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Abstract. In this paper, an asymptotic two dimensional model for compress-
ible nonlinearly viscous fluids is rigorously derived as a limit of corresponding
three dimensional models using asymptotic analysis with respect to the thick-
ness of the respective three dimensional domains.
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1. Introduction

A rigorous derivation of low-dimensional models from high-dimensional ones is
an important area of asymptotic analysis. The first attempts were done in linear
elasticity (see for instance [2], [3] and references therein for shells and plates, and
[1], [7], [8], [17] for beams and rods). The technique of the asymptotic analysis was
originally based on an asymptotic expansion but the same results can be derived
by a suitable scaling. These approaches can be applied to incompressible fluids, as
it was presented in [6], [14] and [19]. In case of barotropic compressible fluids, this
technique fails because of high oscillations in the pressure terms (see [18]). The
alternative theory developed in [12] and [13] is based on function spaces depending
on a sequence of thin domains.

In this paper, a suitable scaling is applied to a three dimensional model for
compressible nonlinearly viscous fluids in thin cylinders, where nonlinearities ap-
pear in the stress tensor but not in the pressure term. We rigorously derive a two
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dimensional model as the limit of a sequence of three dimensional models in thin
cylinders. Moreover, for slip boundary conditions, this limit model coincides with
the two dimensional Navier-Stokes equations for compressible nonlinearly viscous
fluids. An important ingredient of the proof is the approximation of the first two
components of the velocity fields by their mean values in the variable, which cor-
responds to the small proportion. We also discuss the form of Navier’s boundary
conditions which can affect the limit equations and which involve slip boundary
conditions.

This paper is organized as follows: In Section 2, we introduce the basic notation
used throughout the paper and state the main result. Section 3 contains the proof
of the main result.

2. Preliminaries

In this paper, the motion of a compressible fluid, which is determined by the
instantaneous values of the density ρ̄ǫ and the velocity ūǫ = (ū1,ǫ, ū2,ǫ, ū3,ǫ), is
studied in thin domains. If the motion is smooth, the time evolution of these
quantities is governed by

• Continuity Equation

(2.1) ∂tρ̄ǫ + d̄iv (ρ̄ǫūǫ) = 0;

• Momentum Equation

(2.2) ∂t(ρ̄ǫūǫ) + d̄iv (ρ̄ǫūǫ ⊗ ūǫ) + ∇̄p̄ǫ = d̄iv S̄ǫ + ρ̄ǫf̄ǫ

in Ωǫ, where p̄ǫ is the pressure, S̄ǫ is the viscous stress tensor and f̄ǫ stands for
external forces. To define Ωǫ we assume a referential domain Ω := S × (0, 1),
S ⊂ R

2 and ∂S ∈ C0,1. Using the mapping

(2.3) x̄ = Rǫ(x) = (x1, x2, ǫx3), x = (x1, x2, x3) ∈ Ω,

we can define Ωǫ := S × (0, ǫ). nǫ and n denote unit outward normals to ∂Ωǫ and
∂Ω, respectively. We denote by “·” scalar product, “×” Cartesian product and
“:” scalar product of tensors. Without danger of confusion, we adopt | · | for the
Euclidean norm in R

3 or R
9 generated by “·” or “:”, respectively, absolute value

and the Lebesgue measure of some measurable set. By the symbol “¯” and index
ǫ we emphasize the fact that the domain is Ωǫ.

In this paper we pay attention to an isothermal gas, which means

(2.4) p̄ǫ(ρ̄ǫ) = cρ̄ǫ,

where we put c = 1. We also restrict ourselves only to non-Newtonian fluids, i.e.

(2.5) S̄ǫ = P (|D̄ūǫ|)D̄ūǫ,

where D̄ is the symmetric part of the gradient and the function P will be specified
later. We complete (2.1)–(2.5) by the set of the Navier boundary conditions

tǫ · (P (|D̄ūǫ|)D̄ūǫnǫ) + qūǫ · tǫ = 0 on ∂S × (0, ǫ) × (0, T ),

(2.6) tǫ · (P (|D̄ūǫ|)D̄ūǫnǫ) + h(ǫ)ūǫ · tǫ = 0 on [(S × {0}) ∪ (S × {ǫ})] × (0, T ),

ūǫ · nǫ = 0 on ∂Ωǫ × (0, T )

to ensure well-posedness of the problem. Here, tǫ is any vector from the correspond-
ing tangent plane, q is a nonnegative constant and h(ǫ) ∼ o(ǫ) or h(ǫ) ∼ O(ǫ). The
choice of hǫ will be discussed during derivation of weak convergences of velocity
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fields and their consequences. Finally, we prescribed the initial conditions for the
density and momentum:

(2.7) ρ̄ǫ(x, 0) = ρ̄0,ǫ(x) ≥ 0, (ρ̄ǫūǫ)(x, 0) = (ρ̄ǫūǫ)0(x) in Ωǫ.

We further adopt the standard notation Lp(Q), W 1,p(Q) and Lp(0, T ;X), p ∈
[1,∞], for Lebesgue, Sobolev and Bochner spaces, respectively. The corresponding
norms read ‖·‖p,Q, ‖·‖1,p,Q and ‖·‖Lp(0,T ;X). Spaces of continuous and continuously

differentiable functions up to order m are denoted by Cm(Q̄) with the norm ‖ ·
‖Cm(Q̄) and by Cm([0, T ];X) with the norm ‖ · ‖Cm([0,T ];X). By D(Q) we denote
the space of smooth, compactly supported functions equipped with the topology of
locally uniform convergence.

We now pay attention to the definition of Orlicz spaces because they are not
so widespread. By LΦ(Q) we denote the Orlicz space of such functions that

‖v‖Φ,Q := sup
w∈A

∫

Q

vw dy < +∞, A = {w;

∫

Q

Ψ(|w|) dy < 1},

where Ψ is a complementary function to the Young function Φ and corresponds to
conjugate exponents in the theory of Lebesgue spaces. Let us point out that in the
theory of Orlicz spaces the relations hold:

(2.8) EΦ(Q) := C∞
0 (Q)

‖·‖Φ,Q ⊆ L̃Φ(Q) ⊆ LΦ(Q)

for L̃Φ(Q) := {v;
∫
Q

Φ(|v|) dy < +∞}, where the above three sets do not generally

coincide in contrast to Lebesgue spaces. To ensure the coincidence of the above
sets and spaces, the Young function Φ must satisfy the ∆2-condition:

(2.9) Φ(2z) ≤ cΦ(z), z ≥ z0 ≥ 0.

The Sobolev Orlicz spaces W 1LΦ(Q) involve functions with this finite norm

‖v‖1,Φ,Q :=

√ ∑

α, |α|≤1

‖Dαv‖2
Φ,Q < +∞.

The dual spaces to the spacesW 1,p
0 (Q) andW 1

0LΦ(Q) are denoted byW−1,p′(Q)
and W−1LΨ(Q), respectively.

We say that sequence {vn}∞n=1 converges EΨ-weakly to v in LΦ(Q) (vn
Ψ
⇀ v) if

∫

Q

vnw dy →
∫

Q

vw dy for any w ∈ EΨ(Q).

In addition, any Orlicz space LΦ(Q) is EΨ-weakly compact.
To derive suitable estimates we use the Young inequality

(2.10) |uv| ≤ Φ(|u|) + Ψ(|v|)
and Hölder inequality

(2.11)

∫

Q

|uv| dy ≤ ‖u‖Φ,Q‖v‖Ψ,Q

which hold for a pair of complementary functions Φ and Ψ. For a detailed intro-
duction to the theory of Orlicz spaces we refer to [9].

In this paper we will use the notation Φ1(z) and Φγ(z), γ > 1, and M(z) for the
Young functions z ln(1+ z), (1+ z) lnγ(1+ z) and ez− z− 1 for z ≥ 0, respectively.

Ψ1(z), Ψγ(z) and M̃(z) then denote their complementary functions.
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The variational formulation of (2.1)–(2.7) is

(2.12)

∫ T

0

∫

Ωǫ

[ρ̄ǫ∂tϕ̄+ ρ̄ǫūǫ · ∇̄ϕ̄] dx̄dt = 0, ∀ϕ̄ ∈ D(R3 × (0, T )),

∫ T

0

∫

Ωǫ

[ρ̄ǫūǫ · ∂tψ̄ + ρ̄ǫūǫ ⊗ ūǫ : D̄ψ̄ + ρ̄ǫd̄iv ψ̄] dx̄dt =

∫ T

0

∫

Ωǫ

[P (|D̄ūǫ|)D̄ūǫ : D̄ψ̄ − ρ̄ǫf̄ǫ · ψ̄] dx̄dt+

(2.13) q

∫ T

0

∫

∂S×(0,ǫ)

ūǫ · ψ̄ dSǫdt+ h(ǫ)

∫ T

0

∫

(S×{0})∪(S×{ǫ})

ūǫ · ψ̄ dSǫdt,

for any ψ̄ ∈ C∞
0 (0, T ;C∞(Ω̄ǫ)

3), ψ̄ · nǫ|∂Ωǫ×(0,T ) = 0.
Assume the function P satisfies

(1)

(2.14)

∫

Ωǫ

P (|D̄v̄|)|D̄v̄|2 dx̄ ≥
∫

Ωǫ

M(|D̄v̄|) dx̄,

(2)

(2.15)

∫

Ωǫ

(P (|D̄v̄|)D̄v̄ − P (|D̄w̄|)D̄w̄) : (D̄v̄ − D̄w̄) dx̄ ≥ 0,

(3)

(2.16) P (z)|z|2 is a convex function for z ≥ 0,

(4)

(2.17)

∫

Ωǫ

M̃(P (|D̄v̄|)|D̄v̄|) dx̄ ≤ c(1 +

∫

Ωǫ

M(|D̄v̄|) dx̄),

(5)

(2.18) P (|D̄v̄ − λD̄w̄|)(D̄v̄ − λD̄w̄)
M
⇀ P (|D̄v̄|)D̄v̄

for λ→ 0.

The equations for compressible nonlinearly viscous fluids with non-slip bound-
ary conditions have at least one weak solution under assumptions (2.14)–(2.18) in
a sufficiently regular domain (see [10] and [11]). The case of slip boundary con-
ditions can be treated similarly as the barotropic case (see [15]). To relax the
assumptions on the regularity of the boundary of the domain Ωǫ, we can use the
approach presented in [5]. Here, we use the Navier boundary conditions (2.6), be-
cause slip boundary conditions are their special cases (h(ǫ) = q = 0). In case of
non-slip boundary conditions, the limit of velocity fields is equal to zero and thus
we omit it.

We now give a brief comment to the usage of Orlicz spaces. The first reason is
that for the Young function M with so rapid growth the results are independent of
dimension. The second one is technical and it is hidden in (2.4). To obtain some
type of weak convergence, we need better integrability of ρ̄ǫ. In contrast to the
barotropic case, we can improve the integrability of density using the renormalized
version of continuity equation (see (2.25) and (3.5)), where, in the worst case, we
must be able to control the term ρ̄ǫd̄ivūǫ with ρǫ from the Orlicz spaces close to
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L1(Ω). The same term must be treated during the derivation of the energy equality.
But to derive the energy equality we have to use ūǫ as a test function in (2.13) (using
some suitable smoothing in time variable) and we have to control the convective
term as well.

If we transform equations (2.12) and (2.13) to a referential domain Ω given by
(2.3) and employ the scaling

(2.19) u1,ǫ = ū1,ǫ, u2,ǫ = ū2,ǫ, u3,ǫ = ǫū3,ǫ,

(2.20) ψ1 = ψ̄1,ǫ, ψ2 = ψ̄2,ǫ, ψ3 = ǫψ̄3,ǫ,

(2.21) f1 = f̄1,ǫ, f2 = f̄2,ǫ, f3 =
f̄3,ǫ

ǫ
,

where f ∈ L∞(Ω × (0, T ))3, we arrive at the equations

(2.22)

∫ T

0

∫

Ω

[ρǫϕt + ρǫũǫ · ∇ǫϕ] dxdt = 0

for any ϕ ∈ D(R3 × (0, T )), where ∇ǫ = (∂1, ∂2,
∂3
ǫ ), and

∫ T

0

∫

Ω

[ρǫũǫ · ∂tψ̃ǫ + ρǫũǫ ⊗ ũǫ : Dǫψ̃ǫ + ρǫdivǫ ψ̃ǫ] dxdt =

∫ T

0

∫

Ω

[P (|Dǫũǫ|)Dǫũǫ : Dǫψ̃ǫ − ρǫf · ψ] dxdt+

(2.23) q

∫ T

0

∫

∂S×(0,1)

ũǫ · ψ dSdt+
h(ǫ)

ǫ

∫ T

0

∫

(S×{0})∪S×{1})

ũǫ · ψ dSdt

for any ψ = (ψ1, ψ2, ψ3) ∈ C∞
0 (0, T ;C∞(Ω̄)3), ψ · n|∂Ω×(0,T ) = 0, where ũǫ =

(u1,ǫ, u2,ǫ,
u3,ǫ

ǫ ), uǫ := (u1,ǫ, u2,ǫ, u3,ǫ), ψ̃ǫ = (ψ1, ψ2,
ψ3

ǫ ), divǫ ψ̃ǫ := ∇ǫ · ψ̃ǫ and Dǫφ

is a symmetric tensor defined by

(2.24) Dǫφ :=




∂1φ1
∂2φ1+∂1φ2

2
1
2 (∂3φ1

ǫ + ∂1φ3)

· ∂2φ2
1
2 (∂3φ2

ǫ + ∂2φ3)

· · ∂3φ3

ǫ


 .

From the definition of Ω we immediately get ψ̃ǫ · n|∂Ω×(0,T ) = 0.
If we subject the corresponding renormalized continuity equations and energy

equalities (see [4] and [11] for their original forms) to the same transformation we
come to the relations

(2.25)

∫ T

0

∫

Ω

b(ρǫ)∂tϕ+ b(ρǫ)ũǫ · ∇ǫϕ+ [(b(ρǫ) − ρǫb
′(ρǫ))divǫ ũǫ]ϕ dxdt = 0

for any ϕ ∈ D(R3 × (0, T )), and
∫

Ω

[
ρǫ(t)|ũǫ(t)|2

2
+ Φ1(ρǫ(t))

]
dx+

∫ t

0

∫

Ω

P (|Dǫũǫ|)|Dǫũǫ|2 dxds+

q

∫ t

0

∫

∂S×(0,1)

|ũǫ|2 dSds+
h(ǫ)

ǫ

∫ t

0

∫

(S×{0})∪S×{1})

|ũǫ|2 dSds =

(2.26)

∫ t

0

∫

Ω

ρǫf · uǫ dxds+

∫

Ω

[
|(ρǫũǫ)0|2

2ρ0,ǫ
+ Φ1(ρ0,ǫ)] dx
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for any t ∈ [0, T ]. As the last step, we prescribe the following behavior of initial
states:

∫ 1

0

|(ρǫũǫ)0|2
2ρ0,ǫ

dx3 → |(ρu)0|2
2ρ0

,

(2.27)
∫ 1

0

Φγ(ρ0,ǫ) dx3 → Φγ(ρ0) in L1(S) for ǫ→ 0,

where u = (u1, u2, 0) and γ ≥ 1.
The main result is stated in the following theorem:

Theorem 1. Take couples (ρǫ,uǫ), ǫ ∈ (0, 1), such that ρǫ ∈ L∞(0, T ;LΦγ (Ω)),

γ ≥ 2, uǫ ∈ Lp(0, T ;W 1,p(Ω)3) for any p ≥ 1, uǫ · n|∂Ω×(0,T ) = 0 and Dǫũǫ ∈
LM (Ω × (0, T ))9, which are weak solutions to the equations (2.22), (2.23) with the

initial states ρ0,ǫ ∈ LΦγ (Ω), γ ≥ 2, |(ρǫeuǫ)0|
2

2ρ0,ǫ
∈ L1(Ω) satisfying (2.27), h(ǫ) ∼ o(ǫ)

or h(ǫ) ∼ O(ǫ), and with the function P satisfying (2.14)–(2.18). Assume that if
q = 0 then S is not a circle. Then (passing to subsequences if necessary)

(2.28) ρǫ
∗
⇀ ρ in L∞(0, T ;LΦγ (Ω)), ρǫ → ρ in C([0, T ];W−1LΦγ (Ω)),

(2.29) Dǫũǫ
M
⇀ Du, uǫ ⇀ u in Lp(0, T ;W 1,p(Ω)3) ∩ L2(0, T ;L2(∂Ω)3),

where ρ = ρ(x1, x2), u(x1, x2) = (u1(x1, x2), u2(x1, x2), 0), u · n|∂S×(0,T ) = 0 and
the couple (ρ,u) is a solution to (3.34) and (3.35) with ρ̂ = ρ, and satisfies the
energy equality (3.36).

3. Proof of theorem 1

In this section, we derive such estimates and convergences which enable us to
perform the limit in (2.22) and (2.23) and to derive the variational formulation
of the two dimensional Navier-Stokes equations for isothermal nonlinearly viscous
fluids. We then check the energy equality holds for a solution to the limit equations
and we show how to treat nonlinearity in stress tensor. At the end we verify that
density ρ does not depend on the third variable.

First of all we use the Lp-version of the Korn inequality for p > 3 to derive the
estimate

‖v‖p1,p,Ω ≤ c(‖Dv‖pp,Ω + q‖v‖pp,∂S×(0,1)) ≤

c(‖Dv‖pp,Ω + c1‖v‖p∞,∂S×(0,1) + c2(c1)q‖v‖p2,∂S×(0,1)),

where c1 > 0 is sufficiently small. Using the imbedding W 1,p(Ω) →֒ C(Ω̄) for p > 3
we arrive at

(3.1) ‖v‖1,p,Ω ≤ c(‖Dv‖p,Ω + q1/p‖v‖2,∂S×(0,1)).

Then the first integral on the right-hand side of (2.26) can be estimated as follows

|
∫ t

0

∫

Ω

ρǫf · uǫ dxds| ≤
∫ t

0

‖uǫ(s)‖∞,Ω‖f(s)‖∞,Ω

∫

Ω

ρǫ(s) dxds
(2.22)

≤

c(ρ0,ǫ, f)

∫ t

0

‖uǫ(s)‖1,p,Ω ds
(2.10), (2.14), (2.24), (3.1)

≤
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(3.2)

c(ρ0,ǫ, f)(c1

∫ t

0

∫

Ω

P (|Dǫũǫ|)|Dǫũǫ|2 dxds + c1

∫ t

0

∫

∂S×(0,1)

|ũǫ|2 dSds+ c2(c1)),

where c1 > 0 is sufficiently small. In view of (2.14), (2.26), (3.2) and the Gronwall
lemma, we then obtain the boundedness of

(3.3) {√ρǫ|ũǫ|}ǫ∈(0,1) in L∞(0, T ;L2(Ω)), {ρǫ}ǫ∈(0,1) in L∞(0, T ;LΦ1(Ω)),

{Dǫũǫ}ǫ∈(0,1) in LM (Ω × (0, T ))9,

(3.4)

{uǫ}ǫ∈(0,1) in Lp(0, T ;W 1,p(Ω)3) ∩ L2(0, T ;L2(∂Ω)3)

for any p ≥ 1. If we further put ϕ = ϕ(t) ∈ C∞
0 (0, T ) as a test function in (2.25)

with b(z) = Φγ(z), γ ≥ 1, we arrive at

(3.5)

∫ T

0

∫

Ω

Φγ(ρǫ)ϕ
′(t) + [(Φγ(ρǫ) − ρǫΦ

′
γ(ρǫ))divǫ ũǫ]ϕ(t) dxdt = 0.

Since Φγ(z)−zΦ′
γ(z) behaves asymptotically as Φγ−1(z) and Φ1(Φγ−1(z)) ≤ c(Φγ(z)+

1) for z ≥ 0, we deduce the estimate

|
∫ T

0

∫

Ω

[(Φγ(ρǫ) − ρǫΦ
′
γ(ρǫ))divǫ ũǫ]ϕ(t) dxdt|

(2.10), (2.14), (3.4)1
≤

(3.6) c(T )(

∫ T

0

∫

Ω

Φγ(ρǫ) dxdt+

∫ T

0

∫

Ω

P (|Dǫũǫ|)|Dǫũǫ|2 dxdt+ 1).

As a consequence of (2.27), (3.5), (3.6) and the Gronwall lemma we obtain the
boundedness of

(3.7) {ρǫ}ǫ∈(0,1) in L∞(0, T ; L̃Φγ(Ω)), γ ≥ 1.

In addition, it follows from (2.22), (3.4) and (3.7) the boundedness of

(3.8) {∂tρǫ}ǫ∈(0,1) in Lp
′

(0, T ;W−1LΦγ (Ω)), γ ≥ 1.

Using the above bounded sequences we get (passing to subsequences if necessary)

(3.9) ρǫ
∗
⇀ ρ in L∞(0, T ;LΦγ (Ω)), ρǫ → ρ in C([0, T ];W−1LΦγ (Ω)),

(3.10) Dǫũǫ
M
⇀ ζ, uǫ ⇀ u in Lp(0, T ;W 1,p(Ω)3) ∩ L2(0, T ;L2(∂Ω)3)

for any p ≥ 1, where

ζ =




∂1u1
∂1u2+∂2u1

2 ζ13
∂1u2+∂2u1

2 ∂2u2 ζ23
ζ13 ζ23 ζ33


 .

In view of (2.24), (3.10) and the condition u · n|∂Ω×(0,T ) = 0 we check u3 = 0 and

∂3u1 = ∂3u2 = 0 which imply u = (u1, u2, 0) ∈ Lp(0, T ;W 1,p(S)) for any p ≥ 1. We

can now see the reason for the choice of the function h(ǫ). If a limit of h(ǫ)
ǫ does not

exist then also the limit of the corresponding integral need not exist. If h(ǫ)
ǫ → ∞

for ǫ → 0 then the limit function must be equal to zero on (S × {0}) ∪ (S × {1})
and thus u = 0 which is not an interesting case.
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The convergence

(3.11) ρǫuǫ
Ψγ
⇀ ρu, γ ≥ 1,

immediately follows from (3.9)2, (3.10)2 and from theorems about compact imbed-
ding see [16].

Put now ϕ(t)ψ(x), where ϕ ∈ C∞
0 (0, T ) and ψ = (ψ1, ψ2, 0) ∈ W 1LΨ1/2

(Ω)3,

ψ · n|∂Ω = 0, as a test function in (2.23). Then

|
∫ T

0

ϕ(t)

∫

Ω

ρǫũǫ ⊗ ũǫ : Dǫψ̃ǫ dxdt| ≤

(3.12) ‖ρǫ‖L∞(0,T ;LΦγ (Ω))‖ũǫ‖2
Lp(0,T ;L∞(Ω)3)‖ψ‖1,Ψγ ,Ω‖ϕ‖p′,(0,T ), γ ≥ 1.

Since w ∈ LΦ1(Ω × (0, T )) implies w ∈ LΦ1/α
(0, T ;LΦ(α−1)/α

(Ω)), which follows
from the estimate

Φ1/α(Φ(α−1)/α(z)) ≤ 2Φ1(z) + c, z ≥ 0,

and from the Jensen inequality, we arrive at

|
∫ T

0

ϕ(t)

∫

Ω

P (|Dǫũǫ|)Dǫũǫ : Dǫψ̃ǫ dxdt| ≤

(3.13) c‖ψ‖1,Ψ1/2,Ω‖ϕ‖Ψ1/2,(0,T )(

∫ T

0

∫

Ω

M(P (|Dǫũǫ|)Dǫũǫ) dxdt+ 1).

The estimates (3.12) and (3.13) represent “the worst integrals” in (2.23) thus
we omit the estimates of the other ones. In view of the density of C∞

0 (0, T ) in
EΨ1/2

(0, T ) and the imbedding LΨ1/α
(0, T ) →֒ EΨ1/2

(0, T ) for α > 2, we deduce

from (2.23), (3.12) and (3.13) the boundedness of

(3.14) {∂t
∫ 1

0

ρǫui,ǫ dx3}ǫ∈(0,1) in LΦ1/α
(0, T ;W−1LΦ1/2

(S)), i = 1, 2.

As a consequence of (3.11) and (3.14) (see also [16]) we find (passing to a subse-
quence if necessary)

(3.15)

∫ 1

0

ρǫui,ǫ dx3 →
∫ 1

0

ρui dx3 in C([0, T ];W−1LΦ1(S)), i = 1, 2.

To treat the convective term we need the following proposition:

Proposition 2. Assume {uǫ}ǫ∈(0,1) satisfies (3.4). Then (passing to a subse-
quence if necessary)

(3.16) ‖ui,ǫ −
∫ 1

0

ui,ǫ dx3‖Lp(0,T ;L∞(Ω)) → 0 for ǫ→ 0 and i = 1, 2.

P r o o f: For if not then there exists a positive constant c1 such that

(3.17) ‖ui,ǫ −
∫ 1

0

ui,ǫ dx3‖Lp(0,T ;L∞(Ω)) ≥ c1

for any ǫ sufficiently small. Hence it follows the existence of Ii,ǫ,c1 ⊂ (0, T ) such
that

(3.18) ‖ui,ǫ(t) −
∫ 1

0

ui,ǫ(t) dx3‖∞,Ω ≥ c1

T 1/p
for a.a. t ∈ Ii,ǫ,c1 .
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In view of (3.4) we can also assume without loss of generality

(3.19) q1/p‖ui,ǫ(t)‖2,∂Ω + ‖D12uǫ(t)‖p,Ω ≤ c2 for a.a. t ∈ Ii,ǫ,c1 ,

where c2 is sufficiently large and

(3.20) D12uǫ :=

(
∂1u1,ǫ

∂1u2,ǫ+∂2u1,ǫ

2
∂1u2,ǫ+∂2u1,ǫ

2 ∂2u2,ǫ

)
.

By contradictory arguments we can check that |Ii,ǫ,c1 | ≥ c3(i, c1) > 0 for any small
ǫ. Under assumptions (3.18), (3.19) we can derive the special form of the Korn
inequality

(3.21) ‖ui,ǫ(t) −
∫ 1

0

ui,ǫ(t) dx3‖∞,Ω ≤ c(i, c1, c2)(‖D3uǫ(t)‖p,Ω + ‖u3,ǫ(t)‖2,∂Ω)

for any small ǫ and t ∈ Ii,ǫ,c1 , where

(3.22) D3uǫ =




0 0
∂1u3,ǫ+∂3u1,ǫ

2

0 0
∂2u3,ǫ+∂3u2,ǫ

2
∂1u3,ǫ+∂3u1,ǫ

2
∂2u3,ǫ+∂3u2,ǫ

2 ∂3u3,ǫ


 .

But as a consequence of (3.4) and Jegorov’s theorem we get

(3.23) ‖D3uǫ(t)‖p,Ω + ‖u3,ǫ(t)‖2,∂Ω → 0

uniformly except for a small subset of Ii,ǫ,c1 . (3.21) and (3.23) then contradicts
(3.18). 2

Combining (3.10), (3.15) and (3.16) we conclude

(3.24) ρǫui,ǫuj,ǫ
Ψγ
⇀ ρuiuj, i, j = 1, 2, γ ≥ 1.

Since the energy equality (2.26) and (2.17) imply

(3.25) P (|Dǫũǫ|)Dǫũǫ
Φ1
⇀ P (|ζ|)ζ,

we can perform the limit in (2.22), (2.23) and (2.26) to derive

(3.26)

∫ T

0

∫

S

ρ̂ϕt + ρ̂u · ∇12ϕ dx12dt = 0

for any ϕ ∈ D(R2× (0, T )), where ∇12 = (∂1, ∂2), dx12 = dx1dx2, ρ̂ =
∫ 1

0
ρ dx3 and

u = (u1, u2, 0),
∫ T

0

∫

S

[ρ̂u · ∂tψ + ρ̂u⊗ u : Dψ + ρ̂div12 ψ] dx12dt =

∫ T

0

∫

Ω

[P (|ζ|)ζ : Dψ − ρf · ψ dxdt+

(3.27) q

∫ T

0

∫

∂S

u · ψ dSdt+ 2h

∫ T

0

∫

S

u · ψ dSdt

for any ψ = (ψ1, ψ2) ∈ C∞
0 (0, T ;C∞(S̄)2) such that ψ · n|∂S×(0,T ) = 0, where

div12 ψ = ∇12 ·ψ and h = 0 if h(ǫ) ∼ o(ǫ) or h is an positive constant if h(ǫ) ∼ O(ǫ),
and ∫

S

[
ρ̂(t)|u(t)|2

2
+ Φ1(ρ̂)] dx12 +

∫ t

0

∫

Ω

P (|ζ|)|ζ|2 dxds+ q

∫ t

0

∫

∂S

|u|2 dSds
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(3.28) +2h

∫ t

0

∫

S

|u|2 dSds ≤
∫ t

0

∫

Ω

ρf · u dxds+

∫

S

[
|(ρ̂u)0|2

2ρ0
+ Φ1(ρ0)] dx12.

We now treat the nonlinearity in stress tensor. To derive the energy equality
∫

S

[
ρ̂|u|2

2
+ Φ1(ρ̂)] dx12 +

∫ t

0

∫

Ω

P (|ζ|)ζ : Du dxds + q

∫ t

0

∫

∂S

|u|2 dSds =

(3.29)

∫ t

0

∫

Ω

ρf · u dxds+

∫

S

[
|(ρ̂u)0|2

2ρ0
+ Φ1(ρ0)] dx12

we can use the same approach as in [11] based on the renormalized continuity
equation (see [4]) and the Steklov function (see [9]) . In view of monotonicity of
the function P (|z|)z we get

0 ≤ lim
ǫ→0

∫ t

0

∫

Ω

(P (|Dǫũǫ|)Dǫũǫ − P (|T |)T ) : (Dǫũǫ − T ) dxds =

(3.30)

= lim
ǫ→0

∫ t

0

∫

Ω

(P (|Dǫũǫ|)|Dǫũǫ|2 − P (|ζ|)ζ : T − P (|T |)T : ζ + P (|T |)|T |2 dxds,

for any symmetric tensor T . As a consequence of (2.26), (3.29), convexity and the
Jensen inequality we deduce

lim
ǫ→0

∫ t

0

∫

Ω

P (|Dǫũǫ|)|Dǫũǫ|2 dxds = lim
ǫ→0

(
−
∫

Ω

[
ρǫ(t)|ũǫ(t)|2

2
+ Φ1(ρǫ)] dx−

q

∫ t

0

∫

∂S×(0,1)

|ũǫ|2 dSds+
h(ǫ)

ǫ

∫ t

0

∫

(S×{0})∪(S×{1})

|ũǫ|2 dSds
∫ t

0

∫

Ω

ρǫf · uǫ dxds+

∫

Ω

[
|(ρǫũǫ)0|2

2ρ0,ǫ
+ Φ1(ρ0,ǫ) dx]

) (2.27), (3.9)−(3.11), (3.24)

≤

−
∫

S

[
ρ̂(t)|u(t)|2

2
+ Φ1(ρ̂)] dx12 − q

∫ t

0

∫

∂S

|u|2dSds− 2h

∫ t

0

∫

S

|u|2dSds+

(3.31)∫ t

0

∫

Ω

ρf · u dxds+

∫

S

[
|(ρ̂u)0|2

2ρ0
+ Φ1(ρ0)] dx12

(3.29)
=

∫ t

0

∫

Ω

P (|ζ|)ζ : Du dxds.

Hence and from (3.30) we conclude

(3.32) 0 ≤
∫ t

0

∫

Ω

(P (|ζ|)ζ − P (|T |)T )(Du− T ) dxds

and thus

(3.33)

∫ t

0

∫

Ω

P (|ζ|)ζ : Dv =

∫ t

0

∫

Ω

P (|Du|)Du : Dv dxds

for any v = (v1, v2), v ∈ Lp(0, T ;W 1,p(S)2), Dv ∈ LM (S × (0, T ))4 and v ·
n|∂S×(0,T ) = 0. The limit equations together with the energy equality thus read

(3.34)

∫ T

0

∫

S

ρ̂ϕt + ρ̂u · ∇12ϕ dx12dt = 0

for any ϕ ∈ D(R2 × (0, T )),
∫ T

0

∫

S

[ρ̂u · ∂tψ + ρ̂u ⊗ u : Dψ + ρ̂div12 ψ] dx12dt =

∫ T

0

∫

S

[P (|Du|)Du : Dψ−
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(3.35) ρf · ψ] dxdt+ q

∫ T

0

∫

∂S

u · ψ dSdt+ 2h

∫ T

0

∫

S

u · ψ dSdt

for any ψ = (ψ1, ψ2) ∈ C∞
0 (0, T ;C∞(S̄)2) such that ψ · n|∂S×(0,T ) = 0 and

∫

S

[
ρ̂|u|2

2
+ Φ1(ρ̂)] dx12 +

∫ t

0

∫

S

P (|Du|)|Du|2 dxds+ q

∫ t

0

∫

∂S

|u|2 dSds+

(3.36) 2h

∫ t

0

∫

S

|u|2 dSds =

∫ t

0

∫

Ω

ρf · u dxds+

∫

S

[
|(ρ̂u)0|2

2ρ0
+ Φ1(ρ0)] dx12.

From (2.16), (3.28), (3.31) and (3.33) it follows

0 ≤
∫ t

0

∫

Ω

P (|ζ|)|ζ|2 ≤ lim
ǫ→0

∫ t

0

∫

Ω

P (|Dǫũǫ|)|Dũǫ|2 dxds

(3.37)

≤
∫ t

0

∫

S

P (|Du|)|Du|2 dx12ds

which together with the form of ζ (see (3.10) and bellow) give
∫ t

0

∫

Ω

P (|ζ|)(ζ2
13 + ζ2

23 + ζ2
33) dxds = 0

and thus ζ13 = ζ23 = ζ33 = 0.
It remains to prove ρ = ρ(x1, x2). In view of (3.10) and the fact that ζi3 = 0,

i = 1, 2, 3, we can rewrite (3.32) as

(3.38) 0 ≤
∫ T

0

∫

Ω

(P (|ζ|)ζ − P (|T |)T ) : (ζ − T ) dxdt

for any symmetric tensor T . Put T = ζ − λJ , where J33 = ∂3ϕ, ϕ ∈ D(Ω × (0, T )
and Jij = 0 otherwise. Then we arrive at

(3.39)

∫ T

0

∫

Ω

(P (|ζ|)ζ)33∂3ϕ dxds =

∫ T

0

∫

Ω

P (|ζ|)ζ33∂3ϕ dxds = 0.

We further use ψ = (0, 0, ǫ2ψ3), ψ3 ∈ D(Ω × (0, T )), as a test function in (2.23). It
is clear that after the limit passage ǫ→ 0 the integrals with stress tensors converge
to zero because of (2.26), (3.25) and (3.39). We now only show that

(3.40) ρǫu3,ǫ
u3,ǫ

ǫ2
→ 0 in D′(Ω × (0, T )),

because it is the worst term in the remaining part of (2.23). As a consequence of
the inequality

(3.41)

∫ T

0

∫

Ω

M

( |u3,ǫ|
ǫ2

)
dxdt+ ‖u3,ǫ

ǫ2
‖M,Ω×(0,T ) ≤ c,

which follows from (2.26) and from zero traces of u3,ǫ, we can derive the estimate

|
∫ T

0

∫

Ω

ρǫu3,ǫ
u3,ǫ

ǫ2
∂3ψ3 dxdt| ≤ c(∂3ψ3)‖u3,ǫ‖M,Ω×(0,T )‖ρǫ

u3,ǫ

ǫ2
‖M̄,Ω×(0,T ) ≤

cǫ2(

∫ T

0

∫

Ω

Φ1

(
ρǫ

|u3,ǫ|
ǫ2

)
dxdt+ 1) ≤ cǫ2(

∫

{ρǫ≥
|u3,ǫ|

ǫ2
}

Φ1

(
ρǫ

|u3,ǫ|
ǫ2

)
dxdt+
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∫

{ρǫ<
|u3,ǫ|

ǫ2
}

Φ1

(
ρǫ

|u3,ǫ|
ǫ2

)
dxdt+ 1) ≤ cǫ2(

∫ T

0

∫

Ω

ρǫ
|u3,ǫ|
ǫ2

ln (1 + ρ2
ǫ) dxdt+

∫ T

0

∫

Ω

|u3,ǫ|2
ǫ2

ln (1 +
|u3,ǫ|
ǫ2

) dxdt ≤ cǫ2(

∫ T

0

∫

Ω

M

( |u3,ǫ|
ǫ2

)
dxdt+

∫ T

0

∫

Ω

M̄(ρǫln (1 + ρ2
ǫ)) dxdt+ 1) ≤ cǫ2,

because the estimate M̄(zln (1 + z2)) ≤ c(Φ2(z) + 1) holds for z ≥ 0. After the
limit passage ǫ→ 0 in (2.23) we get

∫ t

0

∫

Ω

ρ∂3ψ3 dxds = 0.
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