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On a Semi-Linear Wave Equation Associated with Memory
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Abstract. In this paper the unique existence and regularity of the weak solu-
tion of an initial-boundary value problem relating to a semi-linear wave equa-
tion and two integral equations at the boundaries are given.
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1. Introduction

We study the solution u(x, t) of following semi-linear equation

∂2u

∂t2
(x, t) − ∂

∂x

(
µ(x, t)

∂u

∂x
(x, t)

)
+ G (u(x, t))

+ H

(
∂u

∂t
(x, t)

)
= F (x, t),

(1.1)
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where 0 < x < 1, 0 < t < T , associated with initial-boundary values given by

µ(0, t)
∂u

∂x
(0, t) = g0(t) +

� t

0

k0(t − s)u(0, s)ds,(1.2)

−µ(1, t)
∂u

∂x
(1, t) = g1(t) +

� t

0

k1(t − s)u(1, s)ds,(1.3)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),(1.4)

where µ, G, H , F , g0, k0, g1, k1, u0 and u1 are given real functions satisfying
conditions specified later. The terms G (u(x, t)), H

(
∂u
∂t (x, t)

)
are, respectively,

called the damping, the source term of Eq. (1.1), and we shortly call the sum
G (u(x, t)) + H

(
∂u
∂t (x, t)

)
the damping-source term.

The problems of wave equations associated with memory conditions or integral
equations at the boundaries have interested many mathematicians (see [5], [10]-
[20], [22], [24], [25]).

When µ(x, t) ≡ 1 and F (x, t) = 0, in [10], Nguyen and Alain considered prob-
lem (1.1), (1.4) in the case of the full nonlinear damping-source term of u and ∂u

∂t
associated with the homogeneous boundary at x = 0 and the non-homogeneous
boundary condition at x = 1 given by

(1.5) −∂u

∂x
(1, t) ≡ Q(t) = hu(1, t)− g(t) −

� t

0

k(t − s)u(1, s)ds,

where h is a positive constant; Q, g and k are given functions. We note that
(1.5) is deduced from a Cauchy problem for an ordinary differential equation at the
boundary x = 1 as follows

(1.6)

{
Q′′(t) + ω2Q(t) = h∂2u

∂t2 (1, t), t ∈ (0, T ),

Q(0) = Q0, Q′(0) = Q1,

where ω > 0, Q0 and Q1 are given constants. This problem is a mathematical
model describing the shock of a rigid body and a nonlinear viscoelastic bar resting
on a rigid base. In this article, the authors obtained the unique solvability of the
weak solution.

In [20], Santos studied the asymptotic behavior of the solution of problem (1.1),
(1.2), (1.4) in the case of µ(x, t) ≡ µ(t), G(u) = H

(
∂u
∂t

)
= 0, F (x, t) = 0 associated

with a boundary condition of memory type at x = 1 as follows

(1.7) u(1, t) +

� t

0

g(t − s)µ(s)
∂u

∂x
(1, s)ds = 0, t > 0,

in which g and µ are given functions. It is noted that the boundary conditions (1.5)
and (1.7) are similar since their formal differences can be crossed out after solving
the Volterra equation with respect to the variable u(1, t) given by (1.7).

In [16, 17, 18], Nguyen, Lê and T. Nguyen considered the unique existence,
stability, regularity in time variable and asymptotic expansion for the solution of
problem (1.1)-(1.4) when µ(x, t) ≡ µ(t), G(u) = Ku, H

(
∂u
∂t

)
= λ∂u

∂t and the
boundary condition (1.2) is homogeneous and the boundary value at x = 1, (1.3),
is

(1.8) −µ(t)
∂u

∂x
(1, t) = g(t) + K1(t)u(1, t) + λ1(t)

∂u

∂t
(1, t) +

� t

0

k(t − s)u(1, s)ds,
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where g, K1, λ1 and k are given functions.
In the above articles, the authors mainly applied Faedo-Galerkin approximation

to study the unique solvability.
In the case of homogeneous boundaries, in [21], Sengul investigated the exis-

tence of the global attractor of Eq.(1.1) in the case of

µ(x, t) = 1, H

(
∂u

∂t

)
= α

∂u

∂t
, α > 0

associated homogeneous boundary conditions and the initial conditions similar to
(1.4). In [1], Aassila and Benaissa obtained the global unique solvability, also
by Faedo-Galerkin approximation, and the decay for the solution of the following
problem:

(1.9)





∂2u

∂t2
− Φ

(�
Ω

n∑

i=1

(
∂u

∂xi

)2

dx

)
n∑

i=1

∂2u

∂x2
i

+ g

(
∂2u

∂t2

)
+ f(u) = 0 in Ω × [0, +∞[,

u(x, t) = 0 on Γ × [0, +∞[,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x) on Ω,

for Ω a bounded domain in R
n with a smooth boundary ∂Ω = Γ, where Φ, g, f ,

u0 and u1 are given functions. In [4], Benaddi and Rao obtained the energy decay
rate of the solution by a shooting method for problem (1.1)-(1.4) where µ(x, t) = 1,
G and H are linear, F (x, t) = 0, and g0 = g1 = k0 = k1 ≡ 0 (or (1.2)-(1.3)
are homogeneous). In addition, Phung [19] studied the stabilization of the wave
equation with a localized linear dissipation in a three-dimensional bounded domain
on which exists a trapped ray given by

(1.10)





∂2u
∂t2 −

3∑
i=1

∂2u
∂x2

i

+ α(x)∂u
∂t = 0 in Ω × R

+,

u(x, t) = 0 on ∂Ω × R
+,

u(x, 0) = u0,
∂u
∂t (x, 0) = u1(x) in Ω,

for Ω a bounded domain in R
3 with a boundary ∂Ω at least Lipschitz; α, u0 and

u1 are given functions.
Regarding Mikusiński calculus, D. Takači and A. Takači studied the existence

of the solution of problem (1.1), (1.4) in the field of Mikusiński when µ(x, t) = 1,
G and H are linear, and the boundary conditions are non-homogeneous.

In this paper, we apply a contracted procedure (see [8], [13], [23]) to obtain the
unique solvability of problem (1.1)-(1.4), and it is believed that the essential proofs
must be shorter and easier than what has been brought up since the difficulties
relating to the nonlinear damping source can be solved by a suitable contraction.
What we obtain here is considered as both the generalization and a more effective
approach of those in Aassila and Benaissa [1], in Benaddi and Rao [4], Long and
Dinh [10], in Phung [19], in Santos [20], in Sengul [21], D. Takači and A. Takači
[22] and in mine [16]-[18], [24], [25].

Furthermore, we can affirm that this work exceeds a routine application of
usual methods, namely the Faedo-Galerkin method with the compactness argument
and the monotone operator method, for semi-linear damped wave equations as
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popularized by Jacques-Louis Lions several years ago (see [9], [15]) and also by
Songmu Zheng [27].

2. Preliminary results and notations

First we introduce some preliminary results and notations used in this paper.
We omit the definitions of usual function spaces: Cm, Lp, Wm,p, Hm for p ∈ [1, +∞]
and m ∈ N.

We denote by 〈·, ·〉 the scalar product in L2(0, 1) or pair of dual scalar product
of a continuous linear functional with an element of a function space. We denote by
‖ · ‖X the norm of a Banach space X and by X ′ the dual space of X . We denote by
Lp(0, T ; X), 1 ≤ p ≤ ∞, T > 0, the Banach space of the real measurable functions
v : (0, T ) → X , such that

‖v‖Lp(0,T ;X) =

(� T

0

‖v(t)‖p
Xdt

)1/p

< ∞ for 1 ≤ p < ∞,

and
‖v‖L∞(0,T ;X) = esssup

0<t<T
‖v(t)‖X for p = ∞.

In addition, we denote by Wm,p (0, T ; X) for p ∈ [1, +∞] and m ∈ N the Sobolev
space of all functions v ∈ Lp (0, T ; X) such that v(m) exists in the weak sense and
belongs to Lp (0, T ; X) and

‖v‖W m,p(0,T ;X) :=





(� T

0

m∑
i=0

‖v(i)(t)‖p
Xdt

)1/p

, 1 ≤ p < ∞,

ess sup
0≤t≤T

m∑
i=0

‖v(i)(t)‖X , p = ∞.

Shortly we write
Hm (0, T ; X) = Wm,2 (0, T ; X) .

Furthermore, we denote by C ([0, T ]; X) all of continuous functions

v : (0, T ) → X

with
‖v‖C([0,T ];X) := max

0≤t≤T
‖v(t)‖X < ∞,

and C1 ([0, T ]; X) all of differential functions

v : (0, T ) → X

with

‖v‖C1([0,T ];X) := max
0≤t≤T

(
‖v(t)‖X +

∥∥∥∥
∂v

∂t
(t)

∥∥∥∥
X

)
< ∞.

In H1(0, 1), we use the norm

‖v‖H1(0,1) =
√
‖v‖2

L2(0,1) + ‖v′‖2
L2(0,1), v ∈ H1(0, 1).

Then we have the following lemma whose proof is omitted:

Lemma 1. The embedding H1(0, 1) →֒ C0([0, 1]) is compact and

(2.1) ‖v‖C0([0,1]) ≤
√

2‖v‖H1(0,1),

for all v ∈ H1(0, 1).
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Moreover, let a real function u = u(x, t) for (x, t) ∈ (0, 1) × (0, T ) such that
u(t) ∈ X where X is a real Banach space defined on (0, 1), there are two following
results whose proofs are able to be seen in [8]:

Lemma 2. Let u ∈ W 1,p(0, T ; X) for some 1 ≤ p ≤ ∞. Then

u ∈ C([0, T ]; X).

Lemma 3. Suppose u ∈ L2
(
0, T ; H2(0, 1)

)
, with ∂u

∂t ∈ L2
(
0, T ; L2(0, 1)

)
. We

have

u ∈ C
(
[0, T ]; H1(0, 1)

)
.

3. Unique solvability

First and foremost, we make some following essential assumptions:

(Aµ) ∂µ
∂t ∈ L1 (0, T ; L∞(0, 1)), µ(x, t) ≥ µ0 > 0;

(A
(1)
GH) G, H ∈ L2 (R);

(A
(2)
GH) ∃KG, KH > 0 :

|G(u) − G(v)| ≤ KG|u − v|,
|H(u) − H(v)| ≤ KH |u − v|,

for u, v ∈ R;
(AF ) F ∈ L2 ((0, 1) × (0, T ));
(Ag) g0, g1 ∈ H1(0, T );
(Ak) k0, k1 ∈ W 1,1(0, T );
(Au) u0 ∈ H1(0, 1), u1 ∈ L2(0, 1).

In this paper, we say that a function

u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)

is a weak solution of problem (1.1)-(1.4) iff




d
dt

〈
∂u
∂t (t), v

〉
+
〈
µ(t)∂u

∂x (t), v′
〉

+ Q0(t)v(0) + Q1(t)v(1)

+
〈
G (u(t)) + H

(
∂u
∂t (t)

)
, v
〉

= 〈F (t), v〉 ,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x),

Q0(t) = g0(t) +
� t

0 k0(t − s)u(0, s)ds,

Q1(t) = g1(t) +
� t

0
k1(t − s)u(1, s)ds,

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T , where µ(t) ≡ µ(·, t) and F (t) ≡
F (·, t). In this case we can say that problem (1.1)-(1.4) is weakly solvable in
H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
.

Then, we have the following theorem:

Theorem 1. Let (Aµ), (A
(1)
GH), (A

(2)
GH), (AF ), (Ag), (Ak) and (Au) hold. Then,

for T > 0, the problem (1.1)-(1.4) has a unique weak solution u(x, t) satisfying

(3.1) u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
.

Proof. The proof consists of two steps as follows.
Step 1. The solvability in H1

(
0, T ; L2(0, 1)

)
.

Let an operator ⊎ be defined as follows. For a given function

u ∈ H1
(
0, T ; L2(0, 1)

)
,
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set

(3.2) £(x, t) := G (u(x, t)) + H

(
∂u

∂t
(x, t)

)
− F (x, t) for (x, t) ∈ [0, 1] × [0, T ].

From (A
(1)
GH) and (AF ), we deduce that

(3.3) £ ∈ L2 ((0, T )× (0, 1)) .

We have the following lemma.

Lemma 4. With the presence of (3.3) and assumptions (Aµ), (Ag), (Ak), (Au),
the linear initial-boundary value problem given by

(3.4)





∂2w
∂t2 − ∂

∂x

(
µ(x, t)∂w

∂x

)
+ £ = 0 in (0, 1) × (0, T ),

µ(0, t)∂w
∂x (0, t) = Q0w(t),

−µ(1, t)∂w
∂x (1, t) = Q1w(t),

w(x, 0) = u0(x), ∂w
∂t (x, 0) = u1(x),

Q0w(t) = g0(t) +
� t

0 k0(t − s)w(0, s)ds,

Q1w(t) = g1(t) +
� t

0
k1(t − s)w(1, s)ds

has a unique weak solution w(x, t) such that

(3.5) w ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
.

In addition, w(x, t) satisfies the estimate

(3.6)

∥∥∥∥
∂w

∂t
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(t)
∂w

∂x
(t)

∥∥∥∥
2

L2(0,1)

≤ c©0 for all t ∈ [0, T ]

for which c©0 is a positive constant independent of t.

Since (3.4) is a linear problem, the proof of this lemma is really simple and is
similar to what in [14].

Remark 1. The unique solvability of problem (3.4) is independent of assump-

tion (A
(2)
GH).

It is clear that w satisfies the variational problem
(3.7)



d
dt

〈
∂w
∂t (t), v

〉
+
〈
µ(t)∂w

∂x (t), v′
〉

+ Q0w(t)v(0) + Q1w(t)v(1) + 〈£(t), v〉 = 0,

w(x, 0) = u0(x), ∂w
∂t (x, 0) = u1(x),

Q0w(t) = g0(t) +
� t

0 k0(t − s)w(0, s)ds,

Q1w(t) = g1(t) +
� t

0
k1(t − s)w(1, s)ds,

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T .
Define ⊎ : H1

(
0, T ; L2(0, 1)

)
→ H1

(
0, T ; L2(0, 1)

)
by setting

(3.8) ⊎u = w.

It is claimed that if T > 0 is small enough then ⊎ is a strict contraction. To prove
this, let u, ũ ∈ H1

(
0, T ; L2(0, 1)

)
arbitrarily and define w = ⊎u, w̃ = ⊎ũ as above.
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As a result, w verifies (3.7) for £ given by (3.2) and w̃ satisfies the problem
(3.9)



d
dt

〈
∂ ew
∂t (t), v

〉
+
〈
µ(t)∂ ew

∂x (t), v′
〉

+ Q̃0w(t)v(0) + Q̃1w(t)v(1) +
〈
£̃(t), v

〉
= 0,

w̃(x, 0) = u0(x), ∂ ew
∂t (x, 0) = u1(x),

Q̃0w(t) = g0(t) +
� t

0
k0(t − s)w̃(0, s)ds,

Q̃1w(t) = g1(t) +
� t

0
k1(t − s)w̃(1, s)ds,

£̃(x, t) := G (ũ(x, t)) + H
(

∂eu
∂t (x, t)

)
− F (x, t),

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T . In addition, we have from (3.7) and
(3.9), that

〈
∂2w

∂t2
(t) − ∂2w̃

∂t2
(t), v

〉
+

〈
µ(t)

[
∂w

∂x
(t) − ∂w̃

∂x
(t)

]
, v′
〉

+
(
Q0w(t) − Q̃0w(t)

)
v(0) +

(
Q1w(t) − Q̃1w(t)

)
v(1) +

〈
£(t) − £̃(t), v

〉
= 0,

(3.10)

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T . Now, in (3.10), replacing v by
∂w
∂t − ∂ ew

∂t and then integrating with respect to t, we get

c©(t) =

� t

0

〈
∂µ

∂s
(s),

[
∂w

∂x
(s) − ∂w̃

∂x
(s)

]2〉
ds

− 2

� t

0

[
∂w

∂s
(0, s) − ∂w̃

∂s
(0, s)

](� s

0

k0(s − τ) [w(0, τ) − w̃(0, τ)] dτ

)
ds

− 2

� t

0

[
∂w

∂s
(1, s) − ∂w̃

∂s
(1, s)

](� s

0

k1(s − τ) [w(1, τ) − w̃(1, τ)] dτ

)
ds

− 2

� t

0

〈
£(s) − £̃(s),

∂w

∂s
(s) − ∂w̃

∂s
(s)

〉
ds,

(3.11)

in which

c©(t) =

∥∥∥∥
∂w

∂t
(t) − ∂w̃

∂t
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(t)

[
∂w

∂x
(t) − ∂w̃

∂x
(t)

]∥∥∥∥
2

L2(0,1)

.(3.12)
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From (2.1), (3.3), (3.11), (3.12) and assumptions (Aµ), (Ak), we deduce some fol-
lowing estimates:� t

0

〈
∂µ

∂s
(s),

[
∂w

∂x
(s) − ∂w̃

∂x
(s)

]2
〉

ds

≤ 1

µ0

� t

0

∥∥∥∥
∂µ

∂s
(s)

∥∥∥∥
L∞(0,1)

c©(s)ds,

(3.13)

−2

� t

0

[
∂w

∂s
(i, s) − ∂w̃

∂s
(i, s)

](� s

0

ki(s − τ) [w(i, τ) − w̃(i, τ)] dτ

)
ds

≤ 2η

µ0
c©(t) + Ci (T, µ0, ki)

� t

0

c©(s)ds,

(3.14)

2

� t

0

〈
£(s) − £̃(s),

∂w

∂s
(s) − ∂w̃

∂s
(s)

〉
ds

≤
� t

0

∥∥∥£(s) − £̃(s)
∥∥∥

2

L2(0,1)
ds +

� t

0

c©(s)ds,

(3.15)

for i = 0, 1, η > 0, where

Ci (T, µ0, ki)

= 2ηT +

(
T 2 +

1

µ0

)(
2 + 2

√
2|ki(0)| + 2

η
‖ki‖2

L2(0,T ) + ‖k′
i‖2

L1(0,T )

)
(3.16)

are positive constants depending on T , µ0 and ki, i = 0, 1. With the relevant choice
of η, namely η = µ0

8 , using Gronwall’s inequality, we conclude from (3.11)-(3.16),
that

(3.17) c©(t) ≤
(

2

� t

0

∥∥∥£(s) − £̃(s)
∥∥∥

2

L2(0,1)
ds

)
exp [r(t)] ,

where

(3.18) r(t) = 2

� t

0


1 +

∑

i=0,1

Ci (T, µ0, ki) +
1

µ0

∥∥∥∥
∂µ

∂s
(s)

∥∥∥∥
L∞(0,1)


 ds.

From (3.16) and (Aµ), we deduce from (3.18) that there exists a constant r0 > 0
independent of t such that

(3.19) 2 exp [r(t)] ≤ r0 for all t ∈ [0, T ].

From (3.19) and (A
(2)
GH), we discover that (3.17) is equivalent to

(3.20) c©(t) ≤ 2r0 max
{
K2

G, K2
H

}
‖u − ũ‖2

H1(0,T ;L2(0,1)),

for all t ∈ [0, T ] and u, ũ ∈ H1
(
0, T ; L2(0, 1)

)
arbitrarily.

Combining (3.12) and (3.20), it follows that

(3.21)

∥∥∥∥
∂w

∂t
(t) − w̃

∂t
(t)

∥∥∥∥
2

L2(0,1)

≤ 2r0 max
{
K2

G, K2
H

}
‖u − ũ‖2

H1(0,T ;L2(0,1)),

for all t ∈ [0, T ] and u, ũ ∈ H1
(
0, T ; L2(0, 1)

)
arbitrarily.

Moreover, it is not difficult to affirm that

(3.22) ‖w(t) − w̃(t)‖2
L2(0,1) ≤ 2r0T

2 max
{
K2

G, K2
H

}
‖u − ũ‖2

H1(0,T ;L2(0,1)),
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for all t ∈ [0, T ] and u, ũ ∈ H1
(
0, T ; L2(0, 1)

)
arbitrarily.

Hence, from (3.21) and (3.22), we deduce

(3.23) ‖w − w̃‖2
H1(0,T ;L2(0,1)) ≤ K2

H1‖u − ũ‖2
H1(0,T ;L2(0,1)),

where KH1 =
√

2r0 (T 2 + 1)max {K2
G, K2

H} and u, ũ ∈ H1
(
0, T ; L2(0, 1)

)
arbi-

trarily. Thus,

(3.24) ‖ ⊎ u − ⊎ũ‖H1(0,T ;L2(0,1)) ≤ KH1‖u − ũ‖H1(0,T ;L2(0,1)),

u, ũ ∈ H1
(
0, T ; L2(0, 1)

)
arbitrarily. Therefore, ⊎ is a strict contraction, provided

T > 0 is so small that KH1 < 1.

As a result, with the application of Banach’s fixed point theorem, we conclude that
there exists u ∈ H1

(
0, T ; L2(0, 1)

)
which is the weak solution of problem (1.1)-(1.4).

In the case of T > 0 given, we select T1 > 0 so small that

KH1 =
√

2r0 (T 2
1 + 1)max {K2

G, K2
H} < 1.

Then we are able to apply Banach’s fixed point theorem to find a weak solution u

of problem (1.1)-(1.4) existing on the time interval [0, T1]. Due to u(·, t), ∂u
∂t (·, t) ∈

L2(0, 1) for a.e. 0 ≤ t ≤ T1, we can continue, upon redefining T1 if necessary, by
assuming u(·, T1) ∈ H1(0, 1), ∂u

∂t (·, T1) ∈ L2(0, 1). We can then repeat the above
argument to extend our solution to the time interval [T1, 2T1]. Continuing, after
finite steps we construct a weak solution existing on the full interval [0, T ].

Step 2. The solvability in L∞
(
0, T ; H1(0, 1)

)
.

Step 1 shows that the operator ⊎ defined by

⊎u = w

for all u ∈ H1
(
0, T ; L2(0, 1)

)
has at least one fixed point. Hence there exists

u ∈ H1
(
0, T ; L2(0, 1)

)
such that w = ⊎u ≡ u. Then we can deduce from (3.6) that

(3.25)

∥∥∥∥
∂u

∂t
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(t)
∂u

∂x
(t)

∥∥∥∥
2

L2(0,1)

≤ c©0 for all t ∈ [0, T ].

In addition, from (3.25) and (Au), it is easy to compute that

(3.26)

{
‖u(t)‖2

L2(0,1) ≤ 2 ‖u0‖2
L2(0,1) + 2T 2 c©0 ≤ c©1,∥∥∂u

∂x (t)
∥∥2

L2(0,1)
≤ c©0

µ0
,

for all t ∈ [0, T ], where c©1 is also a positive constant independent of t.
After taking the essential supremum of the left sides of (3.26) with respect to t, we
deduce that

(3.27) u ∈ L∞
(
0, T ; H1(0, 1)

)
.

As a result, problem (1.1)-(1.4) is also solvable on L∞
(
0, T ; H1(0, 1)

)
.

Step 3. The uniqueness of the weak solution.

To demonstrate uniqueness, suppose both u and ũ are two weak solutions of
problem (1.1)-(1.4) in H1

(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)
. Then we can have

w = u, w̃ = ũ in (3.11), hence we discover

(3.28) ‖u(t) − ũ(t)‖2
H1(0,1) ≤

2 c̃©0

min
{

1
T 2 , µ0

}
� t

0

‖u(s) − ũ(s)‖2
H1(0,1)ds,
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where

(3.29) c̃©0 ≥ 2 exp



� t

0


3 +

∑

i=0,1

Ci (T, µ0, ki) +
1

µ0

∥∥∥∥
∂µ

∂s
(s)

∥∥∥∥
L∞(0,1)


 ds


 ,

Because of Gronwall’s inequality, we deduce from (3.28), that

‖u − ũ‖L∞(0,T ;H1(0,1)) = 0.

So, we obtain that u ≡ ũ.

The above three steps show that the proof of the theorem is complete. �

Remark 2. When H
(

∂u
∂t

)
= λ

∣∣∂u
∂t

∣∣p ∂u
∂t , p > 0, λ < 0, it fails to apply Faedo-

Galerkin method for the unique solvability of problem (1.1)-(1.4). This method is
only applicable for linear or some special nonlinear problems (as in [5], [10]-[20],
[24], [25]).

Remark 3. For some special nonlinear forms of damping-source terms G(u)+
H
(

∂u
∂t

)
of problem (1.1)-(1.4) such as

K |u|p u + λ

∣∣∣∣
∂u

∂t

∣∣∣∣
q

∂u

∂t
, (p, q) ∈ R

2
+ \ (0, 0), (K, λ) ∈ R

2
+,

G(u) + K
∂u

∂t
, K ∈ R,

it is possible to apply Faedo-Galerkin approximation for the unique solvability of
problem (1.1)-(1.4); however, some more assumptions for µ, G and H must be
added and unfortunately the proofs in such cases are usually not only very long
but also truly complicated such as a priori estimates or passing to the limit by
monotone techniques as in [9] and [15].

4. The regularity of the weak solution

In this section, the investigation for problem (1.1)-(1.4) is to study its weak
solution’s smoothness with respect to the smoothness of initial data. Specifically,

assumptions (Aµ), (A
(1)
GH), (A

(2)
GH), (AF ), (Ag), (Ak), and (Au) are strengthened as

follows:

(Ãµ) µ ∈ C1 ([0, 1] × [0, T ]), ∂2µ
∂t2 ∈ L2 (0, T ; L∞(0, 1)), µ(x, t) ≥ µ0 > 0;

(ÃGH) G, H ∈ C1 (R), |H ′(η)| ≤ CH |η|α, ∀η ∈ R, and α > 0, CH ≥ 0;

(ÃF ) F, ∂F
∂t ∈ L2 ((0, 1) × (0, T ));

(Ãg) g0, g1 ∈ H2(0, T );

(Ãk) k0, k1 ∈ W 2,1(0, T );

(Ãu) u0 ∈ H2(0, 1), u1 ∈ H1(0, 1).

It is clear that problem (1.1)-(1.4) has a unique weak solution

u ∈ H1
(
0, T ; L2(0, 1)

)
∩ L∞

(
0, T ; H1(0, 1)

)

for which (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk), and (Ãu) hold. The regularity of this
weak solution is stated in the following theorem:

Theorem 2. Let (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk), and (Ãu) be hold. Then, for

T > 0, the problem (1.1)-(1.4) has a unique weak solution u(x, t) satisfying

(4.1) u ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1

(
0, T ; H1(0, 1)

)
∩ L∞

(
0, T ; H2(0, 1)

)
.
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Proof. From the previous section, (Aµ), (A
(1)
GH), (A

(2)
GH), (AF ), (Ag), (Ak),

and (Au) ensure that problem (1.1)-(1.4) has a unique weak solution u satisfying
(3.1) and verifying the following variational problem

(4.2)





〈
∂2u
∂t2 (t), v

〉
+
〈
µ(t)∂u

∂x (t), v′
〉

+ Q0(t)v(0) + Q1(t)v(1)

+
〈
G (u(t)) + H

(
∂u
∂t (t)

)
, v
〉

= 〈F (t), v〉 ,

u(x, 0) = u0(x), ∂u
∂t (x, 0) = u1(x),

Q0(t) = g0(t) +
� t

0 k0(t − s)u(0, s)ds,

Q1(t) = g1(t) +
� t

0
k1(t − s)u(1, s)ds,

for each v ∈ H1(0, 1) and a.e. time 0 ≤ t ≤ T . Certainly (Ãµ), (ÃGH), (ÃF ), (Ãg),

(Ãk), and (Ãu) also give the same result. Now, the matter is to prove that u also

satisfies (4.1). Indeed, differentiating (4.2)1 with respect to t, replacing v by ∂2u
∂t2

and then integrating with respect to the time variable from 0 to t, we obtain that

s(t) = s(0) +

� t

0

〈
∂µ

∂s
(s),

∣∣∣∣
∂2u

∂x∂s
(s)

∣∣∣∣
2
〉

ds

− 2

〈
∂µ

∂t
(t)

∂u

∂x
(t),

∂2u

∂x∂t
(t)

〉
+ 2

〈
∂µ

∂t
(0)

∂u

∂x
(0),

∂2u

∂x∂t
(0)

〉

+ 2

� t

0

〈
∂2µ

∂s2
(s)

∂u

∂x
(s),

∂2u

∂x∂s
(s)

〉
ds

− 2

� t

0

Q′
0(s)

∂2u

∂s2
(0, s)ds − 2

� t

0

Q′
1(s)

∂2u

∂s2
(1, s)ds

− 2

� t

0

〈
G′ (u(s))

∂u

∂s
(s) + H ′

(
∂u

∂s
(s)

)
∂2u

∂s2
(s),

∂2u

∂s2
(s)

〉
ds

+ 2

� t

0

〈
∂F

∂s
(s),

∂2u

∂s2
(s)

〉
ds,

(4.3)

in which

s(t) =

∥∥∥∥
∂2u

∂t2
(t)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(t)
∂2u

∂x∂t
(t)

∥∥∥∥
2

L2(0,1)

.(4.4)

From (2.1), (3.25), (4.3), (4.4) and assumptions (Ãµ), (ÃGH), (ÃF ), (Ãg), (Ãk),

and (Ãu), we deduce some following estimates:

s(0) =

∥∥∥∥
∂2u

∂t2
(0)

∥∥∥∥
2

L2(0,1)

+

∥∥∥∥
√

µ(0)
∂2u

∂x∂t
(0)

∥∥∥∥
2

L2(0,1)

≤ 16

(∥∥∥∥
∂µ

∂x
(0)

∥∥∥∥
L∞(0,1)

‖u′
1‖

2
L2(0,1) + µ0 ‖u′′

0‖
2
L2(0,1) + ‖G‖2

L2(0,1)

+ ‖H‖2
L2(0,1) + ‖F (0)‖2

L2(0,1)

)
+ µ0 ‖u′

1‖
2
L2(0,1) ,

(4.5)
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0

〈
∂µ

∂s
(s),

∣∣∣∣
∂2u

∂x∂s
(s)

∣∣∣∣
2
〉

ds

≤ 1

4µ2
0

� t

0

∥∥∥∥
∂µ

∂s
(s)

∥∥∥∥
2

L∞(0,1)

ds +

� t

0

s2(s)ds,

(4.6)

−2

〈
∂µ

∂t
(t)

∂u

∂x
(t),

∂2u

∂x∂t
(t)

〉
≤
∥∥∥∥

∂µ

∂t

∥∥∥∥
L∞((0,1)×(0,T ))

(
c©0

µ0γ
+ γs(t)

)
,(4.7)

2

〈
∂µ

∂t
(0)

∂u

∂x
(0),

∂2u

∂x∂t
(0)

〉
≤ 2

∥∥∥∥
∂µ

∂t
(0)

∥∥∥∥
L∞(0,1)

‖u0‖L2(0,1)‖u′
1‖L2(0,1),(4.8)

2

� t

0

〈
∂2µ

∂s2
(s)

∂u

∂x
(s),

∂2u

∂x∂s
(s)

〉
ds

≤ c©0

µ0γ

∥∥∥∥
∂2µ

∂t2

∥∥∥∥
L1(0,T ;L∞(0,1))

+
γ2

4µ2
0

� t

0

∥∥∥∥
∂2µ

∂s2
(s)

∥∥∥∥
2

L∞(0,1)

ds +

� t

0

s2(s)ds,

(4.9)

−2

� t

0

Q′
i(s)

∂2u

∂s2
(i, s)ds ≤Di +

2γ

µ0
s(t) +

1

µ0

� t

0

s(s)ds,(4.10)

−2

� t

0

〈
G′ (u(s))

∂u

∂s
(s),

∂2u

∂s2
(s)

〉
ds

≤ T c©0


 sup

|ε|≤‖u‖
L∞(0,T ;H1(0,1))

|G′(ε)|




2

+

� t

0

s(s)ds,

(4.11)

−2

� t

0

〈
H ′

(
∂u

∂s
(s)

)
∂2u

∂s2
(s),

∂2u

∂s2
(s)

〉
ds

≤ 2CH

� t

0

(
c©0 +

1

µ0
s(s)

)α
2

s(s)ds,

(4.12)

2

� t

0

〈
∂F

∂s
(s),

∂2u

∂s2
(s)

〉
ds ≤

∥∥∥∥
∂F

∂t

∥∥∥∥
2

L2((0,1)×(0,T ))

+

� t

0

s(s)ds,(4.13)

in which γ > 0 and Di are non-negative constants given by

Di =(2γ + T ) c©0 + 2|u1(0)| (|g′i(0)| + |ki(0)||u0(0)|)

+
1

γ

[
‖g′i‖C([0,T ]) +

√
2‖u‖L∞(0,T ;H1(0,1))

(
‖k′

i‖L1(0,T ) + |ki(0)|
)]2

+

� t

0

[√
2‖u‖L∞(0,T ;H1(0,1))

(
|ki(0)| + |k′

i(0)| + ‖k′′
i ‖L1(0,T )

)]2
ds

(4.14)

for i = 0, 1.

In the sequel of (4.3)-(4.14) and by choosing γ such that

γ ≤ 1

2
∥∥∥∂µ

∂t

∥∥∥
L∞((0,1)×(0,T ))

+ 4
µ0

,
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we deduce that

(4.15) s(t) ≤ s0 +

� t

0

K (s(s)) ds,

where
(4.16)



s0 =2D1 + 2D2 + 2µ0 ‖u′
1‖

2
L2(0,1) + 4‖u0‖L2(0,1)‖u′

1‖L2(0,1)

∥∥∥∥
∂µ

∂t
(0)

∥∥∥∥
L∞(0,1)

+ 2
c©0

µ0γ

(∥∥∥∥
∂µ

∂t

∥∥∥∥
L∞((0,1)×(0,T ))

+ 2

∥∥∥∥
∂2µ

∂t2

∥∥∥∥
L1(0,T ;L∞(0,1))

)

+
1

4µ2
0

(∥∥∥∥
∂µ

∂t

∥∥∥∥
2

L2(0,T ;L∞(0,1))

+ γ2

∥∥∥∥
∂2µ

∂t2

∥∥∥∥
2

L2(0,T ;L∞(0,1))

)

+ 2

∥∥∥∥
∂F

∂t

∥∥∥∥
2

L2((0,1)×(0,T ))

+ 2T c©0


 sup

|ε|≤‖u‖
L∞(0,T ;H1(0,1))

|G′(ε)|




2

+ 32

(
‖u′

1‖
2
L2(0,1)

∥∥∥∥
∂µ

∂x
(0)

∥∥∥∥
L∞(0,1)

+ µ0 ‖u′′
0‖

2
L2(0,1) + ‖G‖2

L2(0,1)

+ ‖H‖2
L2(0,1) + ‖F (0)‖2

L2(0,1)

)
,

K(η) =

(
2 +

1

µ0
+ 2CH

(
c©0 +

1

µ0
η

)α
2

)
η + 2η2.

It is clear that s0 is a non-negative constant and K(η) is non-decreasing for all
η ∈ [0, T ]. Thus, we deduce from (4.15) and (4.16), that

(4.17) s(t) ≤ s1(t) for all t ∈ [0, T ],

where s1(t) is the maximal continuous solution of the nonlinear Volterra integral
equation with non-decreasing kernel (see [2], [3], [7], [12]) on an interval [0, T ] given
by

s1(t) = s0 +

� t

0

K (s1(s)) ds.

From (3.1), (4.4) and (4.17), we deduce that

(4.18) u ∈ H2
(
0, T ; L2(0, 1)

)
∩ H1

(
0, T ; H1(0, 1)

)
.

In addition, we have from (4.2), (4.18), (Ãµ), (ÃGH), and (ÃF ), that

(4.19)
∂2u

∂x2
=

1

µ

(
∂2u

∂t2
− ∂µ

∂x

∂u

∂x
+ G(u) + H

(
∂u

∂t

)
− F

)
∈ L∞

(
0, T ; L2(0, 1)

)
.

Hence, (3.1) and (4.19) verify that

(4.20) u ∈ L∞
(
0, T ; H2(0, 1)

)
.

Finally, it is clear that (4.18) and (4.20) make the expected proof complete. �

Remark 4. Without assumption (ÃGH), we also obtain the regularity of the

weak solution u(x, t) of problem (1.1)-(1.4) with respect the assumptions (Ãµ),

(A
(1)
GH), (A

(2)
GH), (ÃF ), (Ãg), (Ãk) and (Ãu). However the smoothness of u(x, t) in
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this case is less than what in Theorem 2. Specifically, we have the following theorem
whose proof is similar to Theorem 1’s and is obviously omitted:

Theorem 3. Let (Ãµ), (AGH), (ÃF ), (Ãg), (Ãk), and (Ãu) hold. Then, for

T > 0, problem (1.1)-(1.4) has a unique weak solution u(x, t) satisfying

(4.21) u ∈ C1
(
0, T ; L2(0, 1)

)
∩ C

(
0, T ; H1(0, 1)

)
.

From Lemma 2 and Lemma 3, we have that (4.21) can be deduced from (4.1),
this means the regularity of the weak solution u(x, t) by Theorem 2 is better that
what in Theorem 3.

Remark 5. In the case ∂2µ
∂t2 ∈ L1 (0, T ; L∞(0, 1)), Theorem 2 still holds but

provided that H ′ ∈ L∞(R).
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