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Blow up of the solutions of the nonlinear parabolic equation

Svetlin G. Georgiev
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ABSTRACT. In this paper the Cauchy problem for nonlinear parabolic equa-
tion is investigated. We prove that the Cauchy problem has one nontrivial
solution u(t,) in the form u(t,r) = v(t)w(r) € C([0,1)L3([ro,0))) for which
lime— 1 ||ul|p2((rg,00))) = 00, Where 7 = |z|, ro > 1 is arbitrary chosen and
fixed. Also, we prove that the solution map is not uniformly continuous.
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1. Introduction
In this paper we consider the Cauchy problem

(L) wu—Au= f(t,|z|,u), te€][0,1], |z|>r9, n>2
(1.2)  u(0,2) = up(z) € LA(R"\{|z| < ro}),

where 79 > 1 is arbitrary chosen and fixed, f(t, |z|,u) € C*([0,1]) x C!([rp,00)) x
CHRY), alu| < fl(t,|z|,u) < blu| for every t € [0, 1], for every |x| > ro, a and b are
fixed positive constants, f(t, |z],0) = 0 for every ¢ € [0, 1], V|z| > ro.

We will prove that the Cauchy problem (1.1), (1.2) has a nontrivial solution
u(t,r) in the form u(t,r) = v(t)w(r) € L*([ro,00)) for every t € [0, 1], for which
limg 1 [[u]|£2([re,00)) = 00. Also we will prove that the solution map is not uni-
formly continuous. When we say that the solution map uw, — w(t,r) is uniformly
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continuous we mean: for every positive constant € there exists positive constant §
such that for any two solutions u,v of the Cauchy problem (1.1), (1.2), so that

E0,u—wv) <4,
the following inequality holds
E(t,u—v)<e for Vtel0,1],
where

0
B(t,u) 1= [ult, )3 oo + || 7720 72 rovc0y

Here we use the approach which is used in [1], [2], [3], [4]. In the accessible
literature there are too many methods for investigations of this problem which are
different than the method which we propose in this paper.

Our main result is:

Theorem 1.1. Let n > 2 is fixed, 1o > 1 is fixed, f(¢,|z|,u) € C1([0,1]) x
C([rp,0)) xCH(RY), alu| < f1(t,|z],u) < blu| for every t € [0, 1], for every |z| > rq,
a and b are fixed positive constants, f(t,|z|,0) = 0. Then the problem of Cauchy
(1.1), (1.2) has one nontrivial solution u = u(t,r) € C([0,1)L?([rg,00))) for which
limg 1 |[u]|£2([r,,00)) = 00. Also the solution map is not uniformly continuous.

The paper is organized as follows. In section 2 we will prove our main result.
In the appendix we will prove a result which we will use for the proof of our main
result.

2. Proof of Main Result

Here ro > 1 is fixed, n > 2 is fixed.
Since we will search a positive solution u(t,r) in the form w(t,r) = v(t)w(r) we
rewrite the problem (1.1), (1.2) as follows

(21) ut_uTT_nT_luT:f(tvrau)u te [071]7 TZT‘0,
(2.2) u(0,7) = uo(r) € L?*([ro, 0)).
For fixed positive constants n > 1, ro > 1, a, b we suppose that the constants
Ay, As, A, B, c1, dy satisfy the following conditions
1<rg<c <d,0< A4 <A3,0<
(i1) Ay > 2,
an
(4 -1 2 1
Example. Let n = 14, ro > 2. Let also

a=2r{"" b=4r}!" A=r} B = %r}},
A= T(l)on,AQ = 2T(1)0n701 =ro+1,di =19+ 2.

1 1
255

We note that 555 = A;. e
For fixed n > 1, rg > 1, a, b bellow we suppose that the constants A1, Ay, A,
B, c1, d; satisfy the conditions (i1). Also we will suppose that the function v(t) is
fixed function which satisfies the following hypotheses
(H1) () €C*([0,1]), v(®) >0 vtelo,1], LE >0 welo1]

(H2) A; < vy((;)) <Ay, Vtelo,1], limt_)l(l;((tt)) _ ﬁ) — +0.
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There exists a function v(t) which satisfies the conditions (H1), (H2). For instance
v(t) = ez~ where a, b, A, B, Ay, Ay, c1, di are the constants from the above

example.
Let N be the set

N = {u(t,r) cu(t,r) € CL([0,1]) Vr > r,

u(t,00) = u,(t,00) =0 Vt € [0,1],

re|0Pu(t,r)| <1 Vt€[0,1],¥r > 1y, YaeNU{0},3=0,1,
u(t,r) >0 Vte[0,1],Yr >ro,u(t,r) < 4 Vte[0,1],Vr > r,
u(t,r) > % vt € [0,1],Vr € [e1,d4],
ult,r) € L(fro,0)) ¥t € [0,1]}.

For u € N, fixed n > 1 and for every fixed ¢t € [0, 1] we define the operator

(2.1%*%) P(u) = /TOO si" /SOO T"(v/(t)u — f(t,, u))des, T > Tro.

v(t)

We put

uo(r) = [ & OOT”(Z}(((?))U,Q 70,7, uo))des, r>Tg.

r s Js

Bellow we will prove that ug(r) € L?([rg, 00)) exists.

Theorem 2.1. Let n > 2 be fixed, g > 1 be fixed, the positive constants a, b,
a < b, are fixed, f(t,|z|,u) € C*([0,1]) x C1([ro,00)) x CHRY), alu| < fL(t,|z|,u) <
blu| for every ¢ € [0, 1], for every |x| > ro, f(t,]z|,0) = 0 for every ¢t € [0,1] and for
every |x| > 7. Let also the positive constants c¢i, dy, A1, Aa, A, B are fixed which
satisfy the conditions (i1), the function v(¢) is fixed which satisfies the hypotheses
(H1), (H2). Then the Cauchy problem (2.1), (2.2) has one unique solution wu(t,r)
in the form u(t,r) = v(t)w(r) for which u(t,r) € N, lim; 1 [|u]|£2([ry,00)) = 00

Proof. Here and bellow we will suppose that ¢ € [0, 1] is fixed.

First we will prove that P: N — N. Let u € N is fixed.

1) Since u(t,r) € C1([0, 1]) for every r > ro, f(t,r,u) € C*([0,1]) xC([ro, o)) x
CHRY), v(t) € C3([0,1]), we have P(u) € C1([0,1]) for every r > rg. Also

P(u)IT:OO = 07
‘91;5“) = Tln TOO T"(l;/((tt))u - f(t,, u))dT,
OP(u

0(r )|T:Qo = 0.

We note that from the conditions of the Theorem 2.1 we have f/ (¢, 7,u) < bu.
From here and from f(¢,7,0) = 0 we get f(¢, 7, u) < %42, From the defintion of the
set N we have u < & Therefore f(t,7,u) < 55u for every t € [0,1], 7 > ro. Also
we have f(t,r,u) > %u? for every t € [0,1] and for every r > ro.

Let o € NU{0} is arbitrary chosen and fixed, k € N is enough large such that

k>a+3,
Ag+ 5 <k-—1.
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Then for » > rg we have
PP = [ [ ke [ (S8 = £t 7)) drds| <
<re [CE [T T"(Z((:))u + f(t,, u))des <
here we wuse that f(t,7,u) < %u

<r® froo sin fsoo ™ 1;/((:))“ + %“) drds <

<re [ LA+ %u)des =
=r® froo sL" fsoo T Ag + %)udﬂis =
= (Ao + 5 )re [ L [ mudrds =

fe'e) oo +k+n
= (Ao + 5 )ro [0 L [ Ttdrds <

r s Js

here we use that from the definition of the set N we have 7Ft7qy < 1

< (A2 + %)TO‘ froo Sln f:o Tideds =
<

1 b 1
= ontE—y \A2 + 35 ) e

1 b 1
Fnory (A2 tap ) e < L

IN

In the last inequality we use our choice of the constant k.
Let k is the same as above. Then for » > ry we have
opP ‘(t
ro‘—a(T") re L[> T"(f}((t))u — f(t, T, U))dT‘ <
<red [ T"(i}((tt))u + f(t, T, u))dT <
here we wuse thatf(t,T,u) < sou
< gpal %0 m vl(t)u—i—%u)dTg

rm Jr v(t)

<roedl [ (Agu+ %u)dT =

=roL [ (A + %)UdT =

rn

k+n
= (A2+ %)ro‘%foo T tdr <

r Tk

here we use that from the definition of the set N we have 7Ft7qy < 1

o0

IN

b Va1
A2+2B r

rn Jr

b\ _1 1
A2 + 55 ) oy et <

b\ 1 1
< (A2+ 55 HW<1'

1 —
—dr =

In the last inequality we use our choice of the constant k.

2) Now we will prove that for every fixed ¢ € [0,1] and for every r > 79 we
have P(u) > 0.

Really, for k € N for which rgik < 1 we have

P(u) —/TOOSin/:orn(%u—f(t,r,u))deS—

now we apply the middle point theorem

- /TOO = /:O T”(ig))

u— fl(t T, f)u)des >
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here we use that f/ (¢,7,£) < b¢ < bu

ZfroosinfsooT ()—bu)udes—
= froo Sln f:o (U@ T )udes >

rnk

here we wuse T”ku<1

> froo Sln f:o " (Al o )udes

ie.

(2.2") / / )udes

Since u(t,r) > 0 for every fixed t € [0,1] and for every r > 1y and from our choice
of the constant k we have that P(u) > 0 for every ¢ € [0, 1] and for every r > 7.

3) Now we will see that for every fixed t € [0, 1] and for every r € [c1,d1] we
have P(u) > 4. We suppose that k is same as in 2). Let

/00 1/ Al——)udrds
/Ool/ Al——)deS>O

In the last inequality we use our choice of the constant k. Consequently g(u) is
increase function of . Since for every fixed ¢ € [0,1] and for every r € [c1,d1] we
have u > % we get

Then

0
di+1 1 dy+1 n 1
> [t L e (-1 deds >
af 1 1
(Al ) (dy Jrll)n a 2

In the last inequality we use the conditions (i1). From here and from (2.2") we get
that P(u) > 4 for every fixed ¢ € [0,1] and for every r € [c1, dy].

4) Now we will prove that for every fixed t € [0,1] and for every r > ry we
have P(u) < +. Let k € N is chosen such that

b 1 1
A, + <=, k>2.
( 2 23) (k — 1)(’n+/€—2)7‘g+k72 - B

Then

P _fr s"f ( t)u_f(t,T,’UJ))deSS
< 7w [T (Asu A f(t T U)>des <

< froo s_ln fsoo 7" Agu + %U)des =

=" T (Az + %) T drds <

here we wuse T Ry <1

foo Sin SOO(A2 + %)Tikdnls <

T

b 1 1
S(A? + ﬁ) (k—1)(n+k—2)rg 72 S5
In the last inequality we use our choice of the constant k.
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5) Now we will prove that P(u) € L?([rg,o0)) for every fixed ¢t € [0,1]. We
choose k € N such that n 4+ k —4 > 0.

PRy ey = S (7 ;"T"( 0, f(t,T,u))des>2dr§
< (& (A2+21}3)udrds) dr =

= (Aot ) (S & SV L drds) dr <
(Aot o) S (U & S Vaidedrds) “dr <

now we wuse the Holder's inequality
2 3 o2

< (o) S (I3 (0 Fpar) " (S uiar) as) ar <
2

T3
b 1 1 1 1
< (A2 +45) Gt mey m gl <o
9

From 1), 2), 3), 4), 5) we conclude that P : N — N for every fixed ¢ € [0, 1].
Now we will prove that the operator P has one unique nontrivial fixed point in
the set N.

Let t € [0,1) is fixed. Let also u; € N, ug € N are fixed and o = |Ju; —

Ua||£2([rg,00)) 7 0-
We choose k € N, k > 3 enough large so that

b 2
. 2(42+ %)
—Q1 = " Py <1, @Qi1<1.
7 a(dk—Dik+n—D2(2n+ 26— §)rg
Then
1P(u1) = P(u2)l|72 (1 00y) =
2
= (g L g (5 )> (ur = uz) = (f(t,7u1) = f(t,7,u2)) ) drds) dr <
2
< P (0 e (BB — el + | (¢ ) — (2 w)| ) drds) dr <

oo oo 1 n
< fm (fT o fs T (A2|u1 — |+ |f(t, T u1) — f(¢,T, u2)|)d7'ds) dr <
now we use the middle point theorem

oo

< (7 & 0 7 (Ashun =l + 17087, )l —u2|)dfds) dr <
</, (fr o (A2|u1 —us| + Lluy — uQ|>des) dr =

2 2
- (Ag + §) f:}o (fr = foo T ug — uQ|des) dr =

2 2
= (o4 8)" S (I & [ VT el mldrds) dr <
here we wuse that \/72k+2"|u1—u2| <2

2
< 2(A2 + %) f;:( , s" Soo %,c\/|u1 — Uo des) dr <

r's

here we wuse the Halder's inequality

<2 ) LT (57 3 (5 Apar) (7 o= wlrar) as) <

T3
< Q1lur — uz||L2(j0,00))

i.e.
1P (u1) = P(u2)|[72 (1 00y < Qullus — ] 2 (frg,00))-
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Since we choose the constant k so that éQl < 1 we have

Q1 Q1
1P (u1) = P(u2)]132((rg,00)) < ;Ofﬂul — 2|72 ((rg,00)) < ;H“l — |72 (g ,00))-

From here and from the following theorem
Theorem[5, p. 294]Let B be the completely metric space for which AB C B
and for the operator A is hold the following condition

p(Az, Ay) < L(o, B)p(x,y), x,y € B,a<p(x,y) <0,

where L(a, 8) <1 for 0 < a < 3 < oco. Then the operator A has exactly one fized
point in the space B.
we conclude that the operator P has one unique fixed point u in the set N.
We note that the set N is a closed subset of the space L?([rg,00)) for every fixed
€ [0,1] (see lemma 3.1 in the appendix of this paper) As in the proof of the
Proposition 2.1, 2.2 [4] we have that the fixed point u satisfies the equation (2.1)
with initial data

wo = [ [ (S5 — £(0.7,u0) ) drds, 7 > .

r smJs v(0)

We have that ug € L?([rg, ).
Now we will prove that

J Jful 22 (g 00)) = 00-

For k € N we put

2
= (A, + & 1 ,
@2 ( 2 23) (35-1)3 (ntk—1)2(2n+2k—3)re 2nt2k-h
, 2
Qs = 2A2(v (t) _ LA) d2"(d1 _ 01)302%7
1
Q4= (A1 —)%C—l(dl - Cl)%-
We choose the constant k € A such that
Q2
1-10==>0.
Q4
Then
, 2
||u||%2 (Iro, OO)) = fTo (fr Sinfs T"(l;((tt))u— f(i, T, u))des) dr =
( L[ ( — f(t,, u))des) dr+
2
—i—fcl ( L[ ( f(t,T,u))des) dr.
Let
’ 2
o= [ (U & g e (e = £t 7o) )drds) an
Jo = fcolo (f:o Sin f:o T"(ljj((tt))u — f(t, T, u))des) dr.
Then

(23) ||U||%2([T0100)) = Jl + J2.



8 SVETLIN G. GEORGIEV

For J; we have the following estimate

I o (A ) € TR (O u))drds)zdr <
< (U Snf (A2u+ )deS) dr =
~ (42 + 23) s \/772’f+2"u—\/—d7ds) dr <
here we wuse that /7T2k+t2nq, <1
< (Aot ) I (I & [ eudrds) ar <
now use the Holder's inequlity
< (oot o) I (0 (0 par) (17 atar) ) ar <
< Qzl[ullL2(jro,00))-
(2.4) J1 < Qa|@l|L2(frg,00)) -
Now we consider Jo. For it we have
o= [T (7 & e (e - s, u))des)2dr -
S (i g e (S = £t 7o) ) drds+
S g e (S = f(t ) ) drds) “art
+ (& e ( (“ f(t,7‘,u))d7‘ds)2dr:
= (e & g e (B = St ) ) drds
fcdll e ™ (U;((tt))“ —f(t ))deS‘i‘
o & e (S e u))d7ds)2dr+

2
—|—fd1 (fr </ T"( (( )) — f(t,, u))des> dr <
here we wuse the inequality (a+ b)% < 2(a®+b?)

<4f (fcl = GZOT"(Z/((t)u—f(t,7‘,u))d7‘ds)2dr+
—|—4f (fdl £ [ T"( ((tt - flt,, u))des)er—l—

(N Ve
—i—fdl (fr S—ln Soo T"( ((t))u—f( T, U ))deS) dr <
2f (fcdll = f "(U(t ft,m,u) des) dr +9Qa||u]| L2([re,00)) <

)
here we wuse that u > 1
< 9Qa|[41]| 22 (g 00)) + 25+ o (U/((tt)) - %>
< 9Q2|||[ L2 ([rg,00)) + Qan (U((tt)) %)
Then

2

—c 3A2(f u2d7'> <

(dh
2
dl — Cl 3A2

||u||L2 ([ro,00))"

Jo < 9Qal[u| L2 (fr.00)) + Q31|72 (g 00))-
From here and from (2.3), (2.4) we get

(2.5) Nl 172 (1ro 00)) < 10Q2 ]| L2((ro.00)) + Q31| 12((ro 00)-
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Also we note

ulliaqrocen = (S (7 3 15 (S8 = f (e, u))deS)erf >
2 (fcdll (fcdll sin fcdll T (1;,((;))“ — f(t, ’u))deSPQd’r) : >
(e (g 7 (s = ) rds) ar)” 2

i(A _
ay \“1

/~
—
s 8
3 2

Y

Y

b 1
25 ) &l
5

Qallull 2 (fro.00)) < 1|72 (11,000 < 10Qa|[ul| L2 ((ro,00)) + Q3l[Ul|72((rg 00))-
Then
(Qa = 10Q2)u| L2((ro00)) < Qal1l|T2((rg 00)) -
From our choice of the constant k we have that Q4 — 10Q2 > 0. Therefore

(Q4 —10Q2)

3
05 < ull72((rg,00))»

from where
0 [uf] 22 (rg,00)) = 00,

because lim;_,1 Q3 = 0 (see (H2)). o

Theorem 2.2. Let n > 2 be fixed, g > 1 be fixed, the positive constants a, b,
a < b, are fixed, f(t,|z|,u) € C*([0,1]) x C1([ro,00)) x CHRY), alu| < fL(t,|z|,u) <
blu| for every t € [0,1], for every |x| > ro, f(t,]x]|,0) = 0. Let also the positive
constants c1, di, A1, A, A, B are fixed which satisfy the conditions (i1), the
function v(t) is the same function as in the Theorem 2.1. Then the Cauchy problem
(2.1), (2.2) has one unique solution u(t,r) in the form wu(t, r) = v(t)w(r) for which
u(t,r) € N, u(t,r) € H'([rg,00)) for ¥t € [0,1], and the solution map is not
uniformly continuous.

Proof. In the Theorem 2.1 was proved that the equation (2.1) has one unique
nontrivial solution @(¢,r) = v(t)w(r) for which a(t,r) € N. Also, for every k € N
and for every fixed ¢ € [0, 1] we have

_ 112
|5 L2(r0.00) ,
= (s (S a - i) )ds) dr <
< fTZO (%n = S"(g((tt))ﬁ—l— ft, u))ds)er <
< I (7 077 (e oy i) =

&

IN
NN NN
&
+ + 4+ o+

A
&

by 3.2
JZ g ds)") dr <
s 3

(18| L2(jro,00)) < 00,
(%—1) (2n+2k_%)7‘§"+2k7§

= S S &

N N N
[

A
&

)
Sy]

because % € L?([rg,00)). Consequently @& € H([rg,c0)) for every fixed t € [0,1].



10 SVETLIN G. GEORGIEV

Now we suppose that the solution map (ug,u1) — w(t,r) is uniformly contin-
uous.

Let

b 21 51"

(2.6) 0<e< (Al—ﬁ) ﬁ(dl_cl) o
Let also

Uy = ’l~L, U2 = 0.
Then there exists positive constant § such that

E(O,u1 — UQ) S 5

and

E(l,ul — u2) S €.

From here

, 2
e>E(l,uy —us) = E(l,a) > foo(%n i 5”(1((11))ﬁ—f(1,$,ﬁ))d5) dr >
r>

To T
2

d d (v (1) ~ _

> o (s (S - 1 (1s, ) ds) d
d di (v~ b~ 2

> Cll(%nfclls (U(l)u—ﬁ )ds) dr >
d di (v (1 b 2

> cll (7‘% fclls (v((l)) ~ 2B %d8> er

3. Appendix

Lemma 3.1. The set N is a closed subset of C([0, 1]L?([rg, 00))).
Proof. Let t € [0,1] is fixed.
Let also {u,} is a sequence of elements of the set N for which

Hm|fun = ] 22 00)) =0,

where @ € L?([rg,o0)). Since P(u) is a continuous- differentiable function of w, for
r € [ro,m0 + 1] and u € N we have

Pu) = [ & [ (58 = fult.ru) )drds >
> [k e (A - § ) drds >
A2 1 [rot2on (A1 - %)drds >

= Jro+1 sn ro+1
b\ (ro+1)"
> (Al §)

(ro+2)™"
From here follows that for every u € N there exists

L= min |[P'(u)(r)| > 0.

r&lro,ro+1]
Let
M, =

0
max |—P'(u)(r ‘
r€lro,ro+1]1 OT (u)(r)
Now we will prove that for every € > 0 there exists § = d(e) > 0 such that from
|z — y| < & we have

[tm () —um(y)| <€ for ¥YmeN.
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We suppose that there exists € > 0 such that for every é > 0 there exist natural
m and x,y € [rg,00), |x —y| < ¢ for which |um,(x) — um(y)| > € We choose
¢ such that 0 < é < Lé. We note that P(uy,)(z) is uniformly continuous for
x € [ro,00)( for u € N P(u)(r) is uniformly continuous function for r € [rg, o)

because P(u)(r) € C([ro,o0)) and as in the proof of the Theorem 2.1 we have that

there exists positive constant C' such that ‘%P(u)(r} < C). Then there exists

61 = 01(€) > 0 such that for every natural m we have
| P(um) () = Plum)(y)| <& Va,y € [ro,00) : |& —y| < &1

Consequently we can choose

0<d< min{l,él, %}
such that there exist natural m and 1,22 € [rg,00) for which
|21 — ®2] <6,  |um(x1 — 22+ 70) — um(ro)| > €
In particular
(3.1) |P ()1 — 2 4+ 10) — P(um)(r0)| < €.

Let us suppose for convinience that x; — x2 > 0. Then 1 — z2 < 1 and for every
u € N we have P'(u)(z1 — 22 +19) > L. Then from the middle point theorem we
have

P(0) =0, P(um)(z1 — x2 +10) = P'(§) (21 — T2 + T0) U (71 — T2 + 70),
P(um)(ro) = P'(§)(ro)um(ro),

|P(um) (21 — 22 + 10) — Pum)(ro)| =
=[P'(§)(z1 — z2 + ro)um(z1 — 22 +710) — P'(§)(ro)um(ro)| =
=|P'(&)(x1 — 2 + 10)Um (21 — 3:2 +70) — P'(&)(x1 — xa + 10) U (r0)+
+P'(§)(x1 — 22 + 10)um(ro) — P'(§)(ro)um(ro)| =

PO (1 — w2 + 1)1 — 2 o) — P/

~IP/(©) @1 — w2 + 1)t (ro) = P'()(r)usn(r
= |P'(§)(z1 — 22 + ro)um(x1 — 22 +10) — P'(

| & P©)| e — wallum(ro)] =

> Lé— Mid% > ¢,

£)
£)
I
E) (w1 — 2 + 10)um(ro)|—
0)| =
£)

(21 — @2 + 70)Um(r0)|—

which is a contradiction with (3.1). Therefore, for every ¢ > 0 there exists 0 =
d(e) > 0 such that from |z — y| < § follows

(3.2) [tm () —um(y)| <e VmeN.

On the other hand from the definition of the set N we have that for every natural
m

1
(3.3) U (1) < B Vr > 1.

From (3.2) and (3.3) follows that the set {u,,} is a compact subset of the space
C([rg,o0)). Therefore there is a subsequence {uy, } and function u € C([rg,c0)) for
which

[thn,, () —u(z)| < € V€ [rg,00).
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Now we suppose that there is no true that v = @ a.e. in [rg,00). Then there
exist €; > 0 and subinterval A C [rg, 00) such that u(A) > 0 and

lu—1a|>e for reA.
Let € > 0 is chosen such that
_ A
WAz +1

Then, for every enough large nx € N, we have

(3.4)

[wn, = allL2(fro,000) <&

en(A) =€ [ dr > [\ Jun, —ulde =
= [ |tn, — 0+ 0 —uldx >

> [\t —uldz — [, |un, —dldc >

> a1u(B) = (fo lune = Pde)” (n(a)) " 2
> 1 p(8) = [, = il (i 00 (1(2)) >

1

> e(d) = ()",

which is a contradiction with (3.4). From here u = @ a.e. in [rg,00), |u, — ul|? =
|’ﬁ - un|2 a.e. in [TQ, OO), ||un — u||L2([T0100)) = ||un — 17,||L2([T0700)).

Consequently, for every sequence {u,} from elements of the set N, which is
convergent in L?([rg, 00)), there exists a function u € C([rg,00)), u € L*([rg, ))
for which

[N

(VB

lm|Jun = ullz2((rg,00)) = 0-

Bellow we will suppose that {u,} is a sequence from elements of the set N,
which is convergent in L?([rg,00)). Then there exists a function u € C([ro, 00)),
u € L%([ro,00)) for which

lm ffun =l 2 (rg 00)) = 0-
Now we suppose that u(t,00) # 0. Then there exist enough large @ > 0,
enough large natural m and e > 0 for which
U (t,7) =0, w(t,r) > €, Yr>Q.
We choose
(35) 0 < €3 < eo.
Then, for every enough large n € N we have |u,(¢,7) — u(t, )| < €3 and
€3 > ng [un (t, ) — u(t,r)|dr >
Q+1
> (Jult, r)| = lun(t,r)])dr =
1
= 5" lut.nldr > e,
which is a contradiction with (3.5). Therefore u(t,00) = 0.
Now we will prove that %u(t, r) exists for every ¢t € [0, 1]. Let us suppose that

7 € [rg, 00) is fixed and there exists ¢ € [0,1] such that Zu(t,r) no exists. Then
for every h > 0, which is enough small, exists ¢4 > 0 such that

u(ty + h,r) —u(ty,r)
h

> €4,
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and
h
(36) 0<es < 564,
such that
[un(t1 + b, r) —u(ts, r)] < es.
From here

€5 > |un(t1 + h,r) —u(ty + h,r)| =
= |up(t1 + h,7r) —u(ts,r) + u(tr,r) — u(ts + h,r)| >
> Ju(ty,r) —u(ty + h,r)|%h — |un(ts + hyr) — u(ty, )] > esh — €5,

which is a contradiction of our choice of e5. Therefore %u(t,r) exists for every

t € [0,1]. As in above we can see that u(t,r) € C*([0,1]) for every r > ro, u(t,r) €
C?%([ro, 00)) for every t € [0,1], u,(t,00) = 0 for every t € [0, 1].
Now we suppose that there exists interval As C [rg, c0) such that

1
u(t,r) > B +e7 for 1€ As.
Let n € NV is enough large and eg > 0 are chosen such that
(3.7) lun(t,r) —u(t,r)] <es for 7€ Ag,0<es < er.

From here, for r € Ay we have

1 1
€ > fun(t,) = ult, )| = [ult, )] — fun(t,1)] 2 5 + e — 5 = er,

which is one contradiction with (3.7). Therefore we have u(t,r) < % for every
T >T0.
Now we suppose that there exists interval Az C [c1,dq] for which u(t,r) < &

for every r € As. From here there exists eg > 0 such that u(t,r) < % — €9 for
r € Asz. Also, let

(38) 0< e <eg

and n € N is enough large such that €19 > |u,(t,7) — u(t,r)| for r € Az. Then for
r € Az we have
1 1

610 > fta(t,7) — u(t. )] 2 (7)) — fu(t,7)] 2+~ &+ co,
which is one contradiction with (3.8). Consequently, for every r € [c1, d1] we have
u(t,r) > .

Now we suppose that there exist & € NU{0}, interval Ay C [rg, 00) and €17 > 0
such that
[r%u(t,r)] > 1+ €1 for re Ay,

Let €12 > 0 and n € NV are chosen such that
(3.9) [P (un(t,7) —u(t,r))] < ez for relAy 0<en<en.
From here

€12 > [r®(un(t,7) — u(t, 7)) = [ru(t,r)] — r*un(t, 7)| = €11,
which is a contradiction with (3.9). Therefore for every o € N'U {0} and for every

r € [rg,00) we have r®u(t,r) < 1. After we use the same arguments we can see
that for every a € AU {0} and for every r € [rg,o0) we have r®|u,(t,r)| < 1.
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Now we suppose that there exist interval A5 C [rg,00) and €13 > 0 such that
for r € Ay we have
u(t,r) < —€13.
Let n € N is enough large and €14 > 0 are fixed for which
(310) |un(t,7“) — u(t,r)| < €14 fOT re A5, 0 < €14 < €13.
Then for r € A5 we have
€14 > up(t,7) —u(t,r) > €13

which is one contradiction with (3.10). e
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