C(R+;L2(T)) and that (46) holds
actually for any T > 0. This proves the first assertion of Proposition 5.2.

5.1.3. Estimate on QNv. First since u = v + w we deduce from the preceding
subsection that, for N large enough, v is well defined for all positive time and
v ∈ C(R+;L2(T)). Now, since by construction PNv = PNu and u belongs to the
global attractor, we get thanks to (33) that

(47) ‖PNv(t)‖H2 . ‖PNu(t)‖H2 ≤ C(N), ∀t ≥ 0 .

It thus remains to control the high frequencies of v. Inspired by [21] we introduce
the functions g and gN defined by

(48) ĝ(k) :=
f̂(k)

−ik2 + γ
and gN := QNg

so that gN satisfies the equation

∂tgN + i∂xxgN + γgN = QNf .

Therefore, setting z := QNv − gN , z = QNz and is solution of

(49)

{
zt + izxx + γz + iQN(|v|2v) = 0
z(0) = −gN

.

We plan to prove that z(t) is uniformly bounded in H2(T) for positive times. We
will need the following result on the behavior of gN with respect to N .

Lemma 5.5. gN ∈ H2(T) ∩X
1/2,1
]−1,1[ and it holds

(50) ‖gN‖H2(T) + ‖gN‖
X

1/2,1

]−1,1[

≤ ε(N)

where ε(N) → 0 as N → +∞.
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Proof. It is clear that

‖gN‖H2(T) ≤ ‖QNf‖L2(T) → 0 as N → +∞ .

Let now ψ ∈ C∞
0 (] − 2, 2[) such that ψ ≡ 1 on [−1, 1]. It holds

‖gN‖
X

1/2,1

]−1,1[

≤ ‖ψgN‖X1/2,1 = ‖〈τ + k2〉1/2〈k〉ψ̂ĝN‖L2(R×Z)

≤ ‖〈τ〉1/2ψ̂‖L2(R)‖〈k〉ĝN‖L2(Z) +

‖ψ‖L2(R)‖〈k〉
2ĝN‖L2(Z) . ‖gN‖H2(T) .

This completes the proof of the lemma.

It is worth noticing that combining (29), (50), (33), (35) and (46), there exists
δ0 > 0 such that

(51) ‖z(t)‖L2(T) ≤ ε(N) and ‖z‖
X

1/2+,0

]t−δ0,t+δ0[

. M0, ∀t ≥ 0,

where ε(N) → 0 as N → +∞. Therefore, taking β > 0 small enough, it holds

(52) ‖z‖
X

1/2,0

]t−δ0,t+δ0[

. ‖z‖
2β

1+2β

X0,0
]t−δ0,t+δ0[

‖z‖
1

1+2β

X
1/2+β,0

]t−δ0,t+δ0[

. ε′(N)

where ε′(N) → 0 as N → +∞.
According to the linear estimates (5)-(6), to prove that the equation (49) is

globally well-posed in H2(T), it suffices to prove the following estimate :

Lemma 5.6. Assuming that z ∈ X
1/2+,2
I for some time interval I ⊂ R with

|I| ≤ 1. The following estimate holds :

(53)
∥∥∥QN (|v|2v)

∥∥∥
X

−1/2+ǫ,2
I

. C(N) + ‖z‖
X

1/2+,2
I

Proof. We decompose v as v = PNu+ z + gN so that we have to estimate
∥∥∥QN

(
|PNu+ z + gN |2(PNu+ z + gN)

)∥∥∥
X

−1/2+ǫ,2
I

.

Let us first estimate the expression containing gN , i.e. terms of the form

‖QN(gNw1w2)‖X
−1/2+ǫ,2
I

or ‖QN(w1gNw2)‖X
−1/2+ǫ,2
I

with (w1, w2) ∈ {gN , PNu, z}
2. By the triangle inequality we can write

‖QN(gNw1w2)‖X
−1/2+ǫ,2
I

≤ ‖QN(gNw1w2)‖X
−1/2+ǫ,0
I

+ ‖QN(gND
2
xw̃1w2)‖X

−1/2+ǫ,0
I

+‖QN(gNw1D
2
xw̃2)‖X

−1/2+ǫ,0
I

+ ‖QN(D2
xgNw1w2)‖X

−1/2+ǫ,0
I

+‖QN(gND
2
xgNw2)‖X

−1/2+ǫ,0
I

(54)

with (w̃1, w̃2) ∈ {PNu, z}. The terms containing no derivative on gN of the above
right-hand side can be estimated thanks to (7), (50) and (51) by

‖gN‖
X

1/2,0
I

(‖PNu‖X
1/2,2
I

+ ‖z‖
X

1/2,2
I

+

‖gN‖
X

1/2,0
I

)(‖PNu‖X
1/2,0
I

+ ‖z‖
X

1/2,0
I

+ ‖gN‖
X

1/2,0
I

)

. ε(N)(M2
0N

2 +M0‖z‖X
1/2,2
I

+ ε(N)) .(55)
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For the terms that contains two derivatives on gN we write

‖QN(D2
xgNw1w2)‖X

−1/2+ǫ,0
I

. ‖gN‖H2(T)‖w1‖L∞

I L∞(T)‖w2‖L∞

I L∞(T)

. ε(N)‖w1‖
3/4
L∞

I L2(T)‖w2‖
3/4
L∞

t L2(T)‖w1‖
1/4
L∞

I H2(T)‖w2‖
1/4
L∞

I H2(T)

. ε(N)(M2
0N

2 + ε(N)‖z‖
X

1/2+,2
I

+ ε(N)) .(56)

The terms of the form

‖QN(wgNw2)‖X
−1/2+ǫ,2
I

can be treated exactly in the same way. It remains to consider the terms where gN

is not involved. From (7) and (52) ,

(57) ‖|z|2z‖
X

−1/2+ǫ,2
I

. ‖z‖2

X
1/2,0
I

‖z‖
X

1/2,2
I

. ε(N)2‖z‖
X

1/2,2
I

,

and

‖PNu|z|
2‖

X
−1/2+ǫ,2
I

+ ‖PNuz
2‖

X
−1/2+ǫ,2
I

. ‖PNu‖X
1/2,0
I

‖z‖
X

1/2,0
I

‖z‖
X

1/2,2
I

+ ‖PNu‖X1/2,2‖z‖2
X1/2,0

. ε(N)M0‖z‖X
1/2,0
I

+N2M0ε(N)N−2‖z‖
X

1/2,2
I

. ε(N)M0‖z‖X
1/2,2
I

.(58)

To deal with (PNu)
2z we decompose it as

(59) (PNu)
2z = (QN/2PNu)(QN/2PNu+ 2PN/2u)z + (PN/2u)

2z := A1 +A2 .

Clearly, (33) yields

(60) ‖A1‖X
−1/2+ǫ,2
I

. ε(N/2)M0‖z‖X
1/2,2
I

and using Lemma 5.4 it is easy to check that

(61) ‖A2‖X−1/2+ǫ,2 . N−1/4M2
0 ‖z‖X

1/2,2
I

.

Finally,

‖|PNu|
2z|‖X−1/2+ǫ,2 . ‖PNu‖X

1/2,0
I

‖PNu‖X
1/2,2
I

‖z‖
X

1/2,0
I

+ ‖PNu‖
2

X
1/2,0
I

‖z‖
X

1/2,2
I

.M2
0 (N2N−2 + 1)‖z‖

X
1/2,2
I

. M2
0‖z‖X

1/2,2
I

(62)

and

(63) ‖|PNu|
2PNu|‖X

−1/2+ǫ,2
I

. N2M3
0 .

Gathering all the above estimates, (53) follows.

From the above lemma and (5)-(6) we deduce that z ∈ X
1/2+,2
]t−δ,t+δ[ for any t ≥ 0 and

any 0 < δ < δ0. Moreover, it holds

‖z‖
X

1/2+,2

]t−δ,t+δ[

. ‖z(t)‖H2(T) + C δ0+
(
C(N) + ‖z‖

X
1/2+,2

]t−δ,t+δ[

)
.

This ensures that for δ0 > 0 small enough,

(64) ‖z‖
X

1/2+,2

]t−δ0,t+δ0[

. ‖z(t)‖H2(T) + C(N) .
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We will proceed as in the preceding subsection. From now on we fix 0 < δ < δ0
such that (64) holds. As in (36), this implies that

(65) inf
τ∈]t−δ,t+δ[

‖z(τ)‖H2(T) ≥ C‖z(t)‖H2(T) − C(N), ∀t ≥ 0 .

On the other hand, taking the real part of the H2(T) hermitian-product of (49)
with 2z, we get

d

dt
‖z‖2

H2(T) + 2γ‖z‖2
H2(T) =ℜ

[
−i2((QN(|v|2v), z))H2

]
.(66)

Integrating with respect to time this implies the following estimate for any t ≥ 0,

‖z(t+ δ)‖2
H2(T) ≤ ‖z(t)‖2

H2(T)e
−γδ − γ

∫ t+δ

t

e−γ(t+δ−s)‖z(s)‖2
H2(T) ds

+2
[∫ t+δ

t

e−γ(t+δ−s)ℑ
[
((QN (|v(s)|2v(s)), z(s)))H2

]
ds

≤ ‖z(t)‖2
H2(T)e

−γδ + (1 − e−γδ)
(
C(N) − C‖z(t)‖2

H2(T)

)

+2
∣∣∣ℑ

[∫ t+δ

t

e−γ(t+δ−s)((|v(s)|2v(s), z(s)))H2 ds
]∣∣∣(67)

To estimate the last term of the above right-hand side we decompose v as in Lemma
5.6. In view of (40) and (54)-(62) to get the following estimate :

(68)
∣∣∣ℑ

[∫ t+δ

t

e−γ(t+δ−s)((|v(s)|2v(s), z(s)))H2 ds
]∣∣∣ . C(N) + ε(N)‖z‖2

X1/2+,2 ,

we only have to care about

I :=
∣∣∣
∫ t+δ

t

e−γ(t+δ−s)ℑ((|PNu(s)|
2z(s), z(s))H2 ds

∣∣∣ .

To deal with this term we decompose ℑ((|PNu(s)|
2z(s), z(s)))H2 as

ℑ((|PNu|
2z, z))H1 ds + ℑ

∫

T

(
2∂x(|PNu|

2)∂xz + ∂2
x(|PNu|

2)z
)
∂2

xz

(69) +ℑ

∫

T

|PNu|
2|∂2

xz|
2 dx

and notice that the last term vanishes. We thus get thanks to (40) and (10),

I . ‖|PNu|
2z‖

X
−1/2+,1

]t−δ,t+δ[

‖z‖
X

1/2+,1

]t−δ,t+δ[

+
∥∥∥2∂x(|PNu|

2)∂xz + ∂2
x(|PNu|

2)z
∥∥∥

X
−1/2+,0

]t−δ,t+δ[

‖z‖
X

1/2+,2

]t−δ,t+δ[

.M2
0 ε(N)‖z‖

X
1/2+,2

]t−δ,t+δ[

+
(
M2

0Nε(N)1/2‖z‖
1/2

X
1/2+,2

]t−δ,t+δ[

+M2
0N

2ε(N)
)
‖z‖

X
1/2+,2

]t−δ,t+δ[

. ε(N)‖z‖2

X
1/2+,2

]t−δ,t+δ[

+ C(N) .(70)

Combining this last estimate with (55)-(62), (68) follows.
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We thus infer that

‖z(t+ δ)‖2
H2(T) ≤ ‖z(t)‖2

H2(T)e
−γδ + C(N)

+C1

(
ε(N) − C2(1 − e−γδ)

)
‖z(t)‖2

H2(T) .(71)

For N large enough the last term of the right-hand side is clearly negative and is
bounded from above by

−α ‖z(t)‖2
H2(T) ,

for some small real number α > 0. This ensures that, taking N > 0 large enoug,
there exists C(N) > 0 such that

(72) ‖z(t)‖H2(T) ≤ C(N), ∀t ≥ 0,

and thus on account of (47), (50), (64) and the definition of z, there existsK(N) > 0
such that

(73) ‖v(t)‖H2(T) ≤ K(N), ∀t ≥ 0 .

This completes the proof of Proposition 5.2.

5.2. Compactness in H2(T). To prove the compactness in H2(T), it suffices
to show that

(74) ‖z(t)‖H2(T) ≤ ε(N), ∀t ≥ 0 .

Indeed, this will imply the same estimate on v and thus on any a ∈ A which will
clearly prove the H2(T) compactness of A. For proving (74), we revisit Lemma 5.6
with (28) at hand. It is then easy to check that the terms involving gN in Lemma
5.6 (see (55)-(56)) can now be controlled by
(75)

‖gN‖H2(T)

(
‖gN‖2

H2(T)+‖PNu‖
2
L∞(I;H2(T))+‖z‖2

L∞(I;H2(T))

)
. ε(N)

(
‖z‖

X
1/2+,2
I

+1
)
.

and that (see (69) above)

∣∣∣ℑ
∫ t+δ

t

e−γ(t+δ−s)
(
|PNu(s)|

2z(s), z(s)
)

H2(T)
ds

∣∣∣

. ‖|PNu|
2z‖L∞(]t,t+δ[;H1(T))‖z‖L∞(]t,t+δ[;H1(T))

+
(
‖∂x(|PNu|

2)∂xz‖L∞(]t,t+δ[;L2(T)) +

‖∂2
x(|PNu|

2)z‖L∞(]t,t+δ[;L2(T))

)
‖z‖L∞(]t,t+δ[;H2(T))

. ‖PNu‖
2
L∞(]t,t+δ[;H2(T))(N

−2 +N−1)‖z‖2
L∞(]t,t+δ[;H2(T))

. N−1‖z‖
X

1/2+,2

]t,t+δ[

.(76)

To conclude we need the following estimate that we will prove hereafter.

(77)
∥∥∥QN

(
|PNu|

2PNu
)∥∥∥

X
−1/2+,2

]t−1,t+1[

. ε(N), ∀t ≥ 0 .

Proceeding as in the derivation of (68) but with(75)-(77) at hand it is now easy to
see that it actually holds

∣∣∣ℑ
[∫ t+δ

t

e−γ(t+δ−s)
(
QN(|v(s)|2v(s)), z(s))

)
H2

ds
]∣∣∣ . ε(N)(1 + ‖z‖2

X
1/2+,2

]t,t+δ[

)
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and thus

‖z(t+ δ)‖H2(T) ≤ ‖z(t)‖H2(T)e
−γδ + ε(N)

+C1

(
ε(N) − C2(1 − e−γδ)

)
‖z(t)‖2

H2(T) .(78)

which proves (74).
5.2.1. Proof of Estimate (77). Note first that due to the frequency projections

it clearly holds
∥∥∥QN

(
|PNu|

2PNu
)∥∥∥

X
−1/2+,2

]t,t+δ[

.
∥∥∥QN

(
|PNu|

2PNQN/3u
)∥∥∥

X
−1/2+,2

]t,t+δ[

+
∥∥∥QN

(
(PNu)

2PNQN/3u
)∥∥∥

X
−1/2+,2

]t,t+δ[

Therefore, on account of (28) it is easy to check that we have only to care about

(79)
∥∥∥QN

(
|PNu|

2∂2
xPNQN/3u

)∥∥∥
X

−1/2+,0

]t−1,t+1[

+
∥∥∥QN

(
(PNu)

2∂2
xPNQN/3u

)∥∥∥
X

−1/2+,0

]t−1,t+1[

since (77) is obvious for terms that involved less that two derivatives on QN/3u.
To bound (79) we will use that there exist C > 0 such that for all t ≥ 0,

u− g ∈ X
1/2+,2
]t−1,t+1[ (see (48) for the definition of g) with

(80) ‖u− g‖
X

1/2+,2

]t−1,t+1[

≤ C .

Indeed from (72) and (64) we know that for N0 > 0 large enough there exists δ > 0
and C(N0) > 0 such that

‖QN0(v − g)‖
X

1/2+,2

]t−δ,t+δ[

= ‖z‖
X

1/2+,2

]t−δ,t+δ[

≤ C(N0), ∀t ≥ 0,

and thus v−g is bounded inX
1/2+,2
]t−δ,t+δ[ uniformly in t ≥ 0. Now, proceeding as in the

proof of (28) we can decompose u as u = vn + wn with ‖wn‖L∞(]−1,+∞[;L2(T)) → 0
as n→ ∞ and ‖vn − g‖

X
1/2+,2

]t−1,t+1[

≤ C for all t ≥ 0. We thus infer that

wn ⇀ 0 weakly star in L∞(]t− 1, t+ 1[;L2(T))

and thus

vn − g ⇀ u− g in X
1/2+,2
]t−1,t+1[

which proves (80).
Now, on account of Lemma 5.5, it clearly holds

∥∥∥QN

(
|PNu|

2∂2
xPNQN/3g

)∥∥∥
X

−1/2+,0

]t−1,t+1[

+
∥∥∥QN

(
(PNu)

2∂2
xPNQN/3g

)∥∥∥
X

−1/2+,0

]t−1,t+1[

. ‖QN/3g‖H2‖PNu‖
2
L∞(R+;H2(T)) . ε(N) .

It thus remains to estimate
∥∥∥QN

(
|PNu|

2∂2
xPNQN/3(u− g)

)∥∥∥
X

−1/2+,0

]t−1,t+1[

+
∥∥∥QN

(
(PNu)

2∂2
xPNQN/3(u− g)

)∥∥∥
X

−1/2+,0

]t−1,t+1[
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We take extensions θ = PNθ of PNu and ϑ = QN/3PNϑ of QN/3PN (u−g) such that
‖θ‖X1/2,0 ≤ 2‖PNu‖X

1/2,0

]t−1,t+1[

and ‖ϑ‖X1/2,2 ≤ 2‖QN/3PNϑ‖X
1/2,2

]t−1,t+1[

. By duality it

suffices to prove that for ǫ > 0 small enough,

sup
‖h‖

X1/2−ǫ,0=1

[∣∣∣
(
h,QN (|θ|2∂2

xϑ)
)

L2

∣∣∣+
∣∣∣
(
h,QN (θ2∂2

xϑ)
)

L2

∣∣∣
]

. ε(N)‖θ‖2
X1/2,0‖ϑ‖X1/2,2

and thus to estimate

J : =

∫

R3

∑

(k1,k2,k3)∈A(N)

|ĥ(τ, k)||θ̂(τ1, k1)||θ̂(τ2, k2)||k3|
2|ϑ̂(τ3, k3)| dτ1 dτ2 dτ3

+

∫

R3

∑

(k1,k2,k3)∈A(N)

|ĥ(τ, k)||θ̂(τ1, k1)||θ̂(τ2, k2)||k3|
2|ϑ̂(τ3, k3)| dτ1 dτ2 dτ3

where τ = τ1 + τ2 + τ3, k = k1 + k2 + k3 and

A(N) := {(k1, k2, k3) ∈ Z
3, |ki| ≤ N

for i ∈ {1, 2, 3}, |k3| > N/3, N < |k1 + k2 + k3| ≤ 3N } .

On R3 ×A(N), the resonance relation (31) clearly yields

max(|σ|, |σ1|, |σ2|, |σ̃3|) & |(k1 + k3)(k2 + k3)| & N2 ,

where σ = τ + k2, σ1 = τ1 + k2
1 , σ2 = τ2 + k2

2 and σ̃3 = τ3 − k2
3 . Moreover, noticing

that k1 + k2 6= 0 on A(N), we infer that

max(|σ|, |σ1|, |σ̃2|, |σ3|) & |(k1 + k2)(k3 + k2)| & N ,

where σ̃2 = τ2 − k2
2 and σ3 = τ3 + k2

3 . Therefore proceeding as in the proof of
Lemma 5.4 we obtain

J .N−1/8+ǫ‖h‖X1/2−ǫ,0

3∏

i=1

‖θ‖2
X1/2,0‖ϑ‖X1/2−,2

.CM2
0N

−1/8+ǫ‖h‖X1/2−ǫ,0 ,

which completes the proof of (77).
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d’espace (d’après Bourgain), in Séminaire Bourbaki 796, Astérique 237, 1995, 163–187.

[8] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J.
Funct. Analysis 133 (1995), 50–68.



34 LUC MOLINET

[9] O. Goubet, Regularity of the attractor for the weakly damped nonlinear

Schrödinger equations, Applicable Anal., 60, (1996), 99-119.
[10] O. Goubet, Asymptotic smoothing effect for weakly damped Korteweg-de Vries equations,

Discrete Contin. Dyn. Syst. 6 (2000), 625-644.
[11] O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped

KdV equation on the real line J. Differ. Equa. (2002), 53.
[12] O. Goubet and L. Molinet, Global attractor for weakly damped nonlinear Schrödinger equa-

tions in L2(R), to appear in Nonlinear Analysis, TMA.
[13] A. Grünrock and S. Herr, Low regularity local well-posedness of the derivative nonlinear

Schrödinger equation with periodic initial data, SIAM J. Math. Anal. 39 (2008), 1890-1920.
[14] J. Hale, Asymptotic behavior of Dissipative Systems, Math. surveys and Monographs, vol 25,

AMS, Providence, 1988.
[15] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded

and unbounded domains, Handbook of Differential Equations, Evolutionary Partial Differen-
tial Equations, C.M. Dafermos and M. Pokorny eds., Elsevier, Amsterdam, to appear

[16] I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,
Nonlinearity 11, (1998), no. 5, 1369–1393.

[17] L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the
circle, Math. Ann. 337 (2007), 353–383.

[18] L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrodinger equation, To
appear in Math. Research Letters (2008).

[19] G. Raugel, Global attractors in partial differential equations. Handbook of dynamical systems,
Vol. 2, 885–982, North-Holland, Amsterdam, 2002.

[20] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-
Verlag, Second Edition, 1997.

[21] K. Tsugawa, Global well-posedness for the KdV equations on the real line with low regularity
forcing terms. Commun. Contemp. Math. 8(5) (2006), pp. 681-713.

[22] X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations

and its applications to their attractors, Physica D, 88, (1995), 167-175.

L.A.G.A., Institut Galilée, Université Paris-Nord, 93430 Villetaneuse, France
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