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On a Semi-Linear Wave Equation Associated with Memory

Conditions at the Boundaries: Stability and Asymptotic

Expansion
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Abstract. In this paper the stability and asymptotic expansion of the weak
solution of an initial-boundary problem relating to a semi-linear wave equation
and two integral equations at the boundaries are given.
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1. Introduction

We study the solution u(x, t) of following semi-linear equation

∂2u

∂t2
(x, t) − ∂

∂x

(
µ(x, t)

∂u

∂x
(x, t)

)
+ G (u(x, t))

+ H

(
∂u

∂t
(x, t)

)
= F (x, t),

(1.1)
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where 0 < x < 1, 0 < t < T , associated with initial-boundary values given by

µ(0, t)
∂u

∂x
(0, t) = g0(t) +

� t

0

k0(t − s)u(0, s)ds,(1.2)

−µ(1, t)
∂u

∂x
(1, t) = g1(t) +

� t

0

k1(t − s)u(1, s)ds,(1.3)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),(1.4)

where µ, G, H , F , g0, k0, g1, k1, u0 and u1 are given real functions satisfying
conditions specified later. The terms G (u(x, t)), H

(
∂u
∂t (x, t)

)
are, respectively,

called the damping, the source term of Eq. (1.1), and we shortly call the sum
G (u(x, t)) + H

(
∂u
∂t (x, t)

)
the damping-source term.

The problems of wave equations associated with memory conditions or integral
equations at the boundaries have interested many mathematicians (see [5], [11],
[14], [15], [19]-[25], [27]).

When µ(x, t) ≡ 1 and F (x, t) = 0, in [19], Nguyen and Alain considered prob-
lem (1.1), (1.4) in the case of the full nonlinear damping-source term of u and ∂u

∂t
associated with the homogeneous boundary at x = 0 and the non-homogeneous
boundary condition at x = 1 given by

(1.5) −∂u

∂x
(1, t) ≡ Q(t) = hu(1, t)− g(t) −

� t

0

k(t − s)u(1, s)ds,

where h is a positive constant; Q, g and k are given functions. We note that
(1.5) is deduced from a Cauchy problem for an ordinary differential equation at the
boundary x = 1 as follows

(1.6)

{
Q′′(t) + ω2Q(t) = h∂2u

∂t2 (1, t), t ∈ (0, T ),

Q(0) = Q0, Q′(0) = Q1,

where ω > 0, Q0 and Q1 are given constants. This problem is a mathematical
model describing the shock of a rigid body and a nonlinear viscoelastic bar resting
on a rigid base. In this article, the authors obtained the unique solvability of the
weak solution.

In [25], Santos studied the asymptotic behavior of the solution of problem (1.1),
(1.2), (1.4) in the case of µ(x, t) ≡ µ(t), G(u) = H

(
∂u
∂t

)
= 0, F (x, t) = 0 associated

with a boundary condition of memory type at x = 1 as follows

(1.7) u(1, t) +

� t

0

g(t − s)µ(s)
∂u

∂x
(1, s)ds = 0, t > 0,

in which g and µ are given functions. It is noted that the boundary conditions (1.5)
and (1.7) are similar since their formal differences can be crossed out after solving
the Volterra equation with respect to the variable u(1, t) given by (1.7).

In [21, 22, 23], Nguyen, Lê and T. Nguyen considered the unique existence,
stability, regularity in time variable and asymptotic expansion for the solution of
problem (1.1)-(1.4) when µ(x, t) ≡ µ(t), G(u) = Ku, H

(
∂u
∂t

)
= λ∂u

∂t and the
boundary condition (1.2) is homogeneous and the boundary value at x = 1, (1.3),
is

(1.8) −µ(t)
∂u

∂x
(1, t) = g(t) + K1(t)u(1, t) + λ1(t)

∂u

∂t
(1, t) +

� t

0

k(t − s)u(1, s)ds,
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where g, K1, λ1 and k are given functions.

When µ = 1, G(u) = K|u|αu and H
(

∂u
∂t

)
= λ

∣∣∂u
∂t

∣∣β ∂u
∂t for K, λ, α, β ≥ 0,

Nguyen, Alain and Tran [20] studied the unique solvability, the regularity of the
weak solution of problem (1.1), (1.4) associated with the boundary conditions as
follows:

(1.9)

{
∂u
∂x (0, t) = g(t) + hu(0, t) −

� t

0 k(t − s)u(0, s)ds,
∂u
∂x (1, t) + K1u(1, t) + λ1

∂u
∂t (1, t) = 0,

where h, K1, λ1 are given constants and g, k are given functions. In the case of
α = β = 0, the authors obtained the asymptotic expansion of the weak solution
with respect to non-negative constants K and λ.

In the above articles, the authors mainly applied Faedo-Galerkin approximation
to study the unique solvability.

In the case of homogeneous boundaries, in [26], Sengul investigated the exis-
tence of the global attractor of Eq.(1.1) in the case of

µ(x, t) = 1, H

(
∂u

∂t

)
= α

∂u

∂t
, α > 0

associated homogeneous boundary conditions and the initial conditions similar to
(1.4). In [1], Aassila and Benaissa obtained the global unique solvability, also
by Faedo-Galerkin approximation, and the decay for the solution of the following
problem:

(1.10)





∂2u

∂t2
− Φ

(�
Ω

n∑

i=1

(
∂u

∂xi

)2

dx

)
n∑

i=1

∂2u

∂x2
i

+ g

(
∂2u

∂t2

)
+ f(u) = 0 in Ω × [0, +∞[,

u(x, t) = 0 on Γ × [0, +∞[,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x) on Ω,

for Ω a bounded domain in R
n with a smooth boundary ∂Ω = Γ, where Φ, g, f ,

u0 and u1 are given functions. In [4], Benaddi and Rao obtained the energy decay
rate of the solution by a shooting method for problem (1.1)-(1.4) where µ(x, t) = 1,
G and H are linear, F (x, t) = 0, and g0 = g1 = k0 = k1 ≡ 0 (or (1.2)-(1.3)
are homogeneous). In addition, Phung [24] studied the stabilization of the wave
equation with a localized linear dissipation in a three-dimensional bounded domain
on which exists a trapped ray given by

(1.11)





∂2u
∂t2 −

3∑
i=1

∂2u
∂x2

i

+ α(x)∂u
∂t = 0 in Ω × R

+,

u(x, t) = 0 on ∂Ω × R
+,

u(x, 0) = u0,
∂u
∂t (x, 0) = u1(x) in Ω,

for Ω a bounded domain in R
3 with a boundary ∂Ω at least Lipschitz; α, u0 and

u1 are given functions.
Regarding Mikusiński calculus, D. Takači and A. Takači studied the existence

of the solution of problem (1.1), (1.4) in the field of Mikusiński when µ(x, t) = 1,
G and H are linear, and the boundary conditions are non-homogeneous.

In this paper, we study the stability and asymptotic expansion of the weak
solution of problem (1.1)-(1.4). What we obtain here is considered as both the
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generalization and the more effective approach of those in Aassila and Benaissa [1],
Nguyen and Alain [19], in Nguyen, Alain and Tran [20], in Santos [25], in Sengul
[26], D. Takači and A. Takači [27] and in mine [11, 14, 21, 22, 23].

Furthermore, to obtain the unique solvability of problem (1.1)-(1.4), we apply
a contracted procedure (see [12] and [15]) which exceeds a routine application of
usual methods, namely the Faedo-Galerkin method with the compactness argu-
ment and the monotone operator method, for semi-linear damped wave equations
as popularized by Jacques-Louis Lions several years ago (see [16], [17]) and also
by Songmu Zheng [30]. Moreover, by this contracted procedure, we can cover un-
solvable cases related to problem (1.1)-(1.4) regarding the solvability, and if the
solvability does not hold then we obviously fail to discuss neither the stability nor
the asymptotic expansion involved in this paper.

2. Preliminary results and notations

First we introduce some preliminary results and notations used in this paper.
We omit the definitions of usual function spaces: Cm, Lp, Wm,p, Hm for p ∈ [1, +∞]
and m ∈ N.

We denote by 〈·, ·〉 the scalar product in L2(0, 1) or pair of dual scalar product
of a continuous linear functional with an element of a function space. We denote by
‖ · ‖X the norm of a Banach space X and by X ′ the dual space of X . We denote by
Lp(0, T ; X), 1 ≤ p ≤ ∞, T > 0, the Banach space of the real measurable functions
v : (0, T ) → X , such that

‖v‖Lp(0,T ;X) =

(� T

0

‖v(t)‖p
Xdt

)1/p

< ∞ for 1 ≤ p < ∞,

and

‖v‖L∞(0,T ;X) = esssup
0<t<T

‖v(t)‖X for p = ∞.

In H1(0, 1), we use the norm

‖v‖H1(0,1) =
√
‖v‖2

L2(0,1) + ‖v′‖2
L2(0,1), v ∈ H1(0, 1).

Then we have the following lemma whose proof is omitted:

Lemma 1. The embedding H1(0, 1) →֒ C0([0, 1]) is compact and

(2.1) ‖v‖C0([0,1]) ≤
√

2‖v‖H1(0,1),

for all v ∈ H1(0, 1).

Now let x = (x1, x2), y = (y1, y2) ∈ Z
2
+, we denote





y ≤ x ⇔
{

y1 ≤ x1,

y2 ≤ x2,

x! = x1!x2!,

Cy
x = x!

y!(x−y)! .

Then there is a lemma as follows:
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Lemma 2. Let m ∈ Z+ and n, i, j ∈ N. Then, the equality

(2.2)


 ∑

1≤i+j≤n

aijε
iδj




m

=
∑

m≤i+j≤mn

[aij ]m εiδj

holds for ε, δ, aij ∈ R and

(2.3) [aij ]m =





aij , i + j ≤ n, m = 1,∑
(k,h)∈[Zij ]m

a(i−k)(j−h) [akh]m−1 , m ≤ i + j ≤ mn, m ≥ 2,

in which the family [Zij ]m is given by
{
(k, h) ∈ Z

2
+ : (k, h) ≤ (i, j), 1 ≤ i − k + j − h ≤ n,

m − 1 ≤ k + h ≤ (m − 1)n}.

Proof. In the case of m = 1, it is clear that (2.2) holds with respect to
[aij ]1 = aij , 1 ≤ i + j ≤ n. When m ≥ 2, by putting

(2.4) f (ε, δ) =


 ∑

1≤i+j≤n

aijε
iδj




m

,

we have the Maclaurin formula of f up to order mn as follows

f (ε, δ) =
∑

0≤i+j≤mn

1

i!j!

∂i+jf

∂εi∂δj
(0, 0)εiδj

=
∑

m≤i+j≤mn

1

i!j!

∂i+jf

∂εi∂δj
(0, 0)εiδj .

(2.5)

Therefore, we deduce from (2.2) and (2.5), that

(2.6) [aij ]m =
1

i!j!

∂i+jf

∂εi∂δj
(0, 0), m ≤ i + j ≤ mn.

Moreover, from (2.2) and (2.4), f can be rewritten as follows

(2.7)





f (ε, δ) = f1 (ε, δ) f2 (ε, δ) ,

f1 (ε, δ) =

(
∑

1≤i+j≤n

aijε
iδj

)
,

f2 (ε, δ) =

(
∑

m−1≤i+j≤(m−1)n

[aij ]m−1 εiδj

)
.

Since f is differentiable at (0, 0), it follows from (2.7), that

(2.8)
∂i+jf

∂εi∂δj
(0, 0) =

∑

(k,h)≤(i,j)

C
(k,h)
(i,j)

∂i−k+j−hf1

∂εi−k∂δj−h
(0, 0)

∂k+hf2

∂εk∂δh
(0, 0).

Since (2.2), (2.7)2 and [aij ]1 = aij , we obtain

(2.9) aij =
1

i!j!

∂i+jf1

∂εi∂δj
(0, 0), 1 ≤ i + j ≤ n.
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Hence, we have

(2.10)
∂i−k+j−hf1

∂εi−k∂δj−h
(0, 0) = (i − k)!(j − h)!a(i−k)(j−h), 1 ≤ i − k + j − h ≤ n.

Moreover, we also obtain from (2.2), (2.6) and (2.7)3, that

(2.11)
∂k+hf2

∂εk∂δh
(0, 0) = k!h! [akh]m−1 , m − 1 ≤ k + h ≤ (m − 1)n.

On account of (2.6), (2.8), (2.10) and (2.11), we deduce that (2.3) hlods. Thus, the
proof of this lemma is complete. �

Remark 1. In [18], we obtained an original result which is more general than
Lemma 2. However, since [18] was unpublished, we must give the detailed proof of
Lemma 2 in this paper.

3. Unique solvability and regularity

In this section, we shortly list some results which were obtained in [15] and can
be independently studied by the contracted procedure in [12].

We make some following essential assumptions:

(Aµ) ∂µ
∂t ∈ L1 (0, T ; L∞(0, 1)), µ(x, t) ≥ µ0 > 0;

(A
(1)
GH) G, H ∈ L2 (R);

(A
(2)
GH) ∃KG, KH > 0 :

|G(u) − G(v)| ≤ KG|u − v|,
|H(u) − H(v)| ≤ KH |u − v|,

for u, v ∈ R;
(AF ) F ∈ L2 ((0, 1) × (0, T ));
(Ag) g0, g1 ∈ H1(0, T );
(Ak) k0, k1 ∈ W 1,1(0, T );
(Au) u0 ∈ H1(0, 1), u1 ∈ L2(0, 1).

In this paper, we say that a function

u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)

is a weak solution of problem (1.1)-(1.4) iff




d
dt

〈
∂u
∂t (t), v

〉
+
〈
µ(·, t)∂u

∂x (t), v′
〉

+ Q0(t)v(0) + Q1(t)v(1)

+
〈
G (u(t)) + H

(
∂u
∂t (t)

)
, v
〉

= 〈F (·, t), v〉 ,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x),

Q0(t) = g0(t) +
� t

0 k0(t − s)u(0, s)ds,

Q1(t) = g1(t) +
� t

0
k1(t − s)u(1, s)ds,

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T . In this case we can also say that
problem (1.1)-(1.4) is weakly solvable in H1

(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
.

Then we have the following theorem:

Theorem 1. Let (Aµ), (A
(1)
GH), (A

(2)
GH), (AF ), (Ag), (Ak) and (Au) hold. Then,

for T > 0, problem (1.1)-(1.4) has a unique weak solution u(x, t) satisfying

(3.1) u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
.
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Remark 2. When H
(

∂u
∂t

)
= λ

∣∣∂u
∂t

∣∣p ∂u
∂t , p > 0, λ < 0, it fails to apply Faedo-

Galerkin method for the unique solvability of problem (1.1)-(1.4). This method is
only applicable for linear or some special nonlinear problems (as in [5], [11], [14],
[19]-[25]).

Remark 3. For some special nonlinear forms of G(u) + H
(

∂u
∂t

)
such as

K |u|p u + λ

∣∣∣∣
∂u

∂t

∣∣∣∣
q

∂u

∂t
, (p, q) ∈ R

2
+ \ (0, 0), (K, λ) ∈ R

2
+,

G(u) + K
∂u

∂t
, K ∈ R,

it is possible to apply Faedo-Galerkin approximation for the unique solvability of
problem (1.1)-(1.4); however, some more assumptions for µ, G and H must be
modified and unfortunately the proofs in such cases are usually not only very long
but also truly messy such as a priori estimates or passing to the limit by monotone
techniques as in [16] and [17].

To study the weak solution’s smoothness with respect to the smoothness of

given data, assumptions (Aµ), (A
(1)
GH), (A

(2)
GH), (AF ), (Ag), (Ak) and (Au) are

strengthened as follows:

(Ãµ) µ ∈ C1 ([0, 1] × [0, T ]), ∂2µ
∂t2 ∈ L2 (0, T ; L∞(0, 1)), µ(x, t) ≥ µ0 > 0;

(ÃGH) G, H ∈ C1 (R), |H ′(η)| ≤ CH |η|α, ∀η ∈ R, and α > 0, CH ≥ 0;

(ÃF ) F, ∂F
∂t ∈ L2 ((0, 1) × (0, T ));

(Ãg) g0, g1 ∈ H2(0, T );

(Ãk) k0, k1 ∈ W 2,1(0, T );

(Ãu) u0 ∈ H2(0, 1), u1 ∈ H1(0, 1).

It is clear that problem (1.1)-(1.4) has a unique weak solution

u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)

for which (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk) and (Ãu) hold. The regularity of this
weak solution is stated in the following theorem:

Theorem 2. Let (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk) and (Ãu) hold. Then, for
T > 0, problem (1.1)-(1.4) has a unique weak solution u(x, t) satisfying

(3.2) u ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1

(
0, T ; H1(0, 1)

)
∩ L∞

(
0, T ; H2(0, 1)

)
.

4. The stability of the weak solution

In this section, we study the stability of the weak solution of problem (1.1)-(1.4)
in the sense that this weak solution continuously depends on some given data.

By assuming the functions G, H , u0 and u1 satisfy (ÃGH) and (Ãu), we have
from Theorem 2 that problem (1.1)-(1.4) has a unique weak solution u depending
on µ, F , g0, g1, k0 and k1.

Consider

u = u (µ, F, g0, g1, k0, k1) ,

where µ, F , g0, g1, k0 and k1, respectively, satisfy (Ãµ), (ÃF ), (Ãg) and (Ãk). Let

G, H , u0 and u1 be fixed functions such that (ÃGH) and (Ãu) hold. For µ0 > 0
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given, we put

Ξ(µ0) =
{

(µ, F, g0, g1, k0, k1) : µ, F, g0, g1, k0 and k1

satisfy (Ãµ), (ÃF ), (Ãg) and (Ãk), respectively
}
.

Right then, we have the following theorem:

Theorem 3. Let (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk) and (Ãu) hold. For every
T > 0, the weak solution u(x, t) of problem (1.1)-(1.4) is stable with respect to µ, F ,
g0, g1, k0 and k1 in the sense that if (µ, F, g0, g1, k0, k1), (µi, Fi, g0i, g1i, k0i, k1i) ∈
Ξ(µ0) and

(4.1)





µi → µ in C1 ([0, 1]× [0, T ]) ,

Fi → F, ∂Fi

∂t → ∂F
∂t in L2

(
0, T ; L2(0, 1)

)
,

g0i → g0, g1i → g1 in H2(0, T ),

k0i → k0, k1i → k1 in W 2,1(0, T ),

when i → +∞, then

(4.2)

{
ui → u in L∞

(
0, T ; H1(0, 1)

)
,

∂ui

∂t → ∂u
∂t in L∞

(
0, T ; L2(0, 1)

)
,

as i → +∞, where ui = ui (µi, Fi, g0i, g1i, k0i, k1i) .

Proof. From Theorem 2, we can deduce that

(4.3)





∥∥∂u
∂t (t)

∥∥2

L2(0,1)
+ µ0

∥∥ ∂u
∂x (t)

∥∥2

L2(0,1)
≤ MT ,

∥∥∥∂2u
∂t2 (t)

∥∥∥
2

L2(0,1)
+ µ0

∥∥∥ ∂2u
∂x∂t (t)

∥∥∥
2

L2(0,1)
≤ MT

for all t ∈ [0, T ] if the given data µ, F , g0, g1, k0 and k1 satisfy

(4.4)





‖µ‖C1([0,1]×[0,T ]) ≤ µ,

‖F‖L2((0,1)×(0,T )) +
∥∥∂F

∂t

∥∥
L2((0,1)×(0,T ))

≤ F ,

‖g0‖H2(0,T ) + ‖g1‖H2(0,T ) ≤ g,

‖k0‖W 2,1(0,T ) + ‖k1‖W 2,1(0,T ) ≤ k,

where µ, F , g and k are fixed positive constants, and MT is a positive constant
depending only on T , µ0, u0, u1, µ, F , g, k but is independent of µ, F , g0, g1, k0,
k1.

From (4.1), it is clear that there exist positive constants µ, F , g and k such that
µi, Fi, g0i, g1i, k0i and k1i satisfy (4.4) for (µ, F, g0, g1, k0, k1) = (µi, Fi, g0i, g1i, k0i, k1i) .

Therefore, we conclude that the weak solution ui(x, t) of problem (1.1)-(1.4) with
(µ, F, g0, g1, k0, k1) = (µi, Fi, g0i, g1i, k0i, k1i) satisfies (4.3), namely we obtain

(4.5)





∥∥∂ui

∂t (t)
∥∥2

L2(0,1)
+ µ0

∥∥∂ui

∂x (t)
∥∥2

L2(0,1)
≤ MT ,

∥∥∥∂2ui

∂t2 (t)
∥∥∥

2

L2(0,1)
+ µ0

∥∥∥ ∂2ui

∂x∂t (t)
∥∥∥

2

L2(0,1)
≤ MT

for all t ∈ [0, T ].
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Now, by letting µ̂i, F̂i, ĝ0i, ĝ1i, k̂0i and k̂1i be functions given by

(4.6)





µ̂i = µi − µ,

F̂i = Fi − F,

ĝ0i = g0i − g0, ĝ1i = g1i − g1,

k̂0i = k0i − k0, k̂1i = k1i − k1,

we deduce that wi(x, t) = ui(x, t)−u(x, t) satisfies the following variational problem:

(4.7)





〈
∂2wi

∂t2
(t), v

〉
+

〈
µ(·, t)∂wi

∂x
(t), v′

〉
+ Q̂0i(t)v(0) + Q̂1i(t)v(1)

= −
〈

G (ui(t)) − G (u(t)) + H

(
∂ui

∂t
(t)

)
− H

(
∂u

∂t
(t)

)
, v

〉

−
〈

µ̂i(·, t)
∂ui

∂x
(t), v′

〉
+
〈
F̂i(·, t), v

〉
,

wi(x, 0) = ∂wi

∂t (x, 0) = 0,

Q̂0i(t) = ǧ0i(t) +
� t

0
k0(t − s)wi(0, s)ds,

Q̂1i(t) = ǧ1i(t) +
� t

0 k1(t − s)wi(1, s)ds,

ǧ0i(t) = ĝ0i(t) +
� t

0
k̂0(t − s)ui(0, s)ds,

ǧ1i(t) = ĝ1i(t) +
� t

0
k̂1(t − s)ui(1, s)ds

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T.

In (4.7), replacing v by ∂wi

∂t , then integrating from 0 to t, we obtain that

c©i(t) =

� t

0

〈
∂µ

∂s
(·, s),

∣∣∣∣
∂wi

∂x
(s)

∣∣∣∣
2
〉

ds − 2

� t

0

〈
µ̂i(·, s)

∂ui

∂x
(s),

∂2wi

∂x∂s
(s)

〉
ds

− 2

� t

0

〈
G (ui(s)) − G (u(s)) ,

∂wi

∂s
(s)

〉
ds

− 2

� t

0

〈
H

(
∂ui

∂s
(s)

)
− H

(
∂u

∂s
(s)

)
,
∂wi

∂s
(s)

〉
ds

− 2

� t

0

Q̂0i(s)
∂wi

∂s
(0, s)ds − 2

� t

0

Q̂1i(s)
∂wi

∂s
(1, s)ds

+ 2

� t

0

〈
F̂i(·, s),

∂wi

∂s
(s)

〉
ds,

(4.8)

in which

(4.9) c©i(t) =

∥∥∥∥
∂wi

∂t
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(·, t)∂wi

∂x
(t)

∥∥∥∥
2

L2(0,1)

.



338 ÚT V. LÊ

From (4.5), (4.8), (4.9) and assumptions (Ãµ), (ÃGH), (Ãg), (Ãk), we have some
estimates as follows:� t

0

〈
∂µ

∂s
(·, s),

∣∣∣∣
∂wi

∂x
(s)

∣∣∣∣
2
〉

ds ≤ 1

µ0

� t

0

∥∥∥∥
∂µ

∂s
(·, s)

∥∥∥∥
L∞(0,1)

c©i(s)ds,(4.10)

−2

� t

0

〈
µ̂i(·, s)

∂ui

∂x
(s),

∂2wi

∂x∂s
(s)

〉
ds ≤ M̃i + β c©i(t) +

� t

0

c©i(s)ds,(4.11)

−2

� t

0

〈
G (ui(s)) − G (u(s)) ,

∂wi

∂s
(s)

〉
ds ≤

(
1 + TG2

0

) � t

0

c©i(s)ds,(4.12)

−2

� t

0

〈
H

(
∂ui

∂s
(s)

)
− H

(
∂u

∂s
(s)

)
,
∂wi

∂s
(s)

〉
ds

≤
(
1 + H2

0

)� t

0

c©i(s)ds,

(4.13)

−2

� t

0

Q̂ji(s)
∂wi

∂s
(j, s)ds ≤ q̂j1i +

4β

µ0
c©i(t) + q̂j2i

� t

0

c©i(s)ds, j = 0, 1,(4.14)

2

� t

0

〈
F̂i(·, s),

∂wi

∂s
(s)

〉
ds ≤

� t

0

∥∥∥F̂i(·, s)
∥∥∥

2

L2(0,1)
ds +

� t

0

c©i(s)ds,(4.15)

for some β > 0 and M̃i, G0, H0, q̂j1i, q̂j1i are non-negative constants given by

(4.16)





M̃i = MT

µ2
0

(
1
β ‖µ̂i‖2

L∞((0,1)×(0,T )) + 4T ‖µ̂i‖2
C1((0,1)×(0,T ))

)
,

G0 = max |G′(y)| , |y| ≤
√

2
(
‖u0‖2

L2(0,1) +
(
T 2 + 1

µ0

)
MT

)
,

H0 = max |H ′(z)| , |z| ≤
√

2
(
1 + 1

µ0
MT

)
,

q̂j1i = 1
β ‖ǧji‖2

C0([0,T ]) +
∥∥ǧ′ji

∥∥2

L2(0,T )
, j = 0, 1,

q̂j2i =

(
4βT +

[
T 2 +

1

µ0

][
4 + 4|kj(0)| + 2

β
‖kj‖2

L2(0,T )

+ 2T ‖k′
j‖2

L2(0,T )

])
, j = 0, 1.

As a result, we deduce from (4.8), (4.10)-(4.16), that

c©i(t) ≤ M̂i + β

(
1 +

4

µ0

)
c©i(t) +

� t

0

pi(s) c©i(s)ds,(4.17)

where M̂T is a non-negative constant given by

(4.18) M̂i = M̃i + q̂01i + q̂11i +

� t

0

∥∥∥F̂i(·, s)
∥∥∥

2

L2(0,1)
ds

and

(4.19) pi(t) = 4 + TG2
0 + H2

0 + q02 + q12 +
1

µ0

∥∥∥∥
∂µ

∂s
(·, s)

∥∥∥∥
L∞(0,1)

.

Hence, by choosing β > 0 such that β ≤ µ0

2(µ0+4) , we conclude from (4.17), that

(4.20) c©i(t) ≤ 2M̂i exp

(� t

0

pi(s)ds

)
for all t ∈ [0, T ].
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From (Ãµ) and (4.19), we have

(4.21) pi ∈ L1(0, T ), ∀i = 1, 2, ..., and exp

(� t

0

pi(s)ds

)
< +∞.

In addition, on account of (4.1), (4.7)5,6, (4.16)1,4 and (4.18), we deduce that

(4.22) M̂i → 0 as i → +∞.

Finally, it is clear that (4.2) is obviously concluded from (4.1), (4.9) and (4.20)-
(4.22). Hence, this proof is complete. �

5. Low-frequency asymptotic expansion of the weak solution

In this section, let G (u(x, t)) ≡ εG (u(x, t)) and H
(

∂u
∂t (x, t)

)
≡ δH

(
∂u
∂t (x, t)

)

such that
(Aε,δ) ε, δ ∈ R.
In addition, we modify smooth assumptions for G and H as follows:

(ÂGH) G, H ∈ Cn+1(R) for n ∈ N given.
Now we consider the following initial-boundary value problem:

(5.1)





∂2u

∂t2
(x, t) − ∂

∂x

(
µ(x, t)

∂u

∂x
(x, t)

)
+ εG (u(x, t))

+ δH

(
∂u

∂t
(x, t)

)
= F (x, t), 0 < x < 1, 0 < t < T,

µ(0, t)∂u
∂x (0, t) = g0(t) +

� t

0
k0(t − s)u(0, s)ds,

−µ(1, t)∂u
∂x (1, t) = g1(t) +

� t

0 k1(t − s)u(1, s)ds,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x).

On account of (Ãµ), (ÃGH), (Aε,δ), (ÃF ), (Ãg) and (Ãk), by Theorem 2,
problem (5.1) has a unique weak solution u(x, t) depending on (ε, δ) such that

u = u(ε, δ)

satisfying (3.1), namely,

u ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1

(
0, T ; H1(0, 1)

)
∩ L∞

(
0, T ; H2(0, 1)

)
.

Our purpose here is to investigate the low-frequency asymptotic expansion (see
[9]) of the weak solution u(x, t) of problem (5.1) with respect to two parameters ε,
δ.

By putting

(5.2)





Uu ≡ ∂2u
∂t2 − ∂

∂x

(
µ(x, t)∂u

∂x

)
,

∂U0u ≡ µ(0, t)∂u
∂x (0, t),

∂U1u ≡ −µ(1, t)∂u
∂x (1, t),

we concern the solvable problem
(
Uεδ

)
given by





Uu = −εG (u) − δH

(
∂u

∂t

)
+ F (x, t), 0 < x < 1, 0 < t < T,

∂U0u = g0(t) +
� t

0
k0(t − s)u(0, s)ds,

∂U1u = g1(t) +
� t

0 k1(t − s)u(1, s)ds,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x),

u ≡ u(ε, δ) ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1 ((0, T ) × (0, 1)) ∩ L∞

(
0, T ; H2(0, 1)

)
,
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which is perturbed with respect to both small parameters ε, δ such that

(5.3) |ε| ≤ 1, |δ| ≤ 1.

Firstly we construct a sequence of weak solutions {uij} from a family of solvable
problems {(Uij)}, respectively, such that i, j ∈ N and i + j ≤ n.

We begin with the case i = j = 0. Let u00 be the weak solution of problem
(U00) in regard to ε = δ = 0, namely we have
(5.4)

(
U00

)





Uu00 ≡ A00 ≡ F (x, t), 0 < x < 1, 0 < t < T,

∂U0u00 = g0(t) +
� t

0
k0(t − s)u00(0, s)ds,

∂U1u00 = g1(t) +
� t

0 k1(t − s)u00(1, s)ds,

u00(x, 0) = u0(x), ∂u00

∂t (x, 0) = u1(x),

u00 ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1 ((0, T ) × (0, 1)) ∩ L∞

(
0, T ; H2(0, 1)

)
.

When 1 ≤ i + j ≤ n, consider {uij} as the sequence of the weak solutions of
the family of solvable problems {(Uij)}, which is defined as follows
(5.5)

(
Uij

)





Uuij ≡ Aij , 0 < x < 1, 0 < t < T,

∂U0uij =
� t

0
k0(t − s)uij(0, s)ds,

∂U1uij =
� t

0
k1(t − s)uij(1, s)ds,

uij(x, 0) = 0,
∂uij

∂t (x, 0) = 0,

uij ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1 ((0, T )× (0, 1)) ∩ L∞

(
0, T ; H2(0, 1)

)
,

where Aij , 1 ≤ i + j ≤ n, are defined by the following recursive scheme:

(5.6)





A10 = −G(u00),

A01 = −H
(

∂u00

∂t

)
,

Ai0 = −
i+j−1∑
k=1

1
k!G

(k)(u00)
[
u(i−1)0

]
k
, 2 ≤ i ≤ n,

A0j = −
i+j−1∑
k=1

1
k!H

(k)
(

∂u00

∂t

) [ ∂u0(j−1)

∂t

]
k
, 2 ≤ j ≤ n,

Aij = −
i+j−1∑

k=1

1

k!

(
G(k)(u00)

[
u(i−1)j

]
k
− H(k)

(
∂u00

∂t

)[
∂ui(j−1)

∂t

]

k

)
,

2 ≤ i + j ≤ n, i ≥ 1, j ≥ 1,

in which [aij ]k is defined as what in Lemma 2.
Then we obtain low-frequency asymptotic expansion of the weak solution u(x, t)

of problem (5.1) with respect to two parameters ε, δ in the following theorem:

Theorem 4. For ε, δ ∈ R, if (Ãµ), (ÃGH), (ÂGH), (ÃF ), (Ãg), (Ãk) and
(5.3) hold, then problem (Uεδ) has a unique weak solution u = u(ε, δ) satisfying the
asymptotic estimates with respect to two parameters ε and δ up to order n + 1 as
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follows:

∥∥∥∥∥∥
∂u

∂t
−

∑

0≤i+j≤n

∂uij

∂t
εiδj

∥∥∥∥∥∥
L∞(0,T ;L2(0,1))

+

∥∥∥∥∥∥
u −

∑

0≤i+j≤n

uijε
iδj

∥∥∥∥∥∥
L∞(0,T ;H1(0,1))

≤ C
(
ε2 + δ2

)n+1
2 ,

(5.7)

in which uij is the unique weak solution of problem (Uij), respectively, for 0 ≤
i + j ≤ n and C is a positive constant independent of ε, δ.

Proof. By putting

(5.8)





v ≡ ∑
i+j≤n

uijε
iδj ,

w ≡ u − v,

we have that w satisfies the following problem

(5.9)





Uw = − ε (G (w + v) − G (v)) − δ

(
H

(
∂

∂t
(w + v)

)
− H

(
∂v

∂t

))

+ Wn(ε, δ), 0 < x < 1, 0 < t < T,

∂U0w =
� t

0
k0(t − s)w(0, s)ds,

∂U1w =
� t

0 k1(t − s)w(1, s)ds,

w(x, 0) = 0, ∂w
∂t (x, 0) = 0,

w ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1 ((0, T )× (0, 1)) ∩ L∞

(
0, T ; H2(0, 1)

)

where

Wn(ε, δ) = F (x, t) − εG(v) − δH

(
∂v

∂t

)
−
∑

i+j≤n

Aijε
iδj .(5.10)

The estimate of Wn(ε, δ) is given in the following lemma:

Lemma 3. Under assumptions (Ãµ), (ÃGH), (ÂGH), (ÃF ), (Ãg) and (Ãk), the
following estimate

‖Wn(ε, δ)‖L∞(0,T ;L2(0,1)) ≤ WT

(
ε2 + δ2

) n+1
2(5.11)

holds for ε, δ ∈ R satisfying (5.3), where WT is a non-negative constant depending

only on G, H, uij and
∂uij

∂t for 0 ≤ i + j ≤ n.

The detailed proof of this lemma will be specified later.
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Now, by multiplying the two sides of (5.9)1 by ∂w
∂t and taking into account

(5.2), we deduce after integrating with respect to time variable that

Θ(t) =

� t

0

〈
∂µ

∂s
(·, s),

(
∂w

∂x
(s)

)2
〉

ds

− 2

� t

0

∂w

∂s
(0, s)

(� s

0

k0(s − τ)w(0, τ)dτ

)
ds

− 2

� t

0

∂w

∂s
(1, s)

(� s

0

k1(s − τ)w(1, τ)dτ

)
ds

− 2ε

� t

0

〈
G (w + v) − G (v) ,

∂w

∂s
(s)

〉
ds

− 2δ

� t

0

〈
H

(
∂

∂t
(w + v)

)
− H

(
∂v

∂t

)
,
∂w

∂s
(s)

〉
ds

+ 2

� t

0

〈
Wn(ε, δ),

∂w

∂s
(s)

〉
ds

(5.12)

where

Θ(t) =

∥∥∥∥
∂w

∂t
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(t)
∂w

∂x
(t)

∥∥∥∥
2

L2(0,1)

.(5.13)

From (2.1), (Ãµ), (Ãg) and (Ãk), also taking into account (5.12) and (5.13),
we deduce that� t

0

〈
∂µ

∂s
(·, s),

(
∂w

∂x
(s)

)2
〉

ds

≤ 1

µ0

� t

0

∥∥∥∥
∂µ

∂s
(·, s)

∥∥∥∥
L∞(0,1)

Θ(s)ds,

(5.14)

−2

� t

0

∂w

∂s
(ν, s)

(� s

0

kν(s − τ)w(ν, τ)dτ

)
ds ≤ 2̺

µ0
Θ(t) + kν

� t

0

Θ(s)ds,(5.15)

in which ̺ > 0 and kν , ν = 0, 1, are non-negative constants defined as follows:

(5.16) kν =

(
T 2 +

1

µ0

)(
2 + 2̺T + 4|kν(0)| + 2

̺
‖kν‖2

L2(0,T ) + 2T ‖k′
ν‖2

L2(0,T )

)
.

In addition, also regarding (5.12) and (5.13), we obtain from (5.3), (5.8) and (ÃGH),
that

(5.17)

{
−2ε

� t

0

〈
G (w + v) − G (v) , ∂w

∂s (s)
〉
ds ≤ G

� t

0
Θ(s)ds,

−2δ
� t

0

〈
H
(

∂
∂t (w + v)

)
− H

(
∂v
∂t

)
, ∂w

∂s (s)
〉
ds ≤ H

� t

0 Θ(s)ds,
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for non-negative constants G and H given by

(5.18)





G = 1 + T 2 sup |G′(η)|2 ,

H = 1 + sup |H ′(σ)|2 ,

|η| ≤
√

2

(
‖u‖L∞(0,T ;H1(0,1)) +

∑
0≤i+j≤n

‖uij‖L∞(0,T ;H1(0,1))2
i+j

)
,

|σ| ≤
√

2

(
‖u‖L∞(0,T ;H2(0,1)) +

∑
0≤i+j≤n

‖uij‖L∞(0,T ;H2(0,1))2
i+j

)
.

From Lemma 3 and (5.13), it obviously follows that

(5.19) 2

� t

0

〈
Wn(ε, δ),

∂w

∂s
(s)

〉
ds ≤ TWT

(
ε2 + δ2

)n+1
2 +

� t

0

Θ(s)ds.

Combining (5.12)-(5.19) by choosing ̺ ∈
(
0, µ0

4

)
, we conclude that

(5.20)
Θ(t)

min{1, µ0}
≤ C

(
ε2 + δ2

)n+1
2 , for all t ∈ [0, T ]

for

(5.21) C ≡ 2TWT

min{1, µ0}

[
exp

(
1 + G + H + kν +

1

µ0

� t

0

∥∥∥∥
∂µ

∂s
(·, s)

∥∥∥∥
L∞(0,1)

ds

)]2

.

Finally, it is clear that (5.7) is deduced from (5.13), (5.20) and (5.21). Hence, the
proof is complete.

�

6. Appendix: The detailed proof of Lemma 3

Recall Lemma 3 in the previous section as follows:

Lemma 3. Under assumptions (Ãµ), (ÃGH), (ÂGH), (ÃF ), (Ãg) and (Ãk), the
following estimate

‖Wn(ε, δ)‖L∞(0,T ;L2(0,1)) ≤ WT

(
ε2 + δ2

) n+1
2(6.1)

holds for ε, δ ∈ R satisfying (5.3), where WT is a non-negative constant depending

only on G, H, uij and
∂uij

∂t for 0 ≤ i + j ≤ n.

Proof. In the cases of n = 0 and n = 1, the proof of Lemma 3 is easy, hence
we omit the details, here we mainly prove this lemma for n ≥ 2.

By putting

(6.2) ṽ ≡
∑

1≤i+j≤n

uijε
iδj ,

we have that Taylor’s formulas of the functions G(v) = G(u00 + ṽ), H
(

∂v
∂t

)
=

H
(

∂
∂t (u00 + ṽ)

)
about the points u00,

∂u00

∂t , respectively, up to order n are given
by
(6.3)



G(v) = G(u00) +
n−1∑
k=1

1
k!G

(k)(u00)ṽ
k + 1

n!G
(n)(u00 + ξṽ)ṽn,

H
(

∂v
∂t

)
= H

(
∂u00

∂t

)
+

n−1∑
k=1

1
k!H

(k)
(

∂u00

∂t

) (
∂ev
∂t

)k
+ 1

n!H
(n)
(

∂
∂t (u00 + ζṽ)

) (
∂ev
∂t

)n
,
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where ξ, and ζ ∈ (0, 1). Applying Lemma 2, we deduce from (6.3), that

(6.4)





G(v) = G(u00) +

n−1∑

k=1

1

k!
G(k)(u00)

∑

k≤i+j≤kn

[uij ]k εiδj

+
1

n!
G(n)(u00 + ξṽ)

∑

n≤i+j≤n2

[uij ]n εiδj ,

H

(
∂v

∂t

)
=H

(
∂u00

∂t

)
+

n−1∑

k=1

1

k!
H(k)

(
∂u00

∂t

) ∑

k≤i+j≤kn

[
∂uij

∂t

]

k

εiδj

+
1

n!
H(n)

(
∂

∂t
(u00 + ζṽ)

) ∑

n≤i+j≤n2

[
∂uij

∂t

]

n

εiδj ,

in which





[uij ]k =





uij , 1 ≤ i + j ≤ n, k = 1,∑
(p,q)∈[Zij ]k

u(i−p)(j−q) [upq]k−1 , k ≤ i + j ≤ kn, k ≥ 2,

[
∂uij

∂t

]
k

=





∂uij

∂t , 1 ≤ i + j ≤ n, k = 1,
∑

(p,q)∈[Zij ]k

∂u(i−p)(j−q)

∂t

[
∂upq

∂t

]
k−1

, k ≤ i + j ≤ kn, k ≥ 2,

[Zij ]k =
{
(p, q) ∈ Z

2
+ : (p, q) ≤ (i, j), 1 ≤ i − p + j − q ≤ n,

k − 1 ≤ p + q ≤ (k − 1)n},

[uij ]n =





u10, i = n = 1, j = 0,

u01, i = 0, j = n = 1,∑
(p,q)∈[Zij ]n

u(i−p)(j−q) [upq]n−1 , n ≤ i + j ≤ n2, n ≥ 2,

[
∂uij

∂t

]
n

=





∂u10

∂t , i = n = 1, j = 0,
∂u01

∂t , i = 0, j = n = 1,
∑

(p,q)∈[Zij ]n

∂u(i−p)(j−q)

∂t

[
∂upq

∂t

]
n−1

, n ≤ i + j ≤ n2, n ≥ 2,

[Zij ]n =
{
(p, q) ∈ Z

2
+ : (p, q) ≤ (i, j), 1 ≤ i − p + j − q ≤ n,

n − 1 ≤ p + q ≤ n2 − n}.

In addition, on account of these identities

ε

n−1∑

k=1

1

k!
G(k)(u00)

∑

k≤i+j≤n−1

[uij ]k εiδj =
∑

1≤i+j≤n−1

i+j∑

k=1

1

k!
G(k)(u00) [uij ]k εi+1δj ,

δ

n−1∑

k=1

1

k!
H(k)

(
∂u00

∂t

) ∑

k≤i+j≤n−1

[
∂uij

∂t

]

k

εiδj

=
∑

1≤i+j≤n−1

i+j∑

k=1

1

k!
H(k)

(
∂u00

∂t

)[
∂uij

∂t

]

k

εiδj+1,
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we obtain from (6.4), that
(6.5)



εG(v) = εG(u00) +
∑

2≤i+j≤n,i≥1

i+j−1∑
k=1

1
k!G

(k)(u00)
[
u(i−1)j

]
k
εiδj + G̃(G, ṽ, ε, δ),

δH

(
∂v

∂t

)
=δH

(
∂u00

∂t

)
+

∑

2≤i+j≤n,j≥1

i+j−1∑

k=1

1

k!
H(k)

(
∂u00

∂t

)[
∂ui(j−1)

∂t

]

k

εiδj

+ H̃

(
H,

∂ṽ

∂t
, ε, δ

)
,

in which G̃(G, ṽ, ε, δ) and H̃
(
H, ∂ev

∂t , ε, δ
)

are given as follows

(6.6)





G̃(G, ṽ, ε, δ) =ε

n−1∑

k=1

1

k!
G(k)(u00)

∑

n≤i+j≤kn

[uij ]k εiδj

+
ε

n!
G(n)(u00 + ξṽ)

∑

n≤i+j≤n2

[uij ]n εiδj ,

H̃

(
H,

∂ṽ

∂t
, ε, δ

)
=δ

n−1∑

k=1

1

k!
H(k)

(
∂u00

∂t

) ∑

n≤i+j≤kn

[
∂uij

∂t

]

k

εiδj

+
δ

n!
H(n)

(
∂

∂t
(u00 + ζṽ)

) ∑

n≤i+j≤n2

[
∂uij

∂t

]

n

εiδj .

From (5.10), (6.5) and (6.6), we deduce that

Wn(ε, δ) = −G̃(G, ṽ, ε, δ) − H̃

(
H,

∂ṽ

∂t
, ε, δ

)
.(6.7)

Recall that uij , 0 ≤ i + j ≤ n, are the weak solutions of problems (Uij),
respectively. From (2.1), (5.3)-(5.5) and (6.2), we deduce that

(6.8)

{
|u00(x, t)| ≤

√
2 ‖u00‖L∞(0,T ;H1(0,1)) ,

|u00(x, t) + ξṽ(x, t)| ≤
√

2 ‖u00 + ξṽ‖L∞(0,T ;H1(0,1)) ,

for (x, t) ∈ (0, 1) × (0, T ) and ξ ∈ (0, 1).

Since (ÂGH) and (6.8), it follows that Ck, 1 ≤ k ≤ n, such that

(6.9)





Ck ≡ sup
u00

∣∣G(k)(u00)
∣∣ for every 1 ≤ k ≤ n − 1,

Cn ≡ sup
u00+ξev

∣∣G(n) (u00 + ξṽ)
∣∣ ξ ∈ (0, 1)

are non-negative constants. Now, combining (6.6)1 and (6.9), we conclude that

(6.10)
∥∥∥G̃(G, ṽ, ε, δ)

∥∥∥
L∞(0,T ;L2(0,1))

≤ G0

(
ε2 + δ2

)n+1
2

for G0 a non-negative constant given by

G0 =

n−1∑

k=1

∑

n≤i+j≤kn

2
i+j−n

2
Ck

k!
‖[uij ]k‖L∞(0,T ;L2(0,1))

+
Cn

n!

∑

n≤i+j≤n2

2
i+j−n

2 ‖[uij ]n‖L∞(0,T ;L2(0,1)) .

(6.11)
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Moreover, let C′
k, 1 ≤ k ≤ n, be non-negative constants defined as follows:

(6.12)





C′
k ≡ sup

∂u00
∂t

∣∣H(k)
(

∂u00

∂t

)∣∣ for every 1 ≤ k ≤ n − 1,

C′
n ≡ sup

∂u00
∂t

+ζ ∂ ev
∂t

∣∣H(n)
(

∂u00

∂t + ζ ∂ev
∂t

)∣∣ , ζ ∈ (0, 1).

By the same way for the estimate of G̃(G, ṽ, ε, δ) in L∞
(
0, T ; L2(0, 1)

)
, we also

obtain

(6.13)
∥∥∥H̃(H, ṽ, ε, δ)

∥∥∥
L∞(0,T ;L2(0,1))

≤ H0

(
ε2 + δ2

)n+1
2 ,

in which H0 is a non-negative constant given by

H0 =

n−1∑

k=1

∑

n≤i+j≤kn

2
i+j−n

2
C′

k

k!

∥∥∥∥
[
∂uij

∂t

]

k

∥∥∥∥
L∞(0,T ;L2(0,1))

+
C′

n

n!

∑

n≤i+j≤n2

2
i+j−n

2

∥∥∥∥
[
∂uij

∂t

]

n

∥∥∥∥
L∞(0,T ;L2(0,1))

.

(6.14)

Finally, it is clear that (6.10) and (6.13) imply (6.1). �
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[6] Brezis, H.: Analyse fonctionnelle: Théorie et applications, Masson, Paris, 1983.
[7] Collins, P.J.: Differential and Integral Equations, Oxford University Press, 2006.
[8] Evans, L.C.: Partial differential equations, Grad. Stud. Math., Amer. Math. Soc., Vol. 19,

1998.
[9] M.V. Fedoryuk; Partial differential equations V: Asymptotic methods for partial differential

equations, Encyclopaedia of mathematical sciences, Springer-Verlag, Vol. 34, 1999.
[10] Lakshmikantham V. and Leela S.: Differential and Integral Inequalities, Academic Press,

New York Vol. 1, 1969.
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